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Abstract

The covering number of a non-linear character χ of a finite group G is the least
positive integer k such that every irreducible character of G occurs in χk. We
determine the covering numbers of irreducible characters of the symmetric group
Sn indexed by certain two-row partitions (and their conjugates), namely (n− 2, 2),
and ((n+ 1)/2, (n− 1)/2) when n is odd. We also determine the covering numbers
of irreducible characters indexed by certain hook-partitions (and their conjugates),
namely (n−2, 12), the almost self-conjugate hooks (n/2+1, 1n/2−1) when n is even,
and the self-conjugate hooks ((n+ 1)/2, 1(n−1)/2) when n is odd.

Mathematics Subject Classifications: 20B30, 20D06, 20C30, 05E05

1 Introduction

Arad, Chillag, and Herzog (see [1]) introduced the notion of a covering number of a
character of a finite group analogous to the notion of a covering number of a conjugacy
class of a group (see [2]). Let G be a finite group, and Irr(G) denote the set of all
irreducible characters of G. Let Irr(G)+ := {χ ∈ Irr(G) | χ(1) > 1}. For characters
χ and ρ of G, recall that the product χρ is the character of G for the internal tensor
product of the respective representations of G that χ and ρ afford. Let c(χ) denote the
set of all the irreducible constituents of a character χ of G. The covering number of χ,
denoted by ccn(χ;G), is the least positive integer k (if it exists) such that c(χk) = Irr(G).
Suppose that ccn(χ;G) exists for all χ ∈ Irr(G)+. Then, the character-covering-number
of G, denoted by ccn(G), is the least positive integer m such that c(χm) = Irr(G) for all
χ ∈ Irr(G)+. In other words, ccn(G) := max{ccn(χ;G) | χ ∈ Irr(G)+}.

In [1, Theorem 1], it was proved that if G is a finite non-abelian simple group, then
ccn(χ;G) exists for all χ ∈ Irr(G)+. Consequently, this implies that ccn(G) also exists.
Among various results, the authors provided bounds for ccn(G) in terms of the number of
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conjugacy classes of G, assuming again that G is a finite non-abelian simple group. Zisser
(see [35]) proved that ccn(A5) = 3 and ccn(An) = n− d

√
n e when n > 6. Very recently,

Miller (see [20]) has shown that ccn(Sn) exists when n > 5 and that ccn(Sn) = n−1. The
irreducible characters of Sn are parameterized by partitions of n. For a partition λ ` n,
let χλ denote the irreducible character of Sn indexed by λ. It is not difficult to see that
ccn(χ(n−1,1);Sn) = ccn(χ(2,1n−2);Sn) = n− 1. It is natural to ask whether there are other
irreducible characters of Sn whose covering number is n−1. The first result of this article
shows that this is not possible.

Theorem 1. Let n > 5 and λ be a partition of n. Assume that λ /∈ {(n), (1n), (n −
1, 1), (2, 1n−2)}. Then ccn(χλ;Sn) 6

⌈
2(n−1)

3

⌉
. Moreover,

ccn(χ(n−2,2);Sn) = ccn(χ(22,1n−4);Sn) =

⌈
2(n− 1)

3

⌉
.

We determine the covering number of some other irreducible characters of Sn. We
have the following two theorems:

Theorem 2. Let n > 5 be odd and k = n+1
2

. Then ccn(χ(k,k−1);Sn) = ccn(χ(2k−1,1);Sn) =
dlog2 ne.

Theorem 3. Let n > 5.

1. ccn(χ(n−2,12);Sn) = ccn(χ(3,1n−3);Sn) = bn
2
c.

2. Assume n > 7 and n 6= 8. Let λ = (n+1
2
, 1

n−1
2 ) when n is odd and λ = (n

2
+

1, 1
n
2
−1) or (n

2
, 1

n
2 ) when n is even. Then ccn(χλ;Sn) = dlog2b

√
nce+ 1. Moreover,

ccn(χ(5,13);S8) = ccn(χ(4,14);S8) = 3.

The above theorem yields the covering numbers of the irreducible constituents of ResSnAnχλ

when λ = (n+1
2
, 1

n−1
2 ) is the self-conjugate hook.

Theorem 4. Assume n > 5. Let λ = (n+1
2
, 1

n−1
2 ) when n is odd and λ = (n

2
+ 1, 1

n
2
−1)

when n is even. Let χ be ResSnAnχλ when n is even and one of χ+
λ or χ−λ (where ResSnAnχλ =

χ+
λ +χ−λ ) when n is odd. Then, ccn(χ;An) = dlog2b

√
nce+ 1 when n > 9, ccn(χ;An) = 3

when n = 5, 7, and ccn(χ;An) = 2 when n = 6, 8.

Surprisingly, from the last two theorems, we get an irreducible character of Sn whose
covering number coincides with that of its restriction to An. As far as we know, this is
the first instance of such a property. Based on Theorem 1, Theorem 2, and observations
made using SageMath ([33]), we make a conjecture on the covering number of χλ when λ
is a two-row partition, i.e., λ = (n− k, k), where 1 6 k 6 bn

2
c (see Conjecture 36).

It is natural to seek irreducible characters of finite groups with small covering numbers.
In this direction, a well-known conjecture of Jan Saxl states that if λ ` n is the staircase
partition, that is, λ = (m,m − 1, . . . , 1) (thus n = m(m+1)

2
) where m > 3, then every
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irreducible character appears as a constituent of χ2
λ. In other words, the Saxl conjecture

states that ccn(χλ;Sn) = 2, when λ is the staircase partition. There have been some
interesting advances in this direction (see, for example, [15, 18, 25] and references therein),
and recently it has been proved by N. Harman and C. Ryba that c(χ3

λ) = Irr(Sn) (i.e.,
ccn(χλ;Sn) 6 3) (see [13]). It is also worthwhile to mention that if G is a finite simple
group of Lie type and St denotes the Steinberg character of G, then every irreducible
character of G appears as a constituent of St2, unless G = PSUn(q) and n > 3 is co-prime
to 2(q + 1) (see [14]). The character covering number of PSL2(q) has been determined in
[3] recently.

The article is organized as follows: In Sect. 2, to make the article self-contained,
we discuss some basic results in the ordinary representation theory of Sn. In Sect. 3,
we discuss some basic properties related to powers of characters of finite groups and the
Kronecker product problem, which naturally appears in this scenario. In Sect. 4, we
prove Theorem 1 and Theorem 2. Theorem 35 of this section is an interesting result as
well. In Sect. 5 and Sect. 6, we prove Theorem 3 and Theorem 4, respectively.

2 Basic results on ordinary representations of Sn

In this section, we briefly discuss some basic results in the ordinary representation the-
ory of symmetric groups. We begin with some definitions and notations. Let λ =
(λ1, λ2, . . . , λl), where λ1 > · · · > λl and λi ∈ N. We say λ is a partition of |λ| = n
(written λ ` |λ| = n), where |λ| =

∑
i λi = n is the sum of its parts. The num-

ber of parts of λ is denoted by l(λ). Alternatively, for a partition λ of n, we write
λ = 〈1m1 , · · · , imi , · · · 〉, where mi is the number of times i occurs as a part in λ. The
conjugacy classes of Sn are parameterized by partitions of n in the following sense: for
π ∈ Sn, let m(π) = 〈1m1 , 2m2 , · · · 〉 denote the cycle-type of π. Here, mi denotes the num-
ber of i-cycles in the disjoint cycle decomposition of π, whence we have

∑
i imi = n. Thus,

m(π) yields a partition of n. Suppose σ, τ ∈ Sn. Then σ and τ are conjugate in Sn if and
only if m(σ) = m(τ). This yields the desired parametrization. For µ = (µ1, . . . , µt) ` n,
let wµ := (1, 2, . . . , µ1)(µ1 +1, . . . , µ1 +µ2) · · · (µ1 + · · ·+µt−1 +1, . . . , µ1 + · · ·+µt) denote
the standard representative of the conjugacy class of Sn parameterized by µ.

For λ ` n, let Sλ = Sλ1 × Sλ2 × · · · × Sλl be a Young subgroup of Sn. We write 1G

for the trivial character of a finite group G (or just 1 when the group G is clear from the
context). Let σλ be the character of the partition representation of Sn indexed by λ (see
[26, Section 2.3]). In other words, σλ = IndSnSλ1. Let χλ denote the irreducible character
of Sn indexed by λ. It is well known that χλ′ = ε ⊗ χλ, where ε (= χ(1n)) is the sign
character of Sn and λ′ is the conjugate partition of λ. Let Tλ denote the Young diagram
of λ. Let (i, j) denote the box of Tλ that lies in its i-th row and j-th column. Given
partitions λ, µ ` n, a semi-standard Young tableaux (abbrv. SSYT) of shape λ and type
µ is a positive integer filling of the Young diagram Tλ such that (a) i occurs µi times, (b)
the entries increase weakly (from left to right) along each row, and (c) the entries increase
strictly down each column. The following is an example of a SSYT of shape (4, 3, 2, 2)
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and type (3, 3, 3, 1, 1).

1 1 1 3
2 2 2
3 3
4 5

Figure 1: A SSYT of shape (4, 3, 2, 2) and type (3, 3, 3, 1, 1).

The number of SSYT of shape λ and type µ is denoted by Kλµ, and these are called
Kostka numbers. For our example above, Kλµ = 2.

Theorem 5 (Young’s rule). [26, Theorem 3.3.1] For a partition µ ` n, we have σµ =∑
λ`n

Kλµχλ.

It is well known that Kλµ > 0 if and only if µ E λ, where E denotes the dominance order
on the set of partitions of n (see [26, Lemma 3.1.12]).

2.1 Symmetric functions

In this subsection, we recall some basics of the theory of symmetric functions and its
relation to the character theory of Sn. We follow the exposition in [26, Chapter 5] (see
also [19, Chapter 1] and [31, Chapter 7]). Let Λ denote the algebra of symmetric functions
over the field Q, and Λn denotes the vector subspace of Λ of all homogeneous symmetric
functions of degree n. The dimension of Λn is the number of partitions of n, which
we denote by p(n). Let λ ` n. There are five fundamental bases of Λn: (1) the basis
of monomial symmetric functions mλ, (2) the basis of elementary symmetric functions
eλ, (3) the basis of complete symmetric functions hλ, (4) the basis of power symmetric
functions pλ, and (5) the basis of Schur functions sλ.

The Frobenius characteristic function denoted by chn relates the vector space of class
functions R(Sn) of Sn to Λn. It is defined by

chn(f) =
1

n!

∑
π∈Sn

f(π)pm(π).

Note that the above is a Q-linear map from R(Sn) to Λn. The algebra Λ is equipped
with the Hall inner-product. It is defined by imposing that the basis of Schur functions
{sλ | λ ` n} form an orthonormal basis of Λn, that is, 〈sλ, sµ〉 = δλµ. It is then extended
bilinearly to Λ by imposing that if f and g are homogeneous, then 〈f, g〉 6= 0 only if f
and g have the same degree. Recall that R(Sn) is also equipped with an inner-product

which is defined by 〈f, g〉 =
1

n!

∑
π∈Sn

f(π)g(π−1), where f, g ∈ R(Sn). With these forms in

R(Sn) and Λn, chn is an isometry, that is, for all f, g ∈ R(Sn), 〈chn(f), chn(g)〉 = 〈f, g〉.
The following result gives the desired connection.
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Proposition 6. For partition λ ` n, we have chn(χλ) = sλ, chn(σλ) = hλ, and chn(εσλ) =
eλ.

For partitions λ, µ ` n, we recall the Murnaghan–Nakayama rule, which states that

χλ(wµ) = 〈pµ, sλ〉. In other words, pµ =
∑
λ`n

χλ(wµ)sλ. Let µ ` m, ν ` n. It is a well-

known result that chm+n(Ind
Sm+n

Sm×Snχλ ⊗ χµ) = sµsν , where χλ ⊗ χµ is the external tensor
product of χλ and χµ. Notice that on the RHS, the product is the usual product of
symmetric functions. Thus, for a partition λ ` m+ n, we get

〈sµsν , sλ〉 = 〈Ind
Sm+n

Sm×Snχµ ⊗ χν , χλ〉 = 〈Res
Sm+n

Sm×Snχλ, χµ ⊗ χν〉 = cλµν . (1)

The coefficients cλµν are called the Littlewood–Richardson coefficients (abbrv. LR coeffi-
cients). As a consequence of Equation (1), if f ∈ Λm and g ∈ Λn, then

fg = chm+n(Ind
Sm+n

Sm×Snχf ⊗ χg), (2)

where χf = ch−1m (f) ∈ R(Sm), χg = ch−1n (g) ∈ R(Sn), and χf ⊗ χg ∈ R(Sm × Sn), which
is defined by (χf ⊗ χg)(α, β) := χf (α)χg(β) for all α ∈ Sm, β ∈ Sn.

2.2 Littlewood–Richardson rule

We finish this section with the statement of the Littlewood–Richardson rule (abbrv. LR
rule), which gives a combinatorial interpretation of the LR coefficients. This will be
needed for our computations later. Let λ ` n. A lattice permutation of shape λ is a
sequence of positive integers a1a2 · · · an, where i occurs λi times, and in any left factor
a1a2 · · · aj, the number of i’s is at least the number of (i+ 1)’s (for all i). For example, a
lattice permutation of shape (3, 2, 1) is 121321. A reading word of a Young tableaux T is
the sequence of entries of T obtained by concatenating the rows of T from bottom to top.
For example, the reading word of the SSYT in Figure 1 is 45332221113. For partitions
λ, µ, we say µ ⊆ λ if µi 6 λi for all i (i.e., Tµ ⊆ Tλ). Let Tλ/µ denote the Young diagram
of the (skew) shape λ/µ. A SSYT of (skew) shape λ/µ and type ν is a filling of Tλ/µ with
positive integer entries such that i occurs νi times, and entries along each row from left to
right (resp. along each column from top to bottom) are weakly increasing (resp. strictly
increasing). Figure 2 is an example of a SSYT of skew shape (6, 5, 3, 3)/(3, 1, 1) and type
(4, 3, 2, 2, 1).

1 1 5
1 1 2 3
2 2

3 4 4

Figure 2: A SSYT of skew shape (6, 5, 3, 3)/(3, 3, 1) and type (4, 3, 2, 2, 1).

We are now ready to state the Littlewood–Richardson rule.
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Theorem 7 (Littlewood–Richardson rule). [31, Theorem A.1.3.3] For partitions µ ` n,
ν ` m, and λ ` m + n, the LR coefficient cλµν is equal to the number of SSYT of shape
λ/µ and type ν whose reverse reading word is a lattice permutation.

A SSYT satisfying the condition of the above theorem is called a
Littlewood–Richardson tableaux (abbrv. LR tableaux). For the tableaux in Figure 2,
the reverse reading word (traversing top to bottom and reading right to left along a row)
is 511321122443, which is not a lattice permutation. Hence, it is not a LR tableaux. We
also mention two special cases of the above rule for convenience. A skew shape is called
a horizontal strip of size n if there are n boxes, and each non-empty column has a single
box. For example, if λ = (4, 2, 1) and µ = (2, 1), then λ/µ is a horizontal strip of size 4.
A skew shape is called a vertical strip of size n if there are n boxes, and each non-empty
row has a single box. For example, if λ = (3, 3, 3, 2) and µ = (2, 2, 2, 1), then λ/µ is a
vertical strip of size 4 (see the figures below).

Figure 3: A horizontal strip and a vertical strip of size 4, respectively.

Corollary 8 (Pieri rule). Let λ ` m+ n and µ ` m. Then

cλµ,(n) =

{
1 if λ/µ is a horizontal strip of size n,

0 otherwise.

Corollary 9. Let λ ` m+ n and µ ` m. Then

cλµ,(1n) =

{
1 if λ/µ is a vertical strip of size n,

0 otherwise.

We also note the branching rule, which is nothing but the Pieri rule when n = 1.

Theorem 10 (Branching rule). Let λ ` n. Then ResSnSn−1
χλ =

∑
µ∈λ−

χµ, where λ− is the

set of all partitions of n− 1 whose Young diagram is obtained by deleting a box from Tλ.

By Frobenius reciprocity, it follows that Ind
Sn+1

Sn
χλ =

∑
µ∈λ+

χµ, where λ+ is the set of all

partitions of n+ 1 whose Young diagram is obtained by adding a box to Tλ.

3 Character covering in symmetric groups and Kronecker prod-
uct

In this section, we discuss the main results known on the covering numbers of irreducible
characters of the symmetric group. The well-known Kronecker product problem is natu-
rally related. We discuss some results in this direction, which we will use in this article.

the electronic journal of combinatorics 32(2) (2025), #P2.56 6



3.1 The Kronecker Product

Let × denote the point-wise product of two class functions in R(Sn); that is, if ϕ, ψ ∈
R(Sn), then (ϕ × ψ)(x) = ϕ(x)ψ(x) for all x ∈ Sn. We write ϕψ to mean ϕ × ψ. For
f, g ∈ Λn, the Kronecker product of f and g, denoted by f ∗ g, is defined by

f ∗ g := chn(ch−1n fch−1n g). (3)

By definition, ∗ is commutative. Further, f ∗ hn = hn ∗ f = f for all f ∈ Λn. For
partitions µ, ν ` n, from the above definition, we observe that sµ ∗ sν = chn(χµχν).

Thus, if χµχν =
∑
λ`n

gµνλχλ, then we have sµ ∗ sν =
∑
λ`n

gµνλsλ. The coefficients gµνλ =

〈χµχν , χλ〉 = 〈sµ ∗ sν , sλ〉 are called Kronecker coefficients. As the irreducible characters
of Sn are integer-valued, it follows that gµνλ is invariant under any permutation of µ, ν, λ.
The Kronecker product problem asks for a combinatorial interpretation of the Kronecker
coefficients and is regarded as one of the most important open problems in the theory
of symmetric groups. There are many interesting results known in this direction (for
example, see [4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 21, 22, 23, 24, 27, 28, 29, 30, 32, 34]). [12,
Section 3] discusses some elementary properties of the Kronecker product. It is convenient
to extend the definition of Kronecker product to Λ by setting f ∗ g = 0 if f ∈ Λm, g ∈ Λn,
and m 6= n. Now we mention some results on the Kronecker product, which are required
in this paper.

It is easy to describe the decomposition of the internal tensor product of two permu-
tation (partition) characters σλ and σµ of Sn.

Definition 11. Let λ = (λ1, . . . , λl) ` n and µ = (µ1, . . . , µm) ` n. A λ × µ matrix is
an l×m matrix with non-negative integer entries such that the sum of the entries of the
i-th row equals λi for all 1 6 i 6 l, and the sum of the entries of the j-th column equals
µj for all 1 6 j 6 m.

Theorem 12. [31, Exercise 7.84(b)] Let λ, µ ` n. Then hλ ∗hµ =
∑

A=(aij)

∏
i,j

haij summed

over all λ× µ matrices A.

Applying the inverse Frobenius characteristic function, we obtain

σλσµ =
∑

A=(aij)

∏
i,j

σaij , (4)

where the product on the RHS is taken in the sense of Equation (2), that is,
t∏
i=1

σαi =

Ind
Sα1+···+αt
Sαi×···×Sαt

1, where αi ∈ N0 for all 1 6 i 6 t. A direct representation theoretic proof of

Equation (4) can be found in [16, Theorem 10]. The following basic result of Littlewood
([17, Theorem 3]) allows one to compute the Kronecker products in principle.
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Theorem 13. [12, Proposition 3.2] Let f1, . . . , fk be homogeneous symmetric functions of
degree a1, . . . , ak, respectively. Let A be any symmetric function of degree a1+a2+· · ·+ak.
Then

(f1f2 · · · fk) ∗ A =
∑

α(1)`a1

· · ·
∑

α(k)`ak

〈sα(1) · · · sα(k) , A〉(f1 ∗ sα(1)) · · · (fk ∗ sα(k)).

In particular,

(ha1ha2 · · ·hak) ∗ A =
∑

α(1)`a1

· · ·
∑

α(k)`ak

〈sα(1) · · · sα(k) , A〉sα(1) · · · sα(k) .

Example 14. Let λ ` n and consider the product sλ ∗ s(n−1,1). Using the previous

result, hn−1h1 ∗ sλ =
∑
µ`n−1

∑
ν`1

〈sµsν , sλ〉sµsν =
∑
µ`n−1

〈sµs1, sλ〉sµs1. Through a double

application of the Pieri rule, we conclude that the above sum equals
∑
µ∈λ−

sµs1 =
∑
ν∈λ±

sν .

Here, λ− denotes the set of partitions of n− 1 that are obtained by removing a box from
Tλ, and λ± denotes the multiset of all partitions of n that are obtained by successive
removal and addition of a box to Tλ. Since h(n−1,1) = sn + s(n−1,1), we obtain that

sλ ∗ s(n−1,1) =
∑
µ∈λ±

sµ − sλ. Thus, χλχ(n−1,1) =
∑
µ∈λ±

χµ − χλ.

3.2 Character covering number

Some basic facts on the products of characters can be found in [1] and [20]. We need the
following lemmas, whose proofs are easy and hence omitted.

Lemma 15. Let G be a finite group, and χi and ρi (i = 1, 2) be characters of G. Assume
that c(χi) ⊆ c(ρi) for i = 1, 2. Then c(χ1χ2) ⊆ c(ρ1ρ2).

Lemma 16. Let G be a finite group, and χ and ρ be characters of G.

1. If c(χ) = Irr(G), then c(χρ) = Irr(G).

2. If c(χ) ⊆ c(ρ) and c(χi) = c(ρi) for some i > 1, then c(χj) = c(ρj) for every j > i.

If χ and ρ are characters of group G such that c(χ) ⊆ c(ρ), Lemma 15 implies that
ccn(ρ;G) 6 ccn(χ;G). For a partition λ ` n, we conclude that ccn(σλ;Sn) 6 ccn(χλ;Sn).
Moreover, since ccn(χλ;Sn) = ccn(χλ′ ;Sn), it follows that ccn(χλ;Sn) > max{ccn(σλ;Sn),
ccn(σλ′ ;Sn)}. Thus, it is useful to compute the covering number of σλ. Moreover, as a
direct consequence of Lemma 16 we have the following:

Lemma 17. Let G be a finite group, and χ and ρ be characters of G. Let c(χ) ⊆ c(ρ).
If c(χi) = c(ρi) for some i 6 ccn(ρ;G), then ccn(χ;G) = ccn(ρ;G). In particular, for
λ ` n, if c(σiλ) = c(χiλ) for some i 6 ccn(σλ;Sn), then ccn(χλ;Sn) = ccn(σλ;Sn).
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Proof. The result follows immediately from Lemma 16(2).

Theorem 12 provides us a recipe to compute ccn(σλ;Sn). Indeed, we need to apply
Theorem 12 repeatedly to find the least positive integer k such that σµ appears as a
constituent of σk−1λ for some partition µ ` n, and that there exists a λ × µ matrix with
exactly n entries 1 and all other entries 0. Notice that in this way we shall be able to find
the least k such that σ(1n) (which is the regular character of Sn) appears as a constituent
of σkλ. In particular, c(σkλ) = Irr(Sn). Since σ(1n) is the only permutation character σν
that has the sign character as a constituent, we conclude that ccn(σλ;Sn) = k.

Although it may not be easy to find a closed formula for ccn(σλ;Sn) for an arbitrary
partition λ, in some cases it is not so difficult. Let µ(k) denote the hook partition (n−k, 1k)
of n.

Lemma 18. Let 1 6 k 6 n− 2. Then ccn(σµ(k);Sn) = dn−1
k
e.

Proof. Notice that when i > 2, σiµ(k) has σµ(ki−j) as a constituent for all 0 6 j 6 k. This

shows that ccn(σµ(k)) 6 dn−1
k
e. Since we are considering at each iteration a λ × µ(k)

matrix, starting with λ = µ(k), it follows that the first part of λ can be reduced by at
most k in each iteration. This yields that ccn(σµ(k)) > dn−1k e.

Let λ = (n−k, k) (1 6 k 6 bn
2
c) be a two-row partition of n. Clearly, max{l(µ) | c(σµ) ⊆

c(σiλ)} 6 2i. By the discussion before Lemma 18, ccn(σλ;Sn) is the least integer k such
that σ(1n) appears as a constituent of σkλ, whence it follows that 2k > n. This implies that
ccn(σλ;Sn) > dlog2 ne. We also have the following:

Lemma 19. Let 1 6 k 6 bn
2
c. Then ccn(σ(n−k,k);Sn) >

⌈
2(n−1)
k+1

⌉
.

Proof. Set λ = (n − k, k). Let (n) = α0 → α1 → · · · → αr = (1n) be a sequence of
partitions of n such that αi is obtained by arranging the entries of a αi−1×λ matrix (which
is of dimension l(αi−1)× 2) in weakly decreasing order. This implies that σ(1n) appears as
a constituent of σrλ. For 1 6 i 6 r, let ai = l(αi)− l(αi−1) and bi = l(α′i−1)− l(α′i). Since
ai is the increment in the number of parts of αi and bi is the decrement of the largest part
of αi, we conclude that

∑r
i=1 ai + bi = 2(n− 1). Now going from the (i− 1)-st step to the

i-th step, if we decrease any one of the largest parts (at the (i − 1)-st step) by j, where
0 6 j 6 k, then the decrement in the largest part is at most j, that is, bi 6 j. Also, the
maximum possible increment in the number of parts is k − j + 1, that is, ai 6 k − j + 1.
This shows that ai + bi 6 k + 1. Hence,

∑r
i=1 ai + bi 6 r(k + 1) =⇒ r > 2(n−1)

k+1
. Since

ccn(σλ;Sn) is obtained by taking the minimum length of all the above kinds of sequences
of partitions, our result follows.

The above bound is quite crude in general (see proof of Theorem 2). The next proposition
shows that in certain cases, the above lower bound is in fact an equality.

Proposition 20. Let n > 5 and 2 6 k 6
√
n. Then ccn(σ(n−k,k);Sn) =

⌈
2(n−1)
k+1

⌉
.
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Proof. We construct a sequence of partitions as in the previous proof: (n) = α0 → α1 →
· · · → αr = (1n), where r =

⌈
2(n−1)
k+1

⌉
. This will prove that ccn(σλ) 6

⌈
2(n−1)
k+1

⌉
, and then

the statement follows from the previous lemma. We break the proof into two cases.

Case 1: Assume that k+ 1 | n− 1. Set n− 1 = (k+ 1)b where b is a positive integer.
Then n = bk + b+ 1. Set αi = (n− ik, ki) when 1 6 i 6 b. Thus, αb = (b+ 1, kb). Since
k 6
√
n, k2 6 bk + b + 1 =⇒ (k + 1)(k − 1) 6 b(k + 1) =⇒ b > k − 1. This implies

that the αi’s are well-defined partitions. Now we construct the partition αb+i from αb+i−1
by breaking b − i + 1 into b − i and 1 and breaking each of the largest remaining k − 1
parts of αb+i−1 (say (l1, l2, . . . , lk−1)) into lj − 1 and 1 for every 1 6 j 6 k − 1. By our
algorithm, αr = (1n) implies that r > 2b. We show that α2b = (1n). To show this, we
concentrate on the part of the algorithm that applies to (k, k, . . . , k︸ ︷︷ ︸

b times

). For i > 0, define

a multi-set Si inductively as follows: S0 consists of b-many k’s. S1 consists of all those
numbers that appear when the algorithm is applied to S0 except for the (k − 1)-many
1’s that have been produced (these are the 1’s that arise from parts lj). In general, Si
consists of all those numbers that appear when the algorithm is applied to Si−1, except
for the (k − 1)-many 1’s that have been produced. Let i0 be the first i such that Si
consists only of 1s and possibly 0s. Thus, i0 is precisely the step where the b-many k’s
have been broken down to all 1’s, that is, kb-many 1’s. We claim that i0 = b. In order
to establish our claim, we make two observations on the multi-set Si: (i) |Si| = b and
(ii) if ti is the maximum number present in Si, then Si consists only of ti’s and possibly
(ti − 1)’s. Both of the properties follow from the definition of our algorithm. It follows

that ti− 1 < kb−i(k−1)
b

6 ti, whence ti = dkb−i(k−1)
b
e. Since b > k− 1, we get that tb−1 = 2.

Since tb = 1, our claim is established. Since by performing b-many iterations after αb,
the number b+ 1 has been broken down to all 1’s as well, we conclude that α2b = (1n) as
desired.

Case 2: Assume k + 1 - n − 1. Write n − 1 = (k + 1)b + c where 0 < c 6 k. Then
n = bk+ b+ c+ 1. Set αi = (n− ik, ki) when 1 6 i 6 b. Thus, αb = (b+ c+ 1, kb). Since
k 6
√
n, k2 6 bk + b + c + 1 =⇒ (k − 1)(k + 1) 6 b(k + 1) + c =⇒ k − 1 6 b + c

k+1
.

We conclude that b > k − 1 since c 6 k. Let αb+1 = (b + 1, kb−k+c, (k − 1)k−c, c, 1k−c).
Now for i > 1, αb+1+i is constructed from αb+i by breaking b− i+ 2 into b− i+ 1 and 1,
and breaking each of the largest remaining k − 1 parts of αb+i (say (m1,m2, . . . ,mk−1))
into mj − 1 and 1 for every 1 6 j 6 k − 1. By our algorithm, αr = (1n) implies that
r > 2b + 1. Now, to find the exact value of r, we argue as in the previous case. For
convenience, we set βi := αb+i+1, where i > 0. Note that d2(n−1)

k+1
e is 2b+ 1 if 0 < c 6 dk

2
e,

and is 2b+ 2 if dk
2
e < c 6 k. Thus, it is enough to show that (i) βb = (1n) if 0 < c 6 dk

2
e,

and (ii) βb 6= (1n) but βb+1 = (1n) if dk
2
e < c 6 k. To show this, we use the same method

as in the previous case. We concentrate on the part of the algorithm that applies to
(kb−k+c, (k − 1)k−c, c). For i > 0, define a multi-set Si inductively as follows: S0 consists
of (b − k + c)-many k’s, (k − c)-many (k − 1)’s, and c. S1 consists of all those numbers
that appear when the algorithm is applied to S0 except for the (k − 1)-many 1’s that
have been produced (these are the 1’s that arise from parts mj). In general, Si consists
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of all those numbers that appear when the algorithm is applied to Si−1, except for the
(k − 1)-many 1’s that have been produced. Let i0 be the first i such that Si consists
only of 1s and possibly 0s. Thus, i0 is precisely the step where the (kb−k+c, (k − 1)k−c, c)
have been broken down to all 1’s, that is, (kb − k + c)-many 1’s. We claim that i0 = b
if 0 < c 6 dk

2
e, and i0 = b + 1 if dk

2
e < c 6 k. We find the average of the numbers in

the set Si when 1 6 i 6 i0. Clearly, since |Si| = b + 1 for every i, it is easy to see that

the average is equal to (kb−k+2c)−i(k−1)
b+1

. Also, by the definition of our algorithm, it follows
that there exists z such that 1 6 z < i0, and Sz consists entirely of the numbers c+ 1 and
c. Thus, by the same argument as in the previous case, we conclude that the maximum
number present in Si is d (kb−k+2c)−i(k−1)

b+1
e, where z 6 i 6 i0. Further, this maximum

number is at least 2 when i = b − 1. d (kb−k+2c)−i(k−1)
b+1

e = d b+2c−k
b+1
e when i = b. Clearly,

d b+2c−k
b+1
e is 1 when 0 < c 6 dk

2
e and it takes the value 2 if dk

2
e < c 6 k. In the latter case,

d (kb−k+2c)−i(k−1)
b+1

e = 1 when i = b + 1. This establishes our claim. Finally, starting from
β0, since the number b+ 1 has been broken down to all 1’s at the b-th step, we conclude
that βb = (1n) when 0 < c 6 dk

2
e and βb+1 = (1n) when dk

2
e < c 6 k. This completes the

proof.

For clarity, we work out some examples to demonstrate the algorithm stated in the pre-
vious proof.

Example 21. Let λ = (18, 3) ` 21. Then n − 1 = (k + 1)b, where b = 5. We apply the
algorithm demonstrated in case 1 of the proof above. We obtain the following sequence:
α0 = (21) → α1 = (18, 3) → α2 = (15, 32) → α3 = (12, 33) → α4 = (9, 34) → α5 =
(6, 35) → α6 = (5, 33, 22, 13) → α7 = (4, 3, 24, 16) → α8 = (3, 24, 110) → α9 = (23, 115) →
α10 = (121).

Example 22. Let λ = (40, 6) ` 46. Then n − 1 = (k + 1)b + c, where b = 6, c = 3.
Note that c 6 k+1

2
. We apply the algorithm demonstrated in case 2 of the proof above.

We obtain the following sequence: α0 = (46) → α1 = (40, 6) → α2 = (34, 62) → α3 =
(28, 63)→ α4 = (22, 64)→ α5 = (16, 65)→ α6 = (10, 66)→ α7 = (7, 63, 53, 3, 13)→ α8 =
(6, 54, 42, 3, 19) → α9 = (5, 45, 32, 115) → α10 = (4, 37, 121) → α11 = (33, 25, 127) → α12 =
(25, 136)→ α13 = (146).

Example 23. Let λ = (42, 5) ` 47. Then n− 1 = (k + 1)b+ c, where b = 7, c = 4. Note
that c > k+1

2
. We once again apply the algorithm demonstrated in case 2 of the proof

above. We obtain the following sequence: α0 = (47) → α1 = (42, 5) → α2 = (37, 52) →
α3 = (32, 53) → α4 = (27, 54) → α5 = (22, 55) → α6 = (17, 56) → α7 = (12, 57) → α8 =
(8, 56, 42, 1) → α9 = (7, 52, 46, 16) → α10 = (6, 46, 32, 111) → α11 = (5, 42, 36, 116) → α12 =
(4, 36, 22, 121)→ α13 = (33, 26, 126)→ α14 = (27, 133)→ α15 = (22, 143)→ α16 = (147).

As mentioned earlier, Miller proved that ccn(Sn) is n − 1. Using Theorem 12 and
Example 14, it is easy to see that c(σ2

µ(1)) = c(χ2
(n−1,1)). Then Lemma 17 and Lemma 18

at once imply that ccn(χ(n−1,1)) = n − 1. Since ccn(χλ) = ccn(χλ′), it follows that
ccn(χ(2,1n−2)) = n− 1. Thus, we get ccn(Sn) > n− 1. Miller’s proof that ccn(Sn) 6 n− 1
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(in other words, ccn(χλ;Sn) 6 n− 1 for every λ 6= (n), (1n)) is based on the following two
lemmas:

Lemma 24. [20, Lemma 11] Let λ be a non-rectangular partition of n. Then c(σµ(2)) ⊆
c(χ2

λ).

Lemma 25. [20, Lemma 12] Let λ be a rectangular partition of n. Then c(σµ(5)) ⊆ c(χ4
λ).

We remark that Zisser in [35, Corollary 4.3] also proved Lemma 24. He computed
the multiplicities of the irreducible constituents of σµ(2) in χ2

λ. For a partition λ of n, let
dt(λ) := |{i | λi − λi+1 > t}|.

Lemma 26. [35, Corollary 4.2] Let λ be a partition of n. Then

1. 〈χ2
λ, χ(n)〉 = 1.

2. 〈χ2
λ, χ(n−1,1)〉 = d1(λ)− 1.

3. 〈χ2
λ, χ(n−2,2)〉 = d1(λ)(d1(λ)− 2) + d2(λ) + d2(λ

′).

4. 〈χ2
λ, χ(n−2,12)〉 = (d1(λ)− 1)2.

It is easy to see that Lemma 24 directly follows from the above result.

4 Proof of Theorem 1 and Theorem 2

The main step towards proving Theorem 1 is an improvement of Lemma 24 and Lemma 25
by removing the cases λ = (n− 1, 1), (2, 1n−2) (see Lemma 32 and Lemma 33). The next
lemma is a well-known property of induced characters.

Lemma 27. Let G be a finite group and H be a subgroup of G. Suppose χ and ϕ are
class functions of G and H, respectively. Then χIndGHϕ = IndGH(ϕResGHχ).

Lemma 28. Let λ, µ ` n. Then 〈σµ, χ2
λ〉 = 〈ResSnSµχλ,ResSnSµχλ〉.

Proof. Use Lemma 27 and Frobenius reciprocity.

The following is easy to compute using Young’s rule (Theorem 5).

Lemma 29. The following relations hold:

1. σ(n−3,3) = χ(n−3,3) + χ(n−2,2) + χ(n−1,1) + χ(n).

2. σ(n−3,2,1) = χ(n−3,2,1) + χ(n−3,3) + χ(n−2,12) + 2χ(n−2,2) + 2χ(n−1,1) + χ(n).

3. σ(n−3,13) = χ(n−3,13) + 2χ(n−3,2,1) + χ(n−3,3) + 3χ(n−2,12) + 3χ(n−2,2) + 3χ(n−1,1) + χ(n).

Now we are ready to state and prove the main lemma of this section.

Lemma 30. Let n > 6 and λ = (λ1, λ2, . . .) ` n. We have the following:
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1. 〈χ(n−3,3), χ
2
λ〉 = d3(λ)+d3(λ

′)+d2(λ)(2d1(λ)−3)+d2(λ
′)(2d1(λ

′)−3)+d1(λ)(d1(λ)−
1)(d1(λ)− 3) + k + l,

2. 〈χ(n−3,2,1), χ
2
λ〉 = d2(λ)(3d1(λ)− 4) + d2(λ

′)(3d1(λ
′)− 4) + d1(λ)(2d1(λ)2 − 8d1(λ) +

7) + k + l,

3. 〈χ(n−3,13), χ
2
λ〉 = d2(λ)(d1(λ)−1) +d2(λ

′)(d1(λ
′)−1) + (d1(λ)−1)(d1(λ)2−3d1(λ) +

1) + k + l,

where k = |{i : λi = λi+1, λi+1 − λi+2 > 2}| and l = |{i : λi − λi+1 = 1, λi+1 − λi+2 > 1}|.

Proof. We compute 〈σ(n−3,3), χ2
λ〉, 〈σ(n−3,2,1), χ2

λ〉, and 〈σ(n−3,13), χ2
λ〉 one by one. This is

equivalent to computing 〈ResSnSn−3×S3
χλ, ResSnSn−3×S3

χλ〉, 〈ResSnSn−3×S2
χλ,ResSnSn−3×S2

χλ〉 and

〈ResSnSn−3
χλ,ResSnSn−3

χλ〉, respectively (see Lemma 28). We use the LR rule (Theorem 7)
for this computation. There are nine possible skew shapes with three boxes, which are
given in Figure 4. We remark that although the skew shapes need not share corners, we
can attach their corners so that they are one of Figure 4(i)-(ix). For example, the skew
shape (4, 2)/(3) (after connecting the corner) is Figure 4(ii).

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii) (ix)

Figure 4: Possible skew shapes with three boxes.

Given λ ` n, we compute the number of partitions µ ` n−3 such that λ/µ is given by
each of these shapes. Clearly, the number of µ′s for shape (i) is d3(λ) and that of shape
(v) is d3(λ

′). The number of µ′s such that λ/µ has shape given by one of (ii) or (iii) is
d2(λ)(d1(λ)−1). Since shapes in (vi) and (vii) are conjugates of (ii) and (iii), respectively,
the number of µ′s such that λ/µ is given by one of (vi) or (vii) is d2(λ

′)(d1(λ
′)− 1). The

number of µ′s for shape (iv) is clearly
(
d1(λ)
3

)
. Finally, it is not difficult to see that the

number of µ′s for the shape in (viii) and (ix) is given by l and k, respectively.

We start with the evaluation of 〈ResSnSn−3×S3
χλ, ResSnSn−3×S3

χλ〉. We have,

ResSnSn−3×S3
χλ =

∑
µ`n−3

cλµ,(3)(χµ⊗χ(3)) +
∑
µ`n−3

cλµ,(2,1)(χµ⊗χ(2,1)) +
∑
µ`n−3

cλµ,(13)(χµ⊗χ(13)),

where the characters on the RHS are irreducible characters of Sn−3 × S3. Using the Pieri
rule (see Corollary 8), cλµ,(3) = 1 if λ/µ is a horizontal strip, that is, λ/µ has shape given by

one of (i)-(iv), otherwise cλµ,(3) = 0. Thus,
∑

µ`n−3
[cλµ,(3)]

2 = d3(λ)+d2(λ)(d1(λ)−1)+
(
d1(λ)
3

)
.

Similarly, by Corollary 9, cλµ,(13) = 1 if λ/µ is a vertical strip, that is, λ/µ has shape given

the electronic journal of combinatorics 32(2) (2025), #P2.56 13



by one of (iv)-(vii), otherwise cλµ,(13) = 0. Thus,
∑

µ`n−3
[cλµ,(13)]

2 = d3(λ
′) + d2(λ

′)(d1(λ
′) −

1) +
(
d1(λ)
3

)
. Now we compute cλµ,(2,1). Using the LR rule, if µ is such that λ/µ is one of

the shapes in (i)-(ix), then cλµ,(2,1) is the number of SSYTs of that shape and type (2, 1)
such that the reverse reading word is a lattice permutation. We have the following:

cλµ,(2,1) =


1 if λ/µ has the shape as in (ii), (iii), or (vi)-(ix),

2 if λ/µ has the shape in (iv),

0 otherwise.

Thus,
∑

µ`n−3
[cλµ,(2,1)]

2 = d2(λ)(d1(λ)− 1) + d2(λ
′)(d1(λ

′)− 1) + 4
(
d1(λ)
3

)
+k+l. We conclude

that

〈σ(n−3,3), χ2
λ〉 =

∑
µ`n−3

[cλµ,(3)]
2 + [cλµ,(2,1)]

2 + [cλµ,(13)]
2

= d3(λ) + d3(λ
′) + 2d2(λ

′)(d1(λ
′)− 1) + 2d2(λ)(d1(λ)− 1) + 6

(
d1(λ)

3

)
+ k

+l.

By Lemma 29, χ(n−3,3) = σ(n−3,3) − χ(n−2,2) − χ(n−1,1) − χ(n), and hence (1) follows from
Lemma 26.

Now we compute 〈ResSnSn−3×S2
χλ,ResSnSn−3×S2

χλ〉. Let ResSnSn−3×S2
χλ =

∑
µ`n−3

aµ(χµ ⊗

χ(2)) +
∑
µ`n−3

bµ(χµ ⊗ χ(12)). At first, we compute aµ. The skew shapes with two boxes

(after connecting corners, if needed) are given by Figure 5.

(a) (b) (c)

Figure 5: Possible skew shapes with two boxes.

Applying the branching rule and Pieri rule, we note that given a µ such that λ/µ is one of
the skew shapes in (i)-(ix) of Figure 4, the value of aµ is equal to the number of partitions
ν ` n − 1 such that µ ⊂ ν ⊂ λ with λ/ν being a single box and ν/µ being a horizontal
strip with two boxes, that is, the skew shapes (a) and (b) in Figure 5. For example, if λ/µ
is the skew shape in Figure 4(ii), then the number of distinct ν’s with the above property
is two, whence aµ = 2. The following colored diagrams explain this.

In both of the diagrams above, ν is such that λ/ν is the red colored box and ν/µ is the
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green colored horizontal strip. More generally, we have the following:

aµ =


1 if λ/µ has the shape as in (i) or (vi)-(ix),

2 if λ/µ has the shape as in (ii) or (iii),

3 if λ/µ has the shape as in (iv),

0 otherwise.

Thus,
∑

µ`n−3
a2µ = d3(λ)+4d2(λ)(d1(λ)−1)+d2(λ

′)(d1(λ
′)−1)+k+ l+9

(
d1(λ)
3

)
. Similarly,

we can compute the value of bµ. In this case, we have to take into account the vertical
strips with two boxes, that is, skew shapes (b) and (c) of Figure 5. We have the following:

bµ =


1 if λ/µ has the shape as in (ii), (iii), (v), (viii), or (ix),

2 if λ/µ has the shape as in (vi) or (vii),

3 if λ/µ has the shape as in (iv),

0 otherwise.

Thus,
∑

µ`n−3
b2µ = d3(λ

′)+d2(λ)(d1(λ)−1)+4d2(λ
′)(d1(λ

′)−1)+k+ l+9
(
d1(λ)
3

)
. Therefore,

we conclude that

〈σ(n−3,2,1), χ2
λ〉 =

∑
µ`n−3

a2µ + b2µ

= d3(λ) + d3(λ
′) + 5d2(λ

′)(d1(λ
′)− 1) + 5d2(λ)(d1(λ)− 1) + 18

(
d1(λ)

3

)
+2k + 2l.

By Lemma 29, χ(n−3,2,1) = σ(n−3,2,1) − χ(n−3,3) − χ(n−2,12) − 2χ(n−2,2) − 2χ(n−1,1) − χ(n).
Thus, by Lemma 26, (2) follows.

Finally, we compute 〈ResSnSn−3
χλ,ResSnSn−3

χλ〉. Suppose that ResSnSn−3
χλ =

∑
µ`n−3

gµχµ.

By applying the branching rule, we note that if µ ` n − 3 is such that λ/µ is one of the
skew shapes (i)-(ix) of Figure 4, then gµ is the cardinality of the set of all tuples (ν, η),
where η ` n− 1, ν ` n− 2 are such that µ ⊂ ν ⊂ η ⊂ λ with λ/η, η/ν, ν/µ each being a
single box. For example, if µ is such that λ/µ is the skew shape in (ii), then the number of
different tuples (µ, η) with the desired property is three. The following colored diagrams
explain this.

In the above figure, λ/η is denoted by the red box, η/ν is denoted by the yellow box, and
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ν/µ is denoted by the green box. This way of counting gives the following:

gµ =


1 if λ/µ has the shape as in (i) or (v),

2 if λ/µ has the shape as in (viii) or (ix),

3 if λ/µ has the shape as in (ii), (iii), (vi), or (vii),

6 if λ/µ has the shape as in (iv).

Thus, we conclude that

〈σ(n−3,13), χ2
λ〉 =

∑
µ`n−3

g2µ

= d3(λ) + d3(λ
′) + 9d2(λ

′)(d1(λ
′)− 1) + 9d2(λ)(d1(λ)− 1) + 36

(
d1(λ)

3

)
+4k + 4l.

By Lemma 29, χ(n−3,13) = σ(n−3,13)−2χ(n−3,2,1)−χ(n−3,3)−3χ(n−2,12)−3χ(n−2,2)−3χ(n−1,1)−
χ(n), and hence (3) also follows from Lemma 26. The proof is now complete.

Remark 31. The previous proof can be written completely in the language of symmetric
functions. We recall that for partitions µ, λ such that µ ⊆ λ, sλ/µ is the skew-Schur
function corresponding to the skew shape λ/µ. Further, if λ ` m + n, µ ` m, and ν ` n
then

cλµν = 〈sµsν , sλ〉 = 〈sµ, sλ/ν〉 = 〈sν , sλ/µ〉.
We note that 〈σµ, χ2

λ〉 is equal to the coefficient of sλ in the Schur expansion of hµ ∗sλ.
A consequence of Theorem 13 is the following result (see [12, Theorem 3.1]).

hµ ∗ sλ =
∑∏

i>1

sλi/λi−1 , (5)

summed over all sequences (λ0, λ1, · · · , λl) of partitions such that ∅ = λ0 ⊆ λ1 ⊆ · · · ⊆
λl = λ and |λi/λi−1| = µi for all i > 1. Using this decomposition and the LR rule, finding
the coefficient of sλ boils down to the same computations that we have done above.

Lemma 32. Let n > 6 and λ be a non-rectangular partition of n such that λ /∈ {(4, 2),
(22, 12), (n− 1, 1), (2, 1n−2)}. Then c(σµ(3)) ⊆ c(χ2

λ).

Proof. Due to Lemma 24, it is enough to show that {χ(n−3,3), χ(n−3,2,1), χ(n−3,13)} ⊆ c(χ2
λ).

We use the multiplicity results of Lemma 30. We also use the fact that d1(λ) = d1(λ
′).

Since λ is non-rectangular, d1(λ) > 2. Assume first that d1(λ) > 3. Note that the
quadratic functions 2x2− 8x+ 7 and x2− 3x+ 1 are both strictly positive in the interval
[3,∞). Therefore, it easily follows that 〈χ(n−3,2,1), χ

2
λ〉 > 0 and 〈χ(n−3,13), χ

2
λ〉 > 0. If d2(λ)

or d2(λ
′) is positive, then 〈χ(n−3,3), χ

2
λ〉 > 0. Thus, we may assume that both d2(λ) and

d2(λ
′) are zero. If d1(λ) > 4, we once again conclude that 〈χ(n−3,3), χ

2
λ〉 > 0. Now assume

that d1(λ) = 3. It is clear that the only choice is λ = (3, 2, 1) in this case. If λ = (3, 2, 1),
then l = 2. We conclude that 〈χ(n−3,3), χ

2
λ〉 > 0. Overall, we conclude that if d1(λ) > 3,

then c(σµ(3)) ⊆ c(χ2
λ). Now we may assume that d1(λ) = 2. We have the following:
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1. 〈χ(n−3,3), χ
2
λ〉 = d3(λ) + d3(λ

′) + d2(λ) + d2(λ
′) + k + l − 2.

2. 〈χ(n−3,2,1), χ
2
λ〉 = 2d2(λ) + 2d2(λ

′) + k + l − 2.

3. 〈χ(n−3,13), χ
2
λ〉 = d2(λ) + d2(λ

′) + k + l − 1.

Since d1(λ) = 2, we write λ = (ax, by), where x, y > 1 and a > b. If b > 2 and y > 2,
then both d2(λ) and d2(λ

′) are positive. Moreover, k > 1. We conclude that each of
the inner-products above is positive, and hence c(σµ(3)) ⊆ c(χ2

λ) as required. Notice that
λ′ = ((x+y)b, xa−b). The above argument applies to λ′ when x > 2 and a−b > 2, whence
we can conclude that c(σµ(3)) ⊆ c(χ2

λ′). Since χ2
λ = χ2

λ′ , we conclude that c(σµ(3)) ⊆ c(χ2
λ).

Therefore, we can assume that λ satisfies (i) b = 1 or y = 1 and (ii) a− b = 1 or x = 1. It
is enough to show that all the inner-products from (1)-(3) are positive in these remaining
cases as well. We do this case-by-case.

Case I: Assume that b = 1 and a = b+1 = 2, whence λ = (2x, 1y). Since λ 6= (2, 1n−2),
we have x > 2 and y > 1. Moreover, as n > 6 and λ 6= (22, 12), at least one of x or y is
greater than two. We conclude that d3(λ

′) > 1, d2(λ
′) > 1, and d2(λ

′) + l = 2, whence all
the inner-products from (1)-(3) are positive.

Case II: Assume that b = 1 and x = 1, whence λ = (a, 1y). Since λ 6= (n −
1, 1), (2, 1n−2), we can assume y > 2 and a > 3. Clearly, d2(λ) = 1 and d2(λ

′) = 1, whence
the inner-products (2) and (3) are positive. Since n > 6, either y > 3 or a > 4, whence
one of d3(λ) or d3(λ

′) is positive. Thus, the inner-product (1) is positive.
Case III: Assume that y = 1 and a = b + 1, whence λ = ((b + 1)x, b). Notice that

l = 1 in this case. Suppose x > 2. Then d3(λ
′) > 1, which also implies d2(λ

′) > 1,
and we conclude that all inner-products from (1)-(3) are positive. Thus, we may assume
that x 6 2. If x = 2, then λ = (b + 1, b + 1, b). Since n > 6, b > 2. Thus, d2(λ) = 1
and d2(λ

′) = 1, whence all inner-products from (1)-(3) are positive once again. If x = 1,
λ = (b + 1, b). Since n > 6, b > 3. In this case d3(λ) = 1, which implies that d2(λ) > 1.
We once again conclude that the inner-products from (1)-(3) are positive.

Case IV: Assume that y = 1 and x = 1, whence λ = (a, b). Clearly b > 2 since
λ 6= (n−1, 1). If b > 3, then d3(λ) > 1 which implies d2(λ) > 1. Further if a > b+2, note
that d2(λ) = 2. Once again all the inner-products from (1)-(3) are positive. If a = b+ 1,
then l = 1, whence the inner-products from (1)-(3) are positive once again. Finally, we
can assume that b = 2. Since n > 6 and λ 6= (4, 2), we assume a > 5. In this case,
d3(λ) = 1 and d2(λ) = 2, whence all the inner-products from (1)-(3) are positive.

Lemma 33. Let n > 12 and λ (6= (n), (1n)) be a rectangular partition of n. Then
c(σµ(6)) ⊆ c(χ4

λ).

Proof. Let λ = (rs) ` n, where r, s > 2. Note that di(λ) = di(λ
′) = 1 for i = 1, 2. Also,

d3(λ) = 1 if r > 3 and d3(λ
′) = 1 if s > 3. Finally, k = 1 and l = 0. Thus, Lemma 30 yields

(i) 〈χ(n−3,13), χ
2
λ〉 = 1, (ii) 〈χ2

λ, χ(n−3,3)〉 equals 1 if r, s > 3 and equals 0 otherwise, and (iii)
〈χ2

λ, χ(n−3,2,1)〉 = 0. Using Lemma 26, 〈χ2
λ, χ(n−2,2)〉 = 1, 〈χ2

λ, χ(n−1,1)〉 = 〈χ2
λ, χ(n−1,12)〉 =

the electronic journal of combinatorics 32(2) (2025), #P2.56 17



0. Using Young’s rule, we observe that

〈χ2
λ, χ(n−4,4)〉 = 〈χ2

λ, σ(n−4,4)〉 − 〈χ2
λ, σ(n−3,3)〉 =

{
〈χ2

λ, σ(n−4,4)〉 − 2 if r = 2 or s = 2,

〈χ2
λ, σ(n−4,4)〉 − 3 otherwise.

By Lemma 28, 〈χ2
λ, σ(n−4,4)〉 = 〈ResSnSn−4×S4

χλ,ResSnSn−4×S4
χλ〉. To compute this inner-

product, we need to compute cλµν where ν ` 4 (see Equation (1)). Since λ is rectangular,
for any µ ⊆ λ, the skew diagram Tλ/µ must be right justified. Thus, using Theorem 7, we
obtain the following:

• there exists µ ` n− 4 such that cλµ,(4) = 1 provided r > 4.

• there exists µ ` n− 4 such that cλµ,(14) = 1 provided s > 4.

• there exists µ ` n− 4 such that cλµ,(3,1) = 1 provided r > 3.

• there exists µ ` n− 4 such that cλµ,(22) = 1.

• there exists µ ` n− 4 such that cλµ,(2,12) = 1 provided s > 3.

Since n > 12, from the above information, it is easy to conclude that 〈χ2
λ, χ(n−4,4)〉 > 0.

This yields that c(χ4
λ) ⊇ c(χµχν), where µ and ν can be chosen from the set {(n −

2, 2), (n−3, 13), (n−4, 4)}. Due to Lemma 25, to get the final result, it is enough to show
that χη ∈ c(χ4

λ) for each η ` n with the first part equal to n− 6. By [21, Section 2, Eqn.
24,53,54], we conclude that all such χη’s occur with the possible exception of χ(n−6,32).
On the other hand, using the fact that χ2

(n−4,4) = σ2
(n−4,4)− 2σ(n−4,4)σ(n−3,3) + σ2

(n−3,3) (see

Theorem 5), an easy check using Theorem 12 yields that χ(n−6,32) ∈ c(χ2
(n−4,4)), whence

our proof is complete.

For λ, µ ` n, let |λ \ µ| be the number of boxes of Tλ that lie outside of Tµ. For
example, if λ = (4, 3, 2, 2) and µ = (3, 3, 3, 1, 1), then | λ \ µ |= 2. The next lemma is an
easy application of Equation (5) and the Pieri rule.

Lemma 34. [20, Lemma 10] Let λ ` n, 1 6 k 6 n − 2, and r ∈ N. Then c(σrµ(k)χλ) =

{χµ | |λ \ µ| 6 kr}.

Proof. We prove it when r = 1. By Equation (5),

hµ(k) ∗ sλ =
∑

sνs
k
1,

where the sum runs over all sequences ν0 ⊆ ν1 ⊆ · · · ⊆ νk = λ such that ν0 = ν ⊆ λ is a
partition of n−k, and |νi/νi−1| = 1 for every 1 6 i 6 k. Using the Pieri rule, we conclude
that if 〈sνsk1, sµ〉 > 0, then |λ \ µ| 6 k. Conversely, if µ ` n is such that |λ \ µ| 6 k,
then µ ∩ λ is a partition of t where t > n− k. Thus, we can choose ν ` n− k such that
ν ⊆ λ∩ µ ⊆ λ, and hence sνs

k
1 appears in the above summand. Once again the Pieri rule

implies that 〈sνsk1, sµ〉 > 0. This yields the result for r = 1. For r > 2, the result follows
by induction.
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Proof of Theorem 1. If n 6 11, the theorem can be verified directly using SageMath
([33]). So we may assume n > 12. Let λ ` n be non-rectangular. Set n = 3k + r,
where 0 6 r 6 2 and k > 4. Using Lemma 32, we conclude that c(σkµ(3)) ⊆ c(χ2k

λ ). If

r ∈ {0, 1}, then by Lemma 18, c(σkµ(3)) = Irr(Sn) and hence c(χ2k
λ ) = Irr(Sn), whence the

result follows. If r = 2, notice that c(σkµ(3)χλ) ⊆ c(χ2k+1
λ ) and c(σkµ(3)χλ) = Irr(Sn) by

Lemma 34. Hence c(χ2k+1
λ ) = Irr(Sn) and once again the result follows. Now we consider

the rectangular partitions. Let n = 6k + r where 0 6 r 6 5 and k > 2. By Lemma 33,
we obtain

c(σkµ(6)) ⊆ c(χ4k
λ ). (6)

If r ∈ {0, 1}, then by Lemma 18, c(σkµ(6)) = Irr(Sn) which implies c(χ4k
λ ) = Irr(Sn),

whence the result follows. If r = 2, then d2(n−1)
3
e = 4k + 1. From Equation (6), we

get c(σkµ(6)χλ) ⊆ c(χ4k+1
λ ). By Lemma 34, it is easy to check that c(σkµ(6)χλ) = Irr(Sn),

from which the result once again follows. Now we assume that r ∈ {3, 4, 5}. We have
seen in the proof of Lemma 33 that χ(n−3,13) ∈ c(χ2

λ). Thus, from Equation (6), we get

c(σkµ(6)χ(n−3,13)) ⊆ c(χ4k+2
λ ). Once again using Lemma 34 and the fact that n > 12, it is

easy to deduce that c(σkµ(6)χ(n−3,13)) = Irr(Sn) when r ∈ {3, 4}. Since d2(n−1)
3
e = 4k + 2

when r ∈ {3, 4}, the result follows in this case as well. When r = 5, we get that
c(χ4k+2

λ ) ⊇ c(σkµ(6)χ(n−3,13)) = Irr(Sn) \ {ε}. Since for any ν ` n, gλ(1n)ν 6 1, there exists

χη (6= ε) such that χη ∈ c(χλχν). This implies that χν ∈ c(χηχλ) for some χη ( 6= ε). Thus,

χν ∈ c(σkµ(6)χ(n−3,13)χλ) ⊆ c(χ4k+3
λ ), whence c(χ4k+3

λ ) = Irr(Sn). Since d2(n−1)
3
e = 4k + 3

when r = 5, our result follows.

The final assertion follows since ccn(χ(n−2,2);Sn) > ccn(σ(n−2,2);Sn) =
⌈
2(n−1)

3

⌉
by

Proposition 20. The fact that ccn(χ(22,1n−4);Sn) =
⌈
2(n−1)

3

⌉
follows since ccn(χλ;Sn) =

ccn(χλ′ ;Sn).

As an application of Lemma 32, we prove that every irreducible character of Sn appears
as a constituent of the product of all (non-linear) hook characters.

Theorem 35. Let n > 5. Then c

( ∏
16k6n−2

χµ(k)

)
= Irr(Sn).

Proof. Let n > 6 be even. Then, using Lemma 24 and Lemma 32, we get the following:

c

(
n−2∏
k=1

χµ(k)

)
= c

εn2−1χ2
(n−1,1)

∏
26k6n

2
−1

χ2
µ(k)

 ⊇ c(ε
n
2
−1σµ(2)σ

n
2
−2

µ(3) ) = c(ε
n
2
−1σ

3n
2
−4

µ(1) )

= Irr(Sn).

Since 3n
2
−4 > n−1, the last equality follows using Lemma 18 together with Lemma 16(1).

When n = 5, 7, the result follows by direct computation. Assume now that n > 9 is odd.

the electronic journal of combinatorics 32(2) (2025), #P2.56 19



Using Lemma 24 and Lemma 32, we get the following:

c

(
n−2∏
k=1

χµ(k)

)
= c

εn−3
2 χµ(n−1

2
)χ

2
(n−1,1)

∏
26k6n−3

2

χ2
µ(k)

 ⊇ c(ε
n−3
2 χµ(n−1

2
)σµ(2)σ

n−5
2

µ(3) ).

Since 3n−11
2

> n− 1, using Lemma 18 together with Lemma 16(1), we conclude that

c(ε
n−3
2 χµ(n−1

2
)σ

3n−11
2

µ(1) ) = Irr(Sn),

whence our result follows.

Now we give a proof of Theorem 1.2.

Proof of Theorem 2. Let k = n+1
2

and λ = (k, k − 1). By [11, Corollary 4.1], we

get that χ2
λ =

∑
l(µ)64

χµ. It follows from Theorem 12 and the Young’s rule (Theorem 5)

that c(σ2
λ) = c(χ2

λ). By the discussion before Lemma 19, we have ccn(σλ;Sn) > dlog2 ne.
Let α0 = (n). For each r > 1, let αr be the partition obtained from the λ × αr−1
matrix Ar (by a decreasing rearrangement of its entries) chosen in the following way: If
αr−1 = (a1, a2, . . . , as), then construct Ar so that its i-th column contains dai

2
e and bai

2
c

and the sum of the entries in its first row is k. It is easy to see that this can always be
done. For example: if λ = (11, 10), then α0 = (21) → α1 = (11, 10) → α2 = (6, 53) →
α3 = (35, 23)→ · · · . By our construction, α3 is obtained from the λ×α2 matrix ( 3 3 2 3

3 2 3 2 ).
It is clear that when r = dlog2 ne − 1, the matrix Ar+1 obtained by the above choice has
all its entries equal to 1 or 0, and hence the partition obtained from Ar+1 is αr+1 = (1n).
By the discussion prior to Lemma 18, we conclude that ccn(σλ;Sn) 6 dlog2 ne. Thus,
ccn(σλ;Sn) = dlog2 ne. Since n > 5, we get ccn(σλ;Sn) > 3, whence Lemma 17 implies
the result.

We end this section with the following conjecture:

Conjecture 36. Let n > 5 and λ = (n− k, k) where 1 6 k 6 bn
2
c. The following hold.

1. If n is odd, then c(χ2
λ) = c(σ2

λ). In particular, ccn(χλ;Sn) = ccn(σλ;Sn).

2. Let n be even, and λ 6= (n
2
, n
2
). If 1 6 k < dn

4
e, then c(χ2

λ) = c(σ2
λ). Otherwise,

c(χ3
λ) = c(σ3

λ). In particular, ccn(χλ;Sn) = ccn(σλ;Sn).

3. If n is even, dlog2 ne 6 ccn(χ(n
2
,n
2
);Sn) 6 dlog2 ne+ 1.

We note that a positive proof of the above conjecture together with Lemma 17, Lemma 18,
and Proposition 20 yields that ccn(χ(n−k,k);Sn) = d2(n−1)

k+1
e provided 1 6 k 6

√
n.
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5 Proof of Theorem 3

In this section, we prove Theorem 3. Recall that we denote a hook partition (n− r, 1r) by
µ(r). The Durfee rank of a partition λ, denoted by d(λ), is the size of the largest square
contained in it. In particular, partitions with Durfee rank 1 are hook partitions µ(r),
where 0 6 r 6 n − 1. Partitions with Durfee rank 2 are called double hooks. They can
be written in the form (n4, n3, 2

d2 , 1d1). Here we assume n4 > n3 > 2. For a proposition
P , the notation ((P )) takes the value 1 if P is true; otherwise, it takes the value 0.
The Kronecker coefficients gµνλ when two of the partitions are hooks and the other one
is arbitrary were determined by Remmel [27, Theorem 2.1] and reproved by Rosas [30,
Theorem 3] (with a slightly different statement). We state this result by mixing both to
suit our needs.

Theorem 37. Let µ, ν, λ ` n, where µ = (n− e, 1e) and ν = (n− f, 1f ) are hook-shaped
partitions. Assume that f > e > 1 and f + e 6 n − 1. Then the Kronecker coefficients
gµνλ are given by the following:

1. If λ is such that d(λ) > 2, then gµνλ = 0.

2. If λ = (n), then gµνλ = 1 if and only if µ = ν, and if λ = (1n), then gµνλ = 1 if and
only if µ = ν ′.

3. Let λ = (n− r, 1r) be a hook shape where 1 6 r 6 n− 2. Then

gµνλ = ((f − e 6 r 6 e+ f)).

4. Let λ = (n4, n3, 2
d2 , 1d1) be a double hook where n4 > n3 > 2 and x = 2d2 + d1.

Then

gµνλ = ((n3 − 1 6
e+ f − x

2
6 n4))((f − e 6 d1))

+((n3 6
e+ f − x+ 1

2
6 n4))((f − e 6 d1 + 1)).

The following result of Blasiak will be required. We give a proof as well since it is a direct
application of Theorem 13.

Lemma 38. [8, Proposition 3.1] Let µ(d) denote the hook shape (n − d, 1d) where 1 6

d 6 n− 1. Then gλµ(d)ν + gλµ(d−1)ν =
∑

α`d,β`n−d

cλαβc
ν
α′β.

Proof. By Theorem 13, we have sλ ∗ (s(n−d)s(1d)) =
∑

α`d,β`n−d

cλαβsα′sβ. On the other hand,

using the Pieri rule, it is easy to see that s(n−d)s(1d) = sµ(d) + sµ(d−1). Thus,

sλ ∗ sµ(d) + sλ ∗ sµ(d−1) = sλ ∗ (s(n−d)s(1d)) =
∑

α`d,β`n−d

cλαβsα′sβ.

Taking inner-product with sν on both sides yields the result.
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The following lemma will be central to the proof of Theorem 3.

Lemma 39. Let 1 6 s 6 n−1
2

. Then c(χµ(s−1)χµ(s)) ⊆ c(χ2
µ(s)) and c(χ2

µ(s−1)) ⊆ c(χ2
µ(s)).

More generally, for any k > 2, c(χµ(s−1)χ
k−1
µ(s)) ⊆ c(χkµ(s)) and c(χkµ(s−1)) ⊆ c(χkµ(s)).

Proof. Note that µ(1) = (n−1, 1), whence the result for s = 1 follows from Example 14. So
we may assume s > 2. We show that c(χµ(s)χµ(s−1)) ⊆ c(χ2

µ(s)). Using Theorem 37(1), we
note that if the Durfee rank of λ is greater than 2, then χλ does not appear as a constituent
of both χµ(s)χµ(s−1) and χ2

µ(s). Further, by our choice of s, χ(1n), χ(n) /∈ c(χµ(s−1)µ(s)). Thus,

we only consider λ ` n such that λ = µ(r) where 1 6 r 6 n − 2 or λ is a double hook
shape.

Case I: Suppose λ = (n − r, 1r) where 1 6 r 6 n − 2. By Theorem 37(3), χλ ∈
c(χµ(s)χµ(s−1)) if and only if 1 6 r 6 2s− 1. The last inequality also implies 0 6 r 6 2s,
whence Theorem 37(3) implies that χλ ∈ c(χ2

µ(s)).

Case II: Assume that λ = (n4, n3, 2
d2 , 1d1), where n4 > n3 > 2 and x = 2d2 + d1.

Assume that χλ ∈ c(χµ(s)χµ(s−1)). By Theorem 37(4), the following expression is positive.

((n3 − 1 6
2s− 1− x

2
6 n4))((d1 > 1)) + ((n3 6

2s− x
2

6 n4))((d1 > 0)). (7)

To show that χλ ∈ c(χ2
µ(s)), once again using Theorem 37(4), we need to show that the

following expression is positive.

((n3 − 1 6
2s− x

2
6 n4))((d1 > 0)) + ((n3 6

2s− x+ 1

2
6 n4))((d1 + 1 > 0)). (8)

Notice that if the second summand in expression 7 is positive, then the first summand
in expression 8 is positive as well, and we are done. Therefore, we may assume that the
second summand in expression 7 is zero. In that case, the first summand in expression 7
is positive. This automatically means that d1 > 1. We also have n3 − 1

2
6 2s−x

2
6 n4 + 1

2
.

But since the second summand in expression 7 is zero, it follows that either 2s−x
2

takes the
value n3 − 1

2
or n4 + 1

2
. In the former case, the first summand in expression 8 is positive,

and hence we are done. On the other hand, the latter case is not possible. To see this,
2s−x
2

= n4 + 1
2

=⇒ s− 1
2

= n4 + x
2
> n3+n4+x

2
. The last inequality follows since n4 > n3.

Since n = n4 + n3 + x, we get s− 1
2
> n

2
, a contradiction to our assumption.

Similar computations yield that c(χ2
µ(s−1)) ⊆ c(χ2

µ(s)). The latter statements follow im-
mediately by using Lemma 15.

We can now prove the first part of Theorem 3.

Proof of Theorem 3(1). Since ccn(χλ;Sn) = ccn(χλ′ ;Sn), it is enough to prove the
result for χµ(2). The result can be easily verified for 5 6 n 6 9 using SageMath ([33]). So
we may assume n > 10.
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Using Theorem 37, we get that c(χ2
µ(2)) = {χλ | λ1 = n− 4 + i, λ2 6 2 + i; 0 6 i 6 4}.

We claim the following: for any 2 6 k 6 bn
3
c,

c(χkµ(2)) ⊇ {χλ | λ1 = n− 2k + i, λ2 6 k + i; 0 6 i 6 2k}. (9)

We make two observations at this point: (a) 2 6 k 6 bn
3
c ensures that n−2k+i > k+i for

every 0 6 i 6 2k, (b) since χµ(2) ∈ c(χ2
µ(2)), we get that c(χ2

µ(2)) ⊆ c(χ3
µ(2)) ⊆ c(χ4

µ(2)) ⊆
. . . . We now prove our claim by induction on k. The claim holds for k = 2. Thus, we
may assume k > 3. Since c(χk−1µ(2)) ⊆ c(χkµ(2)) by observation (b) made above, we conclude
by the induction hypothesis that

{χλ | λ1 = n− 2k + 2 + i, λ2 6 k + i− 1; 0 6 i 6 2k − 2} ⊆ c(χkµ(2)). (10)

Thus, it remains to show that χλ ∈ c(χkµ(2)) whenever λ satisfies one of the following

conditions: (1) λ1 = n − 2k + i, λ2 6 k + i where i = 0, 1 and (2) λ1 = n − 2k + i,
k + i− 2 6 λ2 6 k + i where 2 6 i 6 2k. In the latter case, we may assume that i 6 k+2

2

since λ2 6 2k− i. Now we determine the conditions under which λ is a two-row partition,
that is, λ3 = 0. In (1), clearly λ3 > 0. In (2), if i < k

2
, then λ3 > 0. Thus, λ3 > 0 unless

(a) i = k+1
2

where k is odd, whence λ = (n − 3k−1
2
, 3k−1

2
) and (b) k

2
6 i 6 k

2
+ 1 where k

is even, whence λ = (n− 3k
2
, 3k

2
), or λ = (n− 3k

2
+ 1, 3k

2
− 1).

Case I: Let λ = (λ1, λ2, . . .) be as in (1) or (2) with λ3 > 0. Let λ̃ = (λ2, λ3, . . .) so
that |λ̃| = 2k− i. Since λ3 > 0, there exists β̃ ` 2k− 2− i such that λ̃/β̃ is one of the two
shapes or . We make the choice of β̃ arbitrary with the above property provided

λ2 6 k + i − 1. If λ2 = k + i, notice that λ3 6 k + i and λ3 = k + i only when i = 0,
in which case λ = (n− 2k, k, k). Either way, we choose β̃ by removing one box from the
first row of λ̃ and another box from a different admissible row of λ̃. Thus, we obtain that
β̃1 6 k − 1 + i in all cases. We define β = (β1, β2, . . .) ` n− 2 as follows:

βr =

{
λ1 if r = 1,

β̃r−1 if r > 2.

Let α = (1, 1). Clearly cλαβ = 1. Now we define a partition ν = (ν1, ν2, . . .) ` n as follows:

νr =

{
n− 2k + 2 + i if r = 1,

βr if r > 2.

Clearly, ν2 6 k− 1 + i since β2 = β̃1 6 k− 1 + i. By Equation (9), χν ∈ c(χk−1µ(2)). Further,

ν/β is a horizontal strip with two boxes, which implies that cνα′β = 1. Thus, we can

conclude that
∑

γ`2,δ`n−2

cλγδc
ν
γ′δ is positive, whence Lemma 38 implies gλµ(2)ν + gλµ(1)ν > 0.

If gλµ(2)ν > 0, then χλ ∈ c(χνχµ(2)) ⊆ c(χkµ(2)) and we are done. If gλµ(1)ν > 0, then

χλ ∈ c(χνχµ(1)) ⊆ c(χk−1µ(2)χµ(1)). By Lemma 39, c(χµ(1)χ
k−1
µ(2)) ⊆ c(χkµ(2)), whence we

conclude that χλ ∈ c(χkµ(2)) and we are done.
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By the assumption in Case I and the discussion prior to it, we are left with the
following case:

Case II: (a) λ = (n − 3k−1
2
, 3k−1

2
) when k is odd and (b) λ = (n − 3k

2
, 3k

2
), or λ =

(n − 3k
2

+ 1, 3k
2
− 1) when k is even. First, we consider (a). Since k > 3, λ2 > 4. Let

α = (2) ` 2. Let β = (n−3k−1
2
, 3k−1

2
−2). Clearly cλαβ = 1. Let ν = (n−3k−1

2
+1, 3k−1

2
−2, 1).

It is immediate that cνα′β = 1 as ν/β is a vertical strip with two boxes. Thus, we obtain∑
γ`2,δ`n−2

cλγδc
ν
γ′δ > 0. Notice that χν ∈ c(χk−1µ(2)). By Lemma 38, we get gλµ(2)ν +gλµ(1)ν > 0.

Suppose that gλµ(2)ν > 0. This implies χλ ∈ c(χνχµ(2)) ⊆ c(χkµ(2)) and we are done. If

gλµ(1)ν > 0, then χλ ∈ c(χνχµ(1)) ⊆ c(χk−1µ(2)χµ(1)). By Lemma 39, c(χµ(1)χ
k−1
µ(2)) ⊆ c(χkµ(2)),

whence we conclude that χλ ∈ c(χkµ(2)) and we are done. The arguments for the cases in (b)
follow along similar lines. We simply mention the choices of α, β, and ν in these cases. If
λ = (n− 3k

2
, 3k

2
), then λ2 > 6 as k > 3. We choose α = (2) ` 2, β = (n− 3k

2
, 3k

2
−2) ` n−2,

and ν = (n− 3k
2

+ 1, 3k
2
− 2, 1) ` n. If λ = (n− 3k

2
+ 1, 3k

2
− 1), then λ2 > 5 as k > 3. We

choose α = (2) ` 2, β = (n− 3k
2

+ 1, 3k
2
− 3) ` n− 2, and ν = (n− 3k

2
+ 2, 3k

2
− 3, 1) ` n.

By Lemma 34 we get,

c(σkµ(2)) = {χλ | λ1 > n− 2k} = {χλ | λ1 = n− 2k + i; 0 6 i 6 2k}. (11)

Now we compare the sets in the RHS of Equation (9) and Equation (11) by taking k = bn
3
c.

It is easy to check that when n ≡ 0(mod 3), that is, n = 3k, then both sets are equal,
whence we conclude that c(χkµ(2)) = c(σkµ(2)). Assume now that n = 3k + 1. In this case,

it is easy to see that c(σkµ(2)) \ c(χkµ(2)) = {χλ | λ1 = λ2 = n − 2k + i; 0 6 i 6 k−1
2
}. We

claim that c(σk+1
µ(2)) = c(χk+1

µ(2)). Since c(σk+1
µ(2)) ⊇ c(χk+1

µ(2)), using Lemma 34 and the fact

that c(χkµ(2)) ⊆ c(χk+1
µ(2)), we need to show that χλ ∈ c(χk+1

µ(2)), where λ satisfies one of the

following conditions: (1) λ1 = n − 2k − i where i = 1, 2, and (2) λ1 = λ2 = n − 2k + i
where 0 6 i 6 k−1

2
. To show this, we repeat the same process as done previously in

Case I and Case II. More specifically, we note that λ3 > 0 in both (1) and (2) except
when k is odd and λ = (n − 2k + i, n − 2k + i) with i = k−1

2
. Thus, when λ3 > 0, we

use the argument in Case I above, and for the latter case, the argument in Case II is
used. When n = 3k + 2, it can be proved similarly that c(χk+1

µ(2)) = c(σk+1
µ(2)). Overall, we

conclude that c(σ
dn
3
e

µ(2)) = c(χ
dn
3
e

µ(2)). The proof of the theorem now follows from Lemma 17
and Lemma 18.

Remark 40. In the above proof, one can prove that Equation (9) can be strengthened to
an equality.

We now move on to the proof of the second statement of Theorem 3. It is enough to
consider λ = (n+1

2
, 1

n−1
2 ) when n is odd, and λ = (n

2
+ 1, 1

n
2
−1) when n is even. In other

words, λ = µ(k), where k = bn−1
2
c. We will prove our theorem via a sequence of lemmas.

Lemma 41. Let k = bn−1
2
c and λ ` n be such that d(λ) = 2m, where m > 2. Then there

exists α ` k and β ` n− k such that d(α) = d(β) = m and cλαβ > 0.
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Proof. At first, we define the partition β ⊆ λ by constructing its Young diagram Tβ as a
sub-diagram of Tλ as follows:

• We choose a box (for Tβ) from the first m rows of Tλ if there are at least m boxes
below it in its column.

• We say that a box in Tλ satisfy Property P if there are at least m boxes right
to it (in its row). For each 1 6 j 6 m, we choose those boxes (for Tβ) in the j-th
column of Tλ that satisfy Property P but aren’t among the last m boxes in the
same column that satisfy Property P.

• Note that there is an injection from the set of chosen boxes to the set of non-chosen
ones. To see this injection we distinguish two cases:

1. Consider all those chosen boxes which lie outside the top left 2m× 2m square.
Let X be the collection of these boxes. If (i, j) ∈ X with j > 2m, then we map
it to (i+m, j) which is a non-chosen box. Similarly, if (i, j) ∈ X with i > 2m,
then we map it to (i, j +m) which is once again a non-chosen box.

2. Consider all those chosen boxes which lie inside the top left 2m× 2m square.
Let A = {(i, j) | 1 6 i, j 6 m}, B = {(i + m, j) | 1 6 i, j 6 m}, C =
{(i, j + m) | 1 6 i, j 6 m}, D = {(i + m, j + m) | 1 6 i, j 6 m}. By our
choice, note that all boxes in C are chosen, while none of the boxes of D are
chosen, whence we can bijectively map C to D. Note that all the boxes of A
are chosen. Moreover, there are m2 boxes satisfying Property P in the first
m columns that are not chosen. Let E be the collection of these boxes. Then
we can bijectively map A to E. Let B′ be the collection of chosen boxes of B,
and E ′ be the collection of those boxes of E which lie below the 2m-th row.
Clearly, B′ and E ′ are in bijection. If (i, j) ∈ E ′, then (i, j+m) is a non-chosen
box which also lie below the 2m-th row. Let F = {(i, j + m) | (i, j) ∈ E ′}.
Then, we can bijectively map B′ to F .

Therefore, the number of chosen boxes is at most n
2
, which in turn is strictly less

than n− k.

• Now if there are more boxes to choose for Tβ, we do it by choosing boxes from the
first column (column-wise), and then from the second column, and so on until the
m-th column.

• If even more boxes are required, we choose boxes from the first row (row-wise), then
from the second row, and so on until the m-th row.

• In the above steps, we stop at the point where we have chosen (n− k)-many boxes
for Tβ. Since d(λ) = 2m, the total number of boxes that are neither in the first
m rows nor in the first m columns is clearly less than or equal to k. Thus, by
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performing the steps mentioned above, we certainly get (n−k)-many boxes at some
stage.

• Finally, it is also clear that d(β) = m.

We give an example to illustrate the choice of β (see Figure 6). Let λ = (11, 102, 8, 7, 62, 42,
23, 1) ` 73. We have d(λ) = 6, m = 3, and k = 36. Thus, β ` 37. The red colored boxes
in the first diagram of the given illustration are the ones chosen in steps 1 and 2. The
second diagram is obtained from the first by performing the steps after step 2 (indicated
by yellow colored boxes) and finally gives β = (8, 7, 6, 3, 24, 15) ` 37.

(A) (B)

Figure 6: Construction of β ⊆ λ.

Now it is required to fill the skew shape Tλ/β in a way that its type α has Durfee rank
equal to m, and it is a LR tableaux. For that, we make some observations on the skew
diagram Tλ/β. It is easy to see that Tλ/β has no (m + 1) × (m + 1) square contained in
it. We use the convention that the rows of Tλ/β are labeled with respect to those of Tλ.
With this convention, let p be the least positive integer such that the number of boxes
(say r0) in the (2m+ p)-th row of Tλ/β is less than m, that is, r0 < m. Note that p always
exists with the convention that there are zeroes after the last part of the skew partition
λ/β. Let T̃λ/β be the sub-diagram of Tλ/β starting from the (2m + p)-th row to the last

row (say (2m + p + d)-th row). We write T̃λ/β = (r0, r1, . . . , rd), where ri denotes the
number of boxes in the (2m+ p+ i)-th row. Now we make an important observation on

T̃λ/β. Either r0 > · · · > rd, or there exists a positive integer c such that r0 > · · · > rc−1,
rc = rc−1 + 1, and rc > · · · > rd. To see this, consider the box (if there is any) of Tλ that
lies to the immediate left of the first box of the (2m + p)-th row of Tλ/β. If there is no
such box, then r0 > · · · > rd. But if such a box exists, then (a) it is a part of the diagram
Tβ and hence it lies in some k-th column of Tλ where 1 6 k 6 m, (b) in the k-th column,
our concerned box does not have Property P. By our choice of β, all the boxes from the
first column to the (k− 1)-st column are in the diagram of Tβ. If all the boxes of the k-th
column are also in the diagram of Tβ, we once again get the first possibility, otherwise we
get the second possibility.

With these observations, we are now in a position to fill Tλ/β. We divide this filling into
three parts.
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• For the first 2m rows of Tλ/β, we fill each column with numbers 1 to j in increasing
order, where j is the number of boxes in that column. Clearly, j 6 m by our choice
of β. Since d(λ) = 2m, it is also clear that each of the numbers from 1 to m has
been used at least m times. Observe also that the filling until the 2m-th row is
semi-standard and the reverse reading word is a lattice permutation.

• Now we fill the sub-diagram of Tλ/β from (2m + 1)-st to (2m + p − 1)-st row (at
this step it is assumed p > 2). Let this sub-diagram be written as (s1, . . . , sp−1),
where si is the number of boxes in the (2m+ i)-th row. Then m 6 si 6 2m (by the
choice of p). We fill the last m boxes of the (2m+ i)-th row with the number m+ i,
and then we fill the remaining boxes of the row from left to right with the least
possible numbers in a semi-standard way. Note that these “least possible numbers”
will always be less than or equal to m. If not, then it implies that the diagram would
contain a (m+1)× (m+1) square, a contradiction. Thus, we have a filling until the
(2m+p−1)-st row, which still has the desired properties of a LR tableaux. Further,
any number greater than m that has been used occurs exactly m-many times.

• Finally, we fill last remaining sub-diagram T̃λ/β, which spans from the (2m + p)-th
row to the (2m + p + d)-th row. Recall the observation we made about this sub-
diagram before. If r0 > · · · > rd, we fill all the boxes of the (2m + p + i)-th row
with m + p + i, where 0 6 i 6 d. If not, then r0 > · · · > rc−1, rc = rc−1 + 1, and
rc > · · · > rd. Let e be the least positive integer such that rc+e 6 r0. If such e does
not exist, we take e = d− c+ 1. Then rc−1 + 1 = rc = · · · = rc+e−1. We fill all boxes
of the (2m+p+ i)-th row with m+p+ i, where 0 6 i 6 c−1. For c 6 i 6 c+ e−1,
we fill the first box of the (2m+ p+ i)-th row with m+ p+ i− c and the remaining
boxes with m + p + i. For c + e 6 i 6 d, all boxes of the (2m + p + i)-th row are
filled with m+ p+ i once again.

Overall, we get a LR tableaux whose type has Durfee rank m. We end our proof by
filling the tableaux in our example according to the method described above (see Figure 7
below). In this case α = (9, 82, 32, 2, 13).

1 1 1
1 2 2

1 2 3 3
1 1 1 2 3

1 2 2 2 3
2 3 3 3
3 4 4 4
5 5

5 6 6
7
8
9

Figure 7: LR tableaux of shape (11, 102, 8, 7, 62, 42, 23, 1)/(8, 7, 6, 3, 24, 15) and type
(9, 82, 32, 2, 13).
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We prove an analogue of Lemma 41 when d(λ) is odd. The proof is similar, but there
are subtle changes, so we write it in detail.

Lemma 42. Let k = bn−1
2
c and λ ` n be such that d(λ) = 2m − 1, where m > 2. Then

there exists α ` k and β ` n− k such that m− 1 6 d(α) 6 m, d(β) = m and cλαβ > 0.

Proof. As before, we define the partition β ⊆ λ by constructing its Young diagram Tβ as
a sub-diagram of Tλ as follows:

• We choose all boxes (for Tβ) from the top left m×m square of Tλ.

• We choose a box (for Tβ) from the first (m − 1) rows of Tλ if there are at least m
boxes below it in its column.

• We say that a box in Tλ satisfy Property P if there are at least m boxes right to
it (in its row). For each 1 6 j 6 m− 1, we choose those boxes (for Tβ) in the j-th
column of Tλ that satisfy Property P but aren’t among the last (m− 1) boxes in
the same column that satisfy Property P.

• Note that there is an injection from the set of chosen boxes excluding the box (m,m)
to the set of non-chosen ones. To see this injection we distinguish two cases:

1. Consider all those chosen boxes which lie outside the top left (2m−1)×(2m−1)
square. Let X be the collection of these boxes. If (i, j) ∈ X with j > 2m− 1,
then we map it to (i+m, j) which is a non-chosen box. Similarly, if (i, j) ∈ X
with i > 2m− 1, then we map it to (i, j+m) which is once again a non-chosen
box.

2. Consider all those chosen boxes which lie inside the top left (2m−1)×(2m−1)
square except for the box (m,m). Let A = {(i, j) | 1 6 i, j 6 m − 1},
B = {(i + m, j) | 1 6 i, j 6 m − 1}, C = {(i, j + m) | 1 6 i, j 6 m − 1},
D = {(i + m, j + m) | 1 6 i, j 6 m − 1}, E = {(i,m) | 1 6 i 6 m − 1},
F = {(m, j) | 1 6 j 6 m − 1}, G = {(i + m,m) | 1 6 i 6 m − 1}, H =
{(m, j + m) | 1 6 j 6 m − 1}. By our choice, note that all boxes in C are
chosen, while none of the boxes of D are chosen, whence we can bijectively
map C to D. Using the same argument, we can bijectively map E to G, and
also F to H. Note that all the boxes of A are chosen. Moreover, there are
(m− 1)2 boxes satisfying Property P in the first m− 1 columns that are not
chosen. Let P be the collection of these boxes. Then we can bijectively map A
to P . Let B′ be the collection of chosen boxes of B, and P ′ be the collection
of those boxes of P which lie below the (2m − 1)-st row. Clearly, B′ and P ′

are in bijection. If (i, j) ∈ P ′, then (i, j + m) is a non-chosen box which also
lie below the (2m− 1)-st row. Let Q = {(i, j +m) | (i, j) ∈ P ′}. Then, we can
bijectively map B′ to Q.
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Therefore, we can conclude that the number of chosen boxes excluding the box
(m,m) is at most n−1

2
. Since n − k > n

2
, the total number of boxes chosen (which

includes the box (m,m)) is at most n− k.

• Now, if there are more boxes to choose to form β, we do it in the following sequence:

1. Choose boxes from the first column (column-wise), then from the second col-
umn, and so on until the (m− 1)-st column.

2. Choose boxes from the first row (row-wise), then from the second row, and so
on until the (m− 1)-st row.

3. Choose boxes from the m-th column (column-wise).

4. Choose boxes from the m-th row (row-wise).

We stop at that point of the above sequence when the total number of boxes chosen
for Tβ equals n− k.

• Since d(λ) = 2m− 1, the total number of boxes that are neither in the first m rows
nor in the first m columns is clearly less than or equal to k. Thus, by performing the
steps mentioned above, we certainly get (n− k)-many boxes for Tβ at some stage.

• Finally, it is also clear that d(β) = m.

Now it is required to fill the skew shape Tλ/β in a way that its type α has Durfee rank
either m− 1 or m and it is a LR tableaux. For that, we make some observations on the
skew diagram Tλ/β. We use the convention that the rows of Tλ/β are labeled with respect
to those of Tλ. With this convention, we have the following observations:

• The sub-diagram of Tλ/β from the first row to the (2m−1)-st row has a m× (m−1)
rectangle contained in it. To see this, write λ = (λ1, . . . , λ2m−1, λ2m, . . . , λl) where
λi > 2m− 1 if 1 6 i 6 2m− 1, and λi 6 2m− 1 if 2m 6 i 6 l. Let β = (β1, β2, . . .).
Now assume that our assertion is not true. By our choice of β, we have the following
inequalities: (a) βi = λi when 1 6 i 6 m − 1, (b) βm > m, βi = m when m + 1 6
i 6 2m− 1, and there exists j ∈ {m,m+ 1, . . . , 2m− 1} such that λj < βm +m− 1,
and (c) λi − βi < βi for all 2m 6 i 6 l. Note that∑

i

(2βi − λi) =
∑
i

βi −
∑
i

(λi − βi) = |Tβ| − |Tλ/β| 6 2, (12)

since β ` n− k and α ` k. Now,

∑
i

(2βi − λi) =
m−1∑
i=1

λi + (2βm − λm) +
2m−1∑
i=m+1

(2m− λi) +
l∑

i=2m

(2βi − λi).
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The last summand in the above equation is always non-negative. In (b), if j = m,
that is, λm < βm+m−1, then 2βm−λm > βm+1−m > 1. Also, 2m+λi−λm+i > 2m
for all 1 6 i 6 m−1. Hence

∑
i(2βi−λi) > 2, a contradiction. Otherwise, in (b), if

j 6= m, then 2m−λj > m−βm+1, whence (2βm−λm)+(2m−λj) > βm+m+1−λm >
2m+1−λm. But λ1+2m+1−λm > 2m+1. By pairing i and k, where 2 6 i 6 m−1
and m+ 1 6 k 6 2m− 1 with k 6= j, we get that λi + 2m− λk > 2m for each such
pair. This yields

∑
i(2βi − λi) > 2, once again a contradiction.

• There is no (m+ 1)× (m+ 1) square contained in Tλ/β.

• Let p be the least positive integer such that the number of boxes (say r0) in the
(2m−1+p)-th row of Tλ/β is less than m, that is, r0 < m. Note that p always exists
with the convention that there are zeroes after the last part of the skew partition
λ/β. Let T̃λ/β be the sub-diagram of Tλ/β starting from the (2m− 1 + p)-th row to

the last row (say (2m−1 +p+d)-th row). We write T̃λ/β = (r0, r1, . . . , rd), where ri
denotes the number of boxes in the (2m−1+p+i)-th row. Then, either r0 > · · · > rd,
or there exists a positive integer c such that r0 > · · · > rc−1, rc = rc−1 + 1, and
rc > · · · > rd. The reason for this is exactly as in the previous lemma.

With these observations, we are now in a position to fill Tλ/β. We divide this filling into
three parts.

For the first 2m−1 rows of Tλ/β, we fill each column with numbers 1 to j in increasing
order, where j is the number of boxes in that column. Clearly, j 6 m by our choice of β.
Also, since there is a m × (m − 1) rectangle in the first 2m − 1 rows, we conclude that
each of the numbers from 1 to m has been used at least (m−1)-many times. It is obvious
that the filling till the (2m−1)-st row is semi-standard, and the reverse reading word is a
lattice permutation. To fill the remaining part of the diagram, we distinguish two cases.

Case I: Suppose that in our filling of the first 2m − 1 rows, the number m (hence all
the numbers from 1 to m − 1) has occurred at least m times. In this case, the next two
sub-diagrams are to be filled in exactly the same way as we did in the previous lemma.
We observe that the type α has Durfee rank m in this case.

Case II: Suppose that in our filling of the first 2m− 1 rows, the number m has occurred
exactly (m−1)-many times. Now we fill the sub-diagram of Tλ/β from 2m-th to (2m−2+p)-
th row (at this step it is assumed that p > 2). Let this sub-diagram be written as
(s1, . . . , sp−1), where si is the number of boxes in the (2m−1 + i)-th row. Then m 6 si 6
2m− 1 (by the choice of p). We fill the boxes of the (2m− 1 + i)-th row by the following
two steps.

Step 1: We fill the last m− 1 boxes of the row with the number m+ i.

Step 2: We fill the row from left to right with least possible numbers in a semi-standard
way, but with the restriction that whenever a number greater than m is required it must
be the least number that has not been used m-many times (in the filling until then).
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The reason we can get this done in a semi-standard way is as follows: For any 1 6 i 6 p−1,
consider the (2m − 1 + i)-th row. Notice that this row has at most one number greater
than m (ignoring the (m+ i)’s in the last (m− 1) boxes of this row). Indeed, if there are
more than two numbers greater than m, then there is a (m+1)×(m+1) square contained
in the diagram Tλ/β, a contradiction. Suppose now that this unique number greater than
m has appeared in the concerned row. Using induction on i, it easily follows that this
number is certainly less than or equal to m+ i. Thus, we conclude that our filling in step
2 is possible (that is, our filling is semi-standard). Also, the fact that the reverse reading
word (until now) is a lattice permutation follows from the choice of our filling.

Now we proceed to fill the last diagram T̃λ/β (at this point, recall the observation we
made about this diagram before). Let t be the least positive integer such that for each
t 6 j 6 p − 1, m + j has so far occurred exactly (m − 1)-many times. We need to fill
Tλ/β from the (2m − 1 + p)-th row to the (2m − 1 + p + d)-th row. If r0 > · · · > rd,
we fill all the boxes of the (2m − 1 + p + i)-th row with m + p + i where 0 6 i 6 d.
Otherwise, r0 > · · · > rc−1, rc = rc−1 + 1, and rc > · · · > rd. Let e be the least positive
integer such that rc+e 6 r0. If such e does not exist, we take e = d − c + 1. Then
rc−1 +1 = rc = · · · = rc+e−1. We fill all boxes of the (2m−1+p+ i)-th row with m+p+ i
when 0 6 i 6 c− 1. For c 6 i 6 c+ e− 1, we fill the first box of the (2m− 1 + p+ i)-th
row with the least possible positive number in a semi-standard way which is not between
m + 1 to m + t− 1 (thus if t = 1 we have no restriction), and the remaining boxes with
m + p + i. For c + e 6 i 6 d, all boxes of the (2m − 1 + p + i)-th row are filled with
m+ p+ i once again.

Overall, we get a LR tableaux whose type α has Durfee rank either m− 1 or m, and we
are done.

A homogeneous symmetric function f of degree n is called Schur-positive if it can be
written as a non-negative integer linear combination of the Schur functions of degree n. If
f, g ∈ Λn, then we say f > g if f − g is Schur-positive. Lemma 41 and Lemma 42 implies
the following corollary which is interesting in its own right.

Corollary 43. Let n > 5 and m > 2. Assume that k = bn−1
2
c. Then,

1. (
∑
α`k

d(α)=m

sα)(
∑
β`n−k
d(β)=m

sβ) >
∑
λ`n

d(λ)=2m

sλ,

2. (
∑
α`k

m−16d(α)6m

sα)(
∑
β`n−k
d(β)=m

sβ) >
∑
λ`n

d(λ)=2m−1

sλ.

Lemma 44. Let k > 0 and α ` k, β ` n− k be such that d(α) = d(β) = m. Then there
exists η ` n such that d(η) = m and cηαβ > 0. The same conclusion is valid if d(α) = m−1
and d(β) = m.
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Proof. Let α = (α1, α2, . . .) ` k and β = (β1, β2, . . .) ` n−k. We have α1 > · · · > αm > m
and αm+1 6 m. The same holds true for β. Consider the Young diagram of α and fill all
the boxes in its i-th row with i. Construct a partition η = (η1, η2, . . .) ` n by adjoining
the (filled) Young diagram of α to β as follows: For 1 6 i 6 m, the i-th row of Tα is
adjoined to the i-th row of Tβ. The remaining rows are appended one after the other by
putting their boxes one-by-one below the first column, then the second column, and so
on until required. Since αi 6 m when i > m + 1, it is not required to go beyond the
m-th column for appending these rows. By the construction of η, it easily follows that
η ` n has Durfee rank m, β ⊆ η, and η/β is a LR tableaux of type α, whence cηαβ > 0 as
required. The same construction works if we take d(α) = m − 1 and d(β) = m, whence
cηαβ > 0. We conclude the proof by illustrating the construction with a simple example
(see Figure 8 below). Let α = (6, 6, 3, 3, 3, 2, 1) ` 24 and β = (5, 4, 3, 3, 1) ` 16. Note that
d(α) = d(β) = 3.

Tα = 1 1 1 1 1 1
2 2 2 2 2 2
3 3 3
4 4 4
5 5 5
6 6
7

, Tβ = , and Tη = 1 1 1 1 1 1
2 2 2 2 2 2

3 3 3

4 4
4 5 5
5 6
6
7

.

Figure 8: Construction of η.

The following easy observation will be the final ingredient for the proof of Theo-
rem 3(2).

Lemma 45. Let µ ` m, ν ` n, and λ ` m+ n. If cλµν > 0, then d(λ) 6 d(µ) + d(ν).

Proof. Consider the skew shape Tλ/µ. Clearly, it has a square of size d(λ)−d(µ). Assume
that d(λ) − d(µ) > d(ν). By assumption, cλµν > 0, and hence there exists a LR tableaux
of shape λ/µ and type ν. Consider such a filling. In this filling, any number greater than
d(ν) must occur at most d(ν) times. Since the filling is semi-standard, the left bottom
corner of the square must have a filling, say a, where a > d(ν). The last row of the
square must be filled with a sequence of numbers that is weakly increasing. Since the
reverse reading word of the filling must also be a lattice permutation, if we traverse the
row from right to left, we observe that for each entry in this row, we must have filled the
diagram with the number a in some box above or in this row. This accounts for at least
(d(λ)− d(µ))-many occurrences of a in the diagram, a contradiction.

Proof of Theorem 3(2). Let k = bn−1
2
c. We claim that c(χ2

µ(k)) consists of all χλ’s

such that d(λ) 6 2 except possibly the sign character. This can be easily verified using
Theorem 37. Indeed, if λ = (n − r, 1r) where 0 6 r 6 n − 2, the result follows easily
by taking e = f = k in Theorem 37. Let λ = (n4, n3, 2

d2 , 1d1) be a double hook as in
Theorem 37. Then n4 +n3 = n−x where x = 2d2 + d1. Notice that the first summand in
Theorem 37(4) is always 1. This yields that gµ(k)µ(k)λ > 0, thereby establishing our claim.
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Using Theorem 37(2), ε ∈ c(χ2
µ(k)) when n is odd and ε /∈ c(χ2

µ(k)) when n is even.

Thus, when n = 7, c(χ2
µ(k)) = Irr(S7) and the result follows. Observe that χµ(k) ∈ c(χ2

µ(k))

and hence c(χiµ(k)) ⊆ c(χi+1
µ(k)) for i > 2. Since the sign character ε clearly belongs to

c(χ3
µ(k)), we conclude that ε ∈ c(χiµ(k)) for i > 3. Thus, when n = 8, c(χ3

µ(k)) = Irr(S8)
and the result follows. Therefore, for the rest of the proof we may assume n > 9.

Now we claim that c(χiµ(k)) \ {ε} = {χλ | d(λ) 6 2i−1} \ {ε} for every 2 6 i 6 l,

where l is the least integer such that 2l−1 > b
√
nc. Setting i = l in the claim, we

obtain that c(χlµ(k)) = Irr(Sn). Since c(χl−1µ(k)) ( Irr(Sn), our theorem is proved once
we establish our claim. We prove it using induction on i. For i = 2, we have the
claim from the first paragraph of this proof. Let us assume it is true for all i such
that 2 6 i < r 6 l. We prove the claim for i = r. We first show that {χλ | d(λ) 6
2r−1} \ {ε} ⊆ c(χrµ(k)). Let (1n) 6= λ ` n be such that 2 < d(λ) 6 2r−1. By using
Lemma 41, Lemma 42, and Lemma 44, we conclude that there exist α ` k, β ` n − k,
and η ` n such that d(η) = dd(λ)

2
e and cλαβc

η
α′β > 0, whence Lemma 38 yields that

gλµ(k)η + gλµ(k−1)η > 0. Since d(η) 6 2r−2, by induction hypothesis, χη ∈ c(χr−1µ(k)). Thus, if

gλµ(k)η > 0, then χλ ∈ c(χµ(k)χη) ⊆ c(χrµ(k)) as desired. Otherwise, gλµ(k−1)η > 0, whence

χλ ∈ c(χµ(k−1)χη) ⊆ c(χµ(k−1)χ
r−1
µ(k)) ⊆ c(χrµ(k)) by Lemma 39 as desired. Now we show

that c(χrλ) \ {ε} ⊆ {χλ | d(λ) 6 2r−1}. Let χν ∈ c(χrλ) \ {ε}. By induction hypothesis,
we can conclude that χν ∈ c(χλχµ(k)) for some λ with d(λ) 6 2r−2. This implies that
gλµ(k)ν > 0, whence by Lemma 38, we conclude that there exist α ` k, β ` n−k such that
cλαβc

ν
α′β > 0. Since d(λ) 6 2r−2, we obtain that d(α), d(β) 6 2r−2. Using Lemma 45, we

get d(ν) 6 2r−1 which yields the desired inclusion.

Remark 46. If λ = (n+1
2
, 1

n−1
2 ) where n is odd, then ccn(σλ;Sn) = 2. If n is even,

ccn(σλ;Sn) = 2 when λ = (n
2
, 1

n
2 ), and ccn(σλ;Sn) = 3 when λ = (n

2
+ 1, 1

n
2
−1). In

these cases, ccn(σλ;Sn) is much less than ccn(χλ;Sn). In contrast, when λ is (n − 2, 2)
or (n+1

2
, n−1

2
) (when n is odd), we have seen that ccn(σλ;Sn) = ccn(χλ;Sn). Moreover,

the same is conjectured for all the irreducible characters indexed by two-row partitions
(Conjecture 36).

6 Proof of Theorem 4

We briefly discuss the irreducible characters of An to set down the notations. We denote
ResSnAnχλ by χλ ↓. Recall that m(π) denotes the cycle-type of π ∈ Sn and is a partition of n.
Let DOP(n) denote the set of all partitions of n with distinct and odd parts. Further, let
SP(n) denote the set of all self-conjugate partitions of n. The folding algorithm defines a
bijection ϕ : DOP(n)→ SP(n) (see [26, Lemma 4.6.16]). For µ ∈ DOP(n), the conjugacy
class of Sn parameterized by µ (say Cµ) splits into two conjugacy classes of An of equal
size, that is, Cµ = C+

µ tC−µ . As convention, we assume that wµ ∈ C+
µ . Set w+

µ := wµ and
w−µ to be a fixed element of C−µ . If µ ∈ DOP(n), we write µ = (2m1+1, 2m2+1, . . . ). The
following theorem describes the irreducible characters of An and their character values.

Theorem 47. [26, Theorem 5.12.5] Let λ ` n. Then:
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1. If λ 6= λ′, then χλ ↓ is an irreducible character of An. Further, χλ ↓= χλ′ ↓.

2. If λ = λ′, then χλ ↓ decomposes into two irreducible characters of An, say χ+
λ

and χ−λ , that is, χλ ↓= χ+
λ + χ−λ . Moreover, for any odd permutation π, χ−λ (w) =

χ+
λ (πwπ−1) for all w ∈ An.

3. We have χ+
λ (w) = χ−λ (w) = χλ(w)/2 unless m(w) is the partition µ := ϕ−1(λ)

having distinct and odd parts, in which case

χ±λ (w+
µ ) =

1

2

(
εµ ±

√
εµzµ

)
,

and χ±λ (w−µ ) = χ∓λ (w+
µ ). Here, εµ = (−1)m1+m2+··· and zµ is the size of the centralizer

of wµ in Sn.

We begin with an important lemma whose proof is easy.

Lemma 48. Let λ, µ ` n be such that λ 6= λ′ and µ = µ′. Then c(χλ ↓ χ+
µ ) \ {χ±µ } =

c(χλ ↓ χ−µ ) \ {χ±µ }.

Proof. Let ν ` n be such that ν 6= ν ′. Let θ = ϕ−1(µ). Using Theorem 47, we get

〈χλ ↓ χ+
µ , χν ↓〉 =

2

n!

 ∑
w∈An

m(w) 6=θ

χλ(w)χµ(w)χν(w)

2
+
|Cθ|

2
χλ(wθ)χν(wθ)

(
χ+
µ (w+

θ ) + χ+
µ (w−θ )

) . (13)

Now expanding the inner-product 〈χλ ↓ χ−µ , χν ↓〉 as above and using the fact χ±µ (w−θ ) =
χ∓µ (w+

θ ), we conclude that 〈χλ ↓ χ+
µ , χν ↓〉 = 〈χλ ↓ χ−µ , χν ↓〉. If ν ` n is self-conjugate

and ν 6= µ, a similar computation yields 〈χλ ↓ χ+
µ , χ

±
ν 〉 = 〈χλ ↓ χ−µ , χ±ν 〉.

The following theorem of Bessenrodt and Behns will be required.

Theorem 49. [6, Theorem 5.1] Let n > 5 and λ, µ ` n. Let d(χλχµ) = max{d(ν) | χν ∈
c(χλχµ)}. Then d(χλχµ) = 1 if and only if one of them is χ(n) or χ(1n), and the other one
is χ(n−r,1r), where 0 6 r 6 n− 1.

Before moving further, we make the following observation: Suppose ν ` n with d(ν) = 2.
Then ν = ν ′ implies that n is even. Indeed, if ν = ν ′, then the unfolding ϕ−1(ν) is a
partition of n with two distinct and odd parts, whence n is even. As a result, if n is odd,
then χν ↓ is an irreducible character of An.

Lemma 50. Let n > 5 be odd and k = n−1
2

. Then, for every 1 6 r 6 n−3
2

, there exists
ν ` n with d(ν) = 2 and χν ↓∈ c(χµ(r) ↓ χ+

µ(k)) ∩ c(χµ(r) ↓ χ
−
µ(k)).

Proof. Using Theorem 37 and Theorem 49, we conclude that there exists ν ` n with
d(ν) = 2 and χν ∈ c(χµ(r)χµ(k)). This yields that χν ↓∈ c(χµ(r) ↓ χµ(k) ↓), whence our
assertion holds by Lemma 48.
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Next, we determine the irreducible constituents of χ±2µ(k) and χ+
µ(k)χ

−
µ(k), where n is odd

and k = n−1
2

.

Lemma 51. Let n > 5 be odd and k = n−1
2

. We have the following:

1. If n ≡ 3(mod 4), then χ±2µ(k) =
∑

06i6n−3
2

k≡i(mod 2)

χµ(i) ↓ +
∑
{ν,ν′}
d(ν)=2

χν ↓ +χ∓µ(k).

2. If n ≡ 1(mod 4), then χ±2µ(k) =
∑

06i6n−3
2

k≡i(mod 2)

χµ(i) ↓ +
∑
{ν,ν′}
d(ν)=2

χν ↓ +χ±µ(k).

3. χ+
µ(k)χ

−
µ(k) =

∑
06i6n−3

2
k≡i+1(mod 2)

χµ(i) ↓ +
∑
{ν,ν′}
d(ν)=2

χµ ↓.

Proof. Since we have assumed that n is odd, we conclude that ν 6= ν ′ if d(ν) = 2. Using
Theorem 37, we have the following decomposition of χµ(k) ↓2 into irreducible characters
of An.

χµ(k) ↓2= 2
∑

06i6n−3
2

χµ(i) ↓ +4
∑
{ν,ν′}
d(ν)=2

χν ↓ +χ+
µ(k) + χ−µ(k). (14)

Notice that ϕ−1(µ(k)) = (n). Hence, χ±λ (w+
(n)) = 1

2
((−1)k ±

√
(−1)kn). Let 0 6 i 6 n−3

2
.

Note that 4χ+2
µ(k)(π)− χµ(k) ↓2 (π) = 0 if π ∈ An and m(π) 6= (n). Further,

4χ+2
µ(k)(w

+
(n))− χµ(k) ↓

2 (w+
(n)) + 4χ+2

µ(k)(w
−
(n))− χµ(k) ↓

2 (w−(n))

= ((−1)k +
√

(−1)kn)2 + ((−1)k −
√

(−1)kn)2 − 2 = 2((−1)2k + (−1)kn)− 2

= 2(−1)kn.

Since χµ(i) ↓ (w+
(n)) = χµ(i) ↓ (w−(n)) = (−1)i, we get

〈4χ+2
µ(k) − χµ(k) ↓

2, χµ(i) ↓〉 = 2(−1)k+i.

This yields

〈χ+2
µ(k), χµ(i) ↓〉 =

1

4
〈χµ(k) ↓2, χµ(i) ↓〉+

1

2
(−1)k+i =

1

2
(1 + (−1)k+i).

The last equality follows from Equation (14). Similar computations yield

(a) 〈χ−2µ(k), χµ(i) ↓〉 = 1
4
〈χµ(k) ↓2, χµ(i) ↓〉+ 1

2
(−1)k+i = 1

2
(1 + (−1)k+i).

(b) 〈χ+
µ(k)χ

−
µ(k), χµ(i) ↓〉 = 1

4
〈χµ(k) ↓2, χµ(i) ↓〉+ 1

2
(−1)k+i+1 = 1

2
(1 + (−1)k+i+1).
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Thus,

〈χ±2µ(k), χµ(i) ↓〉 =

{
1 if k ≡ i(mod 2),

0 otherwise,
and 〈χ+

µ(k)χ
−
µ(k), χµ(i) ↓〉 =

{
1 if k ≡ i+ 1(mod 2),

0 otherwise.

Let ν ` n be such that d(ν) = 2. Using Equation (14) and the fact that χν(w(n)) = 0,
we obtain

〈χ±2µ(k), χν ↓〉 = 〈χ+
µ(k)χ

−
µ(k), χν ↓〉 =

1

4
〈χµ(k) ↓2, χν ↓〉 = 1.

It remains to determine the memberships of both χ+
µ(k) and χ−µ(k) in χ±2µ(k) and χ+

µ(k)χ
−
µ(k).

Since χµ(k) ↓2= χ+2
µ(k) + χ−2µ(k) + 2χ+

µ(k)χ
−
µ(k), using Equation (14) we can conclude that

χ±µ(k) /∈ c(χ+
µ(k)χ

−
µ(k)). Assume that n ≡ 3(mod 4). In this case, we have χ−µ(k) = χ+

µ(k)

and hence it is easily seen that 〈χ+2
µ(k), χ

−
µ(k)〉 = 〈χ−2µ(k), χ

+
µ(k)〉 = 1. When n ≡ 1(mod 4), a

direct computation yields the desired result.

We are now ready to prove the theorem.

Proof of Theorem 4. Let k = dn−1
2
e. Let n ∈ {6, 8}. We have seen in the proof of

Theorem 3(2) that c(χ2
µ(k)) = Irr(Sn) \ {ε}. Thus, c(χµ(k) ↓2) = Irr(An) and the result

follows in this case.
Since d(λ) = d(λ′), using the proof of Theorem 3(2), we conclude that for n > 9 we

have ccn(χµ(k) ↓;An) = ccn(χµ(k);Sn). Thus, when n > 10 is even, the result once again
follows by Theorem 3(2). Assume that n is odd. Note that χµ(k) ↓3= χ+3

µ(k) + χ−3µ(k) +

3χ+2
µ χ−µ(k) + 3χ+

µ(k)χ
−2
µ(k). We claim that c(χ+3

µ ) = c(χ−3µ(k)) ⊇ c(χ+2
µ χ−µ(k)) = c(χ+

µ(k)χ
−2
µ(k)).

We first show that c(χ+3
µ(k)) ⊇ c(χ+

µ(k)χ
−2
µ(k)). Using the previous lemma, we have the

following:

χ+3
µ(k) =

∑
06i6n−3

2
k≡i(mod 2)

(χµ(i) ↓ χ+
µ(k)) +

∑
{ν,ν′}
d(ν)=2

(χν ↓ χ+
µ(k)) + χχ+

µ(k), (15)

where χ is χ−µ(k) (resp. χ+
µ(k)) when n ≡ 3(mod 4) (resp. n ≡ 1(mod 4)). Also,

χ+
µ(k)χ

−2
µ(k) =

∑
06i6n−3

2
k≡i(mod 2)

(χµ(i) ↓ χ+
µ(k)) +

∑
{ν,ν′}
d(ν)=2

(χν ↓ χ+
µ(k)) + χ′χ+

µ(k), (16)

where χ′ is χ+
µ(k) (resp. χ−µ(k)) when n ≡ 3(mod 4) (resp. n ≡ 1(mod 4)). The first

two summands of both equations are the same. The last summands in the above two
equations differ only by the irreducible characters χµ(i) ↓ where 0 6 i 6 n−3

2
, and possibly

one of χ+
µ(k) or χ−µ(k). By Lemma 50, for 1 6 i 6 n−3

2
, we conclude that all χµ(i) ↓ appear

as constituents of the second summand in both the equations. Further, both χ+
µ(k) and

χ−µ(k) appear as constituents of the second summand once again, by Lemma 51. Finally,

note that χχ+
µ(k) contains the trivial character as well, whence the result follows. Now,

χ−µ(k)χ
+2
µ(k) =

∑
06i6n−3

2
k≡i(mod 2)

(χµ(i) ↓ χ−µ(k)) +
∑
{ν,ν′}
d(ν)=2

(χν ↓ χ−µ(k)) + χχ−µ(k). (17)
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Comparing Equation (16), Equation (17), and using Lemma 48, the first two summands
of both the equations have the same irreducible constituents except possibly χ±µ(k). The

third summands of both equations are the same when n ≡ 1(mod 4), and differ only by
the irreducible characters χ±µ(k) when n ≡ 3(mod 4), by Lemma 51. Using Lemma 51

once again, when d(ν) = 2, {χ+
µ(k), χ

−
µ(k)} ⊆ c(χν ↓ χ±µ(k)). This implies {χ+

µ(k), χ
−
µ(k)} ⊆

c(χ+
µ(k)χ

−2
µ(k)) ∩ c(χ

−
µ(k)χ

+2
µ(k)). We conclude that c(χ+2

µ χ−µ(k)) = c(χ+
µ(k)χ

−2
µ(k)), as required.

Finally,

χ−3µ(k) =
∑

06i6n−3
2

k≡i(mod 2)

(χµ(i) ↓ χ−µ(k)) +
∑
{ν,ν′}
d(ν)=2

(χν ↓ χ−µ(k)) + χ′χ−µ(k). (18)

Comparing the above equation with Equation (15) and using similar arguments as above,
it follows that c(χ+3

µ(k)) = c(χ−3µ(k)). Thus, the claim is established and we conclude that

c(χ+3
µ(k)) = c(χ−3µ(k)) = c(χµ(k) ↓3). From Lemma 51, it is clear that ccn(χ±µ(k);An) > 3. Let

n = 5, 7. Since ccn(χµ(k) ↓;An) = 2, using Lemma 16(1), we get c(χµ(k) ↓3) = Irr(An),
whence the result follows for n = 5, 7. For n > 9, using Theorem 3(2) and Lemma 17, we
get the desired result.
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