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Abstract

In 2007, Olsson and Stanton determined the largest size of (¢1, t2)-core partitions.
Inspired by their result, there have been considerable research on the largest size of
simultaneous core partitions. In this work, we compute the largest size of (¢, t+d, t+
2d)-core partitions for any coprime positive integers ¢ and d. This generalizes the
result of Yang, Zhong, and Zhou, who proved the largest size of (t,t+ 1,t + 2)-core
partitions.

Mathematics Subject Classifications: 05A17, 11P81

1 Introduction

A partition of a positive integer n is a sequence A = (A1, Ag, ..., A¢) such that A\; > Ay >
oAz landn =M+ X+ -+ A Each ); is called a part of A\. We denote the size
of A by |A\| = n, and the length of A\ by ¢()), which refers to the number of parts in .
We draw a figure corresponding to a partition A, which is called the Ferrers diagram of
A. In the Ferrers diagram of a partition A, we draw \; boxes in the ith row and all the
boxes are left-aligned. In each box of the Ferrers diagram of A\, we assign a number called
a hook length. The hook length of a box is the sum of the number of boxes on its right,
the number of boxes in the below, and 1 for itself.

When ¢ is a positive integer, a partition A is called a t-core (partition) if none of
the hook lengths in A is a multiple of . For positive integers tq,1s,...,t,,, we say that
a partition is a (ty,ts,...,t,)-core partition if it is simultaneously a t;-core for all ¢ =
1,2,...,m. Note that the number of (¢,ts,...,%,)-core partition is finite if and only if
ged(ty, ta, ... ty) = 1.

The beta-set of a partition A\ is the set of hook lengths in the first column of its
Ferrers diagram. In other words, for a partition A = (Ay, Ag,..., A¢), the beta-set of A is
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BA)={M+L—1,+0—2,... .01+ 1,\}. It follows from [4, Lemma 2.7.13] that A
is a t-core partition if and only if x € S(\) implies x — t € S(\) when x > ¢. Note that
Al = S(B(N)) — (Z(Q)‘)), where S(A) is the sum of the elements in the set A. For example,
the partition (6,2,1,1) is a t-core partition if ¢ = 5,7,8, or ¢t > 10 (see Figure 1). Thus,

this partition is a (5, 7)-core partition and the beta-set is {9, 4,2, 1}.

614(3|2]1
1
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Figure 1: The Ferrers diagram of the partition (6,2,1,1) and its hook lengths

The studies of simultaneous core partitions emerged from the work of Anderson [2]. By
hiring a poset structure and counting the number of corresponding lattice paths, Anderson
showed that the number of (¢1,%s)-core partitions for coprime ¢; and t, is equal to the
rational Catalan number ﬁ (“Zb). Moreover, Olsson and Stanton [10], and Tripathi [14]
independently showed that the largest size of (t1,t3)-core partitions is (t2 — 1)(t3 — 1)/24,
and Johnson [5] and Wang [15] proved that the average size of (t1,ty)-core partitions is
(t1 +t2+ 1)(t; — 1)(t2 — 1)/24 independently.

It is natural to ask for the properties of (¢y,...,t,,)-core partitions with m > 3. Due
to the work of Aggarwal [1], we have a “nice” poset structure for (¢1, ¢, t3)-core partitions
only for some special cases. Hence, most studies of core partitions consider cases in
which cores form an arithmetic progression. Let ¢ and m be positive integers such that
t > 3. Yang, Zhong, and Zhou [19] determined both the largest size and the average
size of (t,t + 1,t + 2)-core partitions. Xiong [16] found a formula for the largest size of
(t,t+1,t+2,...,t 4+ m)-core partitions. Nam and Yu [8] computed the largest size of
(t,t+1)-core partitions under the restriction that all parts are of the same parity. Ma and
Jiang [7] generalized the result of Nam and Yu to (¢, mt+1)-core partitions. Sha and Xiong
[12] computed the largest size of (¢, mt — 1, mt + 1)-core partitions, which was conjectured
by Nath and Sellers [9]. Also, there are several results on the largest size of core partitions
such that all parts are distinct. For more details, see [6, 11, 13, 17, 18, 20, 21, 22].

The main result of this paper provides the formula for the largest size of (¢, t+d, t+2d)-
core partitions for any coprime positive integers ¢ and d. This is the first result on the
largest size of core partitions whose cores form an arithmetic progression with a common
difference greater than 1.

Theorem 1. Let t and d be coprime positive integers with t > 3. The largest size of
(t,t + d,t + 2d)-core partitions is

s(s+1)(s+d)(s+d+1) when t = 2s + 1,

d—1 d-+1
_(2+dS_T) (52+d5—|—%) when t = 2s.

— O =

6
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Note that Theorem 1 is a generalization of the result of Yang, Zhong, and Zhou [19].

Theorem 2. [19] Let t be a positive integer. The size of the largest (t,t + 1,t 4 2)-core
partition equals

3
1 2
(s—l—l)(s—g )—i—(s—g ) when t = 2s.

2 Preliminaries

2
(s+1)<s+ ) when t =2s — 1,

Throughout this paper, let N be the set of nonnegative integers. For positive integers
t1,...,tm, we define the set Py, ;) by

Piy,tmy = N\{n € N|n =ait; +asty + - + aply, for ai,...,a, € N}.

For two elements x,y € Py, . 4,), we say that y covers x and denote x < y if

y—x € {ayty + asto + -+ - + aptym | a1, ..., a, € N}

By convention, we often omit the partial order < to present a poset (Py,, 4., <). For a
given poset (P, ... t,.), <), an order ideal I is a subset of P, 4.y with the property that
for any elements z,y € Py, 1,), if x <y and y € I, then z € I.

It follows from [19, Theorem 2.2] that a partition Ais a (¢1, .. ., t,;,)-core partition if and
only if 3()) is an order ideal of P, . ,,.). In this paper, we consider the poset P 44124
for coprime positive integers ¢ and d. By convention, we denote by Py g = Pt 14d,t+24)-
2.1 The structure of the Hasse diagram

We observe the elements of P 4 and categorize them.
Lemma 3. For coprime positive integers t and d with t > 3,

[5-1

Pua = P U U Ly,
=0

where L; = {id+jt |i,j e N,2j +1 <i <t —1}.
Proof. First, it is clear that P4 C P 4 because
r=at+bt+d)+ct+2d)=(a+b+c)t+ (b+2c)d

for some nonnegative integers a, b, and c.
Next, we consider the elements of Py 4 \ FPsq), which are of the form id + jt for some
nonnegative integers ¢ and j. When j = 0, id € Py 4 for each i = 1,2,...,t — 1 since
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ged(t,d) = 1. Now, let i and j be positive integers with 1 < i < ¢ — 1. Suppose that
there exist nonnegative integers a, b, and ¢ such that id + jt = at + b(t + d) + c(t + 2d).
Then, 2j —i =2(a+b+c) — (b+2c) = 2a+0b > 0. Therefore, id + jt € Py 4 \ Pr,q) when
2j+1<1i<t—1, which completes the proof. O]

We draw the Hasse diagram of P 4 as follows: First, we write the elements d, 2d, . . .,
(t — 1)d horizontally and call this layer Ly. Put other elements of Py 4 in the diagram
above or below the elements of Ly, where the elements are connected by a line segment
if the difference of two elements is ¢, t + d, or t + 2d. Note that, when t is even, there is
only one element at the top of the Hasse diagram, whereas there are two elements at the
top when ¢ is odd.

Example 4. We have Pg3 = Fig3) U U L;, where Pgg) = {1,2,4,5,7,10,13}, Ly =

{3,6,9,12,15,18,21}, L, = {17,20,23, 26 29}, Lo = {31,34,37}, and L3 = {45}. See
Figure 2 for the Hasse diagram of Pjg3). Figure 3 shows the Hasse diagram of Pjg 9.

45 Ls

31 34 37 Ly

17 20 23 26 29 Ly

3 6 9 12 15 18 21 Lo

SN

1 4 7 10 13

I

2 )

Figure 2: The Hasse diagram of P 3

41 43 Ls

28 30 32 34 Ly

15 17 19 21 23 25 Ly
PN

2 4 6 8 10 12 14 16 Lo

1 3 ) 7

Figure 3: The Hasse diagram of Py
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Let |A| be the cardinality of a set A. For coprime positive integers ¢ and d, Brown
and Shiue [3] showed that the sum of the elements in P g is

S(Pua) = 1—12(t— (d—1)(2td —t —d — 1) (2.1)

and the number of elements in P, g) is
[P = (¢ = 1)(d —1)/2. (2.2)

Let kg be a (t,t+d, t+2d)-core partition such that S(kp,q) = Pyq. We now compute
the size of Ky q).

Lemma 5. For coprime positive integers t and d with t > 3, the size of Ky q) is

s(s+1)(s+d)(s+d+1) when t = 2s + 1,

2 2
S —'— + —_— € U= 2 .

— O =

Proof. We first consider the case when t = 2s 4+ 1 for some positive integer s.
By the equations (2.1) and (2.2),

1
S(Past1,a)) = gs(d —1)(4sd — 25 +d — 2) and |Pasi1,9)| = s(d — 1).
The elements in L; when 0 < j <s—1 are

d+ (25 +2d+ 1)j,2d + (25 + 2d + 1)j, ..., (25 — 2j)d + (25 + 2d + 1)j.

Hence, we have

S (D Lj> = i{(Zs —2j+ 1)d+ (4s+4d+2)j}(s — j)

=0 j=0

1
= 68(8 +1)(8ds + d + 4s* — 25 — 2)

and =244+---+2s=s(s+1).

s—1

U L;

=0

It follows from Lemma 3 that S(Posi1,q) = #s(d — 1)(4sd — 2s + d — 2) + ¢s(s +
)+

1)(8ds + d + 4s* — 2s — 2) and |Ppsi1,9] = s(d — s(s+1) = s+ sd.
By the definition of the beta-set, we obtain that

P, 1
[Kast1.4g] = S(Pst1a) — (‘ [2 ;1,(1}‘) _ 63(3 +1)(s+d)(s+d+1).

We omit the proof for even ¢ since it is very similar to the proof when t is odd. n
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2.2 Properties on order ideals

In order to compute the largest size of (¢,t 4+ d,t + 2d)-core partitions, we group the
elements in the poset P4 which are in the same diagonal from northwest to southeast.
Define each group as sets A; fori =1,2,...,t —1 by

A; = {id+ jt € Pug | j € Z}.

Let I be an order ideal of Py 4. Define a;(/) = |A; \ I|. By convention, we abbreviate
a;(I) as a; if the order ideal I is obvious in the context.

Example 6. Consider the poset Py 4. Then we have A, = {2}, Ay = {4}, A3 = {6, 15},
Ay = {8,17}, A5 = {1,10,19,28}, Ag = {3,12,21,30}, A; = {5,14,23,32,41}, and
Ag = {7.16,25,34,43).

Let I ={1,3,5,6,7,8,10,12,14,16, 21,25} be an order ideal of Pg 4. In Figure 4, we
circle the elements of the order ideal I. Note that a5(I) = |A5 \ {1,10}| = 2. Similarly,
ar(I)=1,a(1) =1, a3(I) =1, a4(I) =1, ag(I) = 1, az(I) = 3, and as(]) = 2.

Figure 4: The Hasse diagram of Py and the order ideal I whose elements are marked
by circles

We now observe properties of A; and a;. Recall that the beta-set of a (¢,t+ d,t + 2d)-
core partition corresponds to an order ideal of P 4.

Lemma 7. For coprime positive integers t and d witht > 3, let X be a (t,t+d, t+2d)-core
partition and a; = a;(B(N)). Then, we have the followings:

(1) max{Ay 1} = (20 = 1)d + (i = Dt fori=1,2,..., ]
(2) max{As;} = 2id+ (i — 1)t fori= 1’2’---7|_%J

(3) ayy < E2UEE fori= 12, (4]

(4) a2i<%f0ri:1,2,...,L%J

(5) azi—1 < agipq fori= 1,2,...,L§J —1
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(6) as; < agiro fori=1,2,. L%J -1
(7) a2 < agitr fori:1,2,.,,,L§J —1
(8) agi— <a2¢+1f0ri:1,2,...,L%J

Proof. (1) and (2): Let kd + jt € Ay for a fixed positive integer k£ and an integer j. By
Lemma 3, we get 27+ 1 < k <t—1orj <0, which gives us that j < % Thus, we have

max{ A} = kd + {%J t.

By putting k = 2 — 1 or k = 2i respectively to the above equation, we obtain the desired
results.
(3) and (4): Since B()) is an order ideal and |A; \ S(A)| = ax, by (1) and (2), we

have
Agi 1 \BON) ={(2i = 1)d+jt € Peg | j€Z}\ BN
= {max{Ay 1} —jt | 0<j<ay—1}
—{(2@—1)d+(2—1)t—jt]0 < agi-1 — 1},
Ay \ BA) ={2id+ (i — 1)t — jt | 0 < agz—l}

Since the elements of Ay; | are positive integers, we get

(t+2d)i—d—1

(2% — ].)d + (Z — ].)t — (CLQi_l — 1)t >1 & a9 & ;

(t+2d)i—

Similarly, we obtain as; <
(5) and (6): Suppose that (22+1)d—|—2t agit1t € Agi1NB(A). If (2i4+1)d+it—ag; 1t >
t+ 2d, we get

((22 + 1)d + it — a2i+1t) - (t + 2d) = (22 — 1)d + (Z - 1)t — CLQZ'_H'[Z € 5()\),

which implies that a9;—1 g a2;i+1- If (22 + 1)d + 1t — a2i+1t < t+ Qd, then maX{AQi_l} =
(2Z — 1)d+ (Z — 1)t < a2i+1t. Hence, a9;—1 < ’Agl’,l‘ < a2i4+1- Slmllarly, we get ag; < a2;12.

(7) and (8): Suppose that 2id+(i—1)t—agt € Ay;NB(N). If 2id+(i—1)t—agt > t+d,
we get

(2id+ (i — 1)t —agt) — (t+d) = (20 — 1)d+ (i — 1)t — (az; + 1)t € B(N),

which 1mphes that a92;—1 < a9; + 1. If 2id + (l — 1)t — agit < t+ d, then maX{Agi_l} =
(20 — 1)d + (1 — 1)t < (ag; + 1)t. Hence, agi—1 < |Agi—1| < ag + 1. Similarly, we get
ag; < A2i41- O

We achieve the following corollary by using Lemma 7.
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Corollary 8. For coprime positive integers t and d with t > 3, let X be a (t,t+d,t+ 2d)-
core partition and a; = a;(5(N\)). For eachi=1,2,...,1,

ag;i—1(agi—1 +1)

S(Agi_l \ 5()\)) = @'ta%_l + (21 — ].)daQi_l — 9 t,
(g + 1
S(Asi \ BN)) = itas + 2idas; — %t
Proof. Since A; \ B(A) = {max{A4;}, max{A;} —¢,...,max{A;} — (a; — 1)t}, we have
S04\ BO)) = a;max{ 4y — =1y
By (1) and (2) of Lemma 7, we obtain the desired results. O

Our goal in the next two sections is to prove that sy q gives the largest size of (¢,¢ +
d,t + 2d)-core partitions for all coprime positive integers ¢ and d with ¢ > 3. In order
to prove this result, we consider two cases depending on the parity of ¢t. Recall that the
poset structure of P 4 has one maximal element when ¢ is even and two maximal elements
when ¢ is odd.

3 Proof of Theorem 1 for odd ¢

In this section, we compute the largest size of (t,t 4 d,t + 2d)-core partitions when ¢ is
an odd integer. In Lemma 9, we compute |kps11,q| — |A| in terms of a; for a (254 1,2s +
d+ 1,25 + 2d + 1)-core partition A\. Then, we show in Theorem 11 that |k 1,q| — |A] is
nonnegative for any .

Throughout this section, for simplicity, we denote > a;a; := >,  aa;.
1<j 1<i<j<2s

Lemma 9. Let s and d be positive integers such that ged(2s 4+ 1,d) = 1 and Kpsi1,q9 be a
partition whose beta-set is Pogy1,q. For any (2s+1,2s+d+1,2s+2d + 1)-core partition
A, let a; = a;(B(N\)). Then, we have

s

S 2s
bpasral = A =D ((2i —s = 1)(d + ) + i) (a1 + az:) +d > _agi—s Y al + > aa;.

=1 i=1 i=1 i<j

Proof. By Lemma 5, we have ((k2s11,q) = s(s + d). By the definition of the beta-set,

[Kaerral = A = ZS (S<82+d>) N (é(;))_

2s
Since ¢(\) = s(s+d) — > a;, we get

i=1

(3<32+d>> - <e<2A>) = (s +d) Zal__zaz (Zwl)_

i=1
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By putting t = 2s 4+ 1 in Corollary 8, we have

w45+ (2)

— Z <(25 + 1)iag;—1 + (20 — 1)dag;—1 — (2s + 1)

i=1

agi—1(agi—1 + 1)
2

s 2s
. . azi(az; + 1
+ E ((23 + 1)iag; + 2idag; — (25 + 1)%) —s(s+d) E a;
i=1 i=1

1 2s 2s

- o 25 +1 -
= Z ((23 +1)i+ (20 —1)d — 5 ) (agi—1 + ag;) + dz a9

i=1 i=1

2s 2s 2s
S oS a b (La) ¢

=1

s

22«2@ — S — 1)(d+ S) + i)(GQi_l + agi) + dZagi — SZCL? + Zaiaj. D

=1 i=1 i=1 i<j

Now, we show that |Kpsi1,4] — [A| = 0 for any (25 +1,2s + 1 + d,2s + 1 + 2d)-core
partition A. The proof of this result is quite complicated, so we provide an example to give
readers an intuition for the proof of Theorem 11. A partition ) is called the conjugate of
a partition A if each part A’ of A" represents the number of boxes in the column j of the
Ferrers diagram of \.

Example 10. We compute the largest size of (5, 5+d, 5+2d)-core partitions for a positive
integer d with ged(5,d) = 1. First, it is known that |k5 q| = (d 4 2)(d + 3) by Lemma 5.
By putting s = 2 in Lemma 9, for each (5,5 + d, 5 + 2d)-core partition A, we obtain that

2

|’€[57d]|_|)‘|:Z(( 3)(d+2)+z)(a21 1+Cl2z +dzagz—22a + Z a;a;.

i=1 1<i<j<4

Since a, < ag, as < ag, a1 < ag + 1, and az < ag + 1 by Lemma 7, we have

Z?Zl((Qz'—B)(d—i—Z)—i—z)(an 1+ ag;) +d2a22—22a + Z a;a;

1<i<j<4
=(—d —1)(a1 + az) + (d + 4)(az + a4) + day + day — 2a3 — 2a5 — 2a3 — 2a;
+ aras + ar1a3 + ara4 + asa3 + as04 + azay
=ay(az — a1) + 2as(ay — az) + a1(ag —a; + 1) + az(ag — az + 1)
— a3 — 2a3 — day + dag + 2day — 2a; — ay + 3az + day + ara4 + asaz — asay
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— ag — 2(@2l —day + das + 2das — 2a1 — ao + 3az + dag + a1a4 + aza3 — asa4

:(a3 — CL1>d — (CLQ — al)a4 — ((1,3 — CLQ)CL3 — 2(11 — Q9 + 3(13 -+ 2&4(d + 2 — CL4>
>(ag — a1)d — (ag — ay)ay — (a3 — az)az — 2a; — as + 3as,

WV

where the last inequality comes from the fact that ay < M

holds when a4 = 0.
We again use the inequalities a3 < a4 + 1 and ay < d + 2 to obtain the following
inequalities:

< d+ 2 and the equality

(a3 — al)d — (0,2 — al)a4 — (CL3 — Clg)ag — 2&1 — asg + 3&3

= (a3 — ag)(d — a3) + (ay — a1)(d — a4) — 2a; — as + 3ag
= (a3 —a2)(d+3 —a3) + (ag —a1)(d+2 — a4)

> (a3 —ag)(d+3—(ag+ 1))+ (ag — a1)(d+ 2 — ay)
=(ag—a1)(d+2—aq) > 0.

The equality holds when (ay,as,as,as) = (0,0,0,0) or (1,0,1,0). If (a1, as, a3, a4) =
(0,0,0,0), then A = K5 g. Otherwise, A = '{ES,d]‘

We generalize calculations of inequalities in Example 10 to prove that |Kjsi1,q]—[A| >
0 for general s, which is given in Theorem 11.

Theorem 11. For positive integers s and d such that ged(2s + 1,d) = 1, let X be a
(2s+1,2s+d+1,2s+2d+1)-core partitz’on and a; = [A;\B(N)|. Then, |Kpsi1,q]—|A| = 0.

The equality holds when \ = Kpsi1,q4 0T I{[25+1 d-

Proof. This proof heavily depends on Lemma 7. We first divide summations into the
sums of ag;_1 and ag; in order to use inequalities in Lemma 7. First, we have

|K2st1,a| — Al
—Z (20 —s—1)(d+s) +i)(agi—1 + a) +dZa21—sZa +Zaza]
'L<]
—Z{ 2i — s — 1)(d+ s)(agi—1 + az;) + i(agi_1 + ag;) + dag; } — Zsa +Zazay
=1 1<j

= Z{(Qz — 5 —1)(d 4 5)(agi—1 + az) +iagi_1} + s(d + 8)ags — sa3,

i=1
— Z{@ — i) ag; + (ags — ;) (d + 5 — ags) — agins} — Z(i —1)(a3,_, +a)
—Z S—Z+1 a?z 1+a22 ‘I’ZZ a2;— 1a2k+a2k 1(121)

1=2 k=1
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+ g Q2;—103; + g g (@gi—1G9k—1 + ag;iasg),

=1 i=1 k=i+1
where
Z ’iagi + d Z a9;
i=1 i=1
= s(d+ s)azs — » {(s — i)az; + (a2, — az:)(d + s)}
= s(d + s)ags — Z{(s — i)ag; + (ags — ag;)(d 4 5 — ag) — agiags} — saa,
and
i—1 S S S
Z a;a; = (agi—1a9k + agp—1a2;) + Z Q2i—102; + Z Z (agi—1a9x—1 + agiasx).
1<j 1=2 k=1 i=1 i=1 k=i+1
Let
s s 1—1
X = 2(22 — s — 1)(d + 8) (a2i71 + azi) + (a2i71a2k + @2k—1a2i)
i=1 i=2 k=1
S s—1
- Z(i — 1)(a5;_y +a3;) = > (ass — an)(d + 5 — ag,),

e
Il

1

Y = Z Z Agi—102K—1 + G2iG21) — Z(s —i+1)(a3,_, +a3,)

=1 k=i+1 =1

+ Z(a%—lam‘ + agias).
i=1

Then, we have |kpsi1,q| — [\ = X +Y — Z(s —i)ag + Z iagi—1 + s(d + 8)ags — sa2,.
Since s(d + 8)ags — sa3, = sags(d + s — ags) 0, we need to show that X +Y >

s—1

Z(S - i)agi — Z Z-Clgl;l. Let
i=1

i=1
i—1

Xi =) {(azk — azk—1)(d+ s — az:) + (agi—1 — azk)(d+ 5 — agi1) + (az — az) (d + 5 — a) }
k=1

fort=2,3,...,s—1, and

s—1

X, = Z{(G% — ag—1)(d + 5 — ags) + (261 — agp)(d + 5 — ags—1)}.
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Then, we obtain that Y  X; = X because

=2

s s 1—1
Z X; = Z Z{(a% — Qop—1)(d + s — az) + (agi—1 — ag)(d + s —ag—1)}
i=2 i=2 k=1
s—1 i—1

+ Z Z((Igi — agk)(d + 5 — agi)

=2 k=1

—_

.

S

= {(agi—1 + a9 — agk—1 — ag)(d + s) — (agi—1 — agg)ag;i—1}

i=2 k=1
s i—1 s—1
- Z (ag; — agp—1)ag; — Z(azs — agk)(d + s — ags)
i k=1

TN
£
Il
—

s i—1

Il
(]

{(agi_l + CLQZ')(d + S) — (GQk_l + agk)(d —+ 8) + agi_lagk}

=2 k=1
s i—1 s s—1
+ A2k —1A9; — Z(l — 1)(@;_1 + G%Z) — (&23 — agk)(d + s — CLQS)
i=2 k=1 i=2 k=1
s s i—1
= {(i—1)(azi-1 +ag)(d+s)— (s —i)(azi1 +az)(d+s)} + Z Z 2102k
i=1 i=2 k=1
s 1—1 s s—1
+ agp—10a9; — Z(’L — 1)(&;_1 + G%l) — (0/25 — a%)(d + s — ags)
i=2 k=1 i=2 k=1
=X.
Since ag; < % =i+ 22‘1;;11 < s+ d and ag;_1 < ag; + 1 by Lemma 7, we have
i—1
Xi =) {(aok — ag—1)(d + 5 — az;) + (agi—1 — ag)(d + s — azi—1)}
k=1
i—1

+ (CLQZ' — agk)(d + s — a%)

-~
—

<.
|

>

(]

{(agk — agk—1)(d + s — ag) + (agi—1 — agk)(d+s—1—as)} (3.1)

ol
I
-
|
—

+ (azi — (Lgk)(d + s — azi)

= o
—

.
|

= {(agi—1+ag —ag—1 — ag)(d+ s —ag) — (agi—1 — az)} (3.2)
1

3
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s
|
—

Z — (agi—1 — agg) = — (1 — D)ag—1 + Zazk
1 —

>
Il

and, similarly, we also obtain that
Xo > —(5s—1)age—1 + Za%-

Summing all the inequalities of X; gives that

s 1
ZX Z( (1 —1)ag;— 1+Za2k> ( (s = 1ags— 1+Za2k)
=2

=2

s—1 s

8 —1 agl Z(l — 1)&21',1.

=1 =2

M

Now, we evaluate an inequality for Y. Let

Y, = agi—1 <6L2i + Z a2k1> —(s—i+1)a3_,

k=i+1

We obtain that > Y; + > Z; =Y since

=1 =1

ZYri—ZZi
_Z (%Z 1 <a21+ Z A2k— 1) S—Z"'l)am 1>

k=i+1
+ Z (agz (ags + Z a%) (s —1i-+ 1)a2z>
k=i+1
= Z{amfla% —(s—i+Dag F+ Y > {asi-1am1 + agiay}
i=1 i=1 k=it1
+Za2ﬂzs —Z 5—i+1>a§i =Y.

=1

Again, since agi—1 < Ggip1, G2i < Agiq2, and ag 1 < ay + 1 for i = 1,2,...,

Lemma 7, we have
Y = a9 <a2i + Z azk—1> — (s —i+1)a3;_,
k=i+1
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> g 1(agi 1 — 1+ (s —d)agi_1) — (s —i+1)aj;_; = —ag_1,

Zi = ag; <a25 + Z a2k> (s —i+1)a3;

k=i+1
2 CLQi(CI/Qi + (S — i)azi) — (S —1 -+ 1)(1%2 = 0.

Thus, we obtain that

Y = ZY+Z Zam L.

Adding the inequalities of X and Y, we have

s—1 s s
X + Y 2 Z(S — i)agi — Z(Z — 1)(1%_1 — Za%—l
=1 =2 i=1

s

s—1
= Z(S —i)ag; — Z 1021,
i1

i=1
so we get the result.
Lastly, we check the equality condition. We first have that s(d + s)ags — sa%s =

Sags(d + s — ass) = 0 when ags = 0. For i = 1,...,s — 1, the equality X; = —(i —
i1

1Dagi—1 + > ag, holds when ag; 1 = agx or ag;_1 = ag; + 1 by (3.1) in the inequality of
k=1

X, and ag;—1 + ag; — a1 — agr = 0 for k = 1,...,i — 1 by (3.2) in the inequality of

X;. Since agx—1 < ag;—1 and ag, < ag; by (5) and (6) of Lemma 7, we get agx—1 = agi—1
s—1

and ag, = ag; for all k = 1,...,4 — 1. Similarly, we have X, = —(s — 1)ags_1 + Y ag
k=1

when ag,_1 = ags_1 for all k = 1,...,s — 1. Moreover, for ¢ = 1,...,s, we obtain that
Y, = —a9;_1 when ag;_1 = 0, or ag_ 1—agl+1anda2k 1= Qoi_ 1fork—1 .t — 1. We
also have that Z; =0 for i = 1,...,s when ay; = 0 or as; = agy fork—2+1,...,5.
Overall, the equality holds when a; = 0 for all i = 1,...,2s5 or as;_y = 1 and ag; = 0
for i = 1,...,s. The first case gives that A = K414 and the second one is when
A= "{/[2s+1,d]‘ [

4 Proof of Theorem 1 for even t

In this section, we compute the largest size of (¢,t + d, t + 2d)-core partitons when ¢ = 2s
for some positive integer s > 2. Again, for simplicity, we denote ) a;a; := > aaj.

1<j 1<i<j<2s—1
Lemma 12. For positive integers s and d such that ged(2s,d) = 1 and s > 2, let \ be
a (25,25 + d, 2s + 2d)-core partition and a; = |A; \ B(N)|. Let Kjas,q) be a partition whose
beta-set is Ppsq. Then,

25—1 s—1
1
|/\| {Z(—ZS + 21 + 1)dCLz + Z(—282 + 43@')(@21-_1 + CLQZ')}

i=1 =1
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25—1
1
+§{252a28_1—(28—1 Za —i-QZaza]}

1<)

Proof. The proof of this lemma is similar to the proof of Lemma 9. Note that, by Lemma 5,
U(Kps,q) = 2+ (25 — 1)(d — 1)/2, and

2s—1

il = A= 32 S(AN D - () ()

25—1
Since £(\) = {(Kp2sa) — D @4, by putting ¢t = 2s in Corollary 8, we get
i=1

Z S(AN D) — (ew;s,d])) . (é(;))

S

Z (QSZCLQZ 1+ (2Z - l)dam 1 — Sagi_l(agi_l + 1))

i=1
— 25—1
2s — 1)(
+ D (2siaz + 2iday; — sazi(ag + 1)) — (82 . ) Z a;
=1
1 2s—1 2s—1

s s s s—1 s—1
:<2S —+ Qd) Z iagi,l — dz agi—1 — S Z a%i_l + (28 + 2d) Z iagi — S Z Cl%i
- 2s5—1 2s—1 25—1 - -
_(sd+3 ——)Zal (Zaz> (Zai—}—l)
=1
s—1 s—1
=(2s + 2d) Z 1Q9i_1 — dz A9i—1 — S Z a3, + (25 4 2d) Z 1a9; — S Z as;
i=1 ; ) =1 i=1
23 1
B 252—1-(25—1)61 (Zam 1+Za21) Za —f—Zazaj

i=1 1<J

s

-y (20 — s)(2z+ 2d) — da%1 N i (2i — $)(2s + 2d) + d

: ' 9 24
=1 i=1
2s—1
2 -1
Yt S
1<j

s . s—1 .
- (2020 1) — 25+ 1)d (2(2i) — 25+ 1)d
- ; 2 Q2i—1 + ; 9 a9;
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—_

s— 2s—1

2s — 1

+ Z(—Sz + 250) (agi—1 + ag;) + %A1 — 5 Z a? + Z a;a;
i=1 =1 1<J
1 2s—1 s—1
=5 { (26 — 2s + 1)da; + Z(—QSQ + 4si)(agi—1 + ag;) + 2520,25_1}
i=1 i=1
1 2s—1
+§{—(2S—1)Za?+22aiaj}. O
i=1 i<j

Similarly to Section 3, we show that k[, q is the largest (2s,2s + d,2s + 2d)-core
partition. Before proving the general case, we first give an example when s = 2.

Example 13. We compute the largest size of (4,4+d, 4+ 2d)-core partitions for a positive
integer d with ged(4, d) = 1. By putting s = 2 in Lemma 12, for each (4,4 +d, 4+ 2d)-core
partition A # K[y 4, We obtain that

2| maal = 1AD)
3 1 3
= 2(22 - 3)da, + Z(SZ - 8)(a2i_1 + agi) + 8&3 -3 Z CLZ2 + 2 Z a;Qj
i=1 =1 =1 1<i<j<3

= —3a] — 3a3 — 3a; — da; + day + 3daz + Saz + 2(a1as + asaz + ajas).
Since a; < ag and ay < az by Lemma 7, we get

— 3a] — 3a3 — 3a; — day + day + 3das + Saz + 2(ayay + azas + ajaz)
= (2aya3 + 2aza3 — 2a3 — 2a3) — a3 — a3 — 3a3 — day + day + 3das + Saz + 2a1a,
2 (GQ — al)(d — a9 + CL1) + 3&3(d +2— ag) + 2&3.

Let A = (ay—ay)(d—as+ay)+2as(d+2—ag). We claim that A > 2a; —2as. First, suppose
that as > a;. By Lemma 7, we have ay < 4++d’1 <d+2and as < W <d+1.
Hence, A > (ay — a1)(d — as + a1) > —2(ay — a1) = 2a; — 2ay. If ay < aq, then we have
az —ay; = —1 by Lemma 7. Thus, we obtain A = —(d + 1) + 2a3(d + 2 — a3), so it is
enough to show that —(d + 1) + 2a3(d 4+ 2 — a3) > 2. Since A\ # Ky q, we get az # 0.
Therefore, we have 1 < az < d + 1, which means that asz(d + 2 — a3) > d + 1. Then,
A>—(d+1)+2(d+1) > 2, so we get the claim. Hence,

(CLQ — Cll)(d — as + al) + 3a3(d +2— a3) + 2&3
2 2@1 — 2&2 + ag(d—f- 2 — ag) —I— 20,3
= 2a1 + 2(@3 — CLQ) + Clg(d + 2 — ag)

which means that s q is the (4,4 +d, 4+ 2d)-core partition with a unique maximum size.
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Theorem 14. For positive integers s and d such that ged(2s,d) = 1 and s > 2, let X be
a (25,25 + d,2s + 2d)-core partition and a; = |A; \ B(N)|. Then, |Kpsa| — |)\| > 0 when
A F# K[2s,d] -

Proof. The proof is similar to the proof of Theorem 11, but slightly more complicated.
By Lemma 7, we have ass_1 = ag;_1 and ags_1 = aos_o = ag; for e =1,2,...,s — 1. Thus,
if ags—y = 0, then a; = 0 for all # = 1,...,2s — 1. This gives that A = kg, 4 if and only
if az,—; = 0. Since we assume that A\ # kg, We have ags_; > 1. We observe that, by
Lemma 12,

2([Rp2s,al — IA])
2s—1
—Z —2s+2i+ 1) da,+z —25? + 4si)(ag— 1+a21)+23 Q951
=1 =1
2s—1
—(2s—1) Za +22a,aj
1<j
s—1
= 2{2(22 — S)(d + S)(CLQZ' + agl;l) =+ d(agi — agi,l)} =+ (28 — 1)da25,1
i=1
s—1 s—1 s—1
- 2(25 —1)(a3; + aj;_y) — (25 — Va3, + Z Z 2a9;025 + Z Z 2a2i-1Gj1
=1 =1 j=i+1 =1 j=i+1
s—1 i—1 s—1
+ Z Z A2k—102; + Aokazi—1) + Z(Qa%a?s—l + 2a9i09i-1) + 287 a1,
i=2 k=1 i=1
where
2s—1
Z(—Qs +2i + 1)da;
i=1
s—1
= Z —25+2(2i — 1) + L)dagi + »_(—2s + 2(2i) + 1)day,
i=1 i=1
s—1
= 2{2(22 — S)d(agi + agi_l) + d(agi - agi_l)} -+ (28 — 1)da25_1
i=1
and
s—1 i—1
Zaza] ZZ A2k—102; + A2k 1 +202za21 1
1<J =2 k=1
s—1 s—1
+Z Z A2;—1025-1 +Z Z Q2;02; +Za22a2s 1-
=1 j=i+1 =1 j=i+1
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Let

s—1 s—1
U= Z 2(2i — s)(d + s — 1)(ag; + azi—1) — » 2(i — 1)(a3; + a3;_,)
i=1 i=2
s—1 1—1
+ Z 2(agk—1a9; + agra2;—1),
=2 k=1
s—1 s s—1
V = 2a9;—1a25—1 — Z 2(s —i)(a3;_, + a3;)
i=1 j=i+1 i=1
s—1 s—1
+ 2a9;a9; + Z 2a9;a95—1,
=1 j=i+1
s—1

W= 2{2(% — 5)(ag; + agi—1) — (aéi + agH) + d(ag; — agi—1)}
i=1

s—1

+ 3 2azsa1 + (25 = 1)+ 25%)aze1 — (25 = Dad, .
i=1

This gives that 2(|ks,q| — |A]) = U +V + W, so we need to show that U +V + W > 0.
Fori=23,...,s—1, let

i—1
Ui - Z{Q(am - GJQkfl)(d + s — 1 — a2i) —+ 2(0/21471 — an)(d + s — 1 _ a2’i71)}-
k=1

s—1
Then, we obtain ) U; = U since

s—1
> Ui
i=2
s—1 i—1
= {2(ag; —agk—1)(d+ s —1—ag) +2(az_1 —aw)(d+s—1—ay_1)}
i=2 k=1
s—1 i—1
= {2(ag; + agi—1 — agp — agp—1)(d + s — 1) — 2(ag; — agk—1)as}
=2 k=1
s—1 i—1

N

2(6121'71 - a2k)02i71

[y

2 k=
-1

L .
<l

v

{2(@2,‘ + agi_l)(d + 5 — 1) — 2(a2k + (lgk_l)(d + 5 — 1) — 2@;1}

M
i\

1= =1

114

-+ {Q(CLQk,lCLQZ‘ + a2ka2i71) - 20’%1'71}
=2 k=1

—_
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s—2
:ZQ(Z—1>(CLQZ'+(12¢_1)CZ+S—1 22 8—1— a2k+a2k_1)(d+s—1)
i k=1

=2
s—1 s—1 i—1
- Z 2(i — 1) (a5; + ag;_,) + 2(agp—102; + a21a2; 1)
i=2 i=2 k=1
s—1 s—1
= " 2(2i — s)(azi + azi1)(d + s — 1) = > _2(i — 1)(a3; + a3;_,)
i=1 1=2
s—1 1—1
+ 2(agk—_1a9 + askagi—1) = U.
=2 k=1
Since ag; > agp, and ag;_1 = ao_1 for ¢ > k, and ag; < % =1+ == le L < s4dby
Lemma 7, we have
i1
Ui = 2{2(0@@‘ — agp—1)(d+ s — 1 —ay) +2(azi—1 —agk)(d+s—1—ag_1)}
k=1
i-1
= Z{Q(G% — agp—1)(d+ s —1—ag) + 2(agks1 — ag)(d+s—1—ag_1)}
k=1
i1
+ Z{Q(a% —ag)(d + s —1—ay) +2(az-1 — ag1)(d+ 5 — 1 —ag 1)}
k=1
i-1
2 {2<a2k - agk,l)(d +s—1-— CLQZ’) + 2(a2k+1 — agk)(d +s—1— <a2i —+ 1))} (41)
k=1
i—1
= {2(agks+1 — agk—1)(d+ 5 — az;) — 2(agk+1 — aox)}
k=1
i—1
2 — 2(a2k+1 — a%). (42)
k=1

Hence, we get

s—1 1—1 s—1
Z Z 2 a2k+1 — agk = —2 Z S — 1 — Z)((IgH_l CLQZ) (43)
=2 k=1 =1

Foreachi=1,2,...,5s —1, let

= 2a9; 1 E agj—1 — 2(s —i)ad;_4

Jj=i+1

and

s—1
V = 2&22 < Z a?] + Q25— 1) - 2( )agz

Jj=t+1
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Then, we have

s—1 s—1
Y (Vi V)= (2% 1 Z azj1 — 2(s — i)ag;_ 1)
=1 =1 Jj=i+1
s—1 s—1
+ (2@2Z ( Z a9; + Qos_ 1) — 2( )CL2Z>
i=1 j=i+1
s—1 s s—1 s—1 s—1
= 20910251 — Z 2(s —i)a3;,_, + Z Z 2a9;a3;
=1 j:i+1 =1 i=1 j=i+1
+ 2{2(1216125 1 — 2( )CLQI} V
Because ag;—1 < ag;j—1 for ¢ < j by Lemma 7, we have
QCLQZ 1 Z 251 —2 )a% 1 Z > 0. (44)

Jj=i+1

Again, since ay; < ag;j for ¢ < j by Lemma 7 and from the inequality ass—1 = agiy1 = ag;,
we obtain that

s—1

‘/i/ = 2(121' ( Z a9 + G231> — 2(5 — Z)CL%Z = 0. (45)
j=it1

Hence, we get V' > 0. By the inequality (4.3) and V' > 0, we get

s—1

U+V 22 8—1—2 CLQZ'_H—CLQZ‘). (46)

=1

s—1
Now, it is sufficient to show that W > 2> (s — 1 — i)(agi+1 — as;). Note that

=1
s—1
W = 2{2(22 — S)(agi + agi,l) — (a%l + agi,l) + d(agi — agi,l) -+ 2&21'6121',1}
=1
+ ((25 — 1)d + 25*)ags_1 — (25 — 1)a3, ,
s—1

=- Z{ (a3; + as;_1) + 2aga2i1 + d(ag — asi—1) + 2(2i — s)(ag + azi—1)}
+ (25 — Dags—1(d+ s — azs—1) + sags—1

s—1
Z{ (ag; — agi—1)(d — ag; + agi—1) + 2(2i — s)(ag; + azi—1)}
=1
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+

S

= (ag —agi—1)(d —ag +agi—1) + (25 — 1)ags_1(d + s — ags_1)
1

—~

25 — 1)ags—1(d + s — ags—1) + sa2s_1

|
—

(2

s—1
+ E 2 71— S agi + a2i_1) + Saos_1.
=1

Fori=1,2,...,5s—1, let
W; = (ag; — agi—1)(d — ag; + agi—1) + 2a2s—1(d + s — ags—1).

It follows that

s—1
Z W; = Z a9 — Ggi—1)(d — agi + agi—1) +2(s — 1)ags_1(d + s — azs_1)
=1

[y

=W — ags,l(d + S5 — ags,l) — 2(22 — S)(agi + agi,l) — SQ94_1.

i=1

We claim that, for i =1,2,...,5s —1,

Wi = —s(ag; — agi—1).

First, suppose that as; > ag;_1. By Lemma 7, we have ay; < % =17+ % <
s+dand ass_1 < % < s+d. Hence, d + s — as; + as;—1 > as;—1 = 0. Then, we
have W; > —s(ag; — agi—1). If as; < ag;_1, then we have as; — a1 = —1 by Lemma 7.

Thus, we obtaln W; = —(d+ 1) + 2ags—1(d + s — ags_1), so it is enough to show that
(d+1)+2a28 1(d+ s —ags 1) > s. Since ags_1 < w <d+s, we get 1 <
ass—1 < d+s— 1. Hence, ags 1(d+ s — ass_1) > d+ s — 1, which implies that

Wi=—(d+1)+2a91(d+s—ags—1) =2 —(d+1)+2(d+s—1)=d+2s—3 > s.

So, we get W; > —s(ag; — ag;—1), and
s—1 s—1
D Wiz —s) (as — azi1)
i=1 i=1
Then,
s—1 s—1
W 2 age—1(d+ 5 — ags—1) + 2(2i — s)(ag; + agi—1) + sags—1 — s Z(a% — A1)
i=1 i=1

Since ags_1(d + s — azs—1) > 0, it suffices to show that

s—1 s—1 s—1
Z 2(27, — 8)(@21' + CLQifl) + SQgs_1 — S Z(agi — agl;l) } 2 Z(S —1- i)(aglqu — a2i).
=1 =1 =1

(4.7)
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Then,

»
I
—_

s s—1
2(2i — 5)(azi + azi-1) + Sa20-1 — 5 Y (a2 — azi_1) =2 (s — 1 —i)(agiy1 — az)

=1 i=1 =1

s—1 s—1 S s—1

= 2(22 — S)(agi + agi_l) + Z(S — 21— 2)(12i + Z S2;—1 — Z 2(8 —1- i)a2i+1
i=1 i=1 i=1 i=1
s—1 s—1 s—1

(]

2(2Z — S)((Igi + a,gi_l) + Z(S — 21— 2)&21‘ + Z(-S + 21 + 2)a2i+1 + sa;

=1 i=1

S
[
_

s—1
= (22 — 8) (a2i+1 + a9; + 2CLQZ‘ 1 + Z 2 CLQZ_H a2, + Saq.

=1 =1
Since a; < a3 < ... < ags—3 and as < ag4 < ... < ags 9o, by Chebyshev’s sum inequality,
we have

)_.

s—1 s—1
Z 2i — 8)(agit1 + ag; + 2agi—1) —S Z (agi41 + ag; + 2a9;—1) = 0.

=1 =1 i=1

s—1

Note that > 2(agi+1 —ag;) = 0 by Lemma 7. Thus, we can check that the inequality (4.7)
i=1

is true, so we have

s—1
W > Z(S —-1- i)(a2i+1 — agi). (48)
i=1
Combining the inequalities (4.6) and (4.8), we get the desired result. O
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