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Abstract

Graphical chip-firing is a discrete dynamical system where chips are placed on
the vertices of a graph and exchanged via simple firing moves. Recent work has
sought to generalize chip-firing on graphs to higher dimensions, wherein graphs
are replaced by cellular complexes and chip-firing becomes flow-rerouting along the
faces of the complex. Given such a system, it is natural to ask (1) whether this
firing process terminates and (2) if it terminates uniquely (i.e. is confluent). In
the graphical case, these questions were definitively answered by Bjorner—Lovasz—
Shor, who developed three regimes which completely determine if a given system
will terminate. Building on the work of Duval-Klivans—Martin and Felzenszwalb-
Klivans, we answer these questions in a context called flow-firing, where the cellular
complexes are 2-dimensional.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

This paper concerns flow-firing, a higher-dimensional analogue of chip-firing. In classical
chip-firing chips are placed on the vertices of a graph and move to other vertices via
local moves dictated by the graph Laplacian [10]. Flow-firing is a discrete model for cell
complexes, where flow along one-dimensional edges is diverted over two-dimensional faces
as dictated by the combinatorial Laplacian. Higher dimensional chip-firing was introduced
in [3] where the focus was on algebraic considerations. The study of the dynamical
properties of flow-firing was initiated in [4], and is continued here. Consider the following
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two questions concerning the fundamental behavior of termination and confluence for
flow-firing:

e For which initial configurations does the flow-firing process terminate?

e For which initial configurations does the flow-firing process terminate uniquely?

In the classical case of chip-firing on a graph the answer to the first question is provided
by a theorem of Bjorner, Lovasz and Shor [2]. Their result identifies three regimes for
chip-firing behavior. Informally, the theorem states that: (1) If the number of chips is
small enough then the process always terminates; (2) If the number of chips is large
enough then the process never terminates; and (3) If the number of chips is in a middle
range, then one can always find a configuration which terminates and one that does not,
see Theorem 6 for a precise statement.

In the graphical case, if a configuration terminates it always does so uniquely, rendering
the second question unnecessary. In flow-firing, however, not all initial configurations
terminate uniquely. An important setting that terminates uniquely was identified in [4].
Furthermore the authors conjectured a related much larger class of initial configurations
would terminate uniquely. Building from that work, our main result reveals a subtler
behaviour than originally conjectured, resulting in a generalization of the Three-Regime
Theorem for uniqueness of termination for flow-firing.

Denote by K(n,r) the initial configuration known as the pulse of height n and radius
r (see Section 2).

Theorem 1 (Three-Regime Theorem for Flow-Firing). Let r,n € Zs,.

1. If r < 1, then firing from K(n,r) terminates uniquely in the Aztec diamond.
2. If 2 <r <[], then firing from K(n,r)

(a) does not terminate uniquely, but

(b) can terminate in the Aztec diamond.
3. Ifr > [%], then

(a) K(n,r) does not terminate uniquely, and

(b) if r > (\%1 + 1, then firing from K(n,r) will never terminate in the Aztec
diamond.

Questions of termination and uniqueness have also been considered in other variations
of chip-firing. Two notable examples are labeled chip-firing [7, 8, 9] and root-system chip-
firing [5, 6] where the emphasis is on local versus global confluence properties. We prove
confluence (unique termination) for subsystems of flow-firing including certain path-firings
(Corollary 9).

The remainder of the paper proceeds as follows. Section 2 gives background on flow-
firing. We introduce the notion of firing along a path and study its behavior in Section
3. In Sections 4, 5 and 6 we prove Theorem 1, addressing each of the three regimes in
turn. We then conclude in Section 6.3 by discussing challenges to improving the bounds
of Theorem 1.
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2 Background

Following [4], we consider flow-firing on the two dimensional grid complex. A flow con-
figuration is an assignment of integer values to the edges of the complex. Visually, we
depict flow as oriented, with positive values oriented to the right and up, and negative
values oriented to the left and down. For example, the flow configuration on the left in
Figure 1 has flow value zero on all edges except the center edge, which has a value of 2
and is depicted as a downward facing arrow and labeled with the magnitude 2.

The degree of an edge is the number of two dimensional faces in which it is contained.
An edge can fire if it has at least as many units of flow as its degree. In firing an edge,
one unit of flow is diverted around each of the two dimensional cells containing it; an
example is shown in Figure 1. In visualizations, an edge with 1 unit of flow will have a
directed arrow but we suppress the number 1.

Figure 1: An example of flow-firing on the grid

The flow-firing process starts with a fixed initial flow configuration. From all edges
that can fire, one is selected and fired. This continues until no firing moves are possible
or continues forever. A flow configuration is stable if no flow-firing moves are possible.
From a fixed initial configuration, we are interested in whether a stable configuration can
be reached or not, and whether that stable configuration is unique. A flow configuration
is conservative if for each vertex v, the flow into v is equal to the flow out of v.

Theorem 2 ([4, Proposition 2, Theorem 4]). Let K be a flow configuration.

o [f there is a vertex v with
|inflow(v) — outflow(v)| > 4,
then flow-firing never terminates.
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o [f K is conservative, then flow-firing terminates after a finite number of steps.

Moreover, conservative flow configurations are induced by face representations. A
face representation of a flow configuration is an assignment of integer values to the 2-
cells of the complex. Visually, flow is depicted as oriented, with positive values oriented
clockwise and negative values oriented counter-clockwise, see below.

312 ‘ @
2 ‘ @

(a) Edge representation (b) Face representation

Henceforth, we assume our configurations are conservative and can therefore be ana-
lyzed using the face representation. Given such a configuration K, we denote the weight
of a face f by K;. The support of a face configuration is the set of faces f whose weights
are nonzero. In the grid, the distance between faces f and g, written dist(f,g) is the
Manhattan distance. For instance, dist(f, f) = 0, and if f and g are neighbors, i.e. share
an edge, then dist(f, g) = 1.

The flow-firing rules described earlier can be translated to firing rules on faces. Let
K be a configuration and suppose f,g are faces of the grid with weights K; and K,
respectively. If Ky > K, +2, then a face fire of f towards g results in a new configuration
K" with weights K = Ky —1 and K|, = K, +1. If the recipient g is understood from context
we will often simply refer to firing a face f.

Example 3. Below are three face configurations. The second picture (b) is obtained from
the first picture (a) by firing the face with weight 2 to the right. The last picture (c) is
obtained from (a) by by firing the face with weight 3 to the left.

3 1
112 1111 1

(a) (b) (c)

We consider a modification of face-firing called face-firing with a marked face. Fix
a marked face fy and an integer n, the weight of fy;. The marked face acts simultaneously
as a source and a sink, while eschewing some of the properties of both. We use the usual
face-firing rules away from fy, but adapt the rules when firing into or out of f; in the
following way: if f is adjacent to fp and has weight K; < n, we can fire from f, to f.
If on the other hand Ky > n, we can fire from f to fy. If Ky = n, then we cannot fire
between fy, and f. Notably, for any configuration K, the value Ky never changes as a
result of firing. Example 4 illustrates face firing moves with a distinguished face.
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Example 4. Below are three configurations on the grid complex with a marked face
(shaded). To obtain the second configuration (b) from the first configuration (a), we fire
the marked face to the left. This firing is only allowed because we are firing the marked
face. In the second picture (b), the values of the two faces involved are the same, so we
cannot fire the marked face to the left. The third picture (c) is obtained from the second
configuration (b) by firing the top middle box to the right.

(a) (b) (c)

The (total) weight of a configuration K is the sum of the non-zero face weights in K:

weight(K) := Z Ky
f

and the support radius of K is len(K) := max{dist(f, fo) : Ky # 0}.

There are two configurations that will play a significant role in our analysis. The first
configuration is the Aztec diamond, which is the configuration whose faces f have the
following weights

Az(n)s := max{n — dist(fy, f) + 1,0} for all faces f # fo,

and Az(n)g, = n.

The second configuration is the pulse of height n and radius r, which we denote
by K(n,r). In the edge representation, K(n,r) can be described as a simple closed curve
of radius r around fj, with n units of flow oriented clockwise. In the face representation,
K(n,r) is the configuration such that K(n,r); = n if dist(fo, f) < r and K(n,r); = 0,
otherwise. Examples of K(4,2) and Az(2) are shown below. In the edge representation,
K(4,2) is a closed curve with 4 units of flow along the curve and Az(2) has 1 unit of flow
on every edge in the discrete £;-ball centered at the distinguished face.

4 1
4144 2
41414144 11212]2]1
414 |4 2
4 1
Pulse K(4, 2) Aztec diamond Az(2)

The significance of these two configurations originates with the following theorem,
which proved the first instance of confluent behavior in the context of flow-firing.

o
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Theorem 5 ([4, Theorem 9]). Every sequence of flow-firing moves on K(n,0) terminates
in Az(n).

The three regimes theorem for flow-firing (Theorem 1) provides a fuller description of
the possible behavior of initial configurations around a marked face, in particular showing
that the pulse is essentially the only initial configuration that gives a confluent system.

For context and comparison, we give the precise statements of the graphical theorem
before proceeding with the proof of the flow-firing theorem.

Theorem 6 ([2, Theorem 3.3]: Three Regimes for Graphical Chip-Firing). Let G be a
finite connected graph with n vertices and m edges. Let ¢ be a configuration with N chips
wn total. Then

1. If N < m then the chip-firing process terminates after finitely-many firing.

2. If m < N < 2m — n then there exists an initial configuration which stabilizes and
also one which does not.

3. If N > 2m — n then the chip-firing process never stabilizes.

3 Path-Firing

A path P is a collection of successive faces P = (f1,..., fx) such that dist(f;_1, fi) = 1
for 2 < i < k. A flow-firing process involving only the faces of P is called path-firing. A
path is called standard if each f; has value max{0,n — dist(fo, f;) + 1}. In other words,
a standard path is one in which the weight of f matches Az(n);.

Let R be a path configuration on P such that the face weights of R form a weakly
decreasing sequence Ry > ... > Ry. A configuration obtained by path-firing on R along
the path P is called an intermediate path configuration; if there are no more path-firing
moves left, such a configuration is called path-stable. Note that the face weights of any
intermediate path configuration always form a weakly decreasing sequence. This means
that firing from face f; can only be directed towards face f;;—in other words, firing can
only happen in one direction along P.

It turns out that path-firing is equivalent to graphical chip-firing along a line, which
has been studied in [1]; see also [10, Chapter 5. We will thus be able to apply standard
results from graphical chip-firing to study path-firing. The key ingredient to forge this
connection is the notion of discrete derivatives, defined below. We thank an anonymous
referee for pointing out this connection.

Let R be a path configuration on a path P as given above. Write d(R) = (dy, ..., d) to
denote the discrete derivative of R, where d, = Ry and d; = R; — R,y fori=1,... k.

Consider the configuration R" = (Ry,...,R; =1,R;;1 +1,...,Rg) obtained from R by
firing from face f; towards face fj,;. Then the discrete derivative of R’ is

d(R") = (1)

(dl,...,di_1+1,di—2,di+1—f-]_,...,dk) 1fZ>17
(dy— 2,ds + 1, ds, ..., dy) iti=1.
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Notice that R can be recovered from its discrete derivative by taking partial sums: the
weight R; is given by

This leads to the following, which follows immediately from Equation (1).

Proposition 7. Path-firing on R along P s equivalent to chip-firing on a line with vertices
Vg, U1, - - - , Uk, where for any 0 < i < k, vertex v; has d; chips, and vertex vy is a sink vertex
(with no chips).

Example 8. Consider a path configuration R(¢) for a fixed integer ¢, with R(¢); = n for
all 1 <i < ¢. Then the discrete derivative d(R(¢)) = (dy, dy,---) of R(¢)

d(R(0)) = (0,---,0,n,0,---0)

The corresponding graphical configuration has d, = n and d; = 0 for all ¢  ¢. This special
case of graphical chip-firing is studied in [1] and its final configuration is well-understood
(see Corollary 9).

Our ultimate goal is to understand configurations obtained from flow-firing on K(n, ).
To do so, we will first analyze path-firing along a single row of K(n, r), which we implicitly
introduced in Example 8. Explicitly, for any ¢ € Z-, define

P) = (fu - fer2)),
and a configuration R(¢) on P(¢):

£ times

Since P(¢) does not include fy, the number of chips stays constant while firing along P ().
The discrete derivative of R(¢) is

d(¢):=(0,0,...,0,n,0,0,...).
—_——

£—1 times

By Proposition 7, flow-firing on a path with initial configuration R(¢) is the same as
graphical chip-firing on a line with £+ [ % | +1 vertices (equivalently £+ |5 ] edges) where
the first vertex is a sink.

Chip-firing in the above context will terminate [10, Theorem 2.5.2], but we can be
more precise about its termination behavior using [1, Theorem 1]. Below, we translate
this behavior back into the language of flow-firing, so that we can apply it later in Section
5.2.

Corollary 9 ([1, Theorem 1]). For any ¢ > 0, the path that leads to R({) along P(¢)
terminates uniquely. Let R be this terminal configuration, and let Sy be the set of faces
that fire in the process of obtaining R® from R(¢). Then
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b ]f€> LgJ then SZ = {fk—&-l)fk—l—?a"'?f?"—l};
i ]fgg LgJ; then sz{flw-'af’l‘—l};
where k = { — | 5] and let r = len(R"). Moreover, if { < [§] thenlen(R®%) = £+ | 3].

As an example, we compute the discrete derivative d(R®) corresponding to the config-
uration R® in Corollary 9, when ¢ < [4]:

((1,1,...,1,0,...) if n is odd,
~———
L+ 5] times
d(R%) = (2)
(1,1,...,1,0,1,1,...,1,0,...) if nis even.
. Z—l;mes 5 t‘i,mes

As discussed above, d(R°) completely determines R°. Determining d(R°) when ¢ > [%] is
even simpler and is given explicitly in [1].

In addition to describing the termination behavior of R(¢), Proposition 7 allows us
to better understand intermediate path configurations more generally. Lemma 10 below
implies that the entries of discrete derivative cannot be zero “too often” unless it started
off that way. We omit the proof because it is similar to the proof of [1, Lemma 1].

Lemma 10. Let R be a path configuration on a path P whose face weights form a weakly
decreasing sequence. Let R' be an intermediate path configuration obtained from path-firing
on R. Let d(R") = (do,- -+ ,dy,--) denote the discrete derivative of R". Then

(a) if d; = diyq1 = 0, the faces fi, fix1 and firo never fire, and

(b) ifdi=d; =0 fori+1<janddy =1 fori <l <j then the faces f;, fit1, f;, and
fi+1 never fired.

Lemma 10 significantly limits the types of configurations that can arise from path-
firing on along P, and will be useful later in Section 6.1.

4 The first regime

Theorem 1 (Part 1). If » < 1, then firing from K(n,r) terminates uniquely in the Aztec
diamond Az(n).

Our approach to showing a configuration can terminate in Az(n) (e.g. Regimes 1 and
2) relies on finding an intermediate configuration of K(n,r) that does not “violate” the
Aztec diamond. A configuration K violates the Aztec diamond Az(n) if some face f has
Ky > Az(n);. After finding such a configuration, Lemma 11 allows us to conclude that
the initial configuration K(n,r) can terminate in Az(n).

Lemma 11. Let K be a configuration with Ky, = n. If Ky < Az(n)s for all faces f, then
there is a sequence of firing moves sending K to Az(n).
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Proof. The core of this proof comes from two observations.

1. Let f, g be adjacent faces with g strictly further from f; than g, so that dist(fo, f)+
1 =dist(fo,9). If Kf = Az(n); and K, < Az(n),, then K, < K; — 2 and hence we
can fire from f to g.

2. If g is adjacent to fo and K, < Az(n),, then K, < n — 1 and we can fire from f; to
g.
Let g be a face such that K, < Az(n), but all faces strictly closer to f, satisfy K, =
Az(n)y.
If ¢ is adjacent to fy, then by (2) above, we can fire from f; to g. If g is not adjacent

to fo, then there is some face f adjacent to g and strictly closer to fy; by (1) we can fire
from f to g. Repeat this process until K, = Az(n), for all faces g. n

Proposition 12. Ifr < 1, then K(n,r) terminates uniquely in the Aztec diamond.

Proof. The r = 0 case was proven in [4, Theorem 9]. If r = 1, then K(n,1) is an
intermediate configuration obtained from K(n,0) and it terminates uniquely at Az(n) by
[4, Theorem 9. O

We will see in the subsequent section that although there are many more configurations
that can terminate in the Aztec diamond, in general this termination will not be unique.

5 The Second Regime

Theorem 1 (Part 2a). If 2 < r < [4], flow-firing on K(n,r) does not terminate uniquely.

In order to prove this, we will show that there exists (i) a sequence of firings that
terminate in Az(n) and (ii) a sequence of firings that terminate in a configuration that is
not Az(n).

In what follows, we state our results for Regime 2 in terms of K(n,r). However, both
claims in Theorem 1(2) hold more generally for a closed curve with weight n strictly
containing K(n, 1) and contained within K(n,r) for 2 <r < [§].

5.1 Second regime: termination violating the Aztec diamond.

Our goal in this section is to show that the configuration K(n,r) need not terminate in
the Aztec diamond when 2 <7 < [5].

Lemma 13. Let K be any configuration and let f and g be adjacent faces with

dist(fo, f) < dist(fo,9) <n.

If f wviolates the Aztec diamond but g does not, then one can fire from f to g. In the
resulting configuration K', K’ will violate the Aztec diamond if Ky > Az(n)y + 1, and K|
will violate the Aztec diamond if K, = Az(n),.
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Proof. To see the first part of the lemma, we need to show that Ky — K, > 2. Recall that
Az(n) = max{n — dist(fo, f) + 1,0}.
Since dist( fo, f) < dist(fo, g) < n, we have that Az(n), < Az(n);. Since they are adjacent,
Az(n)s — Az(n), = 1.

Thus
Kf = AZ(TL)f +1= Az(n)g + 2.

On the other hand, since K, does not violate the Aztec diamond, K, < Az(n),. Thus

K = Kg +2
as desired. The second part of the claim is clear from inspection. O]

Lemma 14 (Flooding lemma). Let f be a face such that Ky > Az(n)y > 0. Then there
is configuration K', reachable from K by flow-firing moves, and a face g such that

o dist(fo,g9) =1+ dist(fo, f) and
o K > Az(n),.

Proof. We explicitly construct K’ as in the statement of the lemma. Let V be the set
of faces that violate the Aztec diamond in the configuration K. Take f € V to be a
face with maximal distance from fy;. By the maximality of f, every neighbor g of f with
dist(fo, g) = 1 + dist(fo, f) does not violate the Aztec diamond. Choose such a neighbor
g and a path P = (fo, f1,- -+, fe = g) that does not pass through f.

We claim that one can fire along P until g violates the Aztec diamond. There are two
cases:

o Case I: For 1 <i < /{, no f; in P violates the Aztec diamond.
First fire along P to create a standard path. This is always possible because f;
never violates the Aztec diamond. Note that after this process, g has value Az(n),.
By Lemma 13, we can fire from f into g, which means that g will then violate the
Aztec diamond.

o Case II: There is some 1 < i < ¢ where f; violates the Aztec diamond.
Pick the violating face f; that is furthest from fy. Thus f;;; does not violate Az(n),
and so by Lemma 13 we can fire from f; to f;11. Repeat this process; it necessarily
will terminate because we are in the conservative flow setting. After termination,
either we are in Case I or the violation has been pushed to P, = g¢.

Thus, the resulting configuration K’ has K; > Az(n), since g violates the Aztec diamond.
O

The Flooding Lemma implies that for a configuration K(n, ) with r large enough, one
can construct a terminal configuration that violates Az(n).
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Theorem 1 (Part 2b). Given a configuration K(n,r) with 2 < r < [§], there is a stable
configuration K* such that K* # Az(n).

Proof. Since 2 < r < [5], there exists at least one face violating Az(n). Let V' be
the set of all such faces, and choose f € V of maximal distance from fy. Since f is
maximal, every face g with dist(g, fo) > dist(f, fo) has K, < Az(n),. Fix such a g with
dist(g, fo) = dist(f, fo) +1. Applying the Flooding Lemma (Lemma 14) to f and g gives a
new configuration K’ such that some face g with dist(g, fo) > dist(f, fo) has K, > Az(n),.

Repeat this process until the violating face h has dist(fy, h) > n, so that Az(n), = 0;
note that this is always possible by Lemma 13. Call this configuration K'. Since K} > 0,
no firing moves on K’ can ever decrease the weight of face of h, and so firing on K’ will
result in a terminal configuration K* with Kj > 0. Hence K* # Az(n). O

Example 15. Below we draw four configurations. The first (a) is K(3,2), and the other
three are obtained from the first by successive firing moves. Using the notation of Lemma
14, for each of the configurations K below, pick f to be the northern-most nonzero face
that can fire in K (shaded, in pink), and let g be the neighboring face (shaded, in yellow).
Using these choices of f and g, we show a sequence of three iterations of the Flooding
Lemma.

1
3 112 2|2 112
3 3|3 2|3 213
3 3 3 31313 31313 3 31313 3
3 313 313 313
3 3 3 3

(a) (b) () (d)

5.2 Second regime: termination in the Aztec diamond

Having constructed a stable configuration from K(n, r) which is not equal to Az(n), we now
wish to show that Az(n) can appear as a final configuration for K(n,r) when 2 <r < [F].
Our goal is to show:

Theorem 1 (Part 2a). Given a configuration K(n,r) with 2 < r < [§], there is a stable
configuration K* obtained from firing on K(n,r) such that K* = Az(n).

Proof. Divide K(n,r) and Az(n) into four quadrants, as shown below in the case of K(4, 2).
Each quadrant is given in a different color, and Az(4) is shaded in gray in the background.
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Note that the marked face fj is not included in any of the quadrants.

Without loss of generality, we can study a single quadrant and then appeal to sym-
metry to describe the remaining quadrants. Consider the rows in the first quadrant of
K(n,r) (colored violet in the figure above) and count them from top to bottom. Let P(¥)
be the path that is obtained from extending the ¢! row of the quadrant to the boundary
of Az(n). The relevant configuration on P(¢) is then

R(¢) = (n,n,--- ,n,0,...).
¢t

whose behavior was studied in Section 3.
Note that dist(fy, f;) = 7 — £ + 4 for each face f; of P(¢) and

Az(n)y, =n—dist(fo, fi) +1l=n—r+0—i+1.

Let R° be the unique path-stable configuration obtained from path-firing on R(¢) given
in Corollary 9. Translating the discrete derivative in Corollary 9 into the language of
flow-firing, we have that R?, the value of face f; on R°, is

RS =

7

(4 |n/2] —i if n even and i < ¢,
(4 |n/2] —i+1 else.

Since r < [n/2], it follows that
Az(n)y, = [n/2] +4—i+12=R7.

Thus, the value of R} cannot exceed Az(n)y, along P(¢). Firing K(n,r) along all rows
in the analogous way thus yields a configuration which does not violate Az(n). Thus by
Lemma 11, there is a sequence of firing moves that can then be implemented to obtain
Az(n) as a stable configuration. O

Example 16. The full configurations after path-firing in all four quandrants is shown
below. Note that the second configuration does not violate the Aztec diamond Az(4).
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This means that we can apply Lemma 11 to obtain Az(4) from the second by firing
moves.

4 211
4] 4 1l1]2]3]2l2]1
44.44 1223.3221
4]4]4 1l2]2]3]2]1]1
4 1[1]2

6 The Third Regime

Finally, we turn to the third regime. We first show that when r > [n/2], K(n,r) cannot
terminate uniquely in Section 6.1. Then, we show that for r > f\%} + 1, it is impossible

for K(n,r) to terminate in the Aztec diamond in Section 6.2.

6.1 Non-unique termination

We will show that K(n,r) does not terminate uniquely for r > [n/2]. Our proof relies on
decomposing the grid in two distinct ways, shown below:

D1 D2

Figure 3: Two distinct ways to decompose the grid into quadrants.

For i = 1,2, we refer to D; as the decomposition of the grid. Our argument introduces
an algorithm that fires identically within each quadrant, but produces two different final
cofigurations using the two decompositions in Figure 3.

Theorem 1 (Part 3a). If r > [n/2] then K(n,r) does not terminate uniquely.

Proof. 1t is immediate that K(2,7) does not terminate uniquely when r > 1. So, suppose
n > 2. For the sake of contradiction, assume K(n,r) terminates uniquely.
Consider the following flow-firing algorithm on K(n, r):

1. Divide K(n,r) into four quadrants as in either D; or Dj as in Figure 3;

2. While possible, path-fire within each quadrant along all horizontal paths (e.g. rows)
away from fy;
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3. While possible, path-fire within each quadrant along all vertical paths (e.g. columns)
away from fy;

4. Return to step (2).

We claim that this process results in a stable configuration, regardless of whether
one divides quadrants by D; or D,. By construction, within each quadrant the resulting
configuration is stable. Note that any adjacent faces between different quadrants must
differ by at most one. This follows from the fact that the quadrants are reflections of one
another, with face values shifted exactly one unit up (down) and right (left). Let K; be
the stable configuration obtained from the above process, with the choice of quadrants
given by D; for i =1, 2.

By assumption, K(n,r) terminates uniquely and so both the supports and the face
weights of K; and Ky are the same.

We label the face weights of K; and K, as follows: first, label the faces of the grid by
(j, k) € Z* so that f;, € Z is the face weight at face (j, k). Fix the indexing so that the
distinguished face is fy o, and (j, k) increase to the right and up. We will focus on the first

quadrant of K;, denoted by ;. Label the face weights in both @; as ay,)g € ZZ>07 where

the bottom-left face is a(f;)l for 7 = 1,2 and again indices increase right and up.

.
——|eee
=

. . . ay j; GQZ
helt | : :
Jog |fiz |*ee . 0(12,2)
o [ [ |+ iy P e E P
foo | fro [Sfoo [fz0 | oo at)ad] ]+ aj‘ll)

Figure 4: The face labels of the grid, face weights in ()7 and @5 (respectively)

We make three observations:

e because the configurations ), and ); were obtained by the same firing process,
a'}) = a?) for all j,k € Z2,. In other words, Qs is obtained by shifting Q; up and

left by 1;

e by the definitions of D; and D,, we have aﬂ is the face weight of fl(}()) in Ky, while
afi is the face weight of féi) in Ko;

e by the assumption that K; = Ky, we have a;l,g = a§?1,k_1 for all j, k. Therefore

all) =alV, ., for all j, k.
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Label the columns of @); by C1,Cs, ..., C; (from left to right), and let the length of C; be
n;. Then by the last observation, we must have that n;;; =n; —1for j=1,...,t -1
Thus, without loss of generality, we may describe (), as in Figure 5 below:

1 . 1
) : (1(1,3“ 0

nl e (1 |*
31014 ¢ A1,

{

Wlal| 2] 0
(1)
1.2

1

[N B Ol
S

o o1y

a 31014 [**° |01,

Figure 5: The face weights in ),

From now on, we focus on ;. For ease of notation, let a;; = af])» for 1 < j < my.
Note that a;,, =1 and n; > r.

Write = [n/2] 4+ k for some k > 1. Since n > 2, we have r > k + 2. Consider the
faces fi0, -, fin,—1 in the first column of ); which have face value a1, -+ ,a1,,.

It follows from Corollary 9 and the firing rules to obtain (); that faces fi x+1,. .., fi,n,—2
all fired but faces fi,..., fix—1 may or may not have fired in this process to obtain ¢);.
Thus, a;; <n—1forall k+1<i<r+1. In addition, if a;, = n (in other words, fi,
never fired), then k > /.

The last observation we make is that the total face weight in @), is

Z 0 nr(r2+ 1) 3

since face weight is preserved in the firing process to obtain Q.

Supposing the above conditions are satisfied, since a; .41 < n—1, there are three cases
to consider. We will show that each case yields a contradiction, so that K(n,r) cannot
terminate uniquely.

Case 1: Suppose aj,+1 = n — 1. Then either a;, = n or a;,_; = n by Lemma 10.
This means either £ > r or K > r — 1. Since r > k + 2, neither situation is possible. Thus
it is impossible that K; = Kg, and so K(n,r) cannot terminate uniquely in this case.

Case 2: Suppose a1,41 = n — 2. Then, as in the previous case, either a;,_1 = n or
a1 ,—2 = n by Lemma 10. As we have seen in the previous case, a;,-1 = n is not possible.
Note that when a;,_2 = n, we have either

(1) (al,r—‘rl) al,r7 a/l,r—l, al,T—Q,) - (TL - 25 n— 27 n— ]-7 n) or
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(11) (al,r—‘rl) al,r7 a/l,r—l, al,r—?) - (TL - 2a n— ]-7 n— 17 TL)

If a1 ,_o = n, then k > r — 2 which implies that » = k£ +2. This happens only when n = 3
or n = 4. By counting the total number of chips in @); for n = 3 and total face weight
count given in (3), we get either

(i) 3k(k+1)+4k+7=
(i) 2

neither of which have non-negative integer solutions. Similarly, for n = 4, we get

k(k+1) 45k +9 =

(i) 2k(k+1)+8k+ 17 =2(k + 2)(k+ 3) or
(ii) 2k(k+1)+ 9%k +97 =2(k +2)(k + 3)

neither of which have non-negative integer solutions. Hence, this case is also not possible.

Case 3: Suppose a1 ,41 < n — 3.

We will now construct a third terminal configuration Ks from K(n,r), and show that
it is impossible for K; = Ky = Kj.

To construct Ks, consider the intermediate configuration which is obtained from K(n, r)
by applying the algorithm described at the beginning of the proof, but only in the first
quarter of Dy. This yields the configuration @) in the first quadrant and K(n,r) in the
other three quadrants.

Recall that » > [n/2], and consider the (r 4+ 1) row of Q; (counted from south to
north). Denote the configuration on this row as R where

R:= (al,r—‘rl) A1r42, " Al ng, Oa e )

Note that f,,, 11, is the first face with weight 0 in R.

Let R be the extension of R outside of Q; one unit to the left, i.e. by including the face
for; this new face has weight n, since no faces in the fourth (i.e. north-west) quadrant
have been fired yet: )

R:= (N, Q17415 Q1425 7 5 Al ng 0,--- )

Now path-fire on R along this row. Since a1 ,4+1 < n—3, we see that by applying Lemma
10, after path-firing on R the face weight of frni+1, is non-zero. Call this intermediate
configuration K.

Finally, we can obtain a stable configuration Kz from K by [4, Theorem 4]. Importantly,
in Ks the face weight of f,,+1, is non-zero, because it is non-zero in K. On the other
hand, the weight of f,, 11, is zero in K;. Hence Ky # K3, and so K(n,r) cannot terminate
uniquely. O

Example 17. In the case of K(3,3), the figures below show two distinct final configu-
rations. We decompose the grid as in Figure 3, and perform firings as in the proof of
Theorem 1(3a).
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1 1
11271 121
1121227 1l2]22[1

1l2]2F813]2 231322

1233.3321 1233.3321
23 132]2 2]213[3]2
1l2]2]2]1 1l212]2]1
121 121

1 1

6.2 Regime 3: Termination outside of the Aztec diamond

Henceforth, let N = {\%1 + 1.

Theorem 1 (Part 3b). If r > N, then K(n,r) cannot terminate in the Aztec diamond
Az(n).

Remark 18. In fact, Theorem 1(3b) holds for any closed curve of weight n containing
K(N, 7).
Proof. 1t is sufficient to prove that weight(K(n,r)) > weight(Az(n)). Let K denote a
single quadrant of the Aztec diamond. The weight of K is
weight(K)=(n+n—-1+---+1)+(n—14+n—-24+---4+1)+---+1
n(n+1)(n+2)
. )
Thus summing over all four quadrants and fy, we obtain
n(n+1)(n+ 2))
6

=n+ ;(n)(n +1)(n+2).

weight(Az(n)) =n + 4 (

Let K" denote a single quadrant of K(n,r). The weight of K’ is

r(r+1)
2

weight(K') =nr +n(r —1)+---2n+n=n-

where the first expression comes from adding the total number of chips in each row of the
quadrant. Thus by similar logic, summing over all quadrants and f; gives
r(r+1)

weight(K(n, 7)) =n + 4n - 5

Suppose r > f\%} + 1, and note that for n a positive integer, [n/v/3] > n/v/3. Thus

2 2
weight(K(n,r)) > 3 <n3 +3v3n? + 6n) +n> 3 (n®+3n*+2n) +n

= weight(Az(n)). O

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(2) (2025), #P2.6 17



6.3 Bound improvement

Theorem 1(3b) naturally raises the question of whether it is possible for K(n,r) to termi-
nate in the Aztec diamond when [Z-] +1 > r > [n/2]. In the table below, we present

the values of r = [ 7] 41 and [n/2] for 3 <n < 24, along with the minimum value of r
such that weight(K(n,r)) > weight(Az(n)).

n 3/4(5/6(7/8[9/10|11 12|13 |14 |15|16 |17 |18 |19 |20 |21 |22 |23 |24

3] 2121334455 |6 6|7 |[7]8|8|9 |9 |[10|10]11 111212
Minimum r» |2 |3 (44|56 |6 7 | 7|8 |8 |9 |10]10]11 11|12 12|13 |14 | 14|15
f%] +1 3414|5667 7|8 8|9 [10]10 11|11 12|12 |13 |14 |14 15| 15

The minimum value of 7 for which weight(K(n, )) > weight(Az(n)) is precisely [ =]+
1 approximately one third of the time. Thus, in these cases, the bound for Theorem 1(3b)
cannot be improved unless a different approach is taken. On the other hand, for n > 8§,
there is a gap between [%] and the minimum value of r. This suggests finding a better
upper bound for Regime 2 may be more viable. Below are examples that show improving
the bounds for Regime 2 and Regime 3 may be quite subtle.

1. It is possible to find configurations K(n,r) with [3] < r < [%] + 1 that
can terminate in Az(n). Consider the case n = §; the only ball contained in
the region between Regimes 2 and 3 is K(8,5). First observe that weight(K(8,5)) =
weight(Az(8)). For this initial configuration, there is a sequence of firing moves that
terminate at Az(8).

2. It is possible to find configurations K(n,r) with [Z] < r < [%] + 1 that
cannot terminate in Az(n). Consider the case n = 4; the only ball contained in
the region between Regimes 2 and 3 is K(4, 3). As one can see from the table above,
weight(K(4,3)) > weight(Az(4)). So, it is not possible for K(4,3) to terminate at
Az(4).

3. It is possible to find configurations within K(n,r) that can terminate in
Az(n), even if K(n,r) cannot. Suppose that n = 4. Consider the configuration
on the left in the figure which is contained in K(4, 3):

S

e N S S

e N
S

S
S
[N N I N S
[N N N S S
e~
S
S
S

e e N N
e I I B I N

Note that weight(K) = weight(Az(4)). For this initial configuration K, one can find
a sequence of firing moves that terminate at the Aztec diamond.
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4. Tt is possible to find a configuration K with weight(K) = weight(Az(n))
that cannot terminate in Az(n). Again, take n = 4 and consider the config-

uration on the right in the figure above. This configuration cannot terminate in
Az(4).
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