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Abstract

Various algebraic and geometric problems reduce to the sink-finding problem in
unique sink orientations (USOs), which are orientations of the hypercube graph that
have a unique sink in every subcube. A USO is called realizable if it can arise from
applying one of these reductions. We study how realizability influences the query
complexity of the sink-finding problem. To this end, we consider a specific subclass
of USOs, the so-called Matousek USOs. The Matousek USOs are a family of USOs
which are a translation of the LP-type problems used by MatouSek to show that the
Sharir-Welzl algorithm for LP-type problems may require at least subexponential
time [Matousek, 1994]. Gartner showed that the Random Facet algorithm for USO
sink-finding requires at least subexponentially many vertex evaluation queries on
Matousek USOs, but at most quadratically many queries on realizable Matousek
USOs |Gértner, 2002|. However, Gértner did not fully characterize this realizable
subset. In this paper, we fully characterize the realizable subset of the MatouSek-
type USOs (the USOs isomorphic to a Matousek USO) and also provide concrete
realizations using instances of the P-Matrix Linear Complementarity Problem, bas-
ing our work on the so-called cyclic-P-matroids studied by Fukuda, Klaus, and
Miyata. We further extend the results of Matousek and Gértner for the Random
Facet algorithm to the query complexity of the sink-finding problem itself: we show
that sink-finding is strictly easier on realizable Matousek-type USOs than on all
Matousek-type USOs. We show that in the realizable case O(log® n) queries suffice,
while in general exactly n queries are needed.
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1 Introduction

A Unique Sink Orientation (USO) is an orientation of the hypercube graph with the
property that each non-empty face has a unique sink. The most studied algorithmic
problem related to USOs is that of finding the global sink: An algorithm has access to a
vertex evaluation oracle, which can be queried with a vertex and returns the orientation
of all incident edges. The task is to determine the unique sink of the USO using as few
such vertex evaluation queries as possible.

Progress on this problem has stalled for a long time. Since Szédbo and Welzl introduced
USOs in 2001 [24], their deterministic and randomized algorithms — both requiring an
exponential number of queries in terms of the hypercube dimension — are still the best
known in the general case. Only for special cases, such as for acyclic USOs, better
algorithms are known [9].

Realizability. The study of USOs and the sink-finding problem was originally mo-
tivated by a reduction of the P-Matrix Linear Complementarity Problem (P-LCP) to
sink-finding in USOs [23|. Many widely studied optimization problems have since been
shown to be reducible either to the P-LCP or to sink-finding in USOs directly, the most
notable example being Linear Programming (LP) [12], but also Convex Quadratic Pro-
gramming [19] or the Smallest Enclosing Ball problem [13]|. It has also been shown that
various games on graphs reduce to the P-LCP, such as simple stochastic games, mean
payoff games, and parity games [11]|, the unresolved complexity statuses of which have
sparked considerable interest. To make progress on this wide array of problems, one would
not need to find an algorithm which can find the sink quickly in all USOs, but only in
the USOs which can arise from these reductions. In fact all these problems reduce to
sink-finding in USOs that can also be generated by the reduction from P-LCP. We call
USOs that can be obtained from this reduction realizable. In the literature, the realizable
USOs are also referred to as P-USOs 6], PLCP-orientations [16], or P-cubes [18].

The number of n-dimensional realizable USOs is much smaller than the total number
of USOs, namely 20" in contrast to 29" 12" [6]. Furthermore, a simple combinatorial
property, the Holt-Klee condition, is known to hold for all realizable USOs [10, 14]: In a
realizable USQO, there must be n vertex-disjoint directed paths from the source to the sink.
Thus, one can for example conclude that the USO shown in Figure 1 is not realizable.
The best-known lower bound for the query complexity of the sink-finding problem (for
deterministic algorithms) is (n?/logn) [20]. This lower bound however relies on USOs
which fail the Holt-Klee condition and are therefore not realizable [2]. For sink-finding on
realizable USOs, only a lower bound of €(n) is known [2].

We thus see differences between general and realizable USOs in their number, struc-
ture, as well as the current knowledge of lower bounds. These three facts indicate that
it may be possible to algorithmically exploit the features of realizable USOs to beat the
algorithms of Szabo and Welzl on this important class of USOs. For P-LCP and certain
cases of LP, the fastest deterministic combinatorial algorithms are already today based on
sink-finding in USOs [5, 12]. Improved sink-finding algorithms for realizable USOs would
directly translate to advances in P-LCP and LP algorithms. In particular, a sink-finding
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Figure 1: A three-dimensional USO that is not realizable: there are no three vertex-
disjoint paths from the source (top right) to the sink (bottom left). This USO thus does
not satisfy the Holt-Klee condition.

algorithm using polynomially many vertex evaluations on any realizable USO would imply
the existence of a strongly polynomial-time algorithm for LP, answering a question from
Smale’s list of mathematical problems for the next century |21].

Matousek(-type) USOs. In 1994, Matousek introduced a family of LP-type prob-
lems (a combinatorial generalization of linear programs) to show a superpolynomial lower
bound on the runtime of the Sharir-Welzl algorithm [17]. This result was later translated
by Géartner into the framework of USOs, where the Matousek USOs provide a superpoly-
nomial lower bound on the query complexity of the RANDOM FACET algorithm [9]. In
the same paper it was also shown that the sink of all Matousek USOs that fulfill the
Holt-Klee property (thus including all realizable ones) is found by the RANDOM FACET
algorithm in a quadratic number of queries. Therefore, RANDOM FACET is strictly (and
substantially) faster on the realizable Matousek USOs than on all Matousek USOs. In
this paper we aim to provide a similar result for the query complexity of the problem
itself, instead of a concrete algorithm.

The Matousek USOs all have the sink at the same vertex. This does not pose a problem
when analyzing a fixed algorithm which does not exploit this fact (e.g., RANDOM FACET),
but it does not allow us to derive algorithm-independent lower bounds. To circumvent this
issue, we consider the class of Matousek-type USOs, which simply contains all orientations
isomorphic to classical Matousek USOs.

To study the query complexity of sink-finding on (realizable) Matousek-type USOs,
we first prove that the Holt-Klee condition is not only necessary but also sufficient for
realizability on Matousek-type USOs. We thus provide a full characterization of the
realizable USOs among the Matousek-type USOs. We achieve this by working with P-
matroids, another combinatorial abstraction of the P-LCP. Here, we show a connection
between realizable Matousek-type USOs and simple extensions of cyclic-P-matroids, a
subclass of P-matroids first defined by Fukuda, Klaus, and Miyata |7, 15].
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1.1 Results

We first show that the Holt-Klee condition is both necessary and sufficient for realizability
in Matousek-type USOs. In doing such, we also show that the set of realizable Matousek-
type USOs is exactly the set of USOs associated with simple extensions of cyclic-P-
matroids.

Theorem 1. The following families of USOs are all equivalent:
e The USOs associated with simple extensions of cyclic-P-matroids
e The realizable Matousek-type USOs
o The Matousek-type USOs fulfilling the Holt-Klee condition

We then show a query complexity gap between sink-finding on the realizable and sink-
finding on all Matousek-type USOs. We achieve this by proving the following two main
theorems:

Theorem 2. For every deterministic sink-finding algorithm A and anyn > 2, there exists
an n-dimensional Matousek-type USO on which A requires at least n verter evaluations

to find the sink.

Theorem 3. The sink of any n-dimensional realizable Matousek-type USO can be found
deterministically using O(log® n) verter evaluations in the worst case.

In addition, we show that the result about general Matousek-type USOs is tight. For the
realizable case, we provide a simple lower bound of {2(logn) vertex evaluations.

1.2 Discussion

The Matousek-type USOs form the first natural family of USOs for which we have a full
characterization of realizability, as well as the first found to admit a query complexity
gap. We hope that this result motivates further research into structural and algorithmic
aspects of realizability for larger, more relevant classes of USOs.

Note that an artificial class of USOs exhibiting such a complexity gap could easily
be constructed by combining a set R of easy-to-solve realizable USOs with a set N of
difficult-to-solve non-realizable USOs. For R, one can take any set of realizable USOs
which all have the same vertex as their sink. An algorithm to find the sink of USOs in R
could then always output this vertex without needing to perform any vertex evaluations.
For the set N, one can take the set of USOs constructed in the lower bound of Schurr
and Szabo [20], and change each USO such that it becomes non-realizable. This can be
achieved without destroying the lower bound. The resulting class RUN then also exhibits
a complexity gap.

The Matousek-type USOs are not such an artificially constructed class of USOs. First
off, they are well-studied due to their significance in proving the lower bound for the
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RANDOM FACET algorithm [17, 9]. Second, they can be considered a natural choice for
proving unconditional lower bounds for realizable USOs: The only known unconditional
lower bound for randomized algorithms on general USOs uses decomposable USOs [20],
and the realizable Matousek-type USOs are the only known class of realizable decompos-
able USOs.

Even on a natural USO class, a complexity gap could be trivial to obtain, for example
if the class contains no (or only very few) realizable USOs. This is also not the case for
the Matousek-type USOs, as there are 291°6™) realizable n-dimensional Matousek-type
USOs, while the overall number of Matousek-type USOs is 2. This is a much larger
realizable fraction than one observes on the set of all USOs.

There is also an interesting connection between Matousek-type USOs and D-cubes.
The D-cubes are a subset of realizable USOs, obtained by the reduction to sink-finding
from P-LCP instances where the P-matrix M is symmetric. They also include the USOs
arising from the reduction of LP to sink-finding. Gao, Gértner and Lamperski recently
discovered that in a D-cube, the L-graphs at all vertices have to be acyclic [8]. The L-
graphs are graphs that describe the local structure of the USO around a single vertex,
and can be seen as a local version of the global dimension influence graph encoding
the structure of a Matousek-type USO, which we introduce in this paper. In fact, a
USO is a Matousek-type USO if and only if the L-graphs are the same at every vertex.
The techniques developed in this work to find the sink in the more rigid Matousek-type
USOs may be useful in developing algorithms for D-cubes, but this would first require a
better understanding of the possible L-graphs in D-cubes. While all Matousek-type USOs
fulfill the necessary condition for being D-cubes, it remains open whether the realizable
Matousek-type USOs are in fact D-cubes.

1.3 Paper Overview

In Section 2, we lay out the necessary notations and definitions. In Section 3, we ana-
lyze simple extensions of cyclic-P-matroids and provide the full characterization for the
realizable Matousek-type USOs. In Section 4, we then prove the query complexity gap
between sink-finding in all MatouSek-type USOs and their realizable subset. Finally, we
discuss remaining open questions in Section 5.

2 Preliminaries

We begin with some basic notation. All vectors and matrices in this paper are defined over
the field Zy. We write @ for bit-wise addition (“xor”) in Zs. By 0 (or 1) we denote the all-
zero (or all-ones) n-dimensional vector. By e; we denote the i-th standard basis vector. I,
denotes the n x n identity matrix. For a natural number =, we write Bin(x); € {0,1} for
the i-th least significant bit of the binary representation of x, such that Y ;° Bin(x);-2" =
x.

(S8
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2.1 Hypercubes, Orientations, and USOs

The n-dimensional hypercube is an undirected graph (V| E) consisting of the vertex set
V = {0,1}", where two vertices are connected by an edge if they differ in exactly one
coordinate. An edge {v,v @ e;} is called an i-edge.

A subcube of a hypercube is called a face. A face F} is specified by a vector f €
{0,1,*}", with v € Fy if and only if for all ¢ € [n], either f; = % or f; = v;. The number of
“x” entries in f denotes the dimension of Fy, and we say Fy is spanned by the dimensions
¢ for which f; = *. A face of dimension n — 1 is also called a facet. The facet Fy with
fa = 1 is called the upper d-facet, and the opposite facet Fj with f; = 0 is called the
lower d-facet.

An orientation of the hypercube assigns a direction to each of the n2"~! edges.

Definition 4 (Hypercube Orientation). An orientation o of the n-dimensional hypercube
is described by a function o : {0,1}™ — {0, 1}" assigning each vertex its outmap: An edge
{v,v®e;} is directed away from v (outgoing) if o(v); = 1, otherwise it is directed towards
v (incoming). To ensure consistent orientation of all edges, o must fulfill o(v); # o(v @ €;);
for all v € V and i € [n].

We use the same notation to refer to orientations as directed graphs as well as their
outmap functions.

Definition 5 (Unique Sink Orientation). A unique sink orientation (USO) is an orien-
tation of the hypercube, such that for each non-empty face F', the subgraph induced by
F" has a unique sink, i.e., a unique vertex with no outgoing edges.

Szabo and Welzl [24] provide the following characterization of USOs:
Lemma 6 (Szdbo-Welzl condition [24]). An orientation o is a USO if and only if

Vo, w € {0,1}" : (v®w) N (o(v) ® o(w)) # 0.

In other words, for any two vertices, their outmaps must differ within the subcube
they span. Equivalently, this means that o must be a bijection, even when the domain is
constrained to any face F', and the codomain is restricted to the dimensions spanning F'.

2.2 Matousek(-type) USOs

A Matousek USO, as defined by Gértner [9], is an orientation o characterized by an
invertible, upper-triangular matrix A € {0,1}™*"™ (thus all diagonal entries of A are 1).
The matrix defines the orientation o(v) = Av. Since each principal submatrix of A is also
upper-triangular with all diagonal entries equal to 1, each principal submatrix must also
be invertible. This implies that there must be a unique sink in each face of the hypercube,
and thus o is a USO. In particular, the global sink lies at the vertex O.

This commonality among Matousek USOs would pose a problem in Section 4 where
we aim to derive lower bounds for the sink-finding problem on Matousek USOs; an op-
timal algorithm can “find” the sink immediately. To eliminate this problem, we define
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Figure 2: All 2-faces spanned by A and ¢ in this 4-dimensional Matousek-type USO have
the same structure: ¢ influences A\, but not the other way around.

the Matousek-type USOs, which are all orientations isomorphic to a Matousek USO. Iso-
morphisms on the hypercube allow for mirroring of any subset of dimensions, and for
relabeling the dimensions. This motivates the following definition:

Definition 7 (Matousek-type USO). A MatouSek-type USO is an orientation o, with
VYo € {0,1}": o(v) = M(v@®s), where M := PAPT

for some permutation matrix P, an invertible, upper-triangular matrix A € {0, 1}"*",
and the desired location of the sink s € {0,1}".

We can view the matrix M as the adjacency matrix of a directed graph G = ([n], Ey),
where (i, j) € Ey if M;,; = 1. As A is invertible and upper-triangular, and as M is equal
to A with rows and columns permuted in the same way, G is the reflexive closure of an
acyclic graph, i.e., an acyclic graph with self-loops added to every vertex. We call the
graph G the dimension influence graph of the Matousek-type USO. The name is motivated
by the following observation.

Observation 8. Let A\, ¢ € [n]| be two distinct dimensions of a Matousek-type USO o.
For any vertex v € {0,1}", it holds that

o(W)x Fo(vB ey <= My, =1<= (p,\) € Ep.

Intuitively, this means that in a MatouSek-type USO, any 2-dimensional face spanned
by the same two dimensions A and ¢ has the same structure: Travelling along a ¢-edge
either always changes the direction of the adjacent \-edge, or never (see Figure 2). If
it always changes, we say that ¢ influences X\, and there is an edge from ¢ to A in the
dimension influence graph. See Figure 3 for two example dimension influence graphs,
their corresponding Matousek-type USOs, and their adjacency matrices.

A USO in which all z-edges are oriented the same way is called combed in dimension i,
or simply combed. As the dimension influence graph G is acyclic (apart from the loops),
there must be a sink in every induced subgraph of G. Thus, in each face there is a
dimension ¢ which is not influenced by any other dimension, and the face must be combed
in dimension i. A USO in which every face is combed, such as the Matousek-type USOs,
is also called decomposable.
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Figure 3: Top: Two dimension influence graphs. Middle: The corresponding Matousek-
type USOs with the sink at the bottom left vertex. Bottom: The adjacency matrices of
the dimension influence graphs.

2.3 Complementarity Problems and USOs
2.3.1 P-LCP

The P-matriz linear complementarity problem (P-LCP) is crucial to the history of unique
sink orientations [23]. An instance (M,q) of the more general linear complementarity
problem (LCP) is given by a matrix M € R™™ and a vector ¢ € R™. The task is to find
vectors w, z € R™ fulfilling both

1. Feasibility: w — Mz = ¢, and for all ¢ € [n], w; =0 or z; = 0.
2. Non-negativity: w,z > 0.

In general, an instance (M, q) is neither guaranteed to have a unique solution, nor that a
solution exists at all. However, if M is guaranteed to be a P-matriz, we call the problem
the P-LCP, and the every instance has a unique solution.

Definition 9. A matrix M € R"*" is a P-matriz if all its principal minors, i.e., the
determinants of all its principal submatrices, are strictly positive.

We call a pair of vectors (w, z) fulfilling the feasibility condition a candidate solution.
Since M is a P-matrix and thus all principal minors are non-zero, for each choice of
B € {0,1}" there exists a unique candidate solution (w,z) such that B; = 1 implies
w; = 0 and B; = 0 implies z; = 0. If such a candidate solution fulfills w; = z; = 0 for
some i, we say that ¢ is degenerate for M at B. If q is not degenerate for M at any B,
we say that the instance LC'P(M, q) is non-degenerate.

A non-degenerate P-LCP instance (M, q) realizes a USO o in the following way: For
each vertex B € {0,1}", o(B); = 1 if and only if w;,z; < 0 in the unique candidate
solution (w, z) corresponding to B.
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A USO o is called realizable, if there exists a non-degenerate P-LCP instance (M, q)
realizing o. No combinatorial characterization of realizability is known, however, Holt and
Klee [14] proved the following necessary condition:

Lemma 10 (Holt-Klee condition [10, 14]|). Let o be a realizable n-dimensional USO.
Then there exist n interior-vertex-disjoint directed paths from the unique source of o to
the unique sink of o.

Furthermore, it is known that if o is realizable, all USOs isomorphic to o as well as all
restrictions of o to some subcube are also realizable [16, 23].

2.3.2 P-OMCP

An oriented matroid can describe the combinatorial structure of many different objects,
such as vector arrangements, hyperplane arrangements, or directed graphs. Furthermore,
an oriented matroid can itself be described using a number of equivalent, “cryptomorphic”
axiomatizations, such as vector, circuit, or chirotope axioms. In this work we focus on ori-
ented matroids specified according to circuit axioms and describing vector arrangements.
For a more complete overview over oriented matroids, we refer the reader to the textbook
of Bjorner, Las Vergnas, Sturmfels, White, and Ziegler [1].

For a ground set E, a signed set on E is a pair S = (S, S57) with ST NS~ = () and
St 87 C E. We call the union S = STUS™ the support of S. We write —S for the signed
set —S := (57, S5T). Given a signed set S and an element e € F, we write S, € {—,0,+}
for the sign of e in S.

An oriented matroid in circuit representation is a pair M = (E,C) where C is a
collection of signed sets on F, the so-called circuits of M, fulfilling the following circuit
axioms:

(Co) (0,0) ¢

(C1) Symmetry: VC €C: —C €C

(C2) Incomparability: YX,Y €C: X CY = (X =Y VX = —Y)
(C3)

C3) Weak elimination: VX,Y € C with X # —Y, and Ve € XT NY ™, there exists a
Z € C, such that

C(XtuY™t)\{e} and
TC(XTUY)\{e}

A basis of M is an inclusion-maximal subset of £ that does not contain any circuit.
All bases of an oriented matroid have the same size, called the rank of the matroid. For
any basis B and any element e € E '\ B, there is a unique fundamental circuit C(B,q)
with C(B,q) = BU{q} and ¢ € C(B,q)".
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A vector configuration, here represented by a matrix V € R%" gives rise to an
oriented matroid M with E = [n] and C being the collection of inclusion-minimal linear
dependencies of columns of V, i.e.,

C= {signx: (Va:zO/\ Az’ (signa’ C signx/\Vx'zO))},

where signz is the signed set ({i : z; > 0},{i : 2; < 0}). We say that V realizes M,
and M is realizable. Some oriented matroids are not realizable, i.e., there exist no vector
configurations realizing them.

While general oriented matroids provide a combinatorial abstraction of general vector
configurations, P-matroids abstract the special vector configurations corresponding to
P-matrices augmented with the standard identity vectors. A P-matroid is an oriented
matroid M = (FEs,,C) with ground set E,, = [2n|. FE,, is split in two parts, S = [n]
and T = [2n]\[n], S being a basis of M. Elements i and i + n are called complementary,
together they form a complementary pair. For any i, its complementary element is denoted
by i. Any set of n elements not containing a complementary pair is a basis. M is a P-
matroid if there is no almost-complementary sign-reversing circuit, i.e., no circuit C' € C
such that C' contains exactly one complementary pair (i,7 +n) and ¢ and i + n have
different signs in C' [25].

An extension M = (E, 5) of a matroid M = (F,C) is an oriented matroid with ground
set E = E U {q}, such that the deletion minor M\\q = (E,{X : X € C and X,=0})is
equal to M.

For a P-matrix M € R™ "™, the associated P-matroid is the oriented matroid realized
by [In —M}. For a P-LCP instance (M, q), the associated extension of a P-matroid is
realized by []n -M —q].

Given an extension of a P-matroid M = (E\Qn, 5), one can obtain the associated USO u
using the following procedure [15]: For each vertex v € {0,1}", determine the fundamental
circuit?

C,:=C{i+uv;-n:ieln]}, q
and set u(v); = 1if i € C; ori+n € C, . Note that a P-LCP instance (M, q) realizes
the same USO as its associated P-matroid extension.

While a P-matroid extension M can be realized by vector configurations not of the
form [In —-M —q} , if one is given a (2n+1) x n-matrix V realizing M, a P-LCP instance
with the same associated P-matroid extension can be found using

(Mv Q) = (_VS_IVT, _VS_I‘/%’H-I)' (1)

3 Characterizing the Realizable Matousek-type USOs

In his proof that Random Facet only uses a quadratic number of vertex evaluations,
Gértner 9] showed a necessary condition on the dimension influence graphs of realizable
Matousek-type USOs:

1 M needs to be non-degenerate in the sense that for all v, we must have |C,| =n + 1.
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Lemma 11 ([9]). If the dimension influence graph of a Matousek-type USO contains any
of the two graphs G1 or Gy in Figure 3 as an induced subgraph, the USO is not realizable.

Proof. Any 3-dimensional face spanned by the dimensions inducing one of these subgraphs
is isomorphic to either of the USOs shown in Figure 3. Both of these USOs do not contain
three vertex-disjoint paths from their source to their sink, and are therefore not realizable
by Lemma 10. As all faces and all isomorphic copies of a realizable USO are realizable,
the whole Matousek-type USO cannot be realizable either. m

In this section, we show that this condition is not only necessary for realizability of a
Matousek-type USO, but also sufficient. To do this, we analyze the USOs associated with
extensions of the cyclic-P-matroids defined by Fukuda, Klaus, and Miyata |7].

3.1 Cyclic-P-Matroids

The alternating matroid A™" is an oriented matroid of rank r and on ground set E,, = [n].
It is realized by n sequential points on the moment curve, i.e., by the matrix

1 1 1
1 i) L,
2 2 2
Ve R .= x] x5 B ,fora:1<$2<-"<93n-
r—1 r—1 r—1
Ty T Ty T

The alternating matroids are well-studied and their structure is well-understood. For
our purposes here, it is only important to know that they are uniform (an oriented matroid
(E,C) of rank r is uniform if all subsets of E of size r are bases) and that the signs of the
non-zero elements in each circuit alternate along the natural order from 1 to n [4].

A cyclic-P-matroid is a P-matroid M that is reorientation equivalent to the alternating
matroid A*“" [15]. Reorientation equivalence means that there exists a set F' C Fy, and
a permutation 7 of Ej, such that M = _p(7~! - A?»"). This means that M can be
obtained by relabeling the elements of F,, according to 7! in all circuits of A?**", and
then flipping the sign of all elements in F' in all resulting circuits.

As A*™" (and therefore also M) is uniform, any set S C Es, of size n is a base of
M, and thus any set S C FEs, of size n + 1 is the support of some circuit. The signs of
this circuit can be read off by ordering S according to 7, giving the elements alternating
signs, and finally flipping the sign of all elements that are in F. This process can be seen
in Figure 4. Note that there are always two circuits for each S’ each being the negation
of the other.

Fukuda, Klaus, and Miyata |7, 15| characterized for which choices of = and F this
leads to M being a P-matroid. Due to a small mistake, their characterization did not
exclude some choices for which M is not a P-matroid. We therefore provide a corrected
version of |7, Theorem 4.2]:

Theorem 12. An oriented matroid M on Es,, where 7 - (_pM) = A*™" for some
permutation ™ of Es, and F C Es,, is a P-matroid if and only if:
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Figure 4: Reading off the signs of a fundamental circuit in a cyclic-P-matroid. The arrow
indicates the order of the elements in w. The shaded elements are those in F. Among
the two circuits with support {a,b, c,¢,d}, the one for which c is positive is the desired
fundamental circuit.

e 7 is such that for all e € Es, with w(e) < 7(€), and all f € Eay,
(f) € [r(e), 7(@)] = n([) € [r(e), 7(e)].

e and F is such that for every e € Ey,, exactly one of e and € is in F' if

m(e) —m(@)| =1
2

1s even, and both or none in F' otherwise.

In Theorem 4.2 of 7], the condition on 7 was such that the intervals [7(e), 7(€)] were
required to contain an even number of elements, but not necessarily both or none of 7(f)

and 7(f) for every f.

Proof. We will examine the almost-complementary circuits to prove the two directions
individually. Recall that an oriented matroid is a P-matroid if and only if it contains no
sign-reversing almost-complementary circuit.

We first show that the conditions are sufficient, and thus assume that = and F' fulfill
the conditions in Theorem 12. Let C' be the support of some almost-complementary circuit
C, and let e be the element for which both e, € C'. As C' is almost-complementary, the
number of elements of C' between e and € according to m must be W, as for each
f € E,,, exactly one of f and f is contained in C. The signs of e and  in C' must therefore
be the same, as F flips the sign of exactly one of them if and only if the parity of their
positions in C' according to 7 is different. As this holds for all almost-complementary
circuits, C contains no almost-complementary sign-reversing circuit, and M must be a
P-matroid.
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Next, we show that the conditions are necessary, and thus assume that 7 and F' do
not fulfill the conditions in Theorem 12. Then either m does not fulfill the first condition,
or F' does not fulfill the second. If the condition on 7 is not fulfilled, then there must be
elements e, f such that the interval [r(e), 7(€)] contains exactly one of w(f) and 7(f). Let
D be a maximal complementary set D C E», \ {e,€, f, f} and compare the fundamental
circuits Oy := C(D U {e, f},e) and Cy := C(D U {e, f},e). The sign of e must be the
same in (] and C5, while the sign of € must be different in both. We conclude that at
least one of €} and (5 must be an almost-complementary sign-reversing circuit.

If the condition on 7 is fulfilled, the condition on F' must be violated for some e. For
every maximal complementary set D C Es, \ {e, €}, the fundamental circuit C(DU{e},e)
must be an almost-complementary sign-reversing circuit, by the same arguments as in the
proof of the “if” direction.

We conclude that C must contain an almost-complementary sign-reversing circuit, there-
fore M is not a P-matroid. m

With the conditions laid out here, the complementary pairs of Es, permuted by m
form a family of properly nested intervals. In this view, we can create a directed graph
G, = ([n], A), where (i, j) € A if the elements j, j are contained within the interval formed
by i,7 (thus we also have (i,7) € A for all ).

Lemma 13. For w fulfilling the conditions of Theorem 12, G is the reflexive transitive
closure of a branching?. Furthermore, the transitive closure of any branching is the graph
G, for some valid 7.

Figure 5: A branching (solid) with the edges added by taking the reflexive transitive
closure (dotted).

Proof. We prove both directions independently.

2An arborescence is a directed rooted tree with all edges pointing away from the root. A branching, or
a forest of arborescences, is the union of disjoint arborescences.
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First, we show that for any valid 7, GG is the reflexive transitive closure of a branching.
By definition, GG, contains a loop at every vertex. Furthermore, GG must be transitive as
it is built from the transitive relation of relative containment of intervals. We can assign
each interval (and therefore each vertex in G ) a depth indicating the number of intervals
it is contained in. Whenever an interval is contained in two other intervals, one of these
two intervals must contain the other. Therefore an interval of depth k is contained in
exactly one interval of depth [ for any [ < k and thus each vertex in G has exactly one
incoming edge from any lower depth. We conclude that GG, must be the reflexive transitive
closure of a branching.

Now we show that any reflexive transitive closure of a branching can be realized by
some valid . Each arborescence of the underlying branching forms an independent part
of the permutation, ordered arbitrarily. The interval corresponding to the root of the
arborescence encompasses the intervals of all its descendants. The descendants of the
root again form a reflexive transitive closure of a branching, which can be converted into
a permutation recursively. O

3.2 Simple Extensions of Cyclic-P-Matroids
We study only a small subclass of the extensions of cyclic-P-matroids:

Definition 14 ([15, Proposition 8.18]). A simple extension M of a cyclic-P-matroid is
an oriented matroid M = (FEs,,C) with 7 - (_pM) = A?"T1" for some permutation 7 of

E\gn = Fy, U{q} with 7(q) = q and F' C Ej,, such that 7 and F restricted to Es, fulfill
the conditions of Theorem 12.

We will first look at the USOs associated to simple extensions of cyclic-P-matroids
with ¢ being the last element in the permutation, i.e., z, > xa,.

If ¢ is at the end of the permutation, there is always the same number (n) of elements
before ¢ in any circuit C. When reading off the fundamental circuit C'(B,q), we will
therefore always assign the first element the same sign (before possibly flipping it due to
it being in F').

Lemma 15. Let M be a simple extension of a cyclic-P-matroid with W-(_FM\) = A2t
with q last in w. The USO wu associated to M is a MatouSek-type USO with dimension
influence graph G, where 7’ is w constrained to Fs,.

Proof. We will prove that for any vertex v, we have u(v); # u(v @ ¢;); if and only if
(1,7) € E(Gr). As G is the reflexive closure of an acyclic graph, this proves that the
USO is a Matousek-type USO with dimension influence graph G, .

Let v € {0,1}™ be some vertex of u, and C, its corresponding fundamental circuit
with support C, = B U {q}. Let i € [n] be some dimension. Note that B contains either
i or i+ n. Assume w.l.o.g. that i € B, and 7'(i) < 7’(i + n). We can now split the set
B\ {i} in three parts along 7’: The part before i, the part between i and ¢ + n, and the
part after ¢« + n. We will analyze what happens to the sign of the elements in each part
when ¢ is removed from the circuit and replaced by 7 + n.
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The sign of an element j of the first part will not change, as neither ¢ nor ¢ + n is
located before j. This means that the number of elements of the circuit before 5 and thus
its sign in the circuit stays the same. The same holds for all elements of the third part,
as both ¢ and ¢ + n are located before them. For an element j of the middle part, the
number of elements in the circuit coming before j decreases by one when i is exchanged
with ¢ + n, and therefore its sign in the circuit flips.

This shows that u(v @ e;) differs from u(v) in exactly the dimensions whose elements
lie between i and i +n in 7’ (including 7 itself), which is exactly the set of out-neighbours
of i in G». We conclude that u is a Matousek-type USO with dimension influence graph
G O

We are now ready to characterize the realizable Matousek-type USOs.

Theorem 16. A MatouSek-type USO is realizable if and only if its dimension influence
graph s the reflexive transitive closure of a branching. Furthermore, every realizable
Matousek-type USO is the USO associated with a simple extension of a cyclic-P-matroid
with q as the last element of m.

Proof. Let G be a reflexive closure of an acyclic graph that is not the reflexive transitive
closure of a branching. Assume first that GG is not transitive. In this case G contains three
vertices x, y, and z, with (z,y), (v, 2) € E, but (z, z) ¢ E. This means the graph contains
the left forbidden subgraph of Figure 3. Thus, assume that G is transitive. As G is not the
transitive closure of a branching, there must be a vertex y that has an incoming edge from
at least two vertices x and z, with no edge between x and z. Thus G contains the right
forbidden subgraph of Figure 3. By Lemma 11, Matousek-type USOs with dimension
influence graph G are not realizable.

On the other hand, let G be the reflexive transitive closure of a branching. Combining
Lemmas 13 and 15 we know that there is a Matousek-type USO u with dimension influence
graph G associated with a simple extension of a cyclic-P-matroid with ¢ as the last element
of m, and w is realizable. Mirroring of dimensions can be easily implemented in simple
extensions of cyclic-P-matroids by appropriately adapting F. Thus, all Matousek-type
USOs with this dimension influence graph are realizable and associated with such a simple
extension. [

Note that we can easily find a P-LCP instance realizing every realizable Matousek-type
USO, by first determining a simple extension of a cyclic-P-matroid, and then applying
Equation (1) to the matrix of 2n+ 1 (permuted and negated) points on the moment curve
realizing that matroid.

Having understood the USOs associated with simple extensions of cyclic-P-matroids
with ¢ at the end of 7w, we would like to understand the influence of moving ¢ towards the
front of . As we will see, this does not change the set of USOs we obtain.

Observation 17. Let M be some simple extension of a cyclic-P-matroid with correspond-
ing USO w. If q is pushed towards the front of ™ past some element i € [n|, the direction
of all edges between vertices in the lower i-facet is flipped.
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Similarly, if ¢ is pushed past an element i +n € [n], the direction of all edges between
vertices in the upper i-facet is flipped.

Observation 18. If all edges within some i-facet of a Matousek-type USO u are flipped,
this changes whether (i,j) is an edge in the dimension influence graph of w for all j # 1.

When moving ¢ towards the front of 7, facets are flipped from the back of 7’ towards
the front. The flipped facets therefore form a suffix of 7#’. Note that if both the upper
and lower facet of some dimension are flipped, this yields an isomorphic USO. The sets of
dimensions for which exactly one facet can be flipped at the same time therefore form a
path in G, starting at some root, following only edges of the underlying branching (solid
arrows in Figure 5).

Since under this operation the associated USO remains a realizable Matousek-type
USO, we get the following observation:

Observation 19. Let G be the reflexive transitive closure of some branching. Let S be
the set of vertices on some directed path from some root of G, such that there is nov ¢ S
with vertices u,w € S and (u,v), (v,w) € E. Flipping whether (s,t) € E for all s € S
and all t # s results in some graph Gs which is also the reflexive transitive closure of a
branching.

Intuitively, this operation removes the vertices of S from their descendants, reverses
their order, and adds them as a parent to all other vertices of the same depth, as can be
seen in Figure 6.

Figure 6: Flipping whether (s,t) € E for all s in some path (blue square vertices) starting
at a root and all t # s. The transitive edges are left out for clarity.

Putting together Observations 17 to 19, we get the equivalences of our first main
result:

Theorem 1. The following families of USOs are all equivalent:

e The USOs associated with simple extensions of cyclic-P-matroids
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e The realizable Matousek-type USOs

o The Matousek-type USOs fulfilling the Holt-Klee condition

3.3 Counting Matousek-type USOs

Given the results above we can easily count the number of (realizable) Matousek-type
USOs using classical graph-theoretic results. For general Matousek-type USOs, the di-
mension influence graph can be the reflexive closure of any directed acyclic graph.

Lemma 20. There are 22" Matousek-type USOs.

Proof. Each pair of dimension influence graph and sink location describes a distinct
Matousek-type USO. There are 2" sink locations, and there are 22" labelled directed
acyclic graphs on n vertices [22]. Thus there are 2" . 20("") ¢ 20("*) Matousek-type
USOs. 0

Similarly, a realizable Matousek-type USO can be described by the branching under-
lying the dimension influence graph, and the sink location.

Lemma 21. There are 2" - (n + 1)"~! € 29("18n) yeqlizable Matousek-type USOs.

Proof. By Cayley’s formula [3], there are (n + 1)"~! labelled rooted forests on n vertices.
By directing all edges away from the roots, there is a bijection from the set of labelled
rooted forests to the set of labelled branchings. All branchings have distinct reflexive
transitive closures, thus there are (n+1)""! valid dimension influence graphs for realizable
Matousek-type USOs. O

As each vertex evaluation only provides n bits of information, these counts also give us
lower bounds on the number of vertex evaluations required to distinguish Matousek-type
USOs, but sink-finding can of course be easier.

Corollary 22. [t takes at least Q(n) vertex evaluations to distinguish all MatouSek-type
USOs, and at least Q(logn) vertex evaluations to distinguish all realizable MatouSek-type
USO:s.

4 Sink-Finding in Matousek-type USOs
We now switch our attention from the structure of (realizable) Matousek-type USOs to

the algorithmic query complezity of sink-finding on (realizable) Matousek-type USOs. We
first introduce an alternative view on the sink-finding problem in Matousek-type USOs.
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4.1 Equivalence of Sink-Finding and Solving Mx = y

By simply rearranging some terms in Definition 7, we get the following observation:

Observation 23. An orientation u is a Matousek-type USO with dimension influence
graph G given by the adjacency matriz M if and only iof it fulfills

Ve, y € {0,1}" :u(x) B uly) = M(z & y).

This looks quite innocent, and maybe not too useful, but we can use this equation
to formulate an algebraic problem which is equivalent to sink-finding in Matousek-type
USOs.

Definition 24 (M« = y Problem). For a matrix M € {0,1}"*" and a vector y € {0, 1}",
the associated Mz = y problem is to find the vector x € {0,1}" fulfilling Mz =y. M
is not explicitly included as part of the problem instance, but only an oracle is provided
to the algorithm. The oracle answers matriz-vector queries: for any query ¢ € {0,1}", it
returns Mgq.

Using Observation 23, we can now show that up to a single additional query, the
query complexities of the sink-finding problem and the Mx = y problem are the same.
We formalize this in the following theorem:

Theorem 25. Let U be a subclass of MatouSek-type USOs closed under reorientations.
There exists a deterministic algorithm A to find the sink in USOs in U in f(n) vertex
evaluations if and only if there exists a deterministic algorithm B to find x fulfilling Mx =
y where M can be the adjacency matriz of the dimension influence graph of any USOu € U
in f(n) — 1 matriz-vector queries.

Proof. We first prove the “if” direction. Given an algorithm B for solving Mz = y in
f(n) — 1 queries we construct a sink-finding algorithm A. The algorithm A first chooses
an arbitrary vertex of the USO u, say 0, and queries it to receive its outmap u(0). It sets
y := u(0) and sets M to the (still unknown) adjacency matrix of the dimension influence
graph of w. If B makes a query ¢ € {0,1}", A can simulate the matrix-vector oracle and
answer this query by querying the vertex ¢ in the USO vertex evaluation oracle. The reply
Mgq can be computed as u(0) @ u(q) by Observation 23. Once B has found z fulfilling
Mz =y (in at most f(n) — 1 queries by assumption), A knows that = must be the sink,
as
y= Mz =u(0)®u(r) =y ® u(xr) and thus u(z) = 0.

For each query of B, A had to perform one query, with an additional query at the beginning
to determine y = «(0). In conclusion, A required at most f(n) —1+ 1= f(n) queries.
Next, we prove the “only if” direction. Given an algorithm A for finding the sink in
a USO u from U in f(n) queries, we construct an algorithm B to solve Mz = y. When
A makes its first query, vertex vy, B simulates the vertex evaluation oracle and answers
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with u(vg) := y from its given instance. Whenever A makes a query v, B computes the
outmap u(v) using

u(v) == u(vo) ® (M(v @ wo)) =y © (M(v ®wo)).

By Observation 23, u is thus a Matousek-type USO with dimension influence graph with
adjacency matrix M and with u(vg) = y. As M is the dimension influence graph of a
USO in U, and U is closed under reorientations, v must be in /. Once A has found the
sink s (in at most f(n) queries by assumption) B can compute the solution z := s @ vy
to the system Mx =y, as

M(s & vo) = u(s) & u(ve) = 0@ u(vy) = v.
For each query performed by A apart from the first one, B had to perform exactly one
query. In conclusion, B required at most f(n) — 1 queries. O

As the mapping x — Mz computed by the oracle is linear and invertible, we can make
the following two observations about any optimal algorithm for the Mz = y problem:

Observation 26. If 2’ is a linear combination of previously asked queries ), ... «®),
the response Mx' can be computed without querying the oracle. Thus, every optimal
algorithm only emits linearly independent queries.

Observation 27. If y is a linear combination of previously given replies y, ... y®,
i.e., if y € span(y™M, ..., y®), the algorithm can find the solution x with no additional
QUETIES.

In some places it will be useful to interpret the matrix-vector queries in terms of vertex
sets of the dimension influence graph.

Observation 28. For a query q € {0,1}", the vertex set {i € [n] : (Mq); = 1} contains
exactly the vertices which have an odd number of in-neighbors among the vertex set {i €
n]:q =1} in G.

4.2 The General Case

It is easy to derive algorithms using a linear number of queries to find the sink in Matousek-
type USOs.

Theorem 29. There exists an algorithm that finds the sink of an n-dimensional Matousek-
type USO in n vertex evaluations.

Proof. The JUMPANTIPODAL algorithm begins at some arbitrary vertex v := vy. In each
step, it queries v, then jumps to the vertex v @ o(v). As Matousek-type USOs are decom-
posable, the USO is combed in some dimension d. After the first jump, the algorithm
arrives at a vertex v’ in the facet towards which all edges of dimension d are pointed. This
facet can never be left again, and it is itself a decomposable USO of dimension n — 1.
Applying this argument recursively, after at most n jumps JUMPANTIPODAL has reached
a 0-dimensional USO — a single vertex that must be the sink. It does not need to query
this vertex anymore, and thus requires at most n vertex evaluations. O
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As can be seen from this proof, JUMPANTIPODAL requires only n vertex evaluations
on all decomposable USOs, not only on the Matousek-type USOs. In contrast, it has been
shown that even on some acyclic USOs it requires exponentially many queries [19]. Note
that JUMPANTIPODAL only finds the sink. If we are interested in recovering the whole
structure of a Matousek-type USO, this can be easily achieved in n matrix-vector queries
(by querying ey, ..., e,), or n + 1 vertex evaluations.

We are now going to prove Theorem 2, the matching lower bound to Theorem 29. The
proof works in the framework of the Mx = y problem, and is quite algebraic in nature.
Algorithm 1 shows a strategy for an adversary to adaptively construct the matrix M in
a way to force every deterministic algorithm to use at least n — 1 queries to find x. In
terms of the dimension influence graph, this strategy can be seen as picking a sink j in
every iteration, and adding/removing some edges towards j. This ensures that the graph
represented by M always remains acyclic apart from the loops at each vertex.

Algorithm 1 Adversarial Construction

1. MO® T
2: for ke {l,...,n—1} do

3: x®) < new linearly independent query from algorithm

4: if y € span(M*EVzM M EDz®) then

5 X (2 ... ;E(k))T

6: freevars < free variables of linear sgfstem of equations determined by X

7: Pick 2®) such that X2*) = ¢, and 2;”) = 0 for all i € freevars

8: Pick j € freevars such that e; is an eigenvector of M =1 > j is a sink
9: M®) — ppte=1) 4 ejz(k)T > Add 2 to j-th row of M*—1
10: else

11: M®) — ppt=1) > No need to change M

12: Answer query with y®) := M *)z*)

Theorem 2. For every deterministic sink-finding algorithm A and any n > 2, there exists
an n-dimensional Matousek-type USO on which A requires at least n verter evaluations
to find the sink.

Proof. We show that the adversarial construction in Algorithm 1 ensures that no algo-
rithm can find the solution to the Mx = y problem in fewer than n — 1 queries. To prove
this, we first show four auxiliary properties of the instances constructed by Algorithm 1:

e Feasibility: We can always pick 2 and j on lines 7 and 8 as defined.
e Consistency: The replies to previous queries remain consistent.

e Legality: The graph defined by M remains a legal dimension influence graph, i.e.,
it is acyclic with added loops at every vertex.
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e Uncertainty: After & < n — 1 queries, the algorithm cannot yet distinguish between
some instances with different solutions.

Feasibility: By Observation 26, we can assume all queries 9 to be linearly indepen-
dent. Thus, the k X n-dimensional matrix X has rank £ < n and is underdetermined. We
can thus set all free variables of 2(® given X2 = ¢, to be zero, and get a unique z*) to
be picked at line 7.

Whenever an additional linearly independent row is added to X, exactly one variable
is removed from the set of free variables. Thus, after k queries n — k free variables remain.
These were also free variables in all previous iterations, and therefore all vectors z*) of
iterations k&’ < k have a 0 at these coordinates. Therefore, for any variable j € freevars, it
holds that the column j of M*~Y must be equal to e;, and thus e; must be an eigenvector
of M®* =1 We conclude that any j € freevars can be picked on line 8.

Consistency: We prove that the possible change to M®*~Y in iteration k has no
effect on any query #*) for &’ < k. Note that if M is changed in iteration k, we have
M® = M=) 4 ejz(k)T, and thus M®z*) = pr=DgzE) 4 ejz(k)T:U(k/). As 2 was

picked such that Xz*) = e,, we have in particular 20T ) = 0, and thus

Legality: As we start with M(©) = I, we start with a loop at every vertex. As 2 is
added to the j-th row, and zj(-k) = 0, these loops are never removed. As j is picked such
that e; is an eigenvector of M*~V the j-th column of M®*~Y must be equal to e;. This
corresponds to the vertex j having no outgoing edges apart from the loop, i.e., j is a sink.
Changing the j-th row of M®* =1 only adds or removes edges pointing towards j. As j
is a sink, this cannot introduce any cycles. The graph described by M®*) thus remains a
legal dimension influence graph.

Uncertainty: We first show that after each iteration, the algorithm cannot deduce
the solution through linear combination, i.e.,

VO<k<n—1: yd&span(M®z® AE M), (2)

We prove this by induction. For & = 0, the statement is trivially true. Assuming it holds
for some £ — 1 < n — 1, we show that it also holds for k. If in the k-th iteration the
condition at line 4 is false, the statement also trivially follows. Otherwise, we must have

y & span(MF VM k=D k=Y Syt (3)
y € span(ME VM kD=l =15 (k)y, (4)
Since j is picked as a free variable of X, e; ¢ span(z™M, ... 2®) and as e; is an eigenvector

of the (invertible) M*~1) it must also hold that

e; & span(M*F DM k=D k) (5)
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Equations (3) and (4) show that M =1z is a required element in the linear combination
of y. Equation (5) shows that e; cannot be expressed as a linear combination of the
ME=DgE) - Therefore, if we add e; to the required element MEDg®) 4 can not be in
the span anymore, i.e.,

y & span(ME=Dg® e A=W pt=D g (k=1)y, (6)

This is equivalent to the desired Equation (2) for k, as M®z®) = MfE=Dgz®) 4 ¢, and
as shown in paragraph “Consistency”, M®z*) = pME=DzH) for all k' < k.

We can now show that after & < n —1 queries, there exist two matrices which are both
consistent with the given replies but have different solutions. The first such matrix is
M®) . The second matrix is the matrix M *+Y constructed by the adversary if it would be
given the solution for M® as an additional linearly independent query z*+1) .= M® "y,
As proven in previous paragraphs, M **Y is legal and consistent with M *) on all queries
+M . 2% Equation (2) implies that 2**+1) is not the solution to M **V proving that
the two indistinguishable matrices have different solutions.

Conclusion: Given any n — 1 queries, Algorithm 1 produces a series of legal matrices
M®) (Feasibility + Legality) which are always consistent with the previously given replies
(Consistency). The algorithm cannot know the solution in fewer than n — 1 queries, as
it cannot distinguish between matrices with different solutions (Uncertainty). By Theo-
rem 25, we conclude that no algorithm can find the sink of an n-dimensional Matousek-
type USO in fewer than n vertex evaluations in the worst case. n

4.3 The Realizable Case

In this section we prove our second main result, the upper bound for the realizable case.

Theorem 3. The sink of any n-dimensional realizable Matousek-type USO can be found
deterministically using O(log® n) vertex evaluations in the worst case.

To prove Theorem 3, we provide a concrete algorithm in the matrix-vector query
model to recover the matrix M. The algorithm makes heavy use of the structure of the
graph G described by this matrix, which has to be the reflexive transitive closure of a
branching (recall Theorem 16). Recall that we can view the matrix-vector queries also
as sets of vertices of the dimension influence graph (Observation 28). In a slight abuse
of notation, we will sometimes use the name v of a vector v € {0,1}" to also denote the
set {i € [n] :v; = 1}.

We first take a closer look at the structure of G. The underlying branching (technically,
the unique reflexive transitive reduction of G) can be decomposed into levels, where the
roots are on level 0, and the children of a vertex on level ¢ are on level ¢ + 1. In the
reflexive transitive closure G, we can see that the in-degree of each vertex is equal to its
level plus 1 (due to the loops).

Observation 30. A vertex v on level £ has exactly {+1 incoming edges, and v has exactly
one in-neighbor on each level ¢’ € {0, ... (}.
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Definition 31. For a vertex v on level ¢ and some level ¢/ < ¢, the ¢'-ancestor of v is
the unique in-neighbor of v on level ¢'. The parent of v is the ¢ — 1-ancestor of v. The
maximum level of any vertex in G is denoted by £,,4..

Our proposed algorithm works in two main phases. In the first phase, the levelling,
it determines the level of each vertex in O(logn) queries. In the second phase, we use
a divide-and-conquer approach to partition the vertices and perform queries to find the
edges within each partition simultaneously, requiring O(log®n) queries in total.

Algorithm 2 Levelling

1: [vl < array of n zeroes > Stores the level for every vertex
2: g1

3. for i € {0,...,[logyn] — 1} do

4 r+ (Mq) ®q > Issues 1 query
5 forve{l,...,n} do

6: if r, =1 then

7 l[v] + lvl]v] + 2

8 qg<—qOr > Bit-wise “and” operation
9: return vl

Lemma 32. Algorithm 2 correctly computes the level of each vertex, using O(logn)
QUETTES.

Proof. Algorithm 2 issues O(logn) queries, one per iteration of the loop at line 3.

To prove correctness, we show that in each iteration i, the vertices in the vector r
are exactly those on levels ¢ where Bin(f); = 1. From this follows that the level of each
vertex is correctly recovered on line 7, one bit at a time. We show this by induction on 7.

Note that a vertex v is in r = (Mq) @ ¢ if it has an odd number of non-self in-neighbors
in ¢, i.e., in-neighbors in ¢ \ {v}.

For ¢ = 0 as the base case of this induction, ¢ = 1 and r therefore contains all vertices
with an odd number of non-self in-neighbors. By Observation 30, these are exactly the
vertices on odd levels, i.e., those on levels where the least significant bit is 1.

For the induction step, assume that for some i, the statement holds for all iterations
1" < 1. Thanks to the bit-wise “and” on line 8, the queried vertices ¢ in iteration 7 + 1 are
the vertices on levels ¢’ with Bin(¢'); = 1 for all ¢/ < i, i.e., the binary representation of ¢/
ends with at least ¢ ones. The vector (Mq) @ ¢ contains all vertices with an odd number
of non-self in-neighbors among these queried vertices. By Observation 30, these are all
vertices on levels ¢ with an odd number of queried levels strictly above, i.e., with [{¢' <
0¥ < i,Bin(l')y = 1} =2 1. This holds exactly for the levels ¢ with Bin(f);;; = 1,
thus proving the claim. O]

We now know how to compute the level of each vertex in O(logn) time. It remains
to show that we can also determine the edges connecting each consecutive two levels, and
thus recover the whole graph.
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Figure 7: The orange-circled vertices are those included in the query ¢, the green-circled
vertices are also in the query ¢’. All loops and all edges not induced by the vertices in ¢,
a, and w are omitted for legibility. The effect (bold) of the two vertices in ¢ but not in ¢’
on a is the same as their effect on w, as a is an ancestor of w and the graph is transitive.
This shows that (M¢'),, can be computed from (Mgq),, and (Mq),.

We first give the intuition for a simple strategy that given a level ¢ finds the f-ancestor
of all vertices on levels > ¢ + 1. We can perform [log, n| queries, where the i-th query
¢ contains all vertices v such that {v on level £ with Bin(v); = 1}. If a vertex is “hit”,
i.e., it is contained in the i-th reply M¢®, we know that its f-ancestor must be in ¢®. As
each binary representation uniquely determines an integer, after all [log, n] queries, the
(-ancestor is found.

It would be too costly to use this procedure for all levels on their own, as there can be
up to n levels. We thus make use of the following observation, which follows directly from
the transitivity and reflexivity of the dimension influence graph, as illustrated in Figure 7:

Observation 33. Let ¢ be some level, q be some query and Mq the corresponding response.
Furthermore, let w be some vertex on level £ > {, with the (-ancestor of w being a. We
form the alternative query ¢' with ¢, = 1 <= (¢, = 1 Nlevel(v) = L ANv # a) by removing
from q the vertex a as well as all vertices strictly above level (. It holds that

(Mq")w = (Mq)y ® (Mgq)a.

This observation allows us to “filter out” the effect of querying vertices above a certain
level ¢ on the vertices below ¢, as long as their /-ancestors are known. Using this crucial
tool, we can now solve the Mx = y problem with a divide-and-conquer approach. If
we use the previously given strategy to find all /-ancestors for a level ¢ roughly in the
middle of the branching, we can then split the graph into two halves, the one above ¢ and
the one below /. Using Observation 33, we can proceed in each of the two subproblems
simultaneously, as the effect of queries used to make progress in the upper half can be
filtered out of the responses to the queries used to make progress in the lower half. We
describe this process in Algorithm 3.

This algorithm keeps a list of subproblems, where each subproblem is described by an
interval of levels {a;,a;+1, ..., b;}, denoted by the tuple (a;, b;). It is important that these
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subproblems are disjoint. In each iteration of the main loop, a median level m; of each
subproblem is picked, and the previously mentioned procedure is performed to determine
the m;-ancestors of all vertices in the subproblem (lines 5-17). Observation 33 is applied
with ¢ := b; to filter out the effect of the vertices queried for the subproblem (a;, ;) from
the later subproblems (lines 13 and 14). The transitive property of the ancestor relation
is applied to make sure that the mj;-ancestors are also known for all vertices on levels
below the considered subproblem (a;, b;) (lines 18-20). Finally, each subproblem is split
into two parts, the one above m;, and the one strictly below m;. Subproblems consisting
of a single level are ignored, as they contain no more edges to discover (lines 21-26).

Lemma 34. Knowing the level of each vertex, Algorithm 3 correctly determines the parent
of every vertex v in O(log®>n) queries.

Proof. Let us first assume that all ancestor values required on line 14 are already known.
By Observation 33 being applied on lines 13 and 14, the values r, read on line 16 are
only influenced by the queried vertices on the level m; — the effect of earlier subproblems
is filtered out. Lines 4-17 therefore correctly determine the m;-ancestors for all vertices
on levels in {m; + 1,...,b;}. It only remains to prove that all ancestor values required
on line 14 are known, and that in the end of the algorithm, all ancestor|(][v] values are
known.

We show the invariant that at the beginning of the main while loop, the values
ancestor|[b;|[v] are known for all v € [n| and all (a;,b;) € subproblems. At the begin-
ning of the algorithm, this trivially holds, as there is only one subproblem (0, ¢,,4.), and
no vertex has an ¢,,,,-ancestor. Whenever a subproblem (a;, ;) is split into (a;, m;) and
(m; + 1,b;), there is only one new end of a subproblem, namely m;. On lines 4-17, the
m;-ancestor has just been computed for all vertices on levels in {m; + 1,...,b;}, and
the b;-ancestor was previously known for all vertices. On lines 18-20, this is combined to
compute the m;-ancestor for all vertices. The invariant thus holds.

To prove that all ancestor[f][v] values are known at the end of the algorithm, we
observe that every level is the end or the median of some subproblem at least once. In
case the level is the end b; of a subproblem, the b;-ancestors are known by the previously
proven invariant. In case the level is the median m; of a subproblem, the m;-ancestors
are computed in that iteration.

We conclude that Algorithm 3 correctly determines all ancestor[f][v] values, and thus
also the parent of every vertex. In each iteration of the main while loop, O(logn) queries
are issued, and as the size of the subproblems is halved in each iteration, there are at
most O(logn) iterations. We conclude that Algorithm 3 requires O(log®n) queries. [

Proof of Theorem 3. Using Algorithm 2 to compute the level of each vertex in the dimen-
sion influence graph G and Algorithm 3 to then compute all ancestors of all vertices, G
can be completely recovered in O(log”n) matrix-vector queries. Knowing M, Mz = y
can be solved with no additional queries using Gaussian elimination. By Theorem 25, the
sink of a realizable Matousek-type USO can be found in O(log® n) vertex evaluations. [J
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We believe that ©(log”n) is the best-possible number of queries to find the sink of
a realizable Matousek-type USO. Due to the rigid structure of the dimension influence
graph, a large portion of the n bits of information in every reply from the oracle is
redundant. We did not manage to prove this matching lower bound, but we can show a
lower bound of (logn). Note that our algorithm solves the harder problem of recovering
the whole structure of the USO, while the following lower bound holds for the easier
problem of only finding the sink.

Theorem 35. Fvery deterministic algorithm requires at least Q)(logn) queries to find the
sink of an n-dimensional realizable Matousek-type USO in the worst case.

Proof. We prove this in the matrix-vector query model. We set y = 1 and begin with
M = 1. As y = 1, the desired = such that Mz = y is the vector corresponding to all
roots of the dimension influence graph described by M, as their out-neighbor sets form a
partition of all vertices.

During the construction, we enforce the invariant that the branching underlying the
dimension influence graph is the union of disjoint paths. We call a path p good, if for each
previously given query ¢, there is an even number of queried vertices within the path, i.e.,
lgNpl =2 0.

As long as there is at least one good path p; and at least one other path ps, all replies
given to the algorithm are also consistent with the graph in which ps is attached to the
end of p;. In this alternative graph, the first vertex of py is not a root. These two graphs
thus have different solutions but are indistinguishable to the algorithm, and we conclude
that the algorithm cannot know the set of roots at this point.

Note that at the beginning of the construction, when M = I and no queries have
arrived yet, the branching underlying the graph consists of n paths of length 0, which are
all good.

Whenever the algorithm queries an odd number of vertices of some good paths, these
paths are paired up. When two paths p; and py are paired up, p, is attached to the end
of p; (see Figure 8). The query is then answered according to this new graph. As each
previous query contained an even number of vertices in p; (as p; is good), the influence
of these vertices onto the vertices in p, cancels out. The replies to these queries therefore
remain consistent. As the newest query would have contained an odd number of vertices
of both p; and p,, the joined path is still good.

If there is an odd number of paths to be paired up, there is one leftover path. This
path can not be paired up. It is no longer good, and will not be changed anymore.

We observe that when there are k good paths before a query, there are at least |k/2]
good paths remaining after the query. We showed that the algorithm can only know the
solution when there are no good paths left, or only a single path in total. As the graph
contains n good paths before the first query, it takes at least Q(logn) queries until the
algorithm can know the solution. m
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(a) Before the purple query. (b) After the purple query.
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Figure 8: After the green and cyan queries, all three paths in the left figure are good. To
accommodate the purple query, the left and middle paths are paired up and joined. The
combined path remains good. The right path is leftover, and is no longer good after the
purple query. Loops and transitive edges are not shown.

5 Conclusion

We have shown that the Holt-Klee condition is also sufficient on the Matousek-type USOs
and thus fully characterized their realizable subset. Finding stronger necessary or some
sufficient conditions for realizability in larger USO classes would be very interesting future
work.

We have determined the query complexity of finding the sink in general Matousek-
type USOs exactly. For realizable Matousek-type USOs, there remains an O(logn) gap
between our lower and upper bound. While it would be interesting to close this gap,
our main result — the gap between the realizable and the general case — is already well
established by our bounds.

As the best-known sink-finding algorithms are randomized, it would be desirable to
establish a complexity gap also for randomized algorithms. The upper bound naturally
carries over, as all deterministic algorithms are also randomized algorithms. The most
natural approach to establish a lower bound would be applying Yao’s principle [28]. On the
flip side, it might also be possible to improve upon our algorithms both for the realizable
and the general case using randomness, but we did not observe any straightforward benefit
of randomness.

The most important open question implied by our complexity results is whether there
are other (larger and more practically relevant) USO classes which also admit such a
complexity gap. Ultimately, we hope for such a gap to exist for the class of all USOs.
Considering the lack of a strong lower bound and good characterizations of realizability,
this goal is still far away:.
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Finally, the connections between Matousek-type USOs and D-cubes mentioned in Sec-
tion 1.2 can be examined further. Are all or at least some of the realizable Matousek-type
USOs also D-cubes? Can our techniques used to find the sink of a Matousek-type USO
be adapted to work for the less rigid D-cubes?
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Algorithm 3 Divide-And-Conquer

1:

2:

10:

11:
12:
13:
14:

15:
16:
17:

18:
19:
20:

21:
22:
23:
24:

25:
26:

subproblems < {(0, lyaz)}

> subproblems: a sorted set of disjoint intervals (a;, b;) with a; < b; < a;41
ancestor < .. X n-dimensional matrix of zeroes
> ancestor[l][v]: contains the ¢-ancestor of vertex v, or 0 if this is unknown/does not
exist
while subproblems # () do

q<« (0,...,0)7
for s € {0,...,[logyn] — 1} do > Perform binary search
for all (a;,b;) € subproblems do
m; |4t | > Compute median level of subproblem

for all vertices v on level m; do
if Bin(v); =1 then
Gy 1 > Add v to query
r < Mgq > Issue a query
for all (a;,b;) € subproblems do
for all vertices v on levels > b; do

Ty <= Ty @ Tancestor[b][v] > Filter effect of level m; on levels > b,
for all vertices v on levels {m; + 1,...,b;} do
if r, =1 then > Detect ancestor

ancestor|m;][v] < ancestor[m;][v] + 2°

for all vertices v, levels /1 > /5 do > “Transitivify” ancestor
if ancestor[l,][v] # 0 and ancestor[lsy][ancestor[¢y][v]] # 0 then
ancestor[ly][v] «— ancestor|ls][ancestor[lq][v]]

for all (a;,b;) € subproblems do > Split subproblems in half
remove (a;, b;) from subproblems
if m; > a; then
add (a;, m;) to subproblems
if b, > m; + 1 then
add (m; + 1,b;) to subproblems
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