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Abstract

In 2017, Vesti proposed the problem of determining the repetition threshold for
infinite rich words, i.e., for infinite words in which all factors of length n contain n
distinct nonempty palindromic factors. In 2020, Currie, Mol, and Rampersad proved
a conjecture of Baranwal and Shallit that the repetition threshold for binary rich
words is 2 +

√
2/2. In this paper, we prove a structure theorem for 16/7-power-

free ternary rich words. Using the structure theorem, we deduce that the repetition
threshold for ternary rich words is 1+1/(3−µ) ≈ 2.25876324, where µ is the unique
real root of the polynomial x3 − 2x2 − 1.
Mathematics Subject Classifications: 68R15

1 Introduction

The study of repetitions in words goes back to the works of Thue at the beginning of the
twentieth century [39, 40], which have been translated to English by Berstel [9]. Many
extensions and variations of Thue’s results have been proven since then; see, for example,
the surveys of Ochem, Rao, and Rosenfeld [33] and Rampersad and Shallit [35]. We use
standard notation and terminology related to repetitions in words in the remainder of this
section; the unfamiliar reader should refer to Section 2.

In this paper, we study repetitions in so-called rich words. A palindrome is a word
that reads the same forwards and backwards. Droubay, Justin, and Pirillo [23] were first
to observe that every word of length n contains at most n + 1 distinct palindromes as
factors, including the empty word. A word of length n is called rich if it has n + 1 dis-
tinct palindromes as factors; an infinite word is rich if all of its finite factors are rich.
Since their (implicit) introduction by Droubay, Justin, and Pirillo, rich words have been
well-studied. It is known that the language of infinite rich words contains several highly
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structured classes of words, including Sturmian words, episturmian words, and comple-
mentary symmetric Rote words (see [10, 23]). Infinite rich words have been characterized
in terms of a condition on complete returns to palindromes [28], in terms of a relation
between factor and palindromic complexity [11], and in terms of a condition on bispecial
factors [4]. For any fixed integer k > 2, the number of rich words of length n over k letters
is known to grow superpolynomially [29] and subexponentially [38] in n.

Vesti [41] proposed the problem of determining the repetition threshold for the lan-
guage of infinite rich words over k letters. This problem has been resolved in the binary
case through the combined effort of several authors. Baranwal and Shallit [8] constructed
an infinite binary rich word with critical exponent 2+

√
2/2 ≈ 2.707 and conjectured that

2 +
√

2/2 is in fact the repetition threshold for infinite binary rich words. This conjecture
was confirmed by Currie, Mol, and Rampersad [16], who proved a structure theorem for
14/5-power-free infinite binary rich words. Roughly speaking, the structure theorem says
that every 14/5-power-free infinite binary rich word contains all of the factors of one of
two specific infinite binary words (one being the word of Baranwal and Shallit). Since
both of these words turn out to be rich and have critical exponent 2 +

√
2/2, Baranwal

and Shallit’s conjecture follows from the structure theorem.
A general lower bound on the repetition threshold for the language of infinite rich

words over k letters follows from a result of Pelantová and Starosta [34], which says
that every infinite rich word, over any finite alphabet, contains infinitely many factors of
exponent 2. It follows that the repetition threshold (and also the asymptotic repetition
threshold) for the language of infinite rich words over k letters is at least 2 for every k > 2.
In fact, Dvořáková, Klouda, and Pelantová [24] have recently shown that the asymptotic
repetition threshold for the language of infinite rich words over k letters is equal to 2 for
all k > 2. But to date, Vesti’s problem of determining the (ordinary) repetition threshold
for the language of infinite rich words over k letters has only been resolved in the binary
case.

In this paper, we resolve Vesti’s problem in the ternary case by proving the following
theorem.

Theorem 1.1. The repetition threshold for the language of infinite ternary rich words is

1 +
1

3− µ1

≈ 2.25876324,

where µ1 is the unique real root of the polynomial x3 − 2x2 − 1.

In order to prove Theorem 1.1, we first prove a structure theorem for infinite 16/7-
power-free ternary rich words, similar to the one established by Currie, Mol, and Ramper-
sad [16] in the binary case. Roughly speaking, we show that every infinite 16/7-power-free
ternary rich word “looks like” one specific word. Structure theorems like this have existed
in the combinatorics on words literature from the very beginning. Thue [40] established
structure theorems for infinite square-free ternary words avoiding various sets of factors.
Another well-known (and incredibly useful) structure theorem is the one for 7/3-power-free
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1 2

0 : 001

1 : 00101101

2 : 0010110100101101

0 : 002

1 : 00202202

2 : 0020220200202202

Figure 1: The transducer τ . We will also refer to the related transducer τ , which has the
same states and transitions, but starts in state 2.

binary words due to Karhumäki and Shallit [30], which says that every infinite 7/3-power-
free binary word contains all factors of the Thue-Morse word. In recent years, a surprising
number of new structure theorems have been established; see [2, 7, 15, 17, 19, 25], for
example.

For our structure theorem, we let f, g : Σ∗3 → Σ∗3 be the morphisms defined by

f(0) = 01 g(0) = 20

f(1) = 022 g(1) = 21

f(2) = 02 g(2) = 2,

and we let τ be the transducer drawn in Figure 1.

Theorem 1.2 (Structure Theorem). Suppose that z ∈ Σω
3 is a 16/7-power-free rich word.

Then for all n > 0, a suffix of z can be obtained from τ(g(fn(xn))) by permuting the letters,
where xn ∈ Σω

3 . In particular, z contains all of the factors obtained from τ(g(fω(0))) by
permuting the letters.

We then show that the word τ(g(fω(0))) is rich and has critical exponent 1+1/(3−µ1).
Theorem 1.1 then follows easily from these two facts and Theorem 1.2.

The remainder of the paper is laid out as follows. In Section 2, we describe the
notation and terminology used in the paper, and provide a more comprehensive summary
of results related to Theorem 1.1. In Section 3, we prove Theorem 1.2. In Section 4, we
prove that τ(g(fω(0))) is rich, and in Section 5, we prove that τ(g(fω(0))) has critical
exponent 1 + 1/(3 − µ1). Finally, in Section 6, we ask some questions related to Vesti’s
problem over larger alphabets.

2 Notation, Terminology, and Background

2.1 Words

An alphabet is a nonempty finite set of symbols, which we refer to as letters. Throughout,
we let Σk denote the alphabet {0, 1, . . . , k− 1}. A word over an alphabet A is a finite or
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infinite sequence of letters from A. The length of a finite word w, denoted by |w|, is the
number of letters that make up w. We let ε denote the empty word, which is the unique
word of length 0. For a letter a, we let |w|a denote the number of occurrences of a in w.

For a finite word x and a finite or infinite word y, the concatenation of x and y, denoted
by xy, is the word consisting of all of the letters of x followed by all of the letters of y.
Suppose that a finite or infinite word w can be written in the form w = xyz, where x, y,
and z are possibly empty words. Then the word y is called a factor of w, the word x is
called a prefix of w, and the word z is called a suffix of w. If x and z are nonempty, then
y is called an internal factor of w, and we say that y appears internally in w. If yz is
nonempty, then x is called a proper prefix of w, and if xy is nonempty, then z is called a
proper suffix of w. For an infinite word u, the language of u, denoted by Fact(u), is the
set of all finite factors of u.

For a set of finite words A, we let A∗ denote the set of finite words obtained by
concatenating elements of A, and we let Aω denote the set of infinite words obtained by
concatenating elements of A. So in particular, Σ∗k is the set of finite words over Σk, and
Σω
k is the set of infinite words over Σk.
Let w be an infinite word, and let w be a finite factor of w. We say that w is recurrent

in w if it occurs infinitely many times in w and that w is uniformly recurrent in w if there
is an integer k such that every factor of w of length k contains w. We say that the infinite
word w is (uniformly) recurrent if every finite factor of w is (uniformly) recurrent. A
complete return word to w in w is a factor of w that contains w as a proper prefix and a
proper suffix but not as an internal factor. If w is recurrent in w, then every occurrence
of w in w is followed by a successive occurrence, which gives rise to a complete return
word to w. Evidently, if w is uniformly recurrent in w, then there are only finitely many
complete return words to w in w. We say that a factor of w is unioccurrent if it occurs
exactly once in w as a factor.

2.2 Morphisms and Transducers

For alphabets A and B, a morphism from A∗ to B∗ is a function h : A∗ → B∗ that satisfies
h(uv) = h(u)h(v) for all words u, v ∈ A∗. Let h : A∗ → A∗ be a morphism. For all words
x ∈ A∗, we define h0(x) = x, and hn(x) = h(hn−1(x)) for all integers n > 1. For a letter
a ∈ A, we say that h is prolongable on a if h(a) = ax for some non-empty word x ∈ X∗
and hn(x) 6= ε for all n > 0. If h is prolongable on a with h(a) = ax, then it is easy to
show that for every integer n > 1, we have

hn(a) = axh(x)h2(x) · · ·hn−1(x).

Thus, each hn(a) is a prefix of the infinite word

hω(a) = axh(x)h2(x)h3(x) · · · .

Note that hω(a) is a fixed point of h, i.e., h(hω(a)) = hω(a), where the morphism h is
extended to infinite words in the natural way.
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For the formal definition of finite-state transducer, see [1, Section 4.3]. We only make
use of the transducer τ drawn in Figure 1 (and the related transducer τ), whose behavior
is very simple. These transducers simply alternate between the two states on every input
letter. In fact, one could define τ and τ in terms of the morphisms t1, t2 : Σ∗3 → Σ∗3 defined
as follows:

t1(0) = 001 t2(0) = 002

t1(1) = 00101101 t2(1) = 00202202

t1(2) = 0010110100101101 t2(2) = 0020220200202202.

For a finite or infinite word w = w0w1w2w3 · · · over Σ3, where the wi are letters, we have

τ(w) = t1(w0)t2(w1)t1(w2)t2(w3) · · ·

and
τ(w) = t2(w0)t1(w1)t2(w2)t1(w3) · · · .

Essentially, the output of τ is obtained from the input word by applying t1 to all letters of
even index and t2 to all letters of odd index, and the output of τ is obtained by applying t2
to all letters of even index and t1 to all letters of odd index. We note that the well-known
Arshon words can be defined in terms of similar maps (c.f. [32]).

2.3 Repetitions in Words

Let w = w0w1 · · ·wn−1 be a finite word, where the wi are letters. For an integer p with
1 6 p 6 n, we say that p is a period of w if wi+p = wi for all 0 6 i < n− p. In this case,
we say that n/p is an exponent of w, and that w is an n/p-power. The smallest period
of w is called the period of w, and it corresponds to the largest exponent of w, which is
called the exponent of w.

Now let w be a finite or infinite word, and let α > 1 be a real number. We say that
w is α-power-free if it contains no factors of exponent greater than or equal to α, and
that w is α+-power-free if it contains no factors of exponent strictly greater than α. The
critical exponent of w, denoted by ce(w), is defined by

ce(w) = sup{r ∈ Q : w has a factor of exponent r},

or equivalently by
ce(w) = inf{α ∈ R : w is α-power-free}.

Roughly speaking, the critical exponent of w describes the largest exponents among all
factors of w.

Given a language L of infinite words, it is natural to try to find the infimum of
the critical exponents among all words in L. The words in L with the smallest critical
exponents are in some sense the “least repetitive” words in L. The repetition threshold of
L, denoted by RT(L), is defined by

RT(L) = inf{ce(w) : w ∈ L}.
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One of the most celebrated results in the area of repetitions in words is Dejean’s
theorem, which describes the repetition threshold of the language of all infinite words
over k letters:

RT(Σω
k ) =


2, if k = 2;
7/4, if k = 3;
7/5, if k = 4;
k/(k − 1), if k > 5.

The case k = 2 was proven by Thue [40], and Dejean [20] proved the case k = 3 and
correctly conjectured the remaining cases, which have been proven through the work of
many different authors. In particular, Carpi [12] proved all but finitely many cases, and
the last cases were proven independently by Currie and Rampersad [18] and Rao [37].

Especially since the completion of the proof of Dejean’s theorem, much work has
been done on determining the repetition thresholds of various narrower languages. The
repetition threshold for the language of all Sturmian words was determined by Carpi and
de Luca [13], who showed that the Fibonacci word has the least critical exponent among
all Sturmian words, namely (5 +

√
5)/2. Sturmian words are episturmian, balanced, and

rich, and research has been done on determining the repetition thresholds of k-ary words
of these three types in the last decade. For all k > 2, we let Ek, Bk, and Rk denote the
languages of k-ary episturmian, balanced, and rich words, respectively.

For episturmian words, Dvořáková and Pelantová [26] recently established that

RT(Ek) = 2 +
1

tk − 1

for all k > 2, where tk is the unique positive root of the polynomial xk−xk−1−· · ·−x−1.
For balanced words, the following is known:

RT(Bk) =



2 + 1+
√
5

2
, if k = 2 [13];

2 +
√
2
2
, if k = 3 [36];

1 + 1+
√
5

4
, if k = 4 [36];

1 + 1
k−3 , if 5 6 k 6 10 [6, 21];

1 + 1
k−2 , if k = 11 or both k > 12 and k is even [27].

Dvořáková, Opočenská, Pelantová, and Shur [27] conjecture that RT(Bk) = 1 + 1/(k− 2)
for all k > 13 with k odd, but this conjecture remains open at the time of writing.

As described in the introduction, for rich words, it is known that RT(Rk) > 2 for all
k > 2, and that RT(R2) = 2 +

√
2/2.

It turns out that there are many infinite words w in which only “short” factors of w
have exponent equal to (or even close to) the critical exponent of w. If we ignore such
short factors, and consider only arbitrarily long factors of w, then we obtain what is called
the asymptotic critical exponent of w, first defined by Cassaigne [14]. It is denoted by
ce∗(w) and defined by

ce∗(w) = lim sup
n→∞

{r ∈ Q : w has a factor of exponent r and period n}.
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The asymptotic repetition threshold of L, denoted by RT∗(L), is defined by

RT∗(L) = inf{ce∗(w) : w ∈ L}.

For every language of infinite words L, we clearly have RT∗(L) 6 RT(L). We have equal-
ity for some languages L, and strict inequality for others. For example, Cassaigne [14]
observed that RT∗(S) = RT(S), where S is the language of Sturmian words, but demon-
strated that RT∗(Σω

k ) = 1 < RT(Σω
k ) for all k > 2. We refer the reader to the recent work

of Dvořáková, Klouda, and Pelantová [24] for a summary of results on the asymptotic rep-
etition thresholds of episturmian, balanced, and rich words. In particular, as mentioned
in the introduction, they show that for rich words, we have RT∗(Rk) = 2 for all k > 2.

3 The Structure Theorem

In this section, we prove Theorem 1.2. Suppose that z is an infinite 16/7-power-free
ternary rich word. In Section 3.1, we show that up to permutation of the letters, some
suffix of z has the form τ(y) for some word y ∈ Σω

3 . (In fact, we show this under the
slightly weaker assumption that z is an infinite 7/3-power-free ternary rich word.) In
Section 3.2, we show that a suffix of y has the form g(x) for some word x ∈ Σω

3 . In
Section 3.3, we describe several families of factors that cannot appear in x if the word
τ(g(fn(x))) is 16/7-power-free and rich, where n is any nonnegative integer. Finally, in
Section 3.4, we show that if τ(g(fn(x))) is 16/7-power-free and rich for some n > 0 and
x ∈ Σω

3 , then a suffix of x has the form f(x′) for some word x′ ∈ Σω
3 , which allows us to

complete the proof of Theorem 1.2 by mathematical induction.

3.1 The First Layer

Throughout this subsection, let z be an infinite 7/3-power-free ternary rich word. We
first observe that z must contain at least one of the factors 001002, 112110, and 220221,
as a computer backtracking search shows that a longest 7/3-power-free ternary rich word
containing none of these three factors has length 388.1 Note that 001002, 112110, and
220221 can be obtained from one another by permuting the letters. Thus, by permuting
the letters and removing a prefix of z if necessary, we assume henceforth that z has prefix
001002.

By performing further backtracking searches, we confirm that several short words, and
all words obtained from them by permuting the letters, do not appear in z. The results
are summarized in Table 1. Our next lemma describes two more short words that do not
appear in z. To prove it, we make use of the following well-known characterization of
finite rich words.

Lemma 3.1 ([23], c.f. [28]). A finite word w is rich if and only if every prefix (resp. suffix)
of w has a unioccurrent palindromic suffix (resp. prefix).

1Code to verify all backtracking searches in this paper can be found at https://github.com/japeltom/
ternary-rich-words-verification.
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p
Length of a longest 7/3-power-free
ternary rich word with prefix p

102 152
0011 498

00100200 502

Table 1: Some words that do not appear in z.

Lemma 3.2. The word z contains neither 12 nor 21.

Proof. Suppose that z contains one of the factors 12 or 21. Let p be the shortest prefix
of z that ends in 12 or 21, and let s be the suffix of p of length 2. By the minimality of p,
the reversal of s does not appear in p, and it follows that the only nonempty palindromic
suffix of p has length 1. Since p has prefix 001002, every word of length 1 occurs more
than once in p. Hence p does not have a unioccurrent palindromic suffix, and we conclude
by Lemma 3.1 that p is not rich, which is a contradiction.

Let

A1 = 001,

B1 = 00101101,

A2 = 002, and
B2 = 00202202.

Note that A1 can be obtained from A2 (and vice versa) by swapping 1 and 2. The same
can be said for B1 and B2. We will frequently need to deal with such pairs of words. For
a word x ∈ Σ∗3, the sister of x is the word obtained from x by swapping the letters 1 and
2. With this terminology, the words A1 and A2 are sisters, as are the words B1 and B2.
Note also that for every word w ∈ Σ∗3, the words τ(w) and τ(w) are sisters.

Note that A1, B1, A2, and B2 have common prefix 00, and that 00 occurs only as a
prefix of A1, B1, A2, or B2 in a word belonging to {A1, B1, A2, B2}∗.

Lemma 3.3. z ∈ {A1, B1, A2, B2}ω.

Proof. By assumption, z begins with 00. In fact, a computer backtracking search shows
that the longest 7/3-power-free ternary rich word with no 00 has length 57, so that the
factor 00 is recurrent in z. Thus, it suffices to show that the only complete returns to
00 in z are A100, B100, A200, or B200. Since the cube 000 does not appear in z, every
occurrence of 00 in z must be followed by 1 or 2. We show that the only complete returns
to 00 starting with 001 in z are A100 and B100. The argument that the only complete
returns to 00 starting with 002 in z are A200 and B200 is symmetric.

Consider the tree drawn in Figure 2, which shows all possible complete returns to 00

in z starting with 001. From Lemma 3.2, we know that 1 is never followed by 2 in z, so
these branches are suppressed in the tree. We explain below why the words corresponding
to the red leaves in the tree cannot appear in z.
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001
1

0

2

1
1

1

0

2

1
1

0

2

1

0
0

0
0

Figure 2: The tree showing all possible complete returns to 00 in z starting with 001.

• 001010 has the 5/2-power 01010 as a suffix.

• 00101100 has a permutation of the word 0011 from Table 1 as a suffix.

• 0010110101 has the 5/2-power 10101 as a suffix.

• 0010110102 has the word 102 from Table 1 as a suffix.

• 001011011 has the 7/3-power 1011011 as a suffix.

• 00101102 has the word 102 from Table 1 as a suffix.

• 0010111 has the cube 111 as a suffix.

• 00102 has the word 102 from Table 1 as a suffix.

• 0011 is in Table 1.

This means that the words corresponding to the green leaves in the tree are the only
possible complete returns to 00 starting with 001 in z. Therefore, we conclude that
z ∈ {A1, B1, A2, B2}ω, as desired.

Let q : {a1, b1, a2, b2}∗ → {0, 1, 2}∗ be the morphism that sends each lowercase letter
to the word denoted by the corresponding uppercase letter. Then Lemma 3.3 says that
z = q(v) for some word v ∈ {a1, b1, a2, b2}ω.

Lemma 3.4. The word v corresponds to an infinite walk on the directed graph G drawn
in Figure 3, and contains neither b1b1b1 nor b2b2b2.

Proof. First of all, if v contains b1b1b1 or b2b2b2, then z contains the cube B1B1B1 or its
sister, contradicting the assumption that z is 7/3-power-free.

We know from Lemma 3.3 that v ∈ {a1, b1, a2, b2}ω. So to show that v corresponds
to an infinite walk on G, it suffices to show that the following factors do not appear in v:

• a1a1, a1b1, a1a2, and b1a1; and

• a2a2, a2b2, a2a1, and b2a2.

By symmetry, we need only show that the first four factors do not appear in v.
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a1 b2 b1 a2

Figure 3: The directed graph G showing possible transitions between letters in v.

a1

b2 b1

a2

c2 c1

Figure 4: The graph G′ showing possible transitions between letters in v′.

• If v contains a1a1, then z contains the 8/3-power A1A100 = 00100100.

• If v contains a1b1, then z contains A1B1, which has the 7/3-power 0010010 as a
prefix.

• If v contains b1a1, then z contains B1A100, which has the 7/3-power 0100100 as a
suffix.

• If v contains a1a2, then z contains A1A200 = 00100200, which is in Table 1.

This completes the proof.

Let v′ be the word obtained from v by replacing each occurrence of the factor b1b1
with the new letter c1, and each occurrence of the factor b2b2 with the new letter c2.
In other words, we have v = p(v′), where p : {a1, b1, c1, a2, b2, c2}∗ → {a1, b1, a2, b2}∗ is
the morphism that sends c1 to b1b1 and c2 to b2b2, and all other letters to themselves.
From Lemma 3.4, we see that v′ corresponds to an infinite walk on the graph G′ drawn
in Figure 4. Note in particular that v′ alternates between letters of index 1 and index 2.
It follows that we can write v′ = σ(v′′), where v′′ is an infinite word over {a, b, c} and
σ : {a, b, c} → {a1, b1, c1, a2, b2, c2} is the map that adds index 1 and index 2 alternately
to each letter of the input word, starting with 1.

We have shown that

z = q(v) = q(p(v′)) = q(p(σ(v′′))),

where v′′ is an infinite word over {a, b, c}. In the sequel, we prefer to work with a
word over the alphabet Σ3 = {0, 1, 2} instead of {a, b, c}, so we write v′′ = r(y), where
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p
Length of a longest word y ∈ Σ∗3 with prefix p
such that τ(y) is a 16/7-power-free rich word

201 141
210 144
211 101

Table 2: Some words that do not appear in y.

y ∈ {0, 1, 2}ω and r : Σ∗3 → {a, b, c} is defined by r(0) = a, r(1) = b, and r(2) = c. Thus
we have

z = q(p(σ(r(y)))).

We can express the composition of the maps r, σ, p, and q as the single finite-state
transducer τ , which gives the following result.

Proposition 3.5. We can write z = τ(y), where y ∈ Σω
3 , and τ is the transducer drawn

in Figure 1.

3.2 The Second Layer

Throughout this subsection, let z be an infinite 16/7-power-free ternary rich word. Since
16/7 < 7/3, we may use all of the results from Section 3.1. In particular, we may assume
without loss of generality that z starts with 001002, and we know from Proposition 3.5
that z = τ(y) for some word y ∈ Σω

3 , where τ is the transducer drawn in Figure 1. In
this subsection, we begin to describe the structure of the word y.

First of all, by backtracking, we confirm that several short words do not appear in y.
The results are summarized in Table 2.

Proposition 3.6. A suffix of y has the form g(x) for some word x ∈ Σω
3 .

Proof. A computer backtracking search shows that the longest word y ∈ {0, 1}∗ such that
τ(y) is 16/7-power-free and rich has length 18. So the letter 2 appears infinitely many
times in y. Thus, it suffices to show that the only complete return words to 2 in y are
g(0)2 = 202, g(1)2 = 212, and g(2)2 = 22.

Consider the tree drawn in Figure 5, which shows all possible complete returns to 2 in
y. We explain why the words corresponding to the red leaves in the tree cannot appear
in y.

• 200 has suffix 00. If y contains 00, then z contains τ(00)00 = 00100200 or its
sister. Since 00100200 is in Table 1, this is impossible.

• 201 is in Table 2.

• 210 is in Table 2.

• 211 is in Table 2.
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Figure 5: The tree showing all possible complete returns to 2 in y.

This means that the words corresponding to the green leaves in the tree are the only
possible complete return words to 2 in y. Therefore, we conclude that a suffix of y is in
{20, 21, 2}ω, as desired.

3.3 Forbidden Factors in the Inner Layers

In this subsection, we describe several families of factors that cannot appear in x if
the word τ(g(fn(x))) is 16/7-power-free and rich, where n is any nonnegative integer.
Lemma 3.8 and Lemma 3.10 describe factors in x that lead to repetitions in τ(g(fn(x)))
with exponent at least 16/7, while Lemma 3.11 describes factors in x that lead to non-
richness in τ(g(fn(x))).

Note that when the transducer τ is applied to an r-power x, the alternation of τ
between 1’s and 2’s may break the repetition in x. For example, if x = 000, then x is a
cube, but τ(x) = 001002001 is only a 3/2-power. Note, however, that if the period of x is
even, then the alternation between 1’s and 2’s will line up after each period. For example,
x = 0101 is a square with period 2, and we see that τ(x) = 0010020220200100202202 is
also a square.

If x ∈ Σ∗3 is an r-power of the form x = pr, where p has an even number of 2’s, then
we say that x is an even-r-power. We say that a word is even-r-power-free if it contains
no even-r-powers.

Lemma 3.7. Let x ∈ Σ∗3 be an even-r-power, and write x = pr, where p has an even
number of 2’s. Then for all n > 0, the word τ(g(fn(x))) has period |τ(g(fn(p)))|.

Proof. We first claim that fn(p) has an even number of 2’s for all n > 0. Note that f(0)
and f(1) both have an even number of 2’s, so the proof of the claim can be completed by
a straightforward induction on n.

Now let n > 0. Since fn(p) has an even number of 2’s, and g(0) and g(1) both have
even length, it follows that g(fn(p)) has even length. So by the observation preceding the
lemma, we conclude that τ(g(fn(x))) has period |τ(g(fn(p)))|.

Lemma 3.8. Let x ∈ Σω
3 , and suppose for some n > 0 that τ(g(fn(x))) is 16/7-power-

free. Then x is 5-power-free and even-3-power-free.
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Proof. First, suppose towards a contradiction that x contains a 5-power, say x = p5.
Then we can write x = (p2)5/2, and p2 has an even number of 2’s. So by Lemma 3.7,
the word τ(g(fn(x))) has period |τ(g(fn(p2)))| and exponent 5/2. This contradicts the
assumption that τ(g(fn(x))) is 16/7-power-free, so we see that x is 5-power-free.

Similarly, suppose that x contains an even-3-power, say x = p3, where p has an even
number of 2’s. Then by Lemma 3.7, the word τ(g(fn(x))) has period |τ(g(fn(p)))| and
exponent 3. This is a contradiction, and we conclude that x is even-3-power-free.

For finite words u and v over an alphabet Σ, we write u � v if |u|a 6 |v|a for all
a ∈ Σ. Note that non-erasing morphisms preserve the relation �, and that u � v implies
|u| 6 |v|. Finally, note that if u, v ∈ Σ∗3 and u � v, then |τ(u)| 6 |τ(v)|.

Lemma 3.9. For all n > 0, we have

|fn(2)| 6 |fn(0)| 6 |fn(1)| 6 2|fn(2)|

and
|τ(g(fn(2)))| 6 |τ(g(fn(0)))| 6 |τ(g(fn(1)))| 6 2|τ(g(fn(2)))|.

Proof. We show only that |fn(2)| 6 |fn(0)| and |τ(g(fn(2)))| 6 |τ(g(fn(0)))| for all
n > 0. (The other inequalities can be proven in a similar manner.) Both inequalities are
verified by inspection for n ∈ {0, 1}. When n = 2, we have

f 2(2) = 0102 � 01022 = f 2(0),

so that fn(2) � fn(0) for all n > 2 by induction, and the desired inequalities follow
immediately from the observations preceding the lemma.

Lemma 3.10. Let x ∈ Σω
3 , and suppose for some n > 0 that τ(g(fn(x))) is 16/7-power-

free and rich. Then no factor from the set F = F1 ∪F2 ∪F3 ∪F4 appears internally in x,
where

F1 = {00, 11, 212, 0101, 1010, 2222, 1222, 2221, 022022, 220220},
F2 = {202202, 1022021, 1202201, 1(20102)21, (021012)13/6, (012021)13/6,

(21012010)21/8, (21012210120)27/11, (2101221012010)31/13},
F3 = {2(2101)17/42, (2101210122101)31/13}, and

F4 = {(0222)17/41, (22010)12/5, (022201)29/6, (0222010222)12/5,

(0222022201)12/5, (0222010222010222022201)5/2}.

Proof. Let w ∈ F , and suppose that w appears internally in x. Then the word τ(g(fn(x)))
contains the word τ(g(fn(awb))) or its sister for some a, b ∈ {0, 1, 2}. The general idea is
to show that for all a, b ∈ {0, 1, 2}, the word τ(g(fn(awb))) has a factor of exponent at
least 16/7, which is a contradiction. We do this for each word in F1 below. The proofs
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for the words in F2, F3, and F4 are similar, and are omitted.2 Sometimes, we show the
stronger statement that for all b ∈ {0, 1, 2}, the word τ(g(fn(wb)) has a factor of exponent
at least 16/7, which implies that w does not appear in x at all (i.e., neither internally nor
as a prefix).

00: For n = 0, we check directly that for all b ∈ {0, 1, 2}, the word τ(g(00b)) contains
a factor of exponent at least 16/7. So we may assume that n > 1. For all b ∈ {0, 1, 2},
we check that the word f(00b) contains the even-5/2-power 01010. But this means that
τ(g(fn(00b))) contains the word τ(g(fn−1(01010))) or its sister. By Lemma 3.7, the
word τ(g(fn−1(01010))) has period |τ(g(fn−1(01)))|. Further, by Lemma 3.9, we have
|τ(g(fn−1(01)))| 6 3|τ(g(fn−1(0)))|, so that τ(g(fn−1(01010))) has exponent at least 7/3.

11: For n = 0, we check directly that for all b ∈ {0, 1, 2}, the word τ(g(11b)) contains
a factor of exponent at least 16/7. So we may assume that n > 1. For all b ∈ {0, 1, 2}, we
check that the word f(11b) contains the even-7/3-power 0220220. But this means that
τ(g(fn(11b))) contains the word τ(g(fn−1(0220220))) or its sister, and by Lemma 3.7 and
Lemma 3.9, the word τ(g(fn−1(0220220))) has exponent at least 7/3.

212: For n = 0, 1, 2, we check directly that for all b ∈ {0, 1, 2}, the word τ(g(fn(212b)))
has a factor of exponent at least 16/7. So we may assume that n > 3. For all b ∈
{0, 1, 2}, we check that the word f 3(212b) contains the even-31/13-power p31/13, where p =
2010201022010. This means that τ(g(fn(212b))) contains τ(g(fn−3(p31/13))) or its sister.
We write p31/13 = (p1p2p3)

2p1, where p1 = 20102, p2 = 0102, and p3 = 2010. Observe
that p2, p3 � p1, so that |τ(g(fn−3(p1p2p3)))| 6 3|τ(g(fn−3(p1)))|. From Lemma 3.7, it
follows that τ(g(fn−3(p31/13))) has exponent at least 7/3.

2222: For n = 0, 1, we check that for all b ∈ {0, 1, 2}, the word τ(g(fn(2222b))) has
a factor of exponent at least 16/7. So we may assume that n > 2. For all b ∈ {0, 1, 2},
we check that f 2(2222b) contains the 5-power (0102)5. Thus τ(g(fn(2222a))) contains
τ(g(fn−2((0102)5))) or its sister, and by Lemma 3.7, the word τ(g(fn−2((0102)5))) has
exponent 5/2.

1222: We have already seen that x does not contain the factor 2222, so it suffices
to show that for all b ∈ {0, 1}, the word τ(g(fn(1222b))) contains a factor of exponent
at least 16/7. We check this directly for n 6 3, so we may assume that n > 4. For
all b ∈ {0, 1}, we check that f 4(1222b) contains the even-19/8-power p19/8, where p =
(02010220102010220102)2. We write p19/8 = (p1p2p3)

2p1, where p1 = 020102201020102,
p2 = 201020201022, and p3 = 0102010220102. Observe that p2, p3 � p1. So by
Lemma 3.7, we see that τ(g(fn−4(p19/8))) has exponent at least 7/3.

2221: We have already seen that x does not contain the factor 2222, so it suffices to
show that for all a ∈ {0, 1} and b ∈ {0, 1, 2}, the word τ(g(fn(a2221b))) has a factor
of exponent at least 16/7. We check this directly for n 6 3, so we may assume that
n > 4. For all a ∈ {0, 1} and b ∈ {0, 1, 2}, we check that f 4(a2221b) contains the
even-19/8-power p19/8, where p = (20102010220102020102)2. But one can show that
τ(g(fn−4(p19/8))) has exponent at least 7/3 as in the proof for 1222.

1010: We have already seen that x contains no 00, so it suffices to show that for all
2Please consult https://github.com/japeltom/ternary-rich-words-verification for the argu-
ments in the omitted cases.
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b ∈ {1, 2}, the word τ(g(fn(1010b))) has a factor of exponent at least 16/7. We check
this directly for n = 0, so we may assume that n > 1. For all b ∈ {1, 2}, we check that
the word f(1010b) contains the even-12/5-power (02201)12/5. But by Lemma 3.7 and
Lemma 3.9, the word τ(g(fn−1((02201)12/5))) has exponent at least 7/3.

0101: We have already seen that x contains no 00, no 11, and no 1010, so it suffices
to show that the word τ(g(fn(201012))) has a factor of exponent at least 16/7. For
n = 0, we check directly that τ(g(201012)) contains a factor of exponent at least 16/7,
so we may assume that n > 1. We observe that f(201012) contains the even-12/5-power
(20102)12/5. But by Lemma 3.7 and Lemma 3.9, the word τ(g(fn−1((20102)12/5))) has
exponent at least 7/3.

022022 and 220220: Let u ∈ {022022, 220220}. For n = 0, 1, we check directly that
for all a, b ∈ {0, 1, 2}, the word τ(g(fn(aub))) contains a factor of exponent at least 16/7.
So we may assume that n > 2. For all a, b ∈ {0, 1, 2}, we check that f 2(aub) contains one
of the following even-31/13-powers: (2010220102010)31/13, (2010201020102)31/13. By an
argument similar to the one used for 212 above, we see that τ(g(fn(aub))) contains a
factor of exponent at least 7/3.

In Lemma 3.8 and Lemma 3.10, we demonstrated that certain factors in x lead to long
repetitions in τ(g(fn(x))). We now wish to demonstrate that certain factors in x lead to
non-rich factors in τ(g(fn(x))). The maps f and g belong to the well-studied class Pret

(see [5, 22]). In particular, it is known that morphisms in class Pret preserve non-richness
of infinite words. However, the alternation of τ complicates things for us here.

We say that a word w ∈ Σ∗3 is poor if every palindromic prefix of w with an even
number of 2’s occurs at least once more in w with an even number of 2’s before the
occurrence. In other words, w is poor if for every u ∈ Σ∗3, if u is a palindromic prefix of
w with an even number of 2’s, then there exist words p, s ∈ Σ∗3 such that w = pus, p 6= ε,
and p has an even number of 2’s. The following are examples of poor words:

• 2012, whose only palindromic prefix with an even number of 2’s is the empty word,
which occurs again as a suffix with an even number of 2’s before it;

• 01220, which has two palindromic prefixes with an even number of 2’s, namely ε
and 0, both of which occur as suffixes with an even number of 2’s before them; and

• 0220102020220, which has three palindromic prefixes with an even number of 2’s,
namely ε, 0, and 0220, all of which occur as suffixes with an even number of 2’s
before them.

On the other hand, the word 0120 is neither rich nor poor—the palindromic prefix 0

occurs just once more as a suffix, and there are an odd number of 2’s before this second
occurrence. We will prove the following.

Lemma 3.11. Let x ∈ Σω
3 , and suppose for some n > 0 that τ(g(fn(x))) is rich. Then

x contains no poor factor.
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We first prove several intermediate lemmas, for which we make use of one more term.
We say that a word w ∈ Σ∗3 is middle-class if it begins in 2 and every odd-length palin-
dromic prefix of w occurs at least once more in w starting at an even index. In other
words, w is middle-class if it begins in 2 and for every word u ∈ Σ∗3, if u is a palindromic
prefix of w of odd length, then there exist words p, s ∈ Σ∗ such that w = pus, p 6= ε, and
p has even length. The following are examples of middle-class words:

• 2202122, whose only palindromic prefix of odd length is 2, which occurs again
starting at even index 6; and

• 202122202, whose only palindromic prefixes of odd length are 2 and 202, which
both occur again starting at even index 6.

On the other hand, the word 2012 is not middle-class. It has palindromic prefix 2 of odd
length, which occurs again only at odd index 3.

Roughly speaking, we will show the following:

• f sends poor words to poor words;

• g sends poor words to middle-class words; and

• τ sends middle-class words to non-rich words.

Throughout, we use the following result.

Lemma 3.12. Let u,w ∈ Σ∗3.

(i) If f(u)0 is a palindromic prefix of f(w)0, then u is a palindromic prefix of w.

(ii) If g(u)2 is a palindromic prefix of g(w)2, then u is a palindromic prefix of w.

(iii) If u starts with 2 and τ(u)00 is a palindromic prefix of τ(w)00, then u is a palin-
dromic prefix of w of odd length.

Proof. Parts (i) and (ii) can be proven in a manner similar to [16, Lemma 4]. The
argument for part (iii) is similar; the alternation of τ forces u to have odd length.

Lemma 3.13. Let w ∈ Σ∗3. If w is poor, then f(w)0 is poor.

Proof. Let p be a palindromic prefix of f(w)0 with an even number of 2’s. Note that
f(w)0 starts with 0. If p = ε, then p occurs again in f(w)0 after the prefix 0, which
has an even number of 2’s. So we may assume that p 6= ε. Since p is a palindromic
prefix of f(w)0, and f(w)0 starts with 0, we see that p must begin and end in 0. Hence,
we can write p = f(u)0 for some word u ∈ Σ∗3, and by Lemma 3.12, we see that u is a
palindromic prefix of w. Since p has an even number of 2’s, and since 2 is the only letter
whose f -image has an odd number of 2’s, we conclude that the word u must also contain
an even number of 2’s. Since w is poor, the word u occurs at least once more in w with
an even number of 2’s before the occurrence. It follows that the word p = f(u)0 occurs
at least once more in f(w)0 with an even number of 2’s before the occurrence, i.e., that
f(w)0 is poor.

the electronic journal of combinatorics 32(2) (2025), #P2.55 16



Lemma 3.14. Let w ∈ Σ∗3. If w is poor, then g(w)2 is middle-class.

Proof. First note that g(w)2 begins in 2. Let p be an odd-length palindromic prefix of
g(w)2. Since p is palindromic, it must begin and end with 2, hence we can write p = g(u)2
for some word u ∈ Σ∗3, and by Lemma 3.12, the word u is a palindromic prefix of w. Since
p has odd length, we see that g(u) has even length, and since 2 is the only letter whose
g-image has odd length, it follows that u has an even number of 2’s. Since w is poor, the
word u occurs at least once more in w with an even number of 2’s before the occurrence.
It follows that p = g(u)2 occurs at least once more in g(w)2 starting at an even index.
Therefore, we conclude that the word g(w)2 is middle-class.

Lemma 3.15. Let w ∈ Σ∗3. If w is middle-class, then τ(w)00 is not rich.

Proof. Let p be the longest palindromic prefix of τ(w)00. Since w is middle-class, it
begins in 2, and we see that p must have prefix τ(2)00. Since p is palindromic, it must
also end in τ(2)00, and not its sister. Note that every occurrence of τ(2)00 in τ(w)00
corresponds in an obvious manner to an occurrence of 2 in w at an even index. So we
can write p = τ(u)00 for some word u ∈ Σ∗3. Further, by Lemma 3.12, the word u is a
palindromic prefix of w of odd length. Since w is middle-class, the word u occurs at least
once more in w starting at an even index. It follows that p = τ(u)00 occurs at least twice
in τ(w)00. Since p is the longest palindromic prefix of w, it follows that every palindromic
prefix of w occurs at least twice in w. By Lemma 3.1, we conclude that w is not rich.

We are now ready to prove Lemma 3.11.

Proof of Lemma 3.11. Suppose towards a contradiction that x contains a poor factor w.
By a straightforward induction using Lemma 3.13, we see that the word

W1 = f(f(· · · (f(w)0) · · · )0)0,

where f is applied n times, is poor. Hence, by Lemma 3.14, the word W2 = g(W1)2 is
middle-class, and by Lemma 3.15, the word W3 = τ(W2)00 is not rich. But W3 or its
sister is a factor of τ(g(fn(x))), which contradicts the assumption that τ(g(fn(x))) is
rich.

3.4 The Inner Layers

Proposition 3.16. Let x ∈ Σω
3 , and suppose for some n > 0 that τ(g(fn(x))) is 16/7-

power-free and rich. Then a suffix of x has the form f(x′) for some word x′ ∈ Σω
3 .

Proof. First observe the following.

• By Lemma 3.8, the word x is 5-power-free and even-3-power-free.

• By Lemma 3.10, no factor from F = F1 ∪ F2 ∪ F3 ∪ F4 appears internally in x.

• By Lemma 3.11, the word x contains no poor factor.
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Figure 6: The directed graph H showing possible transitions between letters in x′.

So by taking a suffix if necessary, we may assume that x is 5-power-free, even-3-power-free,
and contains neither poor words nor words from F as factors. We use these properties
frequently throughout the remainder of the proof without further reference.

For ease of writing, we consider an extension f̂ of f to Σ∗8, defined by

f̂(0) = 01, f̂(4) = 0121,

f̂(1) = 022, f̂(5) = 01221,

f̂(2) = 02, f̂(6) = 012,

f̂(3) = 0222, f̂(7) = 021.

Observe that for all a ∈ Σ3, we have f̂(a) = f(a), so f̂ is indeed an extension of f .

Claim 3.17. A suffix of x has the form f̂(x′) for some word x′ ∈ Σω
8 . Further, the word

x′ corresponds to an infinite walk on the graph H drawn in Figure 6.

Proof of Claim 3.17. The longest word over {1, 2} that contains no factor from F1 has
length 4, so the letter 0 must occur infinitely many times in x, and by taking a suffix if
necessary, we may assume that x starts with 0. Thus, it suffices to show that the only
possible complete returns to 0 in x have the form f̂(a)0 for some a ∈ Σ8. Consider the
tree drawn in Figure 7, which shows all possible complete returns to 0 in x. The words
corresponding to red leaves in the tree have a suffix in F1, while the words corresponding
to yellow leaves in the tree are poor. So the words corresponding to green leaves in the
tree are the only possible complete returns to 0 in x. Thus, we can write x = f̂(x′) for
some x′ ∈ Σω

8 .
It remains to show that x′ corresponds to an infinite walk on the graph H drawn in

Figure 6. First note that the image of every letter under f̂ has prefix 0. So if u is a
factor of x′, then f̂(u)0 is a factor of x. We use this fact to show that some letters cannot
appear immediately after others in x′. Consider the letter 4, for example. It cannot be
followed by the letter 0, because f̂(40)0 = 0121010 contains the factor 1010 ∈ F1. It
cannot be followed by a letter from {1, 2, 3, 7}, because for all a ∈ {1, 2, 3, 7}, the word
f̂(4a) contains the poor word 2102. Finally, it cannot be followed by the letter 6, because
f̂(46)0 = 01210120 is poor. So the letter 4 can only be followed by 4 or 5 in x′. By
performing a similar analysis on all letters of Σ8, ruling out the transition from a to b
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Figure 7: The tree showing all possible complete returns to 0 in x.
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if the word f̂(ab)0 contains a poor word or a word in F1, we obtain the directed graph
H. �

So x has the form f̂(x′) for some word x′ ∈ Σω
8 . Our goal now is to show that in fact

we have x′ ∈ Σω
3 .

Claim 3.18. The word x′ contains neither 6 nor 7, i.e., we have x′ ∈ Σω
6 .

Proof of Claim 3.18. Consider an occurrence of 6 in x′. From the digraph H, we see that
6 is followed by a factor of the form ua, where u ∈ {0, 1}∗ and a ∈ {2, 3, 7}. As 00, 11,
0101, and 1010 are in F1, we see that u ∈ {ε, 0, 1, 01, 10, 010, 101}. If a 6= 7, then the
only palindromic prefixes of f̂(6ua)0 are ε and 0, because f̂(6ua)0 has prefix 012 and
contains no 21. Further, both palindromic prefixes occur as a suffix in f̂(6ua)0 after an
even number of 2’s, meaning that f̂(6ua)0 is poor. Thus every time the letter 6 appears
in x′, it appears as a prefix of 6u7 for some u ∈ {ε, 0, 1, 01, 10, 010, 101}. But for each
u ∈ {1, 01, 10, 010, 101}, we check that f̂(6u7) contains a factor in F2. So every 6 in x′

occurs as a prefix of either 67 or 607.
Now consider an occurrence of 7 in x′. From the digraph H, we see that 7 is followed

by a factor of the form v6, where v ∈ {4, 5}∗. First note that 55 is not a factor of v, since
in that case f̂(7v6) contains the factor 21f̂(55)012 = (21012)3, which is an even-3-power.
Next, note that 4 is not a factor of v, since in that case v must have suffix 45, and in turn
f̂(7v6)0 has suffix f̂(456)0, which is poor. So we must have v ∈ {ε, 5}, i.e., every 7 in x′

occurs as a prefix of either 76 or 756.
So suppose that the letter 7 appears in x′. By taking a suffix of x if necessary, we may

assume that x′ starts with 7. Then we can write x′ = φ(x′′) for some x′′ ∈ Σω
4 , where

φ(0) = 76,

φ(1) = 760,

φ(2) = 756,

φ(3) = 7560.

In turn, we have x = f̂(φ(x′′)). Observe that for every letter a ∈ Σ4, the word f̂(φ(a)) has
an even number of 2’s. Since x is even-3-power-free, we see that x′′ must be 3-power-free.
We also claim that x′′ contains no factor from the set

Fφ = {00, 11, 22, 33, 01, 20, 31}.

Let w ∈ Fφ, and suppose that w appears in x′′. Note that for every letter a ∈ Σ4, the
word f̂(φ(a)) has prefix f̂(φ(0)) = 021012. It follows that the word f̂(φ(w0)) appears in
x. However, we check that f̂(φ(w0)) contains a factor from F2, hence we conclude that
x′′ contains no factor from Fφ.

Now we run a backtracking algorithm that searches through the tree of all words
u ∈ Σ∗4 such that

(i) u is 3-power-free;
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(ii) u contains no factor from Fφ; and

(iii) f̂(φ(u)) contains no poor factor.

We find that the longest such word has length 8. Thus, we conclude that the letter 7 does
not appear in x′. Since every 6 in x′ appears as a prefix of either 67 or 607, it follows
that the letter 6 does not appear in x′ either. �

Claim 3.19. The word x′ contains neither 4 nor 5, i.e., we have x′ ∈ Σω
4 .

Proof of Claim 3.19. Suppose that 4 or 5 appears in x′. By Claim 3.18, we have x′ ∈ Σω
6 .

So by considering the digraph H, we see that x′ ∈ {4, 5}ω. Since x contains no 5-power,
we see that x′ contains no 5-power. Further, we claim that some suffix of x′ contains no
factor from the set F ′ = {55, 444, 5445}. Observe that for all a ∈ {4, 5}, the word f̂(a)
has prefix 012 and suffix 21. So if some word u appears internally in x′, then x contains
the word 21f̂(u)012. We handle each word in F ′ separately.

• 55: Suppose that 55 appears internally in x′. It follows that x contains the word
21f̂(55)012 = (21012)3. But this contradicts the fact that x is even-3-power-free.

• 444: We first claim that 4444 does not appear internally in x. For if 4444 appears
internally in x′, then x contains the 5-power 21f̂(4444)01 = (2101)5; a contradic-
tion. So by taking a suffix if necessary, we may assume that x′ contains no 4444.
Now suppose that 444 appears internally in x′. Then x′ contains the factor 54445.
But this is impossible, since f̂(54445) contains the factor 2(2101)17/42 ∈ F3.

• 5445: Suppose that 5445 appears in x′ with at least two letters before it. Then
since 55 does not appear internally in x′, we see that x′ must contain an in-
ternal occurrence of 454454. But then x contains the word 21f̂(454454)012 =
(2101210122101)31/13 ∈ F3, a contradiction.

Now we run a backtracking algorithm that searches through the tree of all words
u ∈ {4, 5}∗ such that

(i) u is 5-power-free;

(ii) u contains no factor from F ′; and

(iii) f̂(u) contains no poor factor.

The longest such word has length 11. Thus, we conclude that neither 4 nor 5 appears in
x′. �

Claim 3.20. The word x′ contains no 3, i.e., we have x′ ∈ Σω
3 .
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Proof of Claim 3.20. Suppose that the letter 3 appears in x′. From Claim 3.19, we have
x′ ∈ Σω

4 . We claim that the letter 2 does not appear in x′. For if it did, then x′ would
have a factor of the form 3u2 or 2u3, where u ∈ {0, 1}∗. But for all u ∈ {0, 1}∗, the words
f̂(3u2)0 and f̂(2u3)0 are poor; their only palindromic prefixes with an even number of
2’s are ε and 0, and they occur again (as suffixes) after an even number of 2’s.

So we have x′ ∈ {0, 1, 3}ω. Observe that x′ does not contain the factor 3333. For if it
did, then we see from the digraph H that x′ would contain either 33333 or 33330. But
33333 is a 5-power, and f̂(33330) = (0222)17/41 is in F4. By taking a suffix if necessary,
assume that x′ starts with 0. Then by considering the digraph H, and remembering
that x′ does not contain 3333, we see that we must have x′ = ψ(x′′) for some word
x′′ ∈ {0, 1, 2, 3}ω, where

ψ(0) = 03,

ψ(1) = 033,

ψ(2) = 0333,

ψ(3) = 01.

In turn, we have x = f̂(ψ(x′′)). Since x contains no 5-power, we see that x′′ contains
no 5-power. Note that for all a ∈ Σ4, the word f̂(ψ(a)) has prefix 01022 and suffix 22.
Further, for all a ∈ Σ3, the word f̂(ψ(a)) has suffix 0222, and for all v ∈ Σ∗3 with |v| > 2,
the word f̂(ψ(v)) has prefix 0102220.

Now we claim that some suffix of x′′ belongs to Σω
2 . Suppose first that the letter 3

appears internally in x′′. Then x contains the word 22f̂(ψ(3))01022 = (22010)12/5 ∈
F4, a contradiction. So by taking a suffix if necessary, we may assume that x′′ ∈ Σω

3 .
Suppose now that the letter 2 appears in x′′. If 20 appears in x′′, then x contains
the poor factor f̂(ψ(20))010, a contradiction. If 21 appears in x′′, then x contains the
word f̂(ψ(21))010222, which has suffix (0222022201)12/5 ∈ F4, a contradiction. So every
occurrence of 2 in x′′ must be followed by another 2. But then x′′ contains the 5-power
22222, a contradiction.

So we may assume that x′′ ∈ Σω
2 . We now claim that some suffix of x′′ contains no

factor from the set
Fψ = {11, 000, 1001}.

We handle each word in Fψ separately.

• 11: Suppose that 11 appears internally in x′′. Then x contains the word

0222f̂(ψ(11)) = (0222010222)12/5 ∈ F4,

a contradiction.

• 000: Suppose that 000 appears internally in x′′. Then x contains the word

0222f̂(ψ(000))0102220 = (022201)29/6 ∈ F4,

a contradiction.
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• 1001: Suppose that 1001 appears with at least two letters before it in x′′. Since 11
does not appear internally in x′′, we see that the word 010010 appears internally in
x′′. But then x contains the word

0222f̂(ψ(010010))0102220 = (0222010222010222022201)5/2 ∈ F4,

a contradiction.

Now we run a backtracking algorithm that searches through the tree of all words
u ∈ Σ∗2 such that

(i) u is 5-power-free;

(ii) u contains no factor from Fψ; and

(iii) f̂(ψ(u)) contains no poor factor.

The longest such word has length 11. Thus, we conclude that 3 does not appear in x′. �

Since x′ ∈ Σω
3 , we have x = f̂(x′) = f(x′), and this completes the proof of the

proposition.

Proof of Theorem 1.2. We proceed by induction on n. As argued at the beginning of
Section 3.1, by permuting the letters and taking a suffix if necessary, we may assume that
z has prefix 001002. Then by Proposition 3.5, we have z = τ(y) for some word y ∈ Σω

3 ,
and by Proposition 3.6, some suffix of y has the form g(x0) for some word x0 ∈ Σω

3 . This
completes the base case.

Now suppose for some integer k > 0 that some suffix of z has the form τ(g(fk(xk)))
for some word xk ∈ Σω

3 . Then by Proposition 3.16, some suffix of xk has the form f(xk+1)
for some word xk+1 ∈ Σω

3 . It follows that some suffix of z has the form τ(g(fk+1(xk+1))).
Therefore, we conclude that the theorem statement holds by mathematical induction.

4 Richness

Throughout this section, let x = fω(0), y = g(x), and z = τ(y). For an infinite word
u, we let Cu : N → N denote the factor complexity of u, and we let Pu : N → N denote
the palindromic complexity of u. That is, Cu(n) is the number of distinct factors of u of
length n for all n > 0, and Pu(n) is the number of distinct palindromic factors of u of
length n for all n > 0.

The goal of this section is to prove the following result.

Proposition 4.1. The word z is rich.

Along the way, we will also show that x and y are rich. In Section 4.1 and Section 4.2,
we determine the factor complexity and the palindromic complexity, respectively, of the
word z. Proposition 4.1 follows immediately from these results and the following result
that characterizes infinite rich words in terms of their factor complexity and palindromic
complexity functions. Notice that the language of z is closed under reversal as z is uni-
formly recurrent and contains arbitrarily long palindromes (see the results of Section 4.2).
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Proposition 4.2. [11, Thm. 1.1] Let u be an infinite word whose language is closed
under reversal. Then u is rich if and only if

Pu(n) + Pu(n+ 1) = Cu(n+ 1)− Cu(n) + 2 (1)

for all n > 0.

Before we proceed with determining the factor complexity and palindromic complexity
functions of z, we introduce some terminology and prove a preliminary result. Let u be
an infinite word, and let w ∈ Fact(u). A left extension (resp. right extension) of w in
u is a word of the form aw ∈ Fact(u) (resp. wa ∈ Fact(u)), where a is a letter. A
bi-extension of w in u is a word of the form awb ∈ Fact(u), where a and b are letters.
If w is a palindrome, then a palindromic extension of w in u is a bi-extension of w that
is a palindrome. We say that w is left-special (resp. right-special) in u if it has at least
two distinct left (resp. right) extensions, and we say that w is bispecial in u if it is both
left-special and right-special.

Lemma 4.3. If z is a factor of z, then its sister is a factor of z.

Proof. We first claim that for each x ∈ Fact(x), there exist u and u′ such that both ux
and u′x are prefixes of x, and |u|2 and |u′|2 have different parity. Let x ∈ Fact(x). Then
x occurs in fn(0) for some n > 0, i.e., there is some n > 0 such that fn(0) has prefix
ux for some word u. Set vn = fn+2(0)fn+1(02)fn(0). It is not difficult to see that vn is
a prefix of fn+3(0), and hence of x. Letting u′ = fn+2(0)fn+1(02)u, we see that vn (and
hence x) has both ux and u′x as prefixes. Note that |fk(0)|2 is even for all k > 0 and
|fk(2)|2 is odd for all k > 0. So |fn+2(0)fn+1(02)|2 is odd, and we conclude that |u|2 and
|u′|2 have different parity.

Now let y ∈ Fact(y). Then there exists a factor x ∈ Fact(x) such that g(x) = αyβ for
some words α and β. Let u and u′ be as above, so that g(u)αy and g(u′)αy are prefixes
of y. Since |g(v)| is even if and only if |v|2 is even, it follows that the lengths of g(u)α
and g(u′)α have different parities. So y occurs starting at both an even position and an
odd position in y.

Finally, let z ∈ Fact(z). Then z occurs in τ(y) for some prefix y of y. From above, we
see that y must also occur starting at an odd position in y, hence τ(y) also occurs in z,
and τ(y) contains the sister of z.

4.1 Factor complexity

Proposition 4.4. For all n > 1, the word x = fω(0) has exactly two right-special factors
u and v of length n. The word u ends with 0 and u1, u2 ∈ Fact(x), and the word v ends
with 2 and v0, v2 ∈ Fact(x).

Proof. Since 00, 11, 12, 21 6∈ Fact(x), every non-empty factor of x has at most two right
extensions in Fact(x). Moreover, there is no right-special factor ending in 1 since neither
11 nor 12 belongs to Fact(x). Both 0 and 2 are right-special as 01, 02, 20, and 22 all
belong to Fact(x).
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We claim that x contains arbitrarily long right-special factors ending with 0 and
arbitrarily long right-special factors ending with 2. Let u and v be right-special factors
of length n ending respectively with 0 and 2. Such factors exist when n = 1. The word
u has right extensions u1 and u2, hence f(u)f(1) and f(u)f(2)0 are also factors of x. As
f(u)f(1) = f(u)f(2)2, we see that f(u)f(2) is right-special, ends in 2, and has length
greater than n. Similarly, v has right extensions v0 and v2, and we find that f(v)0 is
right-special, ends in 0, and has length greater than n. This proves the claim.

It suffices to show that x never has three right-special factors of the same length.
Suppose, towards a contradiction, that x has three right-special factors of the same length.
Let n be the least integer such that x has three right-special factors of length n. By
enumerating all right-special factors of x of length at most 3, we see that n > 4. Now
each right-special factor of length n contains a right-special factor of length n − 1 as a
suffix. By the minimality of n, there are only two right-special factors of length n − 1.
Thus, two distinct right-special factors of length n have a common suffix u of length n−1,
i.e., they have the form au and bu, where a, b ∈ Σ3 and |u| = n − 1. So u is bispecial,
meaning that u does not begin (or end) in 1 or 22. Hence, by deleting at most one letter
at the beginning of u (if 20 is a prefix of u) and at most two letters at the end of u (if
02 is a suffix of u), we obtain a factor u′ = f(v) of u for some v. Since |u| > 4, we
have 1 6 |v| < |u|. Further, we see that v has four distinct bi-extensions in Fact(x). Let
cv and dv be the left extensions of v in Fact(x). Then cv and dv are right-special and
end in the same letter. Thus x has at least three distinct right-special factors of length
|cv| < |au| = n, and this contradicts the minimality of n.

Proposition 4.5. For all n > 2, the word y = g(fω(0)) has exactly two right-special
factors u and v of length n. The word u ends with 02 and u1, u2 ∈ Fact(y), and the word
v ends with 22 and v0, v2 ∈ Fact(y).

Proof. By considering the images under g of the right extensions of the right-special
factors of x described in Proposition 4.4, we see that the claimed words u and v exist for
all n > 2. Thus it suffices to show that y has at most two right-special factors of length
n for all n > 2. The claim is easily checked for n = 2.

Assume for a contradiction that there exists a least integer n > 3 such that there are
three right-special factors of length n. As in the proof of Proposition 4.4, there exists a
right-special factor u of length n − 1 such that au and bu are right-special for distinct
letters a and b. Since 2 is the unique left-special letter and the unique right-special letter,
we see that u begins and ends in 2. Therefore u = g(v)2 for a factor v of x. Since au and
bu both have two right extensions in y, we deduce that x has two right-special factors of
length |v|+ 1 that end in the same letter. This contradicts Proposition 4.4.

Proposition 4.6. For all n > 4, the word z = τ(g(fω(0))) has 4 right-special factors of
length n, each with exactly two right extensions.

Proof. This proof is essentially the same as for x and y, but the presence of τ complicates
the analysis slightly. It is straightforward to verify the statement for n 6 9.
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Let s be a right-special factor of z such that |s| > 10. First note that s contains at
least one of the letters 1 and 2. We assume that the letter 1 occurs closer to the end of
the word s than the letter 2, i.e., that s has suffix 1, 10, or 100. (A symmetric argument
applies if s has suffix 2, 20, or 200.) We first argue that s has suffix 10 or 100. Suppose
otherwise that s has suffix 1. Then we must have s0, s1 ∈ Fact(z), since 12 6∈ Fact(z).
The suffix 11 of s1 forces s to have suffix 00101, but then s0 has suffix 001010. Since
001010 6∈ Fact(z), this is a contradiction. So s has suffix 10 or 100. If s has suffix 10,
then we have s0, s1 ∈ Fact(z) and s2 6∈ Fact(z), since 102 /∈ Fact(z). If s has suffix 100,
then we have s1, s2 ∈ Fact(z) and s0 6∈ Fact(z), since 000 6∈ Fact(z). In particular, we see
that every right-special factor of z of length at least 10 has exactly two right extensions.

Now it suffices to show that z contains a unique right-special factor of length n with
suffix 10 and a unique right-special factor of length n with suffix 100 for each n > 10, as
Lemma 4.3 guarantees that their sisters will also be right-special factors of z. To see that
at least one right-special of length n of each type exists, we consider the images under τ
(or τ) of the right extensions of the right-special factors of y described in Proposition 4.5.

Suppose for a contradiction that there is a least integer n > 10 such that there exist
two right-special factors of length n with suffix 10. By the minimality of n, they have
the form au and bu for distinct letters a, b and a right-special factor u of length n − 1,
and their right extensions are au0, au1, bu0, and bu1. Since 1100, 10101 /∈ Fact(z), it
must be that u has suffix 0010. Further, u cannot have suffix 10010 as this factor is not
right-special. Therefore u has suffix 20010. Since Fact(z) is closed under reversal and u
is left-special, we see from our work above that u has prefix 0.

First assume that a = 0. Then b ∈ {1, 2}, and we let c be the other letter in {1, 2}.
Since a00, b0c /∈ Fact(z), it must be that u has prefix 0b. Further, as 00bb, b0b0b /∈ Fact(z),
we see that u must begin with 0b00c. It follows that u = 0b00cu′20010 for some word
u′. Now 00cu′2 must equal τ(v) (if c = 1) or τ(v) (if c = 2) for a nonempty factor v
of y. Further, since au0 ∈ Fact(z), we must have 0v0 ∈ Fact(y). Since au1 is also in
Fact(z), we must have 0v1 or 0v2 in Fact(y) as well. So 0v is right-special in y, and from
Proposition 4.5, it must be 0v2 ∈ Fact(y). By considering the right extensions bu0 and
bu1 of bu, and using the fact that Fact(z) is closed under reversal, we see that 2v0 and 2v2
must also be factors of y. So 0v and 2v are distinct right-special factors of y, both with
right extensions by 0 and 2 belonging to Fact(y), and this contradicts Proposition 4.5.

We may now assume that a, b 6= 0. In this case, we see that u = u′0010 with u′ = τ(1v)
or u′ = τ(1v) for a factor 1v of y. By an argument similar to the one in the previous
paragraph, one can show that 1v and 2v are right-special in y, and derive a contradiction
with Proposition 4.5. Thus we have shown that z contains a unique right-special factor
of length n with suffix 10 for all n > 10.

The proof that z contains a unique right-special factor of length n with suffix 100 for
all n > 10 is similar, and is omitted.

Note that it now follows easily from Proposition 4.4, Proposition 4.5, and Proposi-
tion 4.6, along with a determination of initial values by inspection, that Cx(n) = Cy(n) =
2n + 1 for all n > 0, and that Cz(n) = 4n + 2 for all n > 4, with Cz(0) = 1, Cz(1) = 3,
Cz(2) = 7, and Cz(3) = 12.
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We remark that [3, Corollary 1.4] states that an infinite word with factor complexity
2n + 1 for all n is rich provided that its language is closed under reversal. Since x and
y are uniformly recurrent and contain arbitrarily long palindromes (see the results of
Section 4.2), their languages are closed under reversal, and we immediately obtain the
following.

Corollary 4.7. The words x and y are rich.

We note, however, that we cannot deduce that z is rich directly from its factor com-
plexity. So we proceed with the determination of the palindromic complexity of z in the
next subsection.

4.2 Palindromic Complexity

In order to determine the palindromic complexity of z, we first show that all palindromic
factors in x and y have unique palindromic extensions. Note that this property does not
hold for all words of factor complexity 2n+ 1 (c.f. [3, Section 4]).

Proposition 4.8. Every palindromic factor of x has a unique palindromic extension in
Fact(x).

Proof. We proceed by induction on the length of the palindromic factor. First, we check
that every palindromic factor of x of length at most 2 has a unique palindromic extension.

Now suppose for some n > 3 that every palindromic factor of x of length less than n
has a unique palindromic extension, and let w be a palindromic factor of x of length n.
Since w is a palindrome of length at least 3, we have w = aw′a for some letter a ∈ Σ3 and
word w′ ∈ Σ∗3 with |w′| > 1.
Case 1: Suppose that w = 0w′0. Then w = f(v)0 for some word v ∈ Fact(x) of length
less than w. By Lemma 3.12, the word v is a palindrome, and since |v| < |w|, the word v
has a unique palindromic extension in Fact(x), say ava, where a ∈ Σ3. Then x contains
the factor f(ava), which contains a palindromic extension of w. Now suppose (towards a
contradiction) that there are two distinct palindromic extensions of w in Fact(x). Since
00 6∈ Fact(x), we must have 1w1 = 10w′01 and 2w2 = 20w′02 in Fact(x). Note that
the only possible preimage of 1w1 is 0v0, while the possible preimages of 2w2 are 1v1,
1v2, 2v1, and 2v2. So Fact(x) must contain 0v0 and at least one word from the set
{1v1, 1v2, 2v1, 2v2}. Since v has a unique palindromic extension in Fact(x) by the in-
ductive hypothesis, we see that Fact(x) must contain 0v0 and either 1v2 or 2v1. Since
0v0 ∈ Fact(x) and 00 6∈ Fact(x), we see that the first and last letter of v is either a 1

or a 2. But this is impossible, since 1v2 or 2v1 is also in Fact(x), and no word from
{11, 12, 21} belongs to Fact(x).
Case 2: Suppose that w = 1w′1. Since every occurrence of 1 in x is preceded and
followed by 0, we see that 0w0 is the unique palindromic extension of w in Fact(x).
Case 3: Suppose that w = 2w′2. Since 21 6∈ Fact(x), we see that w′ must begin in 0

or 2. If w′ begins in 2, then we must have |w′| > 2, since 222 6∈ Fact(x). So we can
write w = 22w′′22 for some w′′ ∈ Σ∗3, and since every occurrence of 22 in x is preceded
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and followed by 0, we see that the unique palindromic extension of w in Fact(x) is 0w0.
So we may assume that w′ begins in 0. Hence we can write w′ = f(v)0 for some word
v ∈ Σ∗3, and by Lemma 3.12, the word v is a palindrome. Since |v| < |w′| < |w|, the
words v and w′ have a unique palindromic extension in Fact(x). So w = 2w′2 must be
the unique palindromic extension of w′ in Fact(x). It follows that 0v0 6∈ Fact(x), for
f(0v0) contains the palindromic extension 1w′1 of w′. Now, if the unique palindromic
extension of v in Fact(x) is 1v1, then x contains the factor f(1v1), which contains the
palindromic extension 2w2. If the unique palindromic extension of v in Fact(x) is 2v2,
then x contains the palindromic extension f(2v2)0 = 0w0 of w. Finally, if both 0w0 and
2w2 are in Fact(x), then both 2v2 and 1v1 would be in Fact(x), a contradiction.

By mathematical induction, we conclude that every palindromic factor of x has a
unique palindromic extension.

Proposition 4.9. Every palindromic factor of y has a unique palindromic extension in
Fact(y).

Proof. Let w be a palindromic factor of y. First note that if w = ε, then the unique
palindromic extension of w is 22. Next note that every occurrence of 0 or 1 in y is
preceded and followed by 2. So if w begins in 0 or 1, then the unique palindromic
extension of w in Fact(y) is 2w2.

So we may assume that w begins in 2. By inspecting all factors of y of length 3, we see
that the unique palindromic extension of 2 is 222. So we may assume that |w| > 2, which
means that we can write w = 2w′2 for some word w′ ∈ Σ∗3. But then we have w = g(v)2
for some nonempty word v ∈ Fact(x), and by Lemma 3.12, the word v is a palindrome. By
Proposition 4.8, the word v has a unique palindromic extension in Fact(x). Observe that
for all a ∈ Σ∗3, we have ava ∈ Fact(x) if and only if g(ava)2 ∈ Fact(y), and that g(ava)2
contains the palindromic extension awa of w. So if ava is the unique palindromic extension
of v in Fact(x), then awa is the unique palindromic extension of w in Fact(y).

Lemma 4.10. Let w be a palindromic factor of y. If 0w0 ∈ Fact(y), then no word from
the set {1w1, 1w2, 2w1, 2w2} is in Fact(y).

Proof. Suppose that 0w0 ∈ Fact(y). By Proposition 4.9, the word w has a unique palin-
dromic extension in Fact(y), so we see that neither 1w1 nor 2w2 belongs to Fact(y). It
remains to show that 1w2 and 2w1 do not belong to Fact(y).

First observe that since 0w0 ∈ Fact(y), we have 20w02 ∈ Fact(y), and we can write
20w02 = g(v)2 for some word v ∈ Fact(x) of the form 0v′0. (Note in particular that
w = g(v′)2.) By Lemma 3.12, we see that v and v′ are palindromes. Since 00 6∈ Fact(x),
the word v′ begins with 1 or 2.

Now suppose, towards a contradiction, that 1w2 ∈ Fact(y). Then we have 21w2 ∈
Fact(y), which means that g−1(21w) = 1v′ ∈ Fact(x). Since neither 11 nor 12 belongs to
Fact(x), we see that v′ begins with 0. But this contradicts the fact that v′ begins with 1

or 2. So we conclude that 1w2 6∈ Fact(y).
Finally, suppose that 2w1 ∈ Fact(y). Then we have g−1(w1) = v′1 ∈ Fact(y). Since

neither 11 nor 21 belongs to Fact(x), we see that v′ ends with 0. But this contradicts
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the fact that v′ is a palindrome that begins with 1 or 2. So we conclude that 2w1 6∈
Fact(y).

Proposition 4.11. Pz(n) =


1, if n = 0;
3, if n = 1 or n = 2;
4, if n = 3, or n > 4 and n is even;
2, if n > 5 and n is odd.

Proof. By generating all factors of z of length at most 20, we verify the formula given
in the theorem statement for all n 6 20. Now it suffices to show that every palindromic
factor of z of length at least 19 has a unique palindromic extension in Fact(z).

Let w be a palindromic factor of z of length at least 19, so that w contains both 1 and
2. We assume that 1 appears before 2 in w; a symmetric argument applies if 2 appears
before 1. Let u00 be the longest prefix of w that does not contain the letter 2. Then u
must be a nonempty suffix of τ(0), τ(1), or τ(2), and we can write

w = u00w′00ũ,

where w′ begins and ends in 2 and ũ is the reversal of u. So we see that

w = uτ(y)00ũ

for some word y ∈ Fact(y). It is not hard to see that y must be a palindrome of odd
length.
Case 1: Suppose that u = 01. First note that 2w2 6∈ Fact(z), since 201 6∈ Fact(z). Note
further that 0w0 ∈ Fact(z) if and only if 0y0 ∈ Fact(y), and that 1w1 ∈ Fact(z) if and
only if ayb ∈ Fact(y) for some a, b ∈ {1, 2}.

Suppose first that 0y0 ∈ Fact(y). Then we see from Lemma 4.10 that the words 1y1,
1y2, 2y1, and 2y2 do not belong to Fact(y). Hence, from the biconditional statements
above, we conclude that 0w0 ∈ Fact(z) and 1w1 6∈ Fact(z), i.e., that 0w0 is the unique
palindromic extension of w in Fact(z).

Suppose otherwise that 0y0 6∈ Fact(y). Then either 1y1 or 2y2 belongs to Fact(y),
since y has a unique palindromic extension in Fact(y) by Proposition 4.9. Hence, from the
biconditional statements above, we conclude that 1w1 is the unique palindromic extension
of w in Fact(z).
Case 2: Suppose that u = 00101101. First note that 0w0 6∈ Fact(z), since 000 6∈ Fact(z).
Note further that 1w1 ∈ Fact(z) if and only if 2y2 ∈ Fact(y), and that 2w2 ∈ Fact(z) if
and only if 1y1 ∈ Fact(y).

From the structure of w, we see that Fact(y) contains a factor of the form ayb, where
a, b ∈ {1, 2}. So by Lemma 4.10, we have 0y0 6∈ Fact(y). But y has a unique palindromic
extension in Fact(y) by Proposition 4.9, so exactly one of the words 1y1 and 2y2 belongs
to Fact(y). By the biconditionals above, we conclude that w has a unique palindromic
extension in Fact(z).
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Case 3: Say u 6∈ {01, 00101101}. It is not hard to show by inspection of τ(0), τ(1), and
τ(2) that w has a unique palindromic extension. For example, if u = 1, then the unique
palindromic extension of w in Fact(z) is 0w0, since τ(0), τ(1), and τ(2) have common
suffix 01. If u = 001, then w = τ(0y0)00, and the unique palindromic extension of w in
Fact(z) is 2w2.

We now have the means to prove Proposition 4.1.

Proof of Proposition 4.1. First of all, when n 6 3, it is straightforward to verify that
the equation (1) holds. Let n > 4. Since each right-special factor of z of length n has
exactly two right extensions by Proposition 4.6, the quantity Cz(n + 1) − Cz(n) equals
the number of right-special factors of z of length n. Hence the right side of (1) equals 6.
Proposition 4.11 implies that the left side of the equation also equals 6. Therefore z is
rich by Proposition 4.2.

5 The Critical Exponent

Throughout this section, let x = fω(0), y = g(x), and z = τ(y). We will write x =
x0x1x2 · · · , y = y0y1y2 · · · , and z = z0z1z2 · · · , where the xi’s, yi’s, and zi’s are letters.
Theorem 5.1. The critical exponent of z is

1 +
1

3− µ1

≈ 2.25876324,

where µ1 ≈ 2.20557 is the unique real root of the polynomial x3 − 2x2 − 1.

We prove Theorem 5.1 by adapting the method of Krieger [31] for finding the critical
exponent of a fixed point of a non-erasing morphism. The basic idea is that every factor
of exponent greater than 9/4 in z belongs to one of only finitely many sequences of
“unstretchable” repetitions, which cannot be extended periodically (i.e., “stretched”) in z.
Each of these sequences is obtained as follows:

• We start from a short unstretchable repetition w0 in x and repeatedly apply f and
stretch to the left and right as far as possible. This gives us a sequence w0, w1, w2, . . .
of unstretchable repetitions in x, which we call an “inner stretch sequence”.

• We apply g and τ to each word in the sequence w0, w1, w2 . . ., and stretch to the left
and right as far as possible. This gives us a sequenceW0,W1,W2, . . . of unstretchable
repetitions in z, which we call an “outer stretch sequence”.

Once we identify the outer stretch sequences that contain repetitions of exponent greater
than 9/4 in z, we analyze the exponents of the words in these outer stretch sequences,
and show that their supremum is 1 + 1/(3− µ1).

In Section 5.1, we formally define unstretchable repetitions and stretch sequences. In
Section 5.2, we show that every unstretchable repetition of exponent greater than 9/4 in
z belongs to one of only finitely many outer stretch sequences. Finally, in Section 5.3, we
show that the supremum of the exponents of the words in these outer stretch sequences
is 1 + 1/(3− µ1).
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5.1 Unstretchable Repetitions and Stretch Sequences

In order to define an unstretchable repetition, we need to consider a specific occurrence of
the repetition. An occurrence of a factor w in an infinite word u = u0u1u2 · · · is a triple
(w, i, j) such that w = ui · · ·uj. We usually omit the reference to the triple, and simply
refer to an occurrence (w, i, j) as w = ui · · ·uj. The set of all occurrences of all factors of u
is denoted by Occ(u). Note that every occurrence of a word w in x corresponds in a natural
way to an occurrence of f(w) in x. More precisely, if w = xi · · ·xj, then f(w) = xk · · ·x`,
where k = |f(x0 · · ·xi−1)| and ` = |f(x0 · · ·xj)| − 1. Similarly, every occurrence of a word
w in x corresponds to an occurrence of g(w) in y, and every occurrence of a word w in y
corresponds to an occurrence of either τ(w) or τ(w) in z. If w = yi · · · yj ∈ Occ(y), then
we write

τ̃(w) = zk · · · z`,

where k = |τ(y0 · · · yi−1)| and ` = |τ(y0 · · · yj)| − 1, i.e.,

τ̃(w) =

{
τ(w), if i is even;
τ(w), if i is odd.

Suppose that w = ui · · ·uj ∈ Occ(u) has period q. We say that the pair (w, q) is
left-stretchable if ui−1 · · ·uj also has period q, i.e., if ui−1 = ui+q−1. Similarly, we say that
(w, q) is right-stretchable if ui · · ·uj+1 has period q. The left stretch of (w, q) is the longest
word λ such that λw has period q and λw = ui−|λ| · · ·uj. The right stretch of (w, q) is
the longest word ρ such that wρ has period q and wρ = ui · · ·uj+|ρ|. (Such a word ρ
exists as long as u has finite critical exponent.) We say that (w, q) is unstretchable if it
is neither left-stretchable nor right-stretchable, i.e., if λ = ρ = ε. Sometimes we say that
“w is unstretchable with respect to q” instead of “(w, q) is unstretchable”.

Suppose that w = ur = xi · · ·xj ∈ Occ(x) is unstretchable with respect to q = |u|.
Note that the word f(w) has period |f(u)|, the word f 2(w) has period |f 2(u)|, and so on.
Further, each time we apply f , we can stretch the resulting repetition as far as possible to
the left and the right in x, to obtain a sequence of unstretchable repetitions w0, w1, w2, . . .
with periods |u|, |f(u)|, |f 2(u)|, . . . , respectively. Formally, the inner stretch sequence of
(w, q) is the sequence

(w0, q0), (w1, q1), (w2, q2), . . .

where qn = |fn(u)| for all n > 0, and wn is defined recursively by (w0, q0) = (w, q) and

wn = λnf(wn−1)ρn

for all n > 1, where λn (resp. ρn) is the left (resp. right) stretch of (f(wn−1), qn) in x.
Thus we have

w0 = w,

w1 = λ1f(w)ρ1,

w2 = λ2f(λ1f(w)ρ1)ρ2,

w3 = λ3f(λ2f(λ1f(w)ρ1)ρ2)ρ3,
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and so on. Since wn has period qn, we can write wn = vrnn , where vn is the prefix of wn of
length qn and

rn =
|wn|
qn

=
|fn(w)|+

∑n
k=1 |fn−k(λkρk)|
|fn(u)|

is an exponent of wn. We call r0, r1, r2, . . . the inner power sequence of (w, q).
Now suppose that u has an even number of 2’s. Then it is not hard to show that for

all n > 0, the word vn has an even number of 2’s. It follows that g(wn) has even period
|g(vn)| = |g(fn(u))| and in turn that τ(g(wn)) has period |τ(g(vn))| = |τ(g(fn(u)))|. For
all n > 0, define Qn = |τ(g(fn(u)))| and

Wn = λ∗nτ̃(g(wn))ρ∗n

where λ∗n (resp. ρ∗n) is the left (resp. right) stretch of (τ̃(g(wn)), Qn) in z. The sequence

(W0, Q0), (W1, Q1), (W2, Q2), . . .

is called the outer stretch sequence of (w, q). Since Wn has period Qn, we can write
Wn = V Rn

n , where Vn is the prefix of Wn of length Qn and

Rn =
|Wn|
Qn

=
|τ(g(fn(w)))|+

∑n
k=1 |τ(g(fn−k(λkρk)))|+ |λ∗nρ∗n|
|τ(g(fn(u)))|

is an exponent of Wn. We call R0, R1, R2, . . . the outer power sequence of (w, q).

Example 5.2. Consider the occurrence w = x2 = 0 in x. Note that (w, 1) is unstretch-
able, since x1, x3 6= 0. Let us find the first few terms of the inner stretch sequence of
(w, 1). By definition, we have w0 = w and q0 = 1. Next, we have q1 = |f(0)| = 2 and
f(w0) = x5x6 = 01. Since x4 = 2 and x7x8 = 02, we find λ1 = ε and ρ1 = x7 = 0, so that

w1 = λ1 · f(w0) · ρ1 = x5x6x7 = 010.

Continuing in this manner, we find q2 = |f 2(0)| = 5 and

w2 = λ2 · f(w1) · ρ2 = 2 · 0102201 · 02 = (20102)2,

and q3 = |f 3(0)| = 11 and

w3 = λ3 · f(w2) · ρ3 = ε · (02010220102)2 · 0 = (02010220102)23/11.

Thus, the inner stretch sequence of (w, 1) begins with

(w0, q0) = (0, 1),

(w1, q1) =
(
(01)3/2, 2

)
,

(w2, q2) =
(
(20102)2, 5

)
, and

(w3, q3) =
(
(02010220102)23/11, 11

)
,
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and the inner power sequence of (w, 1) begins with

1, 3
2
, 2, 23

11
.

Now let us find the initial term of the outer stretch sequence of (w, 1). We have Q0 =
|τ(g(0))| = 19 and

W0 = λ∗0 · τ(g(0)) · ρ∗0
= 02 · τ(20) · τ(2)0010

= (0200101101001011010)41/19.

Thus, the initial term in the outer stretch sequence of (w, 1) is

(W0, Q0) =
(
(0200101101001011010)41/19, 19

)
.

Continuing in this manner, one can show that the outer power sequence of (w, 1) begins
with

41
19
, 94
43
, 210

94
, 467
207
, . . .

In fact, we will see that this is the sequence that is responsible for the critical exponent
of z. Note that 467/207 ≈ 2.25604 is just barely larger than 9/4.

5.2 Repetitions of Exponent Greater than 9/4 in z

In this subsection, we show that every unstretchable repetition of exponent greater than
9/4 in z belongs to one of only a narrow family of outer stretch sequences. More precisely,
we prove the following proposition.

Proposition 5.3. Suppose thatW = UR = zk · · · z` ∈ Occ(z) is unstretchable with respect
to Q = |U |, where R > 9/4. Then (W,Q) is in the outer stretch sequence of (w, |w|) for
some occurrence w = xi · · ·xj ∈ Occ(x), where the word w belongs to the set

S = {0, 1, 22, 202, 1022, 0220, 2201, 10202, 02020, 20201}.

First, we show that unstretchable repetitions of exponent greater than 9/4 in z come
from unstretchable repetitions of exponent greater than 2 in y with periods of even length
by applying τ (or τ) and stretching to the left and right.

Lemma 5.4. Suppose that W = UR = zk · · · z` ∈ Occ(z) is unstretchable with respect to
Q = |U |, where R > 9/4. Then we have

W = λτ(w)ρ or W = λτ(w)ρ

for some words λ, ρ ∈ Occ(z) and a word w = yi · · · yj ∈ Occ(y) such that

• w = ur has period q = |u|, where u is a prefix of w satisfying |τ(u)| = |U |;

• (w, q) is unstretchable;
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• u has even length; and

• r > 2.

Proof. First of all, we check that z has no factor of the form UR where R > 9/4 and
|U | 6 136. So we may assume that |U | > 136. Then U contains both 1 and 2. By
Lemma 4.3, we may assume that 2 appears before 1 in U . Let λ00 be the longest prefix
of W that does not contain the letter 1, and let ρ be the longest suffix of W that does not
contain both 1 and 2. Notice that our assumptions imply that λ exists and ends with 2.
Then λ must be a suffix of τ(a) for some a ∈ {0, 1, 2}, and ρ must be a prefix of τ(b)00
(or its sister) for some b ∈ {0, 1, 2}, and we can write

W = λτ(w)ρ

for some word w = yi · · · yj ∈ Occ(y). Since W = UR where R > 9/4 and |U | > 136, we
have

|W | > 9
4
|U | = 2|U |+ 1

4
|U | > 2|U |+ 34.

Further, since W = λτ(w)ρ and |λ| 6 16 and |ρ| 6 18, we have

|τ(w)| = |W | − |λ| − |ρ| > 2|U |.

Write τ(w) = U ′V ′, where U ′ is the prefix of τ(w) of length |U |. Since |τ(w)| > 2|U |,
we have |V ′| > |U ′|. Since W has period |U | and λ ends in 2, we see that U ′ ends in
2. Similarly, since U ′ starts in 001, we see that V ′ starts in 001. It follows that we can
write U ′ = τ(u) and V ′ = τ(v) for some words u, v ∈ Fact(y). Since τ is injective, we
must have w = uv, and we see that w has period q = |u|. Since |V ′| > |U ′|, we must have
|v| > |u|, which means that w = ur for some rational number r > 2. Since U ′ = τ(u)
starts in 001 and ends in 2, we see that u must have even length.

It remains to show that (w, q) is unstretchable. Suppose that (w, q) is left-stretchable.
(The proof is similar if (w, q) is right-stretchable.) Then yi−1 · · · yj has period q, and
it follows that 1τ(yi−1 · · · yj)ρ has period Q and properly contains W = zk · · · z`, which
contradicts the assumption that (W,Q) is unstretchable.

Next, we show that unstretchable repetitions in y with exponent greater than 2 and
period of even length come from unstretchable repetitions in x with exponent at least 2
with an even number of 2’s in the repeated prefix.

Lemma 5.5. Suppose that W = UR = yk · · · y` ∈ Occ(y) is unstretchable with respect to
Q = |U |, where R > 2 and U has even length. Then we have

W = g(w)2

where w = xi · · ·xj ∈ Occ(x) satisfies the following:

• w = ur has period q = |u|, where u is a prefix of w satisfying |g(u)| = |U |;

• (w, q) is unstretchable;
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• u has an even number of 2’s; and

• r > 2.

Proof. First note that since (W,Q) is unstretchable, it must begin and end in 2. For if
yk ∈ {0, 1}, then yk = yk+Q, and since every occurrence of 0 or 1 in y is preceded by
2, we have yk−1 = yk+Q−1, which contradicts the assumption that W is unstretchable.
Similarly y` = 2. Since R > 2, we may write W = UV 2, where V is a nonempty prefix of
W satisfying |V | > |U |. Since W begins in 2, we see that V begins in 2. So we can write
U = g(u) and V = g(v) for some words u, v ∈ Occ(x). Since U has even length, we see that
u must have an even number of 2’s. Let w = uv, so that W = UV 2 = g(u)g(v)2 = g(w)2.
Now since g(v)2 is a prefix of g(w), we see that v is a prefix of w. Further, since |V | > |U |,
we must have |v| > |u|. Thus, we have w = ur for some rational number r > 2.

It remains to show that (w, q) is unstretchable, where q = |u|. Write w = xi · · ·xj,
and suppose towards a contradiction that (w, q) is left-stretchable. (The proof is sim-
ilar if (w, q) is right-stretchable.) Then xi−1 · · ·xj has period q, and it follows that
g(xi−1 · · ·xj)2 = g(xi−1)W has period Q, which contradicts the assumption that (W,Q)
is unstretchable.

In order to prove Proposition 5.3, it remains to show that every unstretchable repeti-
tion in x with exponent at least 2 and an even number of 2’s in the repeated prefix belongs
to the inner stretch sequence of (w, |w|) for some word w ∈ S. We start by showing that
every sufficiently long unstretchable repetition in x comes from a shorter unstretchable
repetition in x.

Lemma 5.6. Suppose that W = xk · · ·x` ∈ Occ(x) has period Q and that (W,Q) is
unstretchable. Write W = UV , where |U | = Q, and suppose that |U | > 3 and |V | > 3.
Then W = λf(w)ρ for some words λ,w, ρ ∈ Occ(x) such that

• λ ∈ {ε, 2} and ρ ∈ {0, 02};

• w = xi · · ·xj has period q = |u|, where u is a prefix of w satisfying |f(u)| = |U |; and

• (w, q) is unstretchable.

Proof. We begin by proving a simple claim.

Claim 5.7. W has prefix 0 or 201 and suffix 0 or 102.

Proof. We prove only that W has prefix 0 or 201. The proof that W has suffix 0 or 102
uses symmetric arguments.

We begin by showing that 1 is not a prefix of W . Suppose towards a contradiction
that W has prefix 1. Then both U and V begin in 1. But the unique left extension of 1
in Fact(x) is 01, which means that xk−1 = xk+q−1 = 0. This contradicts the assumption
that W is unstretchable. So W has prefix 0 or 2.

If W has prefix 0, then we are done, so suppose that W has prefix 2. Then W has
prefix 201, 202, or 220, and V has the same prefix of length 3 as W , since |V | > 3.
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The unique left extension of 202 in Fact(x) is 0202, and the unique left extension of
220 in Fact(x) is 0220. So if W has prefix 202 or 220, then xk−1 = xk+q−1 = 0, which
contradicts the assumption that W is unstretchable. Thus, we conclude that W must
have prefix 201. �

We now consider two cases, based on the prefix of W .
Case 1: Suppose that W has prefix 0. Then both U and V have prefix 0. Further, since
W has suffix 0 or 102, we can write V = V ′ρ where ρ ∈ {0, 02}. Let w = xi · · · xj be
the unique preimage of UV ′ in x. Write w = uv, where f(u) = U and f(v) = V ′. Let
λ = ε, so that W = λf(w)ρ. Since f(w)ρ = f(u)f(v)ρ has period |U | = |f(u)|, we see
that w = uv must have period |u| = q.

It remains to show that (w, q) is unstretchable. Suppose first that (w, q) is right stretch-
able. But then xi · · ·xj+1 has period q, and it follows that f(xi · · ·xj+1)0 = xk · · ·x`′ has
period Q and contains the occurrence W = xk · · ·x` as a proper prefix. But this contra-
dicts the assumption that (W,Q) is unstretchable. Suppose now that w is left stretchable,
i.e., that xi−1 · · ·xj has period q. But then f(xi−1 · · ·xj)ρ = f(xi−1)W = xk′ · · · x` has pe-
riod Q, and contains the occurrence W = xk · · ·x` as a proper suffix. But this contradicts
the assumption that (W,Q) is unstretchable.
Case 2: Suppose that W has prefix 201. Then both U and V have prefix 201, and since
W has suffix 0 or 102, we can write U = 2U ′ and V = 2V ′ρ, where ρ ∈ {0, 02}. So
W = 2U ′2V ′ρ, and both U ′ and V ′ have prefix 01. Let w = xi · · ·xj be the preimage of
U ′2V ′ in f . Write w = uv, where f(u) = U ′2 and f(v) = V ′. Let λ = 2 so that we have
W = λf(w)ρ. Since f(w)ρ = f(u)f(v)ρ has period |U | = |U ′2| = |f(u)|, we see that
w = uv must have period |u| = q.

It remains to show that (w, q) is unstretchable. Suppose first that (w, q) is right
stretchable, i.e., that xi · · ·xj+1 has period q. Then 2f(xi · · ·xj+1)0 = xk · · ·x`′ has period
Q and contains the occurrence W = xk · · ·x` as a proper prefix. But this contradicts the
assumption that (W,Q) is unstretchable. Suppose now that w is left stretchable, i.e., that
xi−1 · · ·xj has period q. Then f(xi−1 · · ·xj)ρ = xk′ · · ·x` has period Q and contains the
occurrence W = xk · · ·x` as a proper suffix. But this contradicts the assumption that
(W,Q) is unstretchable.

The next lemma describes the left and right stretch of an occurrence w = xi · · ·xj ∈
Occ(x) based on the context in which it appears, i.e., based on xi−1 · · · xj+1.

Lemma 5.8. Suppose that w = xi · · ·xj ∈ Occ(x) has period q and that (w, q) is un-
stretchable, where i > 1. Let Q = |f(xi · · ·xi+q−1)| be the corresponding period of
f(w) = xk · · ·x`, and let λ (resp. ρ) be the left (resp. right) stretch of (f(w), Q). Then

λ =

{
2, if xi−1, xi+q−1 ∈ {1, 2};
ε, otherwise;

and

ρ =

{
02, if xj+1, xj−q+1 ∈ {1, 2};
0, otherwise.
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xi−1 w xj+1

xi−1 xi · · · xi+q−1 · · · xj−q+1 · · · xj xj+1

length q length q

Figure 8: An occurrence w = xi · · ·xj such that (w, q) is unstretchable. (We have illus-
trated the case that |w| > 2q.)

Proof. First note that since (w, q) is unstretchable, we must have xi−1 6= xi+q−1 and
xj+1 6= xj−q+1 (see Figure 8). If xi−1, xi+q−1 ∈ {1, 2}, then {xi−1, xi+q−1} = {1, 2}, and it
follows that λ is the longest common suffix of f(1) and f(2), which is 2. Otherwise, we
have xi−1 = 0 (and xi+q−1 ∈ {1, 2}) or xi+q−1 = 0 (and xi−1 ∈ {1, 2}). In either case, the
longest common suffix of f(xi−1) and f(xi+q−1) is ε, hence λ = ε.

The argument for ρ is similar. If xj+1, xj−q+1 ∈ {1, 2}, then {xj+1, xj−q+1} = {1, 2},
and it follows that ρ = 02. Otherwise, we have xj+1 = 0 (and xj−q+1 6= 0) or xj−q+1 = 0

(and xj+1 6= 0), and it follows that ρ = 0.

We are finally ready to prove that every unstretchable repetition in x with exponent
at least 2 and an even number of 2’s in the repeated prefix belongs to the inner stretch
sequence of (w, |w|) for some word w ∈ S.

Lemma 5.9. Suppose that W = UR = xk · · ·x` ∈ Occ(x) is unstretchable with respect
to Q = |U |, where R > 2 and U contains an even number of 2’s. Then (W,Q) is in the
inner stretch sequence of (w, |w|) for some word w = xi · · ·xj ∈ Occ(x), where w belongs
to the set

S = {0, 1, 22, 202, 1022, 0220, 2201, 10202, 02020, 20201}.

Proof. Let w = ur = uv = xi · · ·xj ∈ Occ(x) be a shortest word such that w is un-
stretchable with respect to q = |u| and (W,Q) is in the inner stretch sequence of (w, q).
Note that (W,Q) is in the inner stretch sequence of itself, so there is such a pair (w, q).
We claim that |u| < 3 or |v| < 3. Suppose otherwise that |u| > 3 and |v| > 3. Then
by Lemma 5.6, we can write w = λf(w′)ρ for some words λ,w′, ρ ∈ Occ(x) such that
λ ∈ {ε, 2}, ρ ∈ {0, 02}, w′ = (u′)r

′ where u′ is the prefix of w′ satisfying |f(u′)| = |u|
and w′ is unstretchable with respect to q′ = |u′|. But as w = λf(w′)ρ has period q, we
see that λ is the left stretch of (f(w′), q), and ρ is the right stretch of (f(w′), q), so that
(w, q), and (W,Q) in turn, are in the inner stretch sequence of (w′, q′). Since |w′| < |w|,
this contradicts the minimality of w.

So we have |u| < 3 or |v| < 3. We now claim that |u| 6 5. Suppose otherwise that
|u| > 5, whence |v| 6 2. Then the nth term of the inner power sequence of (w, q) is given
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by

rn =
|fn(w)|+

∑n
k=1 |fn−k(λkρk)|
|fn(u)|

=
|fn(u)|+ |fn(v)|+

∑n
k=1 |fn−k(λkρk)|

|fn(u)|

= 1 +
|fn(v)|
|fn(u)|

+

∑n
k=1 |fn−k(λkρk)|
|fn(u)|

(2)

Since |v| 6 2 and 11 6∈ Fact(x), it follows from Lemma 3.9 that

|fn(v)| 6 |fn(01)|. (3)

By inspecting all factors of x of length 6 and using Lemma 3.9, we find that

|fn(u)| > 2|fn(01)|. (4)

Since λk ∈ {ε, 2} and ρk ∈ {0, 02}, we have

|fn−k(λkρk)| 6 |fn−k(202)| = |fn−k+1(1)|

for all k ∈ {1, 2, . . . n}. Hence we have

n∑
k=1

|fn−k(λkρk)| 6
n∑
k=1

|fn−k+1(1)| =
n∑
`=1

|f `(1)| < |fn(01)|, (5)

where the last inequality can be proven by a straightforward induction. Substituting
inequalities (3), (4), and (5) into (2), we find

rn < 1 +
|fn(01)|
2|fn(01)|

+
|fn(01)|
2|fn(01)|

= 2.

But W = UR is in the inner stretch sequence of (w, q), and we assumed that R > 2, so
this is a contradiction.

Therefore, we have |u| 6 5, which means that there are only finitely many possibilities
for u. Since U has an even number of 2’s and U is a conjugate of fn(u) for some n > 0, we
see that u must also have an even number of 2’s. For each factor u of x of length at most
5 with an even number of 2’s, we find the longest possible periodic extension w = λuρ of
u in Fact(x), so that λ is the left stretch of (u, |u|) and ρ is the right stretch of (u, |u|) for
some particular occurrence of u in x, and (w, q) is unstretchable. By inspection, the only
such pairs (w, q) that are not contained in the inner stretch sequence of (w′, q′) for some
word w′ with |w′| < |w| belong to S and satisfy w = u (i.e., v = ε).

Proposition 5.3 now follows easily from Lemma 5.4, Lemma 5.5, and Lemma 5.9.
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5.3 The Critical Exponent

In this subsection, we complete the proof of Theorem 5.1. Essentially all that remains is
to analyze the narrow family of outer power sequences described in Proposition 5.3.

For w ∈ S, we let R0(w), R1(w), R2(w), . . . be the outer power sequence of (w, |w|) for
some occurrence w = xi · · ·xj with i > 1. We will see shortly that Rn(w) is independent
of i. Note that we ignore the case i = 0, where all of the left stretches involved in the
stretch sequence of w will be empty, but taking i > 1 gives us “enough space” to stretch as
far as we need to on the left. Since x is recurrent, we see that each term in the outer power
sequence of an occurrence of w starting at i = 0 will be no greater than the corresponding
term in the outer power sequence of some later occurrence of w. Thus, since we are
interested only in the largest exponents in z, it is safe to ignore the case i = 0.

In the next lemma, we derive an expression for Rn(w) in terms of the lengths of
the words τ(g(fn(w))) and τ(g(fk(0))) for k 6 n. An important consequence is that
Rn(w) 6 Rn(0) for all w ∈ S and n > 0, which means that the sequence (Rn(0))n is
responsible for the critical exponent of z.

Lemma 5.10. For all w ∈ S and n > 0, we have

R2n(w) = 1 +

∑n
k=0 |τ(g(f 2k(0)))|+ 3

|τ(g(f 2n(w)))|
(6)

and

R2n+1(w) = 1 +

∑n
k=0 |τ(g(f 2k+1(0)))|+ 10

|τ(g(f 2n+1(w)))|
. (7)

It follows that Rn(w) 6 Rn(0) for all w ∈ S and n > 0.

Proof. Let w = xi · · ·xj be an occurrence of w in x with i > 1. Throughout this proof,
we use the notation of Section 5.1 to describe the inner and outer stretch sequences of
(w, |w|). In particular, we let (w0, q0), (w1, q1), . . . and (W0, Q0), (W1, Q1), . . . denote the
inner and outer stretch sequences of (w, |w|), and we let λk, λ∗k, ρk, and ρ∗k denote the left
and right stretches applied along the way. For all k > 0, we write

wk = xik · · ·xjk .

We start by proving the following claim.

Claim 5.11. (a) For all k > 1, we have λk =

{
ε, if k is odd;
2, if k is even.

(b) For all k > 1, we have ρk =

{
0, if k is odd;
02, if k is even.

(c) For all k > 0, we have |λ∗kρ∗k| =

{
34, if k is odd;
22, if k is even.
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Proof. For parts (a) and (b), we proceed by induction on k. For the base case, we inspect
each word w in S individually and examine all possible contexts xi−1 · · ·xj+1 in which the
occurrence w = xi · · · xj might appear. In every case, we see by Lemma 5.8 that λ1 = ε
and ρ1 = 0.

Now suppose that (a) and (b) hold for some integer k > 1. If k is odd, then we have
λk = ε and ρk = 0. Thus we can write

wk = xik · · · xjk = f(wk−1)0,

So we see that xik = xik+qk = 0. Since 00 6∈ Fact(x) and (wk, qk) is unstretchable, we must
have {xik−1, xik+qk−1} = {1, 2}. Therefore, by Lemma 5.8, we have λk+1 = 2. Similarly,
we have xjk = xjk−qk = 0, hence {xjk+1, xjk−qk+1} = {1, 2} and ρk+1 = 02. On the other
hand, if k is even, then we have λk = 2 and ρk = 02. Thus we can write

wk = xik · · ·xjk = 2f(wk−1)02.

So we see that xik = xik+qk = 2. Since 12 6∈ Fact(x) and (wk, qk) is unstretchable, we must
have {xik−1, xik+qk−1} = {0, 2}. Therefore, by Lemma 5.8, we have λk+1 = ε. Similarly,
we have xjk = xjk−qk = 2, hence {xjk+1, xjk−qk+1} = {0, 2} and ρk+1 = 0.

Finally, we prove (c). First suppose that k is odd. Using (a) and (b), we see, as in
the second paragraph of the proof, that xik = xik+qk = 0 and {xik−1, xik+qk−1} = {1, 2}.
Since w ∈ S, we see that |g(wk)| is even. Therefore λ∗k is the longest common suffix of
τ(g(1)) and τ(g(2)) or their sisters (observe that |g(1)| is even and |g(2)| is odd). This
suffix is 00202202 or its sister, i.e., |λ∗k| = 8. Similarly, from (a) and (b), we see that
xjk = xjk−qk = 0, so that {xjk+1, xjk−qk+1} = {1, 2}, and it follows that ρ∗k is the longest
common prefix of τ(g(1)2) and τ(g(2)2) (or their sisters), which has length 26. So we
conclude that |λ∗kρ∗k| = 8 + 26 = 34.

Now suppose that k is even. First suppose that k > 2. From (a) and (b), we see that
xik = xik+qk = 2 and xjk = xjk−qk = 2. So {xik−1, xik+qk−1} = {0, 2}, and we see that λ∗k
is the longest common suffix of τ(g(0)) and τ(g(2)) (or their sisters), which has length 2.
Similarly, we have {xjk+1, xjk−qk+1} = {0, 2}, and it follows that ρ∗k is the longest common
prefix of τ(g(0)2) and τ(g(2)2) (or their sisters), which has length 20. Finally, in the
case that k = 0, we examine the context xi−1 · · · xj+1 in which w appears, and confirm by
inspection that λ∗0 and ρ∗0 are the same as λ∗k and ρ∗k for k > 2. Thus, we conclude that
|λ∗kρ∗k| = 2 + 20 = 22. �

We now proceed with the proof of (6). Let n > 0. By definition, we have

R2n(w) =
|τ(g(f 2n(w)))|+

∑2n
k=1 |τ(g(f 2n−k(λkρk)))|+ |λ∗2nρ∗2n|
|τ(g(f 2n(w)))|

(8)

We first show that
2n∑
k=1

|τ(g(f 2n−k(λkρk)))| =
n∑
k=1

|τ(g(f 2k(0)))|. (9)
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Starting from the left side, we group the terms in pairs, and then use Claim 5.11(a) and
(b), and the facts that f(0) = 01 and f(1) = 022, as follows.

2n∑
k=1

|τ(g(f 2n−k(λkρk)))| =
n∑
`=1

(
|τ(g(f 2n−2`(λ2`ρ2`)))|+ |τ(g(f 2n−2`+1(λ2`−1ρ2`−1)))|

)
=

n∑
`=1

(
|τ(g(f 2n−2`(202)))|+ |τ(g(f 2n−2`+1(0)))|

)
=

n∑
`=1

(
|τ(g(f 2n−2`+1(1)))|+ |τ(g(f 2n−2`+1(0)))|

)
=

n∑
`=1

|τ(g(f 2n−2`+2(0)))|

=
n∑
k=1

|τ(g(f 2k(0)))|

Substituting (9) into (8) and using Claim 5.11(c) and the fact that |τ(g(0))| = 19, we
obtain

R2n(w) = 1 +

∑n
k=1 |τ(g(f 2k(0)))|+ 22

|τ(g(f 2n(w)))|
= 1 +

∑n
k=0 |τ(g(f 2k(0)))|+ 3

|τ(g(f 2n(w)))|
.

The analogous expression (7) for R2n+1 can be established in a similar manner; we omit
the details.

Finally, by Lemma 3.9, we have |τ(g(fn(w)))| > |τ(g(fn(0)))| for all w ∈ S. Thus we
see that R2n(w) 6 R2n(0) for all n > 0.

With Lemma 5.10 in hand, we now wish to find a simple expression for |τ(g(fn(0)))|.
We do so by finding a linear recurrence for |τ(g(fn(0)))|.

Lemma 5.12. Write an = |τ(g(fn(0)))| for n > 0. The sequence (an) satisfies the
recurrence

an = 2an−1 + an−3 (10)

with initial values 19, 43, 94.

Proof. Recall that the Parikh vector P (w) of a ternary word w ∈ {0, 1, 2}∗ is the vector
(|w|0, |w|1, |w|2)T . Let

Mf =

1 1 1
1 0 0
0 2 1

 and Mg =

1 0 0
0 1 0
1 1 1


be the incidence matrices of the morphisms f and g, so that P (f(w)) = MfP (w) and
P (g(w)) = MgP (w) for all w ∈ {0, 1, 2}∗. From the form of the transducer τ , it is
straightforward to see that an = (3, 8, 16)P (g(fn(0))) = (3, 8, 16)MgM

n
f (1, 0, 0)T .
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The characteristic polynomial of the matrix Mf equals x3− 2x− 1 so, by the Cayley-
Hamilton Theorem, we have M3

f − 2M2
f − I = 0. Thus 0 = (3, 8, 16)Mg(M

3
f − 2M2

f −
I)Mn

f (1, 0, 0)T = an+3 − 2an+2 − an for all n > 0. This proves the claim (after checking
that the initial values are 19, 43, 94).

Lemma 5.12 gives us a linear recurrence for an = |τ(g(fn(0)))|. Using a computer
algebra system to solve the recurrence, we obtain the following.

Corollary 5.13. For all n > 0, we have

|τ(g(fn(0)))| = κ1µ
n
1 + κ2µ

n
2 + κ3µ

n
3 = κ1µ

n
1 + 2Re (κ2µ

n
2 ) ,

where

µ1 ≈ 2.20557,

µ2 ≈ −0.10278 + 0.66546i, and
µ3 = µ2

are the roots of the polynomial x3 − 2x2 − 1, and

κ1 ≈ 19.31167,

κ2 ≈ −0.15583− 0.28157i, and
κ3 = κ2.

We are now ready to prove that ce(z) = 1 + 1/(3− µ1).

Proof of Theorem 5.1. The critical exponent of z is the supremum of the exponents of all
unstretchable repetitions in z. We have already seen in Example 5.2 that z has factors
of exponent greater than 9

4
, and by Proposition 5.3, every unstretchable repetition with

exponent greater than 9
4
in z belongs to the outer stretch sequence of (w, |w|) for some

w = xi · · ·xj ∈ Occ(x) with w ∈ S. It follows that

ce(z) = sup{Rn(w) : w ∈ S, n > 0}.

By Lemma 5.10, we have Rn(w) 6 Rn(0) for all w ∈ S and n > 0, hence

ce(z) = sup{Rn(0) : n > 0}.

So we need to show that sup{Rn(0) : n > 0} = 1 + 1/(3− µ1). It suffices to show that

lim
n→∞

R2n = 1 +
1

3− µ1

(11)

and that

Rn 6 1 +
1

3− µ1

for all n > 0. (12)
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We first establish (11). By Lemma 5.10, we have

R2n = 1 +

∑n
k=0 |τ(g(f 2k(0)))|+ 3

|τ(g(f 2n(0)))|
.

Evidently, we have
lim
n→∞

R2n = 1 + lim
n→∞

S2n,

where

S2n =

∑n
k=0 |τ(g(f 2k(0)))|
|τ(g(f 2n(0)))|

,

as long as lim
n→∞

S2n exists. By Corollary 5.13, we have

lim
n→∞

S2n = lim
n→∞

∑n
k=0(κ1µ

2k
1 + κ2µ

2k
2 + κ3µ

2k
3 )

κ1µ2n
1 + κ2µ2n

2 + κ3µ2n
3

Breaking the sum in the numerator into three geometric sums, we obtain

lim
n→∞

S2n = lim
n→∞

κ1 · µ
2n+2
1 −1
µ21−1

+ κ2 · µ
2n+2
2 −1
µ22−1

+ κ3 · µ
2n+2
3 −1
µ23−1

κ1µ2n
1 + κ2µ2n

2 + κ3µ2n
3

Finally, dividing through by κ1µ2n
1 in the numerator and denominator, and using the fact

that |µ1| > 1 and |µ2|, |µ3| < 1, we find

lim
n→∞

S2n = lim
n→∞

1
µ21−1

· µ
2n+2
1 −1
µ2n1

+ κ2
κ1
· 1
µ22−1

· µ
2n+2
2 −1
µ2n1

+ κ3
κ1
· 1
µ23−1

· µ
2n+2
3 −1
µ2n1

1 + κ2
κ1
· µ

2n
2

µ2n1
+ κ3

κ1
· µ

2n
3

µ2n1

=
µ2
1

µ2
1 − 1

=
1

3− µ1

.

Now we establish (12). Let n > 0. We show only that

R2n 6 1 +
µ2
1

µ2
1 − 1

. (13)

The proof for R2n+1 is similar. By Lemma 5.10, we see that (13) is equivalent to

3 +
∑n

k=0 |τ(g(f 2k(0)))|
|τ(g(f 2n(0)))|

6
µ2
1

µ2
1 − 1

, (14)

and by Corollary 5.13, this is equivalent to

3 + κ1
∑n

k=0 µ
2k
1 + 2Re

(
κ2
∑n

k=0 µ
2k
2

)
κ1µ2n

1 + 2Re (κ2µ2n
2 )

6
µ2
1

µ2
1 − 1

. (15)
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By evaluating the geometric sums and doing some basic algebra, we find that (15) is
equivalent to

3 + 2Re
(
κ2 ·

µ2n+2
2 − 1

µ2
2 − 1

)
6

1

µ2
1 − 1

(
κ1 + 2µ2

1 Re
(
κ2µ

2n
2

))
. (16)

So it suffices to prove (16). Starting from the left side and using the fact that |µ2| < 1
and n > 0, we have

3 + 2Re
(
κ2 ·

µ2n+2
2 − 1

µ2
2 − 1

)
6 3 + 2 · |κ2| ·

|µ2|2n+2 + 1

|µ2
2 − 1|

6 3 + 2 · |κ2| ·
|µ2|2 + 1

|µ2
2 − 1|

.

Starting from the right side, we have

1

µ2
1 − 1

(
κ1 + 2µ2

1 Re
(
κ2µ

2n
2

))
>

1

|µ2
1 − 1|

(
|κ1| − 2 · |µ1|2 · |κ2| · |µ2|2n

)
>

1

|µ2
1 − 1|

(
|κ1| − 2 · |µ1|2 · |κ2|

)
.

Finally, we use the values of κ1, κ2, µ1, and µ2 obtained in proving Corollary 5.13 to verify
computationally that

3 + 2 · |κ2| ·
|µ2|2 + 1

|µ2
2 − 1|

6
1

|µ2
1 − 1|

(
|κ1| − 2 · |µ1|2 · |κ2|

)
.

So we conclude that (16) holds, as desired.

6 Alphabets of Size 4 and More

In this section, we briefly discuss the repetition threshold for rich words over alphabets of
size 4 and more. By [16, Thm. 2] and Theorem 5.1, we have RT(R2) = 2+

√
2/2 ≈ 2.7071

and RT(R3) = 1 + 1/(3 − µ1) ≈ 2.2588. Moreover, RT∗(Rk) = 2 for all k > 2 [24]. It is
natural to ask the following question.

Question 6.1. What is the number RT(R4)?

By performing an exhaustive computational search, we have shown that RT(R4) >
2.117 (a longest 2.117-power-free rich word over 4 letters has length 46628). Since we
have found a 2.12-power-free rich word of length one million over 4 letters, we believe this
to be close to the true value of RT(R4), but we have not attempted to work on this.3

Based on the known results and the computational evidence we have gathered, we
propose the following conjecture.

Conjecture 6.2. lim
k→∞

RT(Rk) = 2.
3The code used to verify these claims, and a text file containing a 2.12-power-free rich word of length one
million over 4 letters, can be found at https://github.com/japeltom/rich-repetition-threshold.
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