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Abstract

This paper provides a bridge between two active areas of research, the spectrum
(set of element orders) and the power graph of a finite group.

The order sequence of a finite group G is the list of orders of elements of the
group, arranged in non-decreasing order. Order sequences of groups of order n are
ordered by elementwise domination, forming a partially ordered set. We prove a
number of results about this poset, among them the following.

e M. Amiri recently proved that the poset has a unique maximal element, cor-
responding to the cyclic group. We show that the product of orders in a cyclic
group of order n is at least ¢?(™ times as large as the product in any non-cyclic
group, where ¢ is the smallest prime divisor of n and ¢ is Euler’s function, with
a similar result for the sum.

e The poset of order sequences of abelian groups of order p™ is naturally iso-
morphic to the (well-studied) poset of partitions of n with its natural partial
order.

o If there exists a non-nilpotent group of order n, then there exists such a group
whose order sequence is dominated by the order sequence of any nilpotent
group of order n.

e There is a product operation on finite ordered sequences, defined by forming
all products and sorting them into non-decreasing order. The product of order
sequences of groups G and H is the order sequence of a group if and only if
|G| and |H| are coprime.

The paper concludes with a number of open problems.
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1 Introduction

Let G be a finite group. H. Amiri, S. M. Jafarian Amiri and I. M. Isaacs in [2] defined
the following function:

geG

where o(g) denotes the order of the element g. They were able to prove the following:

Theorem 1. For any finite group G of order n, (G) < ¥(Z,) and equality holds if and
only if G = Z,,, where Z, 1is the cyclic group of order n.

That is, Z, is the unique group of order n with the largest value of (G) for groups of
that order. Later S. M. Jafarian Amiri and M. Amiri in [5] and, independently, R. Shen,
G. Chen, and C. Wu in [35] investigated the groups with the second largest value of the
sum of element orders.

This function ¢ has been considered in various works (see [4, 1, 8, 14, 21, 22, 23, 24,
36]). While the goal of some of the papers was to find out the largest, second largest, or
least possible values of (G), others aimed to prove new criteria for structural properties
(like solvability, nilpotency, etc.) of finite groups.

Later, S. M. Jafarian Amiri and M. Amiri [6] considered the following generalization
of the above function defined by ¥ (G) = >_ ¢ o(g)¥ for positive integers & > 1 and
they proved that for any positive integer k, ¥y (G) < ¥x(Z,) for all non-cyclic groups G
of order n. Recently, the product of the element orders of a group, which is denoted by
p(G), has also been considered and several results regarding p(G) were proved in [18],
including the following:

Theorem 2. p(G) < p(Z,,) for every finite group G of order n, and p(G) = p(Z,,) if and
only if G = Zy,.

Inspired by these works and with a goal to give a unified approach to study those
functions, we study the order sequence of a group GG, which is defined as the sequence

0s(G) = (o(g1),0(92), - -, 0(gn)),

where 0(g;) < 0(git1) for 1 <i<n—1.

For example, one can check that os(Zg) = (1,2, 3,3,6,6) and os(S3) = (1,2,2,2,3,3).

The sequence 0s(Z,) for the cyclic group of order n can be determined explicitly: for
each divisor d of n, the entry d occurs ¢(d) times, where ¢ is Euler’s function.

Let E(p") denote the elementary abelian group of order p”. Then the order sequence
of this group is (1,p,p,...,p). Note that, if p is odd and r > 3 then there are groups
with the same order sequence as F(p”) but not isomorphic to it (non-abelian groups of
exponent p). The smallest examples of pairs of groups with the same order sequence have
order 16; one such pair is Z4 x Z4 and Zy x QQg, where (Jg is the quaternion group.

For two groups G and H of order n, we say that os(G) dominates os(H) if o(g;) = o(h;)
for 1 < ¢ < n. This relation is a partial order, but not a total order; there are groups
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which are incomparable in this order. We shall implicitly think of it as an order on the
finite groups of order n; it induces a partial preorder on isomorphism classes of groups,
that is, a reflexive and transitive relation, since there are groups which have the same
order sequence.

However, there is a unique maximal element, namely Z,, (a recent result of M. Amiri
[3]). Theorems 1 and 2 follow immediately from this theorem. In Section 5 we use the
maximality of Z,, under domination to establish bounds on the gaps between the values of
1 and of p on cyclic and non-cyclic groups, and characterize groups meeting these bounds
(Theorem 25).

In Section 2, we define products of order sequences of two groups GG and H, and prove
that if |G| and |H| are not coprime, then there exists no group whose order sequence
is the same as the product of the order sequences of G and H. We also show that the
product of the order sequences of two groups G and H of coprime orders dominates the
order sequence of any extension of G by H if (G is abelian.

In Section 3, we explicitly determine the order sequence of an abelian p-group; using
this, in Theorem 14, we show that the poset of order sequences of abelian groups of order
p™ is naturally isomorphic to the (well-studied) poset of partitions of n with its natural
partial order.

In Section 4, we find the groups with minimal order sequences among the family of
nilpotent groups. In Theorem 22, we show that if there is a non-nilpotent group of order
n, a group with minimal order sequence must be non-nilpotent.

Equality of the order sequence defines an equivalence relation on groups of given
order, and the equivalence classes are partially ordered by domination. In Section 3, we
give a complete description of this order for abelian groups, in terms of the lattice of
partitions of an integer. In Section 6, we observe that for all groups the poset can be
rather complicated.

Section 7 describes the connection between the order sequence and some well-studied
graphs related to groups. We show that the power graph determines the order sequence,
which in turn determines the Gruenberg—Kegel graph.

The final Section 8 lists some open problems.

Throughout the paper, most of our notation is standard; for any undefined term, we
refer the reader to the books [26, 34].

2 Products and extensions

We begin with a general result on order sequences and domination.

Proposition 3. Let G and H be groups of the same order. Then os(G) dominates os(H)
if and only if there is a bijecton f : G — H such that o(g) = o(f(g)) for all g € G.

Proof. The forward implication is clear. For the converse, suppose that the bijection
exists, and let G = {g1, ..., gn} where o(g1) < --- < 0(gn). Then, for 1 < k < n, there are
at least k elements of H whose orders do not exceed o(gx), namely f(g1), ..., f(gr); so, if
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hy. is the element of H whose order is the kth (in increasing order), then o(hy) < o(gx),
as required. 0

On the basis of this, we make a stronger definition. For groups G and H of the same
order, we say that os(G) strongly dominates os(H) if there is a bijection f : G — H such
that o(f(g)) | o(g) for all g € G.

With this terminology, we can state Amiri’s result [3]:

Theorem 4. The order sequence of Z, strongly dominates that of any other group of
order n.

This answers the question asked in [27, Problem 18.1] which was settled by Ladisch
[29] for solvable groups.

We use strong domination in the proof of a theorem later in the paper (Theorem 22).
But it might warrant further investigation. It is not equivalent to domination as previously
defined. The group Zs : Z4 of order 12, where the generator of Z, conjugates the generator
of Z3 to its inverse, dominates the alternating group A4, but does not strongly dominate
it: their order sequences are respectively

(1,2,3,3,4,4,4,4,4,4,6,6)
and (1,2,2,2,3,3,3,3,3,3,3,3)

(these are SmallGroup(12,i) for i = 1 and ¢ = 3 in the GAP library [17].)

We define two operations on non-decreasing sequences z and y. If these sequences
have lengths m and n respectively, then xy is the sequence formed by taking all products
z;y; for 1 <4 <m and 1 < j < n and writing them in non-decreasing order. Similarly,
x V y is obtained by taking all numbers lcm{xi,yj} forl<i<mand 1< j <nand
writing them in non-decreasing order.

Proposition 5. (a) For two non-decreasing sequences x and y of lengths m and n re-
spectively, xy = = V y if and only if x; and y; are coprime for 1 < i < m and
I<j<n

(b) Suppose that x; | m for all i, and y; | n for all j, where gcd(m,n) = 1. Suppose
further that each of the sequences x and y contains a unique term equal to 1. Then
the product sequence xy and the numbers m and n uniquely determine x and y.

Proof. The proof of (a) is obvious. For (b), we see that x consists of the terms of xy
coprime to n, and y consists of the terms coprime to m. O

Theorem 6. (a) For any two groups G and H, os(G x H) = os(G) V os(H). In par-
ticular, 0s(G x H) = os(G)os(H) if and only if |G| and |H| are coprime.

(b) Assume that gcd(|G|,|H|) = 1. Given os(G x H) and the numbers |G| and |H|, the
sequences os(G) and os(H) are determined.
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(¢) If |G| and |H| are not coprime, then there is no group K for which os(G)os(H) =
os(K).

Proof. (a) This follows since o((g, h)) = lem{o(g), o(h)}.

(b) This is immediate from the preceding Proposition.

(c) Suppose that |G| and |H| are not coprime, and let p be a prime number dividing
both |G| and |H|. The number of elements of order p in G is congruent to —1 (mod p).
(This follows from the proof of Cauchy’s Theorem that G contains elements of order p.)
Similarly for H. So the number of terms in os(G)os(H) equal to p is congruent to —2
(mod p). Hence os(G)os(H) cannot be the order sequence of a group. O

The following corollary is immediate from Theorem 6.

Corollary 7. Let G, H be two finite groups with gcd(|G|,|H|) = 1. Then, p(G x H) =
p(G)Hp(H)IE.

Theorem 8. Let G and H be groups of coprime order, and suppose that G is abelian.
Let K be any extension of G by H. Then os(G x H) = 0s(G)os(H) strongly dominates
os(K).

Proof. According to the Schur—Zassenhaus Theorem, G' has a complement in K; that is,
there is a subgroup of K, which we identify with H, such that GNH = {1} and GH = K.
(Since G is abelian, only Schur’s part of the proof is required.) Thus every element of K
is uniquely written as gh for ¢ € G and h € H. So the map f: G x H — K defined by
f((g,h)) = gh is a bijection. By Proposition 3, it suffices to show that o(g)o(h) = o(gh).

Suppose that o(g) = m and o(h) = n. We will prove that (gh)™" = 1, from which the
result follows.

We have

(gh)"™ = g.hgh™ . h?gh™% .. k" tgh~(=Dpn,

and we have h™ = 1. Since G is a normal subgroup of K, the elements g, hgh™!, ...,
R~ 1gh~(=1 all belong to G, and all have order m, since they are conjugate to ¢g. In an
abelian group, the product of elements of order m has order dividing m; so ((hg)™)™ = 1,
and the proof is complete. O]

Now we give a couple of results on direct products.

Proposition 9. Suppose that Gy, Gy and H are groups such that |G| = |G| and os(G)
dominates 0s(Gz). Suppose that either

(a) |G| and |H| are coprime; or
(b) os(Gy) strongly dominates 0s(Gs).

Then os(G1 x H) dominates os(Gy x H).

(S8
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Proof. Let f be a bijection from G; to Gy satisfying o(g) > o(f(g)) (or, in case (b),
o(f(g)) | o(g)). Then define a bijection f’: G; x H — Gy x H by the rule that f'((g,h)) =

(f(9); ).
(a) If |G| and |H| are coprime, then
o((g,h)) = o(g)o(h) = o(f(g))o(h) = o((f(g), h)),
so by Proposition 3, os(G; x H) dominates os(G2 X H).

(b) If f satisfies the conditions for strong domination, then

o((f(g9), h)) = lem(o(f(g)), o(h)) | lem(o(g), o(h)) = o((g, 1)),

and again Proposition 3 gives the result — indeed we conclude that the domination
is strong. O

From this we can prove a two-sided version:

Proposition 10. Let Gi and Gy be groups of the same order, and let Hy and Hs be
groups of the same order. Suppose that os(G1) dominates 0s(Gs) and os(Hiy) dominates
os(Hy). Moreover, suppose that one of the following holds:

(a) |G| and |H,| are coprime;
(b) os(Gy) strongly dominates 0s(Gs) and os(H;) strongly dominates os(Hy).
Then os(G1 x Hy) dominates os(Gy X Hs).

This follows immediately from two applications of the preceding result.

3 Abelian groups and the partition lattice

We start this section by describing the order sequence of a finite abelian p-group. Let
|G| = p" where p is prime and G is abelian. By the Fundamental Theorem of Abelian
Groups,

G = ZLpyrs X Lprs X -+ - X Ly,

where r; > 1for 1 <i¢ < k,andr; >ry > ... 21, Thenri+ro+---4+1, = n,
so (r1,72,...,71) is a partition of n. (We examine partitions further below.) Define
S1, S92, ...,Sp, where £ = ry, by the rule that

s;={i:ri =7}

Thus, for example, s, = k.
We note that the numbers s; in turn determine the numbers r;: we will see the exact
relationship shortly.
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Proposition 11. With the above notation, the number of elements of order dividing p’
in G is pSttoTsi,

Proof. The elements with order dividing p’ form a subgroup A4; of A. Now A; < Aj 4,
and A;;1/A; consists of the elements of order 1 or p in A/Aj; this group is generated by
the cosets containing elements of order p/™, which has rank s;;1, and so its cardinality
is p%+1. So |Aj11| = p¥*t|A;|. Since Ay is the identity group, induction now completes
the proof of the Proposition. m

Using this, we immediately have the following corollary which is also proved in [31].

Theorem 12. Two finite abelian groups have the same order sequence if and only if they
are 1somorphic.

Proof. The reverse implication is clear. For the forward implication, it suffices to prove
the result for groups of prime power order, by Theorem 6. By Proposition 11, the order
sequence determines the numbers sq,...,s,, and hence the numbers r;, and hence the
isomorphism type of the group. O

As we have already seen, we cannot expect such a result for a wider class of groups
containing the class of abelian groups; even for p-groups with p an odd prime, it is not
true.

We can also count the numbers of elements, or cyclic subgroups, of given order:

Proposition 13. With the notation introduced before Proposition 11,
(a) the number of elements of order p’ is p* T T%-1(p% — 1);
(b) the number of cyclic subgroups of order p’ is ps*+ Tsi-1=It(ps%i —1)/(p — 1);
(c) the total number of cyclic subgroups is
Lo pt 7l e prt T g (= 1)/ (p = 1)
where |G| = p"™ and the exponent of G is p™.

Proof. (a) By Proposition 11, this number is pstt s — psittsi—1,

(b) Each cyclic subgroup of order p/ has p’~!(p — 1) generators.

(c) This is obtained by summing the formulae in (b), noting that the maximum j for
which s; > 0ism and s; + -+ 5, = n. O

Now we relate the preceding analysis of abelian p-groups to the theory of partitions
of integers, referring to [30, Section 1.1].

A partition of n is a non-increasing sequence (ry, ..., ) of positive integers with sum
n. Given two partitions @ = (ry,...,r) and b = (s1,...,5,) of n, to compare them we
append zeros to the shorter sequence if necessary to make them have the same length;
then we write a > b if, for all relevant j, we have

ri T = s s
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Thus, from the top, the order begins
(n)=(Mn—-11)>=(n-2,2)=(n—2,1,1).

This is called the natural partial order on partitions (also called majorization). It is not
a total order; for example, (2,2,2) and (3,1,1,1) are incomparable.

A partition (71, . .., %) of n can be represented by a Young diagram or Ferrers diagram,
made up of n squares in the plane, in left-aligned rows of lengths 71, ..., r,. The picture
shows the partitions (4,2,1) and (3,2,1,1).

[ |

(4,2,1) (3,2,1,1)

Figure 1: Young diagrams

The conjugate o’ of the partition a = (r1,...,7,) is the partition b = (s1,...,s),
where
si=1{jr 2.
This corresponds simply to reflecting the Young diagram in the diagonal. So a” = a for

any partition a. The two partitions in the figure are conjugates of each other.
An abelian group A of order p" has a unique expression of the form

A=y X oo X Lo,

where a = (71, ...,7)) is a partition of n, which we will call the defining partition of A.

Our arguments in the proof of Theorem 12 show that the partition (sy, s, ..., s¢) used
in the proof of that theorem is conjugate to the defining partition of A. Now the fact that
a"” = a shows that the construction of (r1,...,7x) from (sy,...,s) is formally identical to
the construction in the other direction.

Theorem 14. Let A and C' be two abelian groups of order p™, with defining partitions a
and c respectively. Then the following are equivalent:

(a) os(A) dominates os(C);
(b) d = a/}.
(c) a*=c.

Proof. 0s(A) dominates os(C) if and only if, for each ¢, the number of elements of order
dividing p* is at least as large in C' as in A. By Proposition 11 and the definition of the
natural partial order, the truth of this for all 7 is equivalent to ¢ »= a’. Thus (a) and (b)
are equivalent. The equivalence of (b) and (c) is standard; see [30, (1.11)]. O
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The poset of partitions of an integer has been the subject of research covering several
areas of mathematics. See [10, 19] for some of the results. We can regard the poset of
order sequences of groups as a kind of non-commutative generalisation of this. We return
briefly to this topic later.

Remark The paper [19] gives estimates for the lengths of maximal chains in the par-
tition lattice. It is very easy to see that the maximum chain length of the lattice of
partitions of n tends to infinity with n. Now any finite poset is embeddable in a product
of finite chains (for example, take all linear extensions of the given poset). So we conclude:

Proposition 15. For any finite poset P, there exists n such that P is embeddable in the
poset of order sequences of abelian groups of order n.

We are next interested in the comparison between the number of cyclic subgroups of
two abelian p-groups of order p". For a group G, let cyc(G) denote the number of cyclic
subgroups of GG. The following result is well-known.

Lemma 16. Let a = (rq,rg,...,1%) and ¢ = (81, S2,...,8¢) be two partitions of n. Then
a = cif and only if the Young diagram for ¢ can be obtained from that of a by successively
moving boxes from a higher row to a lower row (one box at a time), in such a way that
each intermediate step is the Young diagram of a partition of n.

Lemma 17. Let A, Ay and As be three abelian groups of order p™ with defining partitions
a=(r1,re,...,15),a1 = (r1,re, ..., 75 — L., + 1.0 ), and ag = (11,72, ..., 15, —
L,...,7x, 1) respectively. Then cyc(A) < cyc(Ay) and cyc(A) < cyc(Asg).

Proof. Our proof depends on whether the exponent of A; and A, is the same as the
exponent of A, that is whether j; > 1 or j; = 1.
Case 1: j; > 1: In this case, as the exponent is the same for A, A; and A,, the num-

ber of parts in the conjugate partitions of A, A; and A, are the same. Let (s1,s9,..., S, ),
(s],85,...,s,, ) and (s],s5,..., s ) denote the conjugate partitions of a,a; and ay respec-
tively.

By Proposition 13, we have
cyc(A) = 1+ p = o g Tt Tt g (it 1) /(p - 1)

and

cyc(Ay) = 14 p it 4o pAT Ty (prentl ) (p — 1),
As a > a1, by Theorem 14, we have (s}, s5,...,s. ) = (s1,52,..., 5, ). Hence, we have

cyc(A) < cyce(Ay). The proof of cyc(A) < cyc(As) is similar and hence omitted.

Case 2: j; = 1: In this case, the exponent is not the same for A, A; and A;. The

number of parts in the conjugate partitions of a; and as is 1 less than the number of parts in
the conjugate partition of a. Let (s1,52,...,5,), (51,85, ...,5,, 1) and (s],85,...,s/ )

denote the conjugate partitions of a,a; and as respectively. We show that cyc(A) <
cyc(A;) and cyc(A) < cyc(Aq) will follow by a similar argument.
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Again, using Proposition 13, we have

CyC(A) = 1 +p81—1 4+t p51+"'+5r172_7"1+2 _’_p51+~~-+8r1*1—r1+1 + <pn—r1+1 o 1)/(]? . 1)
— 1 _'_pslfl + . +p31+"‘+3r172*7'1+2 +p51+“'+37-171*7‘1+1 + (1 +p + e + pn*T1>

and
cyc(Ar) = 14pil o g p T (it ) (p — 1)
= 1 _|_p5/1*1 et p3/1+"'+3;1—2_7"1+2 +(1+p+--- _|_pn*7“1+1)'
As a = ay, by Theorem 14, we have (s}, s5,...,s. _;) = (s1,52,...,5,,). Hence, we have
cyc(Ar) — eyc(A) = prmrtt — prtr Tl >,
This completes the proof. O

We are now in a position to prove the next result which tells about the connection
between the order sequence and the number of cyclic subgroups of p-groups.

Theorem 18. Let A and C be two abelian groups of order p™, with defining partitions a
and c respectively. If os(A) dominates os(C), then cyc(A) < cyc(C).

Proof. Let
A=l X oo X L,
and
C =Ly X -+ X Lty
where a = (r1,...,71) and ¢ = (L1, ..., t,) are defining partitions of A and C respectively.

By Theorem 14, we have a = c¢. By Lemma 16, the Young diagram for ¢ can be
obtained from that of a by successively moving boxes from a higher row to a lower row
(one box at a time), in such a way that each intermediate step is the Young diagram of a
partition of n. Let us denote the partitions of the intermediate steps by b, b%,...,b" and
we also denote a by b° and ¢ by b"*!. Then we have

A=) m b =B B (= 0

where the Young diagram for each b’ is obtained from that of 6~ by moving exactly one
box from a higher row to a lower row. If B* denotes the abelian p-group of order p® with
defining partition ¢?, by using Lemma 17, we now have

cyc(A) < eye(B) < cye(B?) <... < cye(B") < cyce(0).
This completes the proof. O

It is clear that the converse of Theorem 18 need not hold, in general. For example, we
can consider the groups Zig X Zs X Zo and Zg X Zg. Then, cyc(Zig X Zs X Zs) = 20 and
cyc(Zs x Zs) = 16 but the order sequences of the groups are not comparable.
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4 Nilpotent and non-nilpotent groups

In this section, we are primarily interested in studying the minimality of order sequence
among finite nilpotent groups.

It is easy to see that the order sequence of any finite p-group of order p” dominates
the order sequence of the elementary abelian p-group E(p").

Theorem 19. Let G = Py X Py X --- X Py, be a finite nilpotent group. If the order sequence
of G 1s minimal among nilpotent groups, then for each 1 < i < k, P; is a group of prime
exponent.

Proof. We prove by induction on the number of primes k. For & = 1 this is of course true.
For a nilpotent group G, it can be written as G = P; X P, X --- X Py, where P; are the
Sylow subgroups. Let G; = P X Py X --- X Py_; and Gy = P;. Then 0s(G1) is minimal
among nilpotent groups of its order. For if not, then we could replace it with a nilpotent
group G7 yielding a smaller sequence, whence os(G) would dominate os(Gf x Py) by
Proposition 9. The induction hypothesis now shows that P; is a group of prime exponent
for1<i<k—1.

Similarly, the order sequence of P, is minimal, so P} is a group of prime exponent.
This completes the proof of the Theorem. n

We have already seen that if a group G has the same order sequence as a cyclic group,
then G must be cyclic; but it may happen that G is non-abelian but G has the same order
sequence as an abelian group. For example, one can take a non-abelian group of order p?
with every element of order p. We next ask the same question for nilpotent groups. We
show first that nilpotency is determined by the order sequence of the group.

Theorem 20. If G is a nilpotent group, and H is a group of the same order such that
0s(G) = os(H), then H is nilpotent.

Proof. Let |G| = |H| = p{*---pi. All elements of p;-power order in G belong to the
unique Sylow p;-subgroup of G, and there are p}* of them. By assumption, H also has
exactly p;* elements of p;-power order, and it has a Sylow p;-subgroup P;; thus P; contains
all elements of p;-power order, and so is the unique Sylow p;-subgroup, and is normal in H.
Since this holds for all 7, all the Sylow subgroups of H are normal, and H is nilpotent. [J

The proof shows that, if G is nilpotent and os(G) = os(H), then for each prime p;
dividing |G|, the Sylow p;-subgroups of G and H have the same order sequence.

Next we show that, if there is a non-nilpotent group of order n, then nilpotent groups
cannot realise order sequences which are minimal under domination.
First we require a lemma.

Lemma 21. For a positive integer n, the following are equivalent:

e there exists a non-nilpotent group of order n;
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e n is divisible by piq, where p and q are primes and q | p® — 1.

Proof. Suppose first that G is a non-nilpotent group of order n. Then G contains a
minimal non-nilpotent subgroup (one all of whose proper subgroups are nilpotent). So it
suffices to deal with the case where G is minimal non-nilpotent.

The minimal non-nilpotent groups were determined by Schmidt [33]. A convenient
reference is [7], which we use here. Page 3456 of this paper gives a list of five types
of group, and Theorem 3 asserts that the Schmidt groups (the minimal non-nilpotent
groups) are exactly those of types II, IV and V.

e Type II groups are semidirect products [P]Q, where @ is cyclic of order ¢", so that
the p-group P is a faithful irreducible Q)/Q%module with trivial centralizer. Thus
the cyclic group Q/Q? of order ¢ acts fixed-point-freely on P\ {1}, so ¢ | |P| — 1.

e Type IV groups are semidirect products [P|Q, where P is special of rank 2m and
the cyclic group @ has a faithful irreducible action on P/®(P). Thus ¢ divides
|P/®(P)| = p*™.

e Type V groups are semidirect products [P]Q, where |P| = p, @ is cyclic of order ¢",
and @ induces an automorphism group of P of order ¢; so ¢ | p — 1.

Conversely, suppose that p and ¢ are primes such that ¢ | p? — 1. The group B =
{x — az + b} of permutations of the finite field of order p?, where a runs through the gth
roots of unity in the field and b runs through the whole field, is a non-nilpotent group of
order plq. If p?q | n, then let K be any abelian group of order n/(plq); then B x K is a
non-nilpotent group of order n. O

Theorem 22. Let n be a positive integer for which there exists a non-nilpotent group of
order n. Then there is a non-nilpotent group H of order n such that the order sequence
of any nilpotent group G of order n properly dominates os(H).

Proof. By Theorem 19, the abelian group G of order n whose Sylow subgroups have prime
exponent is dominated by every nilpotent group of order n.

From the proof of Lemma 21, there is a non-nilpotent group B ( the group B used here
is the one used in the proof of Lemma 21) of order p?q dividing n. Let A be the direct
product of an elementary abelian group of order p? and a cyclic group of order q. Now B
has the same number of elements of order 1 or p as A does; the remaining elements of B
all have order ¢, while A has elements of orders ¢ and pq. Let f be a bijection from A to
B mapping the identity to the identity, elements of order p to elements of order p, and
the remaining elements arbitrarily. This bijection shows that os(A) strongly dominates
os(B).

Let K be abelian group of order n/(p?q), all of whose Sylow subgroups have prime
exponent. Then G = A x K. By Proposition 9(b), H = B x K is a non-nilpotent group of
order n dominated by G, and hence by every nilpotent group of order n. This completes
the proof. n
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5 Bounds on several functions

In this section we use the maximality of Z,, under (strong) domination to establish bounds
on the gaps between the values of 1 and of p on cyclic and non-cyclic groups, and char-
acterize groups meeting these bounds (Theorem 25). From Theorem 4, we have the
following.

Corollary 23. Let F' be a symmetric function of n arguments which is a strictly increasing
function of each argument and G be a non-cyclic group of order n. Then F(os(G)) <
F(os(Zy,)).

Theorem 1 is an immediate consequence of Corollary 23. We can also establish a gap
between the cyclic group and other groups of order n.

Domenico, Monetta and Noce [16] proved the following upper bound for the function
p(G) where G has a Sylow tower. We recall that G is said to admit a Sylow tower if there
exists a normal series

{€}IG0<G1<G2<<G7L:G
such that G;41/G; is isomorphic to a Sylow subgroup of G for every 0 <i < n — 1.

Theorem 24. Let G be a non-cyclic group of order n admitting a Sylow tower. Then

p(G) < q p(Zn),

where q is the smallest prime dividing n. The same inequality holds if n = p®q® with p > q
or G is a Frobenius group.

The cited paper also includes similar results for other classes such as super-solvable
groups.

In this paper, we improve their result in three ways. First, we do not need to assume
the existence of a Sylow tower, or any restriction on the group GG. Second, our bound is
stronger. Third, we can deal with other functions; we give a result for the sum of the
orders of group elements as an example, and determine the groups meeting our bound for
either sum or product.

Theorem 25. Let G be a non-cyclic group of order n. Then
(a) p(G) < g~ p(Zy);
(b) ¥(G) < (Zn) —ngp(n)(q—1)/q;

where q 1s the smallest prime divisor of n and ¢ is FEuler’s functon. FEquality holds if and
only if either G = Zy X Zq or G is the quaternion group of order 8.
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Proof. We compare the order sequences of G and Z,,. Let

0s(G) = (0(g1),0(g2),...,0(g,)) and 0s(Z,,) = (o(a1),0(as), ..., o0(a,)).

By Theorem 4, we have o(g;) < o(a;) for all 1 < i < n. Moreover, Z,, has ¢(n) elements of
order n and the last ¢(n) terms of 0s(G) are clearly < n/q. So replacing the ¢(n) elements
of 0s(Z,) equal to n by n/q gives a sequence a which still dominates os(G). (This is still
a non-decreasing sequence since no element of G has order larger than n/q.) Therefore,
by Corollary 23,

p(G) < q " p(Zy) and ¥(G) < (Za) — d(n)(n —n/q)

(the values on the right are the sum and product of elements of a).

It is easy to see that when G = Z, x Z, or G = (g, the equality holds.

Conversely, suppose that G is any group attaining either of the bounds. The proof of
the inequality shows that os(G) is obtained from os(Z,) by replacing the ¢(n) orders n
by orders n/q, leaving the others as before. This implies that, if m is any divisor of n
other than n and n/q, then G' contains the same number of elements of order m as Z,,
namely ¢(m) of them; so G has a unique cyclic subgroup of order m, which is normal in
G and contains all elements of order m.

We separate into three cases. Suppose first that n has at least three prime divisors,
say ¢ (the smallest), r and s. Then G has unique cyclic subgroups of orders n/r and n/s,
say Hy and Hj, respectively. As H; is unique subgroup of order n/r, Hy is normal in G.
So is Hy. The product of two normal subgroups is a subgroup. Hence Hy H, is a subgroup.
Moreover, |HyHs| = |Hy||Hz|/ ged(|Hy|, |Hs|) = n, and if H; = (a) and Hy = (b) then
H,H, is generated by ab. Hence HiH, is a cyclic subgroup of order n, neccessarily equal
to (G, a contradiction.

Next suppose that G is a g-group. Since it is not cyclic, either G = Z, x Z,, or
|G| > ¢*. In the second case, G contains a unique subgroup of order q. A theorem
of Burnside (see [20, Theorem 12.5.2]) shows that G is cyclic or generalized quaternion.
Cyclic groups are excluded, and it is easy to see that the only generalized quaternion
group satisfying the conditions is Q)g.

Finally suppose that only two primes ¢ and r divide |G|. By our earlier remark, the
Sylow g-subgroup of G is cyclic and normal. Let R be the Sylow r-subgroup. If |Q] > g,
then also R is cyclic and normal, whence G is cyclic, a contradiction. So |Q| = ¢. Let R
be the Sylow r-subgroup. The number of conjugates of R is 1 or ¢, and is congruent to
1 mod r; so R is normal in G, and G =  x R. Now R must be non-cyclic; since r is
odd, Burnside’s theorem implies that G contains more than r — 1 elements of order r, a
contradiction. O]

It is easy to show that, for any n # ¢, we have ¢(n) > ¢, and therefore the bound in
Theorem 25 is stronger than the bound in Theorem 24.

Domenico, Monetta and Noce [16, Proposition 8| also proved the following upper
bound for p(G) where G is nilpotent.
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Theorem 26. Let G be a non-cyclic nilpotent group of order n. Then

_n(g=1)

p(G)<q 7 p(Zy),
where q 1s the smallest prime dividing n.
In the following result, we improve the theorem.

Theorem 27. Let G = Z,, x Gy where Gy is a nilpotent group and moreover G =
Py x Py X -+ x P, where every P; is a noncyclic p-group (w.r.t the prime p;), all the p;s
are distinct, and ged(m,|G1|) = 1. Then,

T (1) |G|
p(G) < (sz " > p(Zicy)-

Moreover, equality holds when each P; is Zy, X Zy,.

Proof. We prove this by induction on ». When r = 1, we have G = Z,,, x P;. By Corollary
7, we clearly have

P(G) = p(Lin x P1) = p(L) " p(P)™.

As in Theorem 25, we compare the order sequences of P, and Zp,|. We know that the
order sequence of P, is dominated by the order sequence of Zp,| and moreover, Zp,| has
[Pl =Y) glements of order |P;| and the last “31‘(;'%1) terms of os(P;) are clearly < |§—11|.

Theliefore, we clearly have

_P1l(p1—1)

p(Z) P lp(P)™ < p(Zy)1 (p1 n p(Zm))m

N

_ -1\ M
N (p1 " ) p(Zm)“Dllp(Z\Pll)m

_ -\ ™M
= (P1 " ) P(ZLnipy))-

Thus, when 7 = 1, the statement holds. We assume the statement for » = ¢ —1 and prove
forr=4(. Let G = Z,, x P, X --+- X P;_1 X P,. Moreover, let H = Z,, Xx P, x --- X Pp_;.
By Corollary 7, we clearly have

p(G) = p(H x Pp) = p(H)Pp(P,)H.

By induction and using the fact that P, is non-cyclic nilpotent, we have
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| Pe

_1Pl(pg=1) |H|
(pf " p(ZPe)>

LA (D) €]
= (Hpi ) p(Zia))-
i=1

This completes the proof. It is easy to see that when each F; is Z,, x Z,,, the equality
holds. m

6 More general groups

Figure 2 shows the the Hasse dagram for the partially ordered set of the 13 isomorphism
types of groups of order 60, ordered by domination of the order sequences. The numbers
are those in the GAP SmallGroups library.

Figure 2: Groups of order 60

Note that SmallGroup(60,4) is the cyclic group Zgg, SmallGroup(60,13) is Zs X Zsy
(the other nilpotent group of order 60) and Smallgroup(60,1) is Zs x SmallGroup(12,1),
where the second factor is the semidirect product of Z3 by Z4, and the element of order
4 inverts the element of order 3. Theorem 22 allows construction of three different non-
nilpotent groups whose order sequence is dominated by those of the two nilpotent groups;
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these are SmallGroup(60,i) for i =9,10,11. Also, SmallGroup(60,5) is the alternating
group As, the unique non-solvable group of order 60; it is minimal in the domination
order but not unique with this property.

This example shows that the domination order will be difficult to understand in gen-
eral. Notice how abelian groups form only a very small part of the poset, which as noted
is a kind of non-abelian generalization of the partition lattice.

7 Connection with graphs

We present here some links between our problem and certain graphs associated with finite
groups.

The power graph of a finite group G has vertex set G, with an edge {g, h} if and only
if one of g and h is a power of the other, that is, either h = ¢™ or g = h™ for some integer
m. For a recent survey of properties of this graph, see [28].

Theorem 28. Suppose that G and H are finite groups with isomorphic power graphs.
Then os(G) = os(H).

This is [11, Corollary 3]. It can be seen as follows. The directed power graph of G is
the directed graph which has an arc from g to h if and only if h is a power of G. It is
clear that the order of an element g is the out-degree of g in this graph plus one (one for
the element itself). The main theorem of [11] asserts that the power graph determines
the directed power graph up to isomorphism.

As a consequence, [12, Theorem 1] (stating that finite abelian groups are determined
up to isomorphism by their power graphs) is extended by Theorem 12 of this paper.

Pairs of groups with the same order sequence may or may not have isomorphic power
graphs. Examples of order 16 exhibit both behaviours: the 14 groups give rise to 12
different power graphs and 9 order sequences. See [32] for some results on groups with
the same power graph.

The Gruenberg—Kegel graph of a finite group has vertices the prime divisors of G, wth
an edge {p, ¢} if and only if G contains an element of order pg. This small graph contains
a surprising amount of information about the group G. Sometimes it is considered as a
labelled graph, with each vertex labelled by the corresponding prime. See [13] for a recent
survey, and [25, 9] for interesting earlier results.

Proposition 29. Let G and H be finite groups with os(G) = os(H). Then the labelled
Gruenberg—Kegel graphs of G and H are equal.

This result is obvious from the definitions.

8 Open questions

Question 30. Investigate the relation of strong domination on groups of given order n.
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We note that domination and strong domination coincide for the case when n is a
prime power, since in that case the relations of order and divisibility coincide on the
divisors of n.

Question 31. Is the condition that GG is abelian necessary in Theorem 87

We have already seen that if a group G has the same order sequence as a cyclic group,
then G must be cyclic; whereas a non-abelian group can have the same order sequence
as an abelian group. Moreover, nilpotency is characterised by the order sequence, and if
there is a non-nilpotent group of order n then a nilpotent group cannot be minimal.

What happens for solvable groups?

Question 32. Is it true that a group having the same order sequence as a solvable group
is solvable?

We could ask the same question with “supersolvable” in place of “solvable”.

Question 33. If there is a non-solvable group of order n, is it true that at least one group
of order n with minimal order sequence is non-solvable?

Note that there is a non-solvable group of order n if and only if n is a multiple of
the order of a minimal (non-abelian) simple group; these groups were determined by
Thompson [37]. The case n = 60 shown in Figure 2 shows that, unlike for nilpotency,
there will not be a non-solvable group which is dominated by every solvable group.

Question 34. Let G and H be two non-isomorphic (non-abelian) simple groups of the
same order. Is it true that either os(G) dominates os(H) or vice versa?

From the Classification of Finite Simple Groups, it is known that the only pairs of
simple groups of the same order are

e Ag and PSL(3,4); and
e PSp(2n,q) and PQ(2n + 1,¢), where ¢ is an odd prime power and n > 3.

For the first pair, the ATLAS of Finite Groups [15] shows that os(As) dominates
os(PSL(3,4)). The answer is not known in the other cases.

Question 35. Given a sequence of n natural numbers, is it the order sequence of a
group? If it is, then how many groups, and can we construct them? (For computational
complexity reasons, it is better to take the input to be the collected order sequence, the
set of pairs (m, s(m)) where m is the order of an element and s(m) the number of elements
of this order, since this only requires a polylogarithmic amount of data.)

Question 36. Investigate further the poset of order sequences of finite groups.

Question 37. Given a finite poset P, find the minimum value of n such that P is
embeddable in the order sequence poset of groups of order n.
We can ask the same question restricting to abelian groups.

For example, the 2-element antichain is represented by two groups of order 12, or two
abelian groups of order 36; these are the smallest possible orders.
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