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Abstract

Denote by V the poset consisting of the elements {A,B,C} with cover relations
{A⋖B,A⋖C}. We show that P -strict promotion, as defined by Bernstein, Striker,
and Vorland, on P -strict labelings of V × [ℓ] with labels in the set [q] has order 2q
for every ℓ ⩾ 1 and q ⩾ 3. As a consequence of results of Bernstein, Striker, and
Vorland, this result proves that piecewise-linear rowmotion on V × [k] has order
2(k + 2) for all k ⩾ 1, as conjectured by Hopkins.

Mathematics Subject Classifications: 05E18, 06A07

1 Introduction

Promotion is an action on the linear extensions of a finite poset, see section 2.1 for
definitions. Throughout we will be concerned with a generalization of promotion, due
to Bernstein, Striker, and Vorland, named P -strict promotion; see Section 2.1 for the
definition.

Similarly, rowmotion is an operation defined on the order ideals of a finite poset; see
Section 2.3 for definitions. Historically, rowmotion was first described by Brouwer and
Schrijver [4], and then again by Cameron and Fon-der-Flaass [5] as a composition of
certain involutions called toggles. The name of rowmotion comes from the work of Striker
and Williams [14] where, for certain posets, rowmotion is described as a composition of
toggles along the rows, and it is shown to be related to promotion. In particular, the
toggle definition was extended to an action referred to as piecewise-linear rowmotion on
the order polytope of P in [7].

The family of posets of the form V× [k] have been the focus of study, because of their
“good” dynamical behavior, first conjectured by Hopkins in [8], especially with respect
to both Schützenberger promotion of linear extensions and rowmotion. In particular it
has been shown that the orders of these actions for a fixed k are 6k [9] and 2(k + 2) [11]
and [12] respectively. Furthermore the order of piecewise-linear rowmotion on the order
polytope of V×[k] has been conjectured by Hopkins in [8] to be finite and equal to 2(k+2).
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The goal of this work is to resolve this conjecture by proving an equivalent conjecture
of Bernstein, Striker, and Vorland concerning the order of P -strict promotion on P -strict
labelings of V × [ℓ] with entries in [q] for all ℓ ⩾ 1, q ⩾ 3. The formal statement is
given in Theorem 13. These two conjectures are equivalent because the action of P -
strict promotion on V × [ℓ] with entries bounded by q for all ℓ ⩾ 1 for a fixed q ⩾ 3
is in equivariant bijection with piecewise-linear rowmotion on ℓ-bounded P -partitions of
V× [q− 2]. By rescaling, these are the rational points of the order polytope of V× [q− 2]
whose denominators are divisible by ℓ. The method of proof was suggested as a possible
attack for this problem by Bernstein, Striker, and Vorland in [3].

The paper is structured as follows. In Section 2 we review the necessary background for
our proof. Section 3 is devoted to the proof. We note that while the author was not aware
of this at the time of discovery this argument, a similar idea of considering a modification
of the arc diagrams of Hopkins and Rubey and studying it from the perspective of P -strict
promotion was considered by Bernstein in [1]. In [1] a proof of Theorem 13 was not given.
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2 Background

In this section, we review the necessary background for the argument of Theorem 13.
Throughout P will denote a poset. Recall that P is said to be graded of rank n if every
maximal chain of P has n+ 1 elements. Denote by rk the rank function of such a poset.

2.1 Promotion

For P a finite poset with |P | = m, recall a linear extension of P is an order-preserving
bijection f : P → [m]. Typically this is represented as a labeling of the Hasse diagram of
P with the elements of [m], where if p <P p

′ then the label of p′ is greater than the label
of p. Equivalently f is as an ordered tuple listing the elements of P , where if p <P p′

then p precedes p′ in the tuple. Denote by e(P ) the set of all linear extensions of P .
For 1 ⩽ i ⩽ m − 1, define the ith Bender–Knuth involution ti : e(P ) → e(P ) by setting
ti(f) to be the linear extension of P obtained from f ∈ e(P ) by switching the labels
i and i + 1 if the elements labeled by i and i + 1 are incomparable and doing nothing
otherwise. Note that ti is an involution since two consecutive applications just swaps the
labels of i and i+1 twice or does nothing twice. Define promotion on e(P ) to be the map
Pro = tm−1tm−2 · · · t2t1. See Figure 1 for an example of promotion on V × [6].
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Figure 1: An application of promotion applied to a linear extension of V × [6].

2.2 P-Strict Promotion

We now state some preliminary definitions, following the treatment given in [3]. The
initial definitions and a more general treatment of these ideas can be found in [2]. Nota-
tionally, using the convention of [3], P(Z) is the set of finite subsets of Z. For an example
highlighting the next two definitions, see Figure 2.

Definition 1 ([3, Definition 2.2 and 2.3]). A function f : P× [ℓ] → Z is a P -strict labeling
of P × [ℓ] with restriction function R : P → P(Z) if f satisfies the following:

(1) f(p1, i) < f(p2, i) if p1 <P p2, edges strictly increase along copies of P .

(2) f(p, i1) ⩽ f(p, i2) if i2 ⩽ i2, edges weakly increase along copies of [ℓ].

(3) f(p, i) ∈ R(p), the function takes on values given by the restriction function R.

A restriction function R is consistent with respect to P × [ℓ] if for all p ∈ P and
k ∈ R(p) there exists some P -strict labeling f of P × [ℓ] with f(p, i) = k, 1 ⩽ i ⩽ ℓ.

Continuing to follow the notation of [3], for a fixed i ∈ [ℓ] we refer to Li = {(p, i) : p ∈
P} as the ith layer of f , and for p ∈ P we call Fp = {(p, i)|i ∈ [ℓ]} the pth fiber of P × [ℓ].
Additionally, we denote the set of P -strict labelings on P × [ℓ] with restriction function
R by LP×[ℓ](R). If R is the consistent restriction function induced by the respective lower
and upper bounds a, b : P → Z, i.e. R(p) is the largest subinterval of [a(p), b(p)] that
allows R to be consistent, then we denote this restriction function by Rb

a. For our purposes
we will only work in the case where a = 1, b = q and we denote this restriction function
by Rq.

In the case where R = Rq and P is graded of rank n, then R(p) = {rk(p) + i|i ∈
[q − (n+ 1)]} for all p ∈ P .
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Definition 2 ([3, Definition 2.5]). Let R(p)>k denote the smallest label of R(p) that is
larger than k, and let R(p)<k denote the largest label of R(p) less than k. If R = Rq,
then R(p)>k and R(p)<k are k + 1 and k − 1 respectively if they exist.

Say that a label f(p, i) in a P -strict labeling f ∈ LP×[ℓ](R) is raisable (lowerable)
if there exists another P -strict labeling g ∈ LP×[ℓ](R) where f(p, i) < g(p, i) (f(p, i) >
g(p, i)), and f(p′, i′) = g(p′, i′) for all (p′, i′) ∈ P × [ℓ], with p′ ̸= p.

Definition 3 ([3, Definition 2.6]). Define the action of the kth Bender–Knuth involution
τk on a P -strict labeling f ∈ LP×[ℓ](R) be as follows: identify all raisable labels f(p, i) = k
and all lowerable labels f(p, i) = R(p)>k. Call these labels ‘free’. Suppose the labels f(Fp)
include a free k labels followed by b free R(p)>k labels; τk changes these labels to b copies
of k followed by a copies of R(p)>k. Promotion on P -strict labelings is defined as the
composition of these involutions: Pro(f) = · · · ◦ τ3 ◦ τ2 ◦ τ1 ◦ · · · (f). Note that since R
induces upper and lower bounds on the labels, only a finite number of Bender–Knuth
involutions act nontrivially.
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Figure 2: An example f in LV×[6](R
9)

To more clearly explain the example of Figure 2, when reading the copies of f from
left to right, the first copy has the weak edges colored blue and the strict edges colored
red. In the second copy FB is colored blue, FA is colored red, FC is colored green. In the
third copy, each layer has a distinct color. In the fourth copy all of the lowerable labels
are circled in blue. In the fifth copy all of the raisable labels are circled in red.

When restricting to where q = ℓ|P |, and all the labels are distinct, P -strict promotion
is the same as promotion on the linear extensions of P × [ℓ].

2.3 Rowmotion

We now review rowmotion on the order polytope of P , and consequently on bounded P -
partitions. We first define the order polytope of P , following the description given in [13].
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Figure 3: The steps of Pro when the Bender–Knuth involutions are applied to f of
Figure 2. At each step in the computation of Pro, the raisable k labels are circled in red
and the lowerable k + 1 labels are circled in blue.

Let P̂ denote the poset obtained from P by adjoining a new mininmal element 0̂ and a
new maximal element 1̂.

Definition 4 ([13]). For a poset P the order polytope of P is

O(P ) = {f : P̂ → [0, 1]| if p ⩽P̂ p
′ then f(p) ⩽ f(p′) and f(0̂) = 0, f(1̂) = 1}.

Equivalently O(P ) is the set of order preserving functions from P to [0, 1].

We now define rowmotion on O(P ) and on P -partitions, where we follow an amalga-
mation of the treatments given in [7] and [3]. For each p ∈ P , we define the toggle at p,
denoted by τp, to be τp : O(P ) → O(P ) where for any f ∈ O(P ) and p′ ∈ P

τp(f)(p
′) =

{
f(p′) p′ ̸= p

min{f(r)|p′ ⋖ r}+max{f(r)|r ⋖ p′} − f(p′) p′ = p

The following facts about the toggles follow immediately. Firstly the toggles are in fact
involutions, as the toggle τp just reflects the value of the coordinate indexed by p in the
interval of possible values. Secondly, just as was shown for the combinatorial case in [5],
p and p′ do not share a cover relation if and only if the toggles τp and τp′ commute.
Additionally, if for any ℓ ∈ Z and f ∈ O(P ) such that ℓf is integer valued then for any
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p ∈ P, ℓτp(f) integer valued is as well. Consequently for every integer ℓ we may discuss
the action of the toggles restricted to the elements f ∈ O(P ) such that ℓf is integer
valued. Note that these functions are just the maps from P → {0, 1, . . . , ℓ} that are order
preserving, otherwise known as ℓ-bounded P -partitions. We denote these by PPℓ(P ).

Definition 5. Let (p1, p2, . . . , pm) be a linear extension of P . Then rowmotion on O(P ),
and consequently on PPℓ(P ), otherwise known as piecewise-linear rowmotion, is defined
as Row = τp1 ◦ τp2 ◦ · · · ◦ τpm .

For our purposes the primary relation between P -strict promotion and rowmotion that
we will use is the following result.

Proposition 6 ([3, Corollary 2.26]). Let P be a graded poset of rank n. Then LP×[ℓ](R
q)

under Pro is in equivariant bijection with PPℓ(P × [q − (n+ 1)]) under Row.

We note that this equivariant bijection passes through a map we will see later that is
called TogPro. Additionally the equivariant bijection between TogPro and Row does not
depend on any linear extension of P , which can be seen from the proof of [6, Theorem
4.19], and is thus invariant under any automorphism. As a consequence of the above
proposition, by proving Theorem 13 for all ℓ and q we will have shown that the order of
Row on the rational points of O(V × [q − 2]) has order dividing 2q, so the order of Row
on O(V× [q − 2]) has order dividing 2q by a density argument as discussed in Section 1.

2.4 Kreweras Words and Promotion

We now discuss Kreweras words, which were originally considered by Kreweras in [10]
as a variant on the three candidate generalization of the ballot problem. Our immediate
goal is to generalize Kreweras words and their associated promotion action, which was
previously studied by Hopkins and Rubey in [9]. The purpose of these will be to help
understand promotion on LV×[ℓ](R

q).

Definition 7 ([9]). A Kreweras word of length 3n is a word in letters A,B,C with equally
many A′s, B′s, and C ′s for which every prefix has at least as many A′s as B′s and also
at least as many A′s as C ′s.

Additionally, these words have an action upon them called promotion, which is defined
as follows.

Definition 8 ([9]). Let w = (w1, w2, . . . , w3n) be a Kreweras word of length 3n. The
promotion of w, denoted Pro(w), is obtained from w as follows. Let ι(w) be the smallest
index ι ⩾ 1 for which the prefix (w1, w2, . . . , wι) has either the same number of A’s as B’s
or the same number of A’s as C’s. Then

Pro(w) = (w2, w3, . . . , wι(w)−1, A, wι(w)+1, wι(w)+2, . . . , w3n, wι(w)).
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w = A C A B B A A B C C A C B A B C C B

A CA B B A A B C C A C B A B C C BPro(w) =

Figure 4: The Kreweras word w whose associated linear extension is given in Figure 1
and Pro(w).

It is easy to verify that Pro(w) is also a Kreweras word, and that promotion is an
invertible action on the set of Kreweras words. Linear extensions of V × [n] correspond
to Kreweras words of length 3n as follows.

If l is a linear extension of V× [n] and l−1(i) = (p, k) then wi = p. As noted in [9], this
is the same as just forgetting the second coordinate when viewing a linear extension as
a word in the letters A,B,C. Importantly, as Hopkins and Rubey show in the following
Proposition, the promotion actions on Kreweras words of length 3n and linear extensions
of V × [n] are the same.

Proposition 9 ([9, Proposition 2.2]). The above map of forgetting the second coordinate
is a bijection from linear extensions of V× [n] to Kreweras words of length 3n, and under
this bijection promotion of linear extensions corresponds to promotion of Kreweras words.

An additional perspective on these words and how promotion acts is via what is called
the Kreweras bump diagram, described in [9]. To properly state the definition, we include
the relevant definitions from [9] below.

Definition 10 ([9, Definition 3.2]). An arc is a pair (i, j) of positive integers with i < j.
A crossing is a set {(i, j), (k, ℓ)} of two arcs such that i ⩽ k < j < ℓ.

Definition 11 ([9, Definition 3.3]). Let A be a collection of arcs. For a set of positive
integers S, we say that A is a noncrossing matching of S if

• for every (i, j) ∈ A we have i, j ∈ S

• every i ∈ S belongs to a unique arc in A

• no two arcs in A form a crossing.

The set of openers of A is {i : (i, j) ∈ A} and the set the set of closers of A is {j : (i, j) ∈
A}.

Definition 12 ([9, Definition 3.4]). Let w be a Kreweras word of length 3n. Let ε ∈
{B,C}, where −ε denotes the other element of {B,C}. We use Mε

w to denote the
noncrossing matching of {i ∈ [3n] : wi ̸= −ε} whose set of openers is {i ∈ [3n] : wi = A}
and whose set of closers is {i ∈ [3n] : wi = ε}.

The Kreweras bump diagram Dw of w is obtained by placing the numbers 1, . . . , 3n
in order on a line, and drawing a semicircle above the line connecting i and j for each
arc (i, j) ∈ MB

w ∪MC
w . The arc is solid blue if (i, j) ∈ MB

w and dashed crimson (i.e., red)
if (i, j) ∈ MC

w . The arcs are drawn in such a fashion that only pairs of arcs which form a
crossing intersect and any two arcs intersect at most once.
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In the proof of the order of promotion on linear extensions of V × [n] [9, Theorem
1.2], the Kreweras bump diagram plays a central role. By considering a local rule at the
crossings of arcs in the diagram, called the rules of the road [9, Definition 3.6], Hopkins
and Rubey construct a permutation of 3n, denoted by σw, called the trip permutation [9,
Definition 3.6] of w. First they showed that σw together with a sequence of B’s and C’s
coming from w and σw, called εw, can uniquely recover w. They then show that Pro
corresponds to a rotation of order 3n on σw and a rotation of order 6n on εw, implying
the order of Pro on V × [n] divides 6n.

For our purposes, we introduce a generalization the Kreweras bump diagram. It will
suffice to decompose our generalizations of Kreweras words by the corresponding arc
structure of the generalized diagrams. Once we have these generalizations, we will relate
and describe P -strict promotion on LV×[ℓ](R

q) in terms of promotion of Kreweras words
without any analogues of the rules of the road or trip permutations.

Dw = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A C A B B A A B C C A C B A B C C B

Figure 5: The Kreweras bump diagram of the word w = ACABBAABCCACBABCCB

3 Proof of Main Theorem

We now state our main result.

Theorem 13. The order of Pro on LV×[ℓ](R
q) divides 2q.

The remainder of the paper is dedicated to the proof. In a very broad sense, the idea
will be to use P -strict labelings as a semistandard analogue of linear extensions of V× [n].
Then we will show that the question of P -strict promotion can be reduced to the case of
promotion on linear extensions V × [n]. For added readability, the argument is broken
into subsections of similarly related ideas within the overall proof.

3.1 Partial Multi Kreweras Words

To begin, we define the previously alluded to generalization of the Kreweras word. These
objects will be our combinatorial model for P -strict promotion on LV×[ℓ](R

q).

Definition 14. An (ℓ, q)-partial multi Kreweras word is a sequence w = w1w2 . . . wq of
q, potentially empty, multisets of {A,B,C} subject to the following conditions. For each
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i neither the number of B′s nor the number of C ′s in w1w2 . . . wi exceeds the number of
A′s in w1w2 . . . wi−1. Additionally there are ℓ of each of A,B, and C.

We call wi the ith block of w.

The collection of (ℓ, q)-partial multi Kreweras words is in bijective correspondence
with LV×[ℓ](R

q) via the map following map W . W takes a word w to a V-strict labeling
as follows: for each p ∈ V, the number of instances of p in wi is the number of labels in
Fp, the fiber above p, that are equal to i.

When writing one of these words, we will always place the A′s in wi after the B′s
and/or C ′s. Unless otherwise specified we will ignore the order of the B′s and C ′s.
Additionally, if wi = ∅ then we write ∅ in the ith position.

A CA BBAA BCCA C BA B CC B
1 2 3 4 5 6 7 8 9

Figure 6: The associated (6,9)-partial multi Kreweras word associated to f of Figure 2
with the index of wi written below.

We define the actions of the Bender–Knuth involutions, and thus promotion, on these
words as follows. For 1 ⩽ k ⩽ q − 1, define τk(w) := W−1 ◦ τk ◦W (w) and Pro(w) =
τq−1τq−2 . . . τ1(w).

At the level of the word w, τk swaps some A′s, B′s, and C ′s between wk and wk+1. It
is always possible to swap an A in wk+1 to wk and it is always possible to swap a B or C
in wk to wk+1. There is only one way an A in wk cannot be swapped to wk+1 or a B (or
C) in wk+1 cannot be swapped to wk. This is when wk contains the i, i+1, . . . , jth A’s of
w and wk+1 contains the s, s + 1, . . . , tth B′s (or C’s) with [i, j] ∩ [s, t] ̸= ∅. The reason
is that for each r ∈ [i, j] ∩ [s, t] in W (w), f(A, r) = k, f(B, r) = k + 1, so neither of these
labels are free, as in Definition 3.

To describe how Pro impacts w, we introduce a generalization of the Kreweras bump
diagram.

Definition 15. Given an (ℓ, q)-partial multi Kreweras word w, linearly order the A′s
within each block, where the A′s follow the B′s and C ′s. Draw the noncrossing arc dia-
grams as in Definition 12 between the A′s and B′s and the A′s and C ′s using this linear
ordering within each block, where the number of arcs in the diagram between the A′s and
B’s of the form (i, j), with i < j, is the number of B’s in wj. This is just to say that we
have degenerate crossings where there can be multiple arcs whose right endpoints share
the same location. We call the resulting diagram the generalized bump diagram of w and
we denote the generalized bump diagram of w by Dw, following the notation of [9].

Additionally we call the instances where an A has arcs to a B and C in the same block
a double arc.

We denote this linear ordering by subscripting the A’s.
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Definition 16. Suppose f ∈ LV×[ℓ](R
q) and w is the associated (ℓ, q)-partial multi Krew-

eras word. Further suppose that w has generalized bump diagram Dw. For each i ∈ [ℓ], if
Ai is in block wai and Ai has arcs to a B and C in blocks wbi , wci respectively, define L

′
i to

be the P -strict labeling of V with L′
i(A) = ai, L

′
i(B) = bi, L

′
i(C) = ci. We call the multiset

of V-strict labelings obtained from w in this way the noncrossing layer decomposition of
f .

Dw = 1 2 3 4 5 6 7 8 9
A1 CA2 BBA3A4 BCCA5 A6C B B CC B

L′
1 = 1

3 2

L′
2 = 2

3 8

L′
3 = 3

9 4

L′
4 = 3

4 4

L′
5 = 4

6 5

L′
6 = 6

7 8

Figure 7: The associated Kreweras bump diagram to w and noncrossing layer decompo-
sition of W (w), where w is from Figure 3.1

We now state and prove our first result concerning how Pro impacts w.

Proposition 17. If f has noncrossing layer decomposition {L′
i}, then Pro(f) is the P -

strict labeling obtained by applying Pro to each L′
i and then reordering the labels within

each fiber.

Proof. Let w = W−1(f). If there are no A’s labeled 1, then Pro will reduce each label by
1. This is the same as applying Pro to each L′

i. So we will assume that there is some A
with label 1. One thing to note is that in τr . . . τ1f when considering the application of
τr+1, the only A labels that can be raised corresponded to A’s that before applying any
toggles had the label of 1. This is because all other A’s corresponded to lowerable labels.

Let L′
i(A) = 1, L′

i(B) = bi, L
′
i(C) = ci, where without loss of generality bi ⩽ ci, and

suppose that L′
i+1(A) > 1, i.e. this A is largest A in the linear order of w1. Denote this

A of L′
i by Ai and suppose that the B of L′

i is the B of the kth layer of f , where k is
minimal among the B’s of wbi that are matched to an A in w1. Under τbi−2 . . . τ2τ1 the
bi − 1st block is exactly i A’s. This is since every other A label encountered that was
not in w1 during the applications of τbi−2 . . . τ2τ1 was lowerable. Additionally, every label
corresponding to a B or C that was encountered was lowerable. This claim about the
labels of the B’s and C’s encountered up to this point always being lowerable holds by
the following argument.

The labels that correspond to B’s or C’s were matched, via the noncrossing matchings,
to an A, that at the time of checking if the label of the jth B or C is lowereable, has label
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at least 2 less than the label of the jth B or C. This A initially had label at least 1 less
than the label of the jth B or C but was then lowered. As such there are at least j A′s
with labels at least 2 less than the label of the jth B or C. Consequently the label of the
jth B or C is lowerable.

Through the application of τbi−2 . . . τ2τ1 to f no labels have been fixed, so there are i
A′s in wbi−1. Importantly there are exactly k − 1 A’s through the first bi − 2 blocks of
τbi−2 . . . τ2τ1(w).

If there were any fewer, then k would not be minimal. If there were any more, then
the kth B would not be matched to Ai in the noncrossing matching.

Now consider what the application of τbi−1 will do to τbi−2 . . . τ2τ1f . For convenience
let w′ = W−1(τbi−2 . . . τ2τ1f). All the labels of all the B’s and C ′s that were the jth B or
C, for j < k, in f correspond to lowerable labels for the same reasons that all previously
encountered B and C labels were lowerable. Notice that the kth B is in block w′

bi
and

the kth A is in block w′
bi−1. So this A will not be a raisable label and this B will not be

a lowerable label. If L′
i(C) = L′

i(B), then the label of the associated C will also not be
lowerable.

Note that this argument holds for any A in w′
bi−1 with associated noncrossing layer L′

i′

in f that satisfies min(L′
i′(B), L′

i′(C)) = bi. Following the same logic, the only B′s or C ′s
in w′

bi
that were lowerable under the application of τbi−1 are those that were not matched

via the noncrossing matchings to A’s that were initially in the first block of w.
While then continuing to apply the τ ’s, we see that the only time a label corresponding

to an A is not raisable when applying τt to τt−1 . . . τ2τ1f is when, in the corresponding
noncrossing layer L′

r decomposition of f , that the A corresponding to the label which is not
raisable was matched to a B or C that was in block wt+1 and that min(L′

r(B), L′
r(C)) =

t + 1. As such all labels that were not associated to a noncrossing layer L′
s, with s ⩽ i,

have just been reduced by 1.
Since the A to which the B or C was originally matched to in Dw has corresponding

label at least 2 less when applying the first toggle which can change the label, then so
were all labels that were associated to a noncrossing layer that were strictly larger than
min(L′

s(B), L′
s(C) by the same logic that was used to show that all the B’s and C ′s that

were before the kth B corresponded to lowerable labels.
It also follows immediately that if a label corresponding to a B or C was not lowerable,

then in all subsequent toggles the associated label will be raisable. Consequently there
will be a B or C in the last block of W−1 Pro(f) for each label of a B or C that was not
lowerable.

In addition, note that for any g ∈ LV(R
q), which is just an increasing labeling of V

with entries in [q], Pro(g) just reduces each label by 1 if g(A) > 1. If g(A) = 1, there are
two cases. When g(B) = g(C), Pro(g) is obtained by first increasing the label of A to
be 1 less than g(B) and then increasing the labels of B and C to q. Otherwise, without
loss of generality assuming that g(B) < g(C), Pro(g) is obtained by first increasing the
label of A to be 1 less than g(B), then decreasing g(C) by 1, and then setting g(B) = q.
Putting this all together, observe that the labels of Pro(f) were changed exactly as if Pro
had been applied to each labeling in the noncrossing layer decomposition.
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Dw = 1 2 3 4 5 6 7 8 9
A1 CA2 BBA3A4 BCCA5 A6C B B CC B

L′
1 = 1

3 2

L′
2 = 2

3 8

L′
3 = 3

9 4

L′
4 = 3

4 4

L′
5 = 4

6 5

L′
6 = 6

7 8

DPro(w) = 1 2 3 4 5 6 7 8 9
A1 BBA2 BCCA3A4 CA5 A6B B CC B C

Pro(L′
1) = 1

2 9

Pro(L′
2) = 1

2 7

Pro(L′
3) = 2

8 3

Pro(L′
4) = 2

3 3

Pro(L′
5) = 3

5 4

Pro(L′
6) = 5

6 7

Figure 8: The associated generalized Kreweras bump diagram to w and noncrossing layer
decomposition of W (w), where w is from Figure 3.1

3.2 Double Arcs

Next, we try to understand the behavior of arcs under Pro. We will fully describe the
behavior of double arcs to reduce to the case where there are no double arcs.

Lemma 18. For each L′
i in the noncrossing layer decomposition ofW (w) that corresponds

to a double arc between (k, j) in Dw, there is a noncrossing layer in the noncrossing layer
decomposition of Pro(W (w)) which is Pro(L′

i), i.e. a double arc between (k − 1, j − 1) if
k > 1 and otherwise a double arc between (j − 1, q) in DPro(w).

Proof. Assume that L′
i in the noncrossing layer decomposition of W (w) that correspond

to a double arc between (k, j) in Dw. Observe that no As for s ⩽ i can have an arc to a B
or C in any of the blocks wt for t ∈ [k+1, j− 1]. Such an arc would be part of a crossing
in one of the two matchings. There are then two cases to consider, either k > 1 or k = 1.
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If k > 1 and in DPro(w) there is not a corresponding double arc from (k − 1, j − 1),
then one of the B or C from L′

i is matched to an A in DPro(w) that was in block 1 of w.
This is because for there not to be such a double arc, then there would need to be an A
in block s ∈ [k, j − 2] in Pro(w) that was not in block s+ 1 in w. But this cannot occur,
since it would imply that this A in Dw was matched to a B or C that was in block s and
such an occurrence would be a crossing in the corresponding matching.

If k = 1, then for every i′ < i, Ai′ is matched to a B and C, in respective blocks indexed
by bi′ , ci′ ⩾ j, with min bi′ , ci′ = j′ due to the noncrossing property of the matchings. When
considering Pro(w), there will be an A in block j′ − 1 ⩾ j − 1, by Proposition 17, for
each i′ < i, and a B and a C in blocks with indices at least j′ which are matched to the
A corresponding to Ai′ in w. This means that the A that was Ai in w now corresponds
to an A in block j − 1 which must match to a B and C in block q. Every B and C in w
that was matched to an Ai′ with i

′ < i, or an A in a block t, t ⩾ j, corresponds to a B
or C in a block s ⩾ j by Proposition 17. In addition the associated A must be in a block
indexed by s′ ⩾ j − 1. After rearranging A′s within a block, we can assume that all of
the associated A′s in Pro(w) follow the A that was Ai, so they match to all the B’s and
the C ′s they collectively were associated to in w. As such the A that was Ai in w must
match to a B and C in Pro(w)q, as there are no other B’s and C ′s to match to. So there
is a double arc of the form (j− 1, q) in Pro(w) that corresponded to the double arc of the
form (1, j) in w.

Note that if there are multiple double arcs of the form (k, j) in Dw, Pro acts identically
on all of them. This is because they are interchangeable at the level of the word. As such,
they each correspond to a double arc of the form (k − 1, j − 1) if k > 1 or (j − 1, q) if
k = 1.

We now show that the number of double arcs is preserved under Pro. The proof pro-
vided is more involved than necessary, but provides more understanding of the structure
of P -strict promotion. Additionally some of the machinery will be essential later. A
shorter proof is the following. By Lemma 18 the number of double arcs of Pro(w) is at
least the number of double arcs of w. Since Pro has finite order, the number of double
arcs can never strictly increase. So the number of double arcs must be constant over an
orbit of Pro.

In Dw, with associated P -strict labeling f , for Ai associated to L′
i, if L

′
i(B) ⩽ L′

i(C)
(or L′

i(C) ⩽ L′
i(B)), we say that the arc (ai, bi) (or (ai, ci)) is the shortest arc associated

to Ai.

Lemma 19. If f(Ai) = ai > 1 and the shortest arc in Dw of Ai is (ai, bi) (or (ai, ci)),
then in DPro(w) there is an A in block ai−1 with shortest arc to a B (or C) in block bi−1
(ci − 1).

Proof. Without loss of generality, assume bi ⩽ ci. If the shortest arc associated to Ai does
not just shift down by 1 block in each coordinate under Pro, then it must be of the form
(ai−1, j) with j ⩾ bi. Otherwise (ai, bi) wouldn’t have been the shortest arc associated to
Ai. So the B that was originally matched to Ai shifted down 1 block by Proposition 17.
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In Pro(w) there must be an A that follows the A that was Ai in w that did not do so in
w. This A must have been an A in block 1 whose shortest arc was to a B or C which
followed Ai but preceded the B of the shortest arc of Ai. But this can’t happen, as it
would imply that one of the matchings has a crossing.

Lemma 20. For a word w associated to a P -strict labeling f , the number of double arcs
of DPro(w) equals the number of double arcs of Dw.

Proof. By Lemma 18, we need only show that no new double arcs are created. If a double
arc could be created, then it must be associated to an A that is in the first block of w.
To see why, if an A in block i > 1 in w has a double arc in Pro(w), by Lemma 19 the
shortest arc in Dw from this A must be going to a block wd with both a B and C. Specify
this A as A′ and suppose its shortest arc is to a B. Since there was not a double arc in
Dw associated to A′, then there must be an A that follows A′ in the linear order of the
A′s with shortest arc to a B that is in a block which precedes wd that was matched to
the C in the double arc in DPro(w). We can assume this second A is not part of a double
arc, since if so we have just relabeled and not created a new double arc. Consequently
this second A must be matched to a B in a block which strictly precedes wd. Thus the
swapping of the arcs to the C’s of these two A’s would induce a crossing in the matching
between A′s and C ′s, as the C to which A′ is matched is in a block strictly following wd.

The A in w which in DPro(w) is part of a new double arc, call it AD, must be in the first
block of w as otherwise, by Lemma 19, AD would already form a double arc. Additionally,
AD cannot be matched to either of the B or the C with which it will form a double arc.
This is because if AD did, then there would be an A which follows AD that is matched to
the other B or C and does not form a double arc. This A must follow the B or C that is
matched in the shortest arc of AD, in which case no double arc would be formed. Then
the B and C which will form a double arc must be matched to different A′s which follow
AD. But this would then force the shortest arc of AD to cross one of the arcs connecting
to these B and C, as it must be connected to a B or C which strictly precedes the two.
Therefore there can be no new double arcs.

For a double arc D in Dw, we say the interior of D is the set of arcs of Dw connected
to an A with both arcs nested beneath the double arc. Similarly the exterior consists
of all other arcs. Importantly, no A can have arcs in both the interior and exterior of a
double arc, as it would induce a crossing in one of the matchings. We now have everything
needed to show that the removal of double arcs does not impact Pro, formalized in the
following Proposition.

Proposition 21. Suppose that w is an (ℓ, q)-partial multi Kreweras word where the asso-
ciated arc diagram Dw has a double arc D of the form (k, j). Let wD be the (ℓ−1, q)-partial
multi Kreweras word obtained from w by deleting D. Then the resulting word obtained by
deleting the double arc corresponding to Pro(D) in Pro(w) is Pro(wD).

Proof. Note that W (w) and W (wD) have the same noncrossing layer decomposition aside
from the layer corresponding toD. Let IntD(w) and ExtD(w) denote the P -strict labelings

the electronic journal of combinatorics 32(2) (2025), #P2.8 14



corresponding to the labels of the interior and exterior of D respectively. Since there is no
overlap between these two collections of arcs, the noncrossing layer decomposition ofW (w)
is their union together with the layer corresponding to D. So by Proposition 17, Pro(w)
is obtained by applying Pro to the layers corresponding to D, IntD(w), and ExtD(w),
and then combining. Following the same reasoning, Pro(wD) is obtained by applying
Pro to the layers corresponding to IntD(w) and ExtD(w), and then combining. The only
difference in these layer decompositions is the layer corresponding to Pro(L′

D), where L
′
D

is the layer corresponding to D. By Lemma 18 the layer corresponding to L′
D is just

Pro(L′
D), so deleting this layer before or after applying Pro will make no difference in the

corresponding word.

3.3 Standardization and Completing the Proof

As a consequence of Proposition 21, as with Lemma 18 and Lemma 20 we not only fully
understand how double arcs are impacted under Pro, but also that we can ignore them;
we conclude that it suffices to consider the case where there are no double arcs in Dw. To
relate back to the results of [9] we introduce the following definition. The primary purpose
of this definition is that it will allow us to directly translate promotion on (ℓ, q)-partial
multi Kreweras words to promotion on Kreweras words of length 3ℓ with Lemma 23.

Definition 22. Let w be an (ℓ, q)-partial multi Kreweras word with no double arcs in
Dw. The standardization of w, std(w), is the Kreweras word of length 3ℓ obtained by
first linearly ordering the B’s and C’s of each block of w such that there are no crossings
between arcs that terminate in the same block, and then extending the linear orders on
the blocks to a linear order of all the letters.

The standardization is well defined, as the only such ordering without crossings of arcs
that terminate in the same block is the following: within each block the B’s and C’s are
ordered such that the arcs terminating in this block are nesting.

Note that the standardization is not an invertible function, see Figure 9 for an example,
but with the information of what the size of each block was, the original word can be
recovered uniquely by replacing the labels of the standardization with the multiset of
labels of the original word in increasing order. The final result needed to prove the main
theorem is how Pro(w) impacts std(w).

∅ AA CC BB
1 2 3 4

A A C C B B
1 2 3 4 5 6

A A CC BB
1 2 3 4

Figure 9: A pair of (2, 4) Multi-Partial Kreweras words together with their equal stan-
dardization.

Lemma 23. Suppose that w is an (ℓ, q)-partial multi Kreweras word with |w1|= k and
where Dw has no double arcs. Then std(Pro(w)) = Prok(std(w)).
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Proof. Given a (ℓ, q)-partial multi Kreweras word w with |w1| = k, consider std(w). In
std(w), let A1, A2, . . . Ak denote the first k A’s of std(w) and ϵi is the B or C that is
matched to Ai via the shortest arc. The shortest arc is always well defined as Dw has no
double arcs. Then consider Pro(std(w)). Observe that Pro(std(w)) is obtained by shifting
all letters that aren’t A1 and ϵ1 forward one space, placing A1 in the space before ϵ1, and
placing ϵ1 at the end. For i > 1, A1 precedes Ai and ϵ1 follows ϵi, so in Pro(std(w)) the
A that corresponded to A1 has no arcs which cross any of the arcs between Ai and ϵi for
i > 1. Then following the proof of [9, Proposition 3.10], which shows that arcs which
do not cross the shortest arc of the first A are just shifted down by 1 in each coordinate
under Pro, for the next k− 1 iterations of Pro on Pro(std(w)), the arcs connecting to the
A which corresponded to A1 will just shift down by 1 in each coordinate. By Lemma 19,
the A corresponding to Ai still has shortest arc to ϵi through the first i − 1 applications
of Pro on std(w). Consequently Prok(std(w)) is obtained by shifting each letter which
was not an Ai or ϵi forward by k positions, placing an A exactly k positions before the
position of each ϵi, and the last k letters are ϵ1ϵ2 . . . ϵk. Additionally, there is no crossing
among arcs connecting to the final k letters since for all 1 ⩽ i ⩽ k if i < j, the A to which
ϵi is matched is preceded by the A to which ϵj is matched.

Denote by A′
1, A

′
2, . . . , A

′
k the A′s in w1 and by ϵ′i the B or C in w to which A′

i has
its shortest arc. Note that if the letter which follows ϵ′i in std(w), and is not ϵ′i−1, is in
the same block as ϵ′i, then this letter must be an A. If it is a B or C, this letter must
be different than ϵ′i, as otherwise, because it is not ϵ′i−1, there would be more B’s or C’s
at that point than A’s. Similarly it cannot be different due to the lack of double arcs.
Consequently we have that in a block the ϵ′i’s are the terminal sequence of non-A letters.
By Proposition 17 we know that Pro(w) is the P -strict labeling obtained by shifting each
label not associated to A′

i or ϵ
′
i down by 1, having the label associated to A′

i be 1 less
than that of ϵ′i, and having the label of ϵi become q. This implies that the multiset of
the values of the labels has corresponded to cyclically shifting each element down by 1.
Additionally, for each A, B, or C that was not an A′

i or ϵ
′
i, there are k fewer preceding

letters. Then consider std(Pro(w)). Observe that the computation for Pro(w) is the same
as deleting w1, replacing each ϵ′i with A

′
i, adding a new artificial block labeled by q + 1

equal to the multiset of the ϵ′i’s, and then reducing the label of each block by 1. What
this corresponds to for std(Pro(w)) is the same as deleting the first k letters, replacing
the ϵ′is with A’s, adding k letters corresponding to the ϵi’s in order at the end, and then
shifting the indices down by k. Note then that this is the same as Prok(std(w)).

This is the final tool needed to prove our main result.

Proof of Theorem 13. Suppose that Dw contains some number of double arcs and consider
Proq(w). By Lemmas 18 and 20, it follows that the double arcs of DProq(w) are the same
as in Dw, since the endpoints of each double arc were just shifted by q mod q. So by
Proposition 21 we can reduce to the case where w has no double arcs.

Now suppose that Dw has no double arcs and consider Proq(w). By Proposition 17,
the multiset of values for the labels will be the same as the mutliset of values for the labels
of w. Additionally, one can notice that through the q applications, there will be exactly
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3ℓ 1’s in the multisets of labels, as the number of instances of each label cyclically rotates.
By Lemma 23 std(Proq(w)) = Pro3ℓ(std(w)), which by [9, Theorem 1.2] is the reflection of
the labels. Then since the standardization is invertible if the multiset of values is known,
Proq(w) is just swapping all instances of B’s and C ′s. Thus Pro2q(w) = w.

3.4 Periodicity of Piecewise-Linear Rowmotion

In this closing subsection, we examine the impact of Theorem 13 on Row on O(V × [k])
beyond just implying the finite periodicity. First, we will utilize the equivariance of Pro
acting on LV×[ℓ](R

q) and Row acting on PPℓ(V × [q − 2]) to show that Rowq is also just
the reflection of the labels. We will utilize the fact that this reflection, denoted Flip, is
an automorphism of V.

In a more general setting, if P is a graded poset of rank n and ψ is an automorphism
of P , we have an action of ψ on P × [k] for every k where ψ((p, i)) = (ψ(p), i) for all
(p, i) ∈ P×[k]. This induces an action on O(P×[k]) by ψ(f((p, i))) = f((ψ(p), i)). Before
stating the technical lemma that will be key to the proof that Rowq acts by reflecting the
labels on O(P ), we state the intermediate bijection used in the proof of Proposition 6,
known as toggle-promotion, defined more generally in [2, 6], between Pro and Row. As
before we assume P is graded.

Definition 24 ([3]). Toggle-promotion on PPℓ(P × [q − n − 1]) is defined as the toggle
composition TogPro := τq ◦ · · · ◦ τ3 ◦ τ2 ◦ τ1, where τk denotes the composition of all the
τ(p,k) over all p ∈ P , such that (p, i) ∈ P × [q − n− 1] and i = q − n+ rk(p)− k.

We note that both TogPro and the equivariant bijection between Pro and TogPro,
defined in [3, Definition 2.16], are both defined independently of any linear extension of
P and are thus invariant under any automorphism of P .

Lemma 25. For P a graded poset with ψ an automorphism of P , the action of ψ com-
mutes with the equivariant bijection between TogPro and Row on O(P × [k]).

Proof. To begin suppose that L is an arbitrary ordering of P × [k]. Then consider the
realization of O(P × [k]) where the coordinate for (p, i) is L((p, i)). Let L′ = L((ψ(p), i)).
Note that for any f ∈ O(P × [k]), ψ(f) is the same as if we instead chose the realization
given by L′. Recall that φ is the equivariant bijection between TogPro and Row. Because
TogPro, Row, and φ are all defined independently of the choice of coordinates, ψ will
commute with all of them, as they all commute with a change of coordinates.

Proposition 26. The action of Rowq on O(V × [q − 2]) is equal to the action of Flip.

Proof. As a consequence of Theorem 13, we know that Flip ◦ TogProq is the identity on
the rational points of O(V× [q − 2]) and thus on O(V× [q − 2]). Consider Flip ◦Rowq =
Flip◦φ◦TogProq ◦φ−1. By Lemma 25, Flip◦φ◦TogProq ◦φ−1 = φ◦Flip◦TogProq ◦φ−1,
which is the identity. So Flip = Row−q = Rowq as Rowq is an involution.
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