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Abstract

A colouring of a graph G has clustering k if the maximum number of vertices in a
monochromatic component equals k. Motivated by recent results showing that many
natural graph classes are subgraphs of the strong product of a graph with bounded
treewidth and a path, this paper studies clustered colouring of strong products of two
bounded treewidth graphs, where none, one, or both graphs have bounded degree.
For example, in the case of two colours, if n is the number of vertices in the product,
then we show that clustering Θ(n2/3) is best possible, even if one of the graphs is
a path. However, if both graphs have bounded degree, then clustering Θ(n1/2) is
best possible. With three colours, if one of the graphs has bounded degree, then we
show that clustering Θ(n3/7) is best possible. However, if neither graph has bounded
degree, then clustering Ω(n1/2) is necessary. More general bounds for any given
number of colours are also presented.
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1 Introduction

A colouring of a graph G is a function that assigns a ‘colour’ to each vertex of G. A
c-colouring is a colouring that uses at most c colours. We allow adjacent vertices to be
assigned the same colour. A colouring of a graph has clustering k if the maximum number
of vertices in a monochromatic component equals k. Here, a monochromatic component
is a component of the subgraph induced by the vertices assigned a single colour. For
example, a graph with chromatic number c is c-colourable with clustering 1. See [29] for
an extensive survey on this topic.

Most research on clustered colouring gives constant bounds on the clustering (indepen-
dent of |V (G)|). Some other papers focus on the case where the number of colours is so
small that dependence on |V (G)| is unavoidable (see [2, 21, 24] for example). We take
the latter approach. In particular, we focus on clustered colouring of strong products of
two graphs with bounded treewidth (see Section 2 for definitions of these notions). One
motivation for considering such graphs is that it has been recently shown that many natural
graph classes are subgraphs of the strong product of a graph with bounded treewidth and a
path [7, 8, 10, 11, 18–20] or the strong product of two graphs with bounded treewidth [6, 22]
(see Section 7 for more on this theme).

We study two variations of these products. In the first, we assume that one of the graphs
has bounded maximum degree, generalising the paths in the aforementioned products. We
then study the scenario with no restriction on the maximum degree. In each scenario,
given an integer c > 2, our goal is to prove tight bounds on the optimal clustering in
c-colourings of products H1�H2, where H1 and H2 are graphs of bounded treewidth. Our
main results are stated in the next section. They focus on the exponent of |V (H1 �H2)|
in the clustering value. More precise statements accompany their proofs.

1.1 Main results

First, consider 2-colourings of graph products. We show the following asymptotically tight
bound on the optimal clustering in this case.

Theorem 1. For any fixed integer t > 1 and any graphs H1, H2 with treewidth at most t,
the graph H1 �H2 is 2-colourable with clustering O(|V (H1 �H2)|2/3). Furthermore, there
are infinitely many graphs H with treewidth 2 and paths P such that every 2-colouring of
H � P has clustering Ω(|V (H � P )|2/3).

Theorem 1 shows that in the case of two colours, perhaps surprisingly, the maximum
degree condition has no significant impact on the optimal clustering value. For more
than two colours, the maximum degree condition has a significant impact on the optimal
clustering value of colourings of graph products.

Now consider the case of three colours. When one graph has bounded degree, we prove
the following asymptotically tight bound.

Theorem 2. For any fixed integers t,∆ > 1, for any graph H1 with treewidth at most t, and
any graph H2 with treewidth at most t and maximum degree at most ∆, the graph H1�H2
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is 3-colourable with clustering O(|V (H1 �H2)|3/7). Furthermore, there are infinitely many
graphs H with treewidth 3 and paths P such that every 3-colouring of H �P has clustering
Ω(|V (H � P )|3/7).

The following result shows that dropping the maximum degree restriction impacts the
exponent in both upper and lower bounds.

Theorem 3. For any fixed integer t > 1 and any graphs H1, H2 with treewidth at most t,
the graph H1 �H2 is 3-colourable with clustering O(|V (H1 �H2)|4/7). Furthermore, there
exist infinitely many pairs of graphs H1, H2 with treewidth 2 such that every 3-colouring of
H1 �H2 has clustering Ω(|V (H1 �H2)|1/2).

For c > 4 colours, when one graph has bounded degree, we obtain the following general
upper bound.

Theorem 4. For any fixed integers t, c,∆ > 1, for any graph H1 with treewidth at most t,
and any graph H2 with treewidth at most t and maximum degree at most ∆, the graph
H1 �H2 is c-colourable with clustering O(|V (H1 �H2)|c/(c2−c+1)).

We use the lower bound from Theorem 2 to prove the following general lower bound.

Proposition 5. For any fixed integer c > 3, there are infinitely many graphs H with
treewidth c and infinitely many paths P , such that every c-colouring of H�P has clustering
Ω(|V (H � P )|1/(c− 2

3
)).

There is a sharp change in the asymptotic behaviour of both upper and lower bounds on
the clustering in c-colourings of H1 �H2 when we remove the restriction on the maximum
degree of H2. Indeed, while the bounds of Theorem 4 and Proposition 5 are of the form
n1/(c−O(1)), in the unrestricted setting we prove the following upper and lower bound of
the form nΘ(1/

√
c).

Theorem 6. For any fixed integers t > 1 and c > 4, for any graphs H1 and H2 with
treewidth at most t, the graph H1�H2 is c-colourable with clustering O(|V (H1�H2)|1/b

√
cc).

Furthermore, for any integer c > 4, there are infinitely many pairs of graphs H1, H2 with
treewidth at most

√
c such that every c-colouring of H1 �H2 has clustering Ω(|V (H1 �

H2)|1/2
√
c).

Of course, Theorems 4 and 6 are only of interest for c < (t + 1)2. Indeed, graphs
with treewidth t are t-degenerate and thus properly (t+ 1)-colourable; that is, they are
(t + 1)-colourable with clustering 1. A product colouring then shows that H1 � H2 is
properly (t+ 1)2-colourable.

1.2 Summary

The paper is organised as follows. In Section 2 we establish the basic notation and key tools.
Our result with two colours, Theorem 1, is proved in Section 3. The results with three
colours, Theorems 2 and 3, are proved in Section 4. Our most general results, Theorem 4
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together with its associated lower bound given in Proposition 5 as well as Theorem 6,
are proved in Section 5. Section 6 studies clustered colouring of products of two graphs,
both with bounded treewidth and bounded maximum degree. This setting turns out to be
much simpler than the above two scenarios, and the proofs are straightforward. Section 7
concludes with a discussion on planar graphs.

Table 1 summarises all our results. The notation Ω(f(n)) means that for some
δ = δ(t,∆) > 0, there are infinitely many graphs H1, H2 such that every c-colouring of
H1 �H2 has clustering at least δ f(|V (H1 �H2)|). The notation O(f(n)) means that for
some δ = δ(t,∆) > 0 and for any graphs H1, H2, there exists a c-colouring of H1 � H2

with clustering at most δ f(|V (H1�H2)|). If f(n) does not depend on n (that is, c > 3 in
the first column), the constant δ is absolute (and does not depend on t,∆).

Table 1: Clustering in c-colourings of H1 �H2, where n := |V (H1 �H2)|.

∆(H1) 6 ∆, tw(H1) 6 t tw(H1) 6 t tw(H1) 6 t
∆(H2) 6 ∆, tw(H2) 6 t ∆(H2) 6 ∆, tw(H2) 6 t tw(H2) 6 t

c = 2 Θ(n1/2) Θ(n2/3) Θ(n2/3)
c = 3 O(t3∆4) Θ(n3/7) Ω(n1/2) O(n4/7)

c > 4 O(t2∆2) Ω(n1/(c−2/3)) O(nc/(c
2−c+1)) Ω(n1/(2

√
c)) O(n1/b

√
cc)

For each case in which upper and lower bounds do not match, we conjecture the
recorded upper bound to be asymptotically tight. In particular, we believe the upper
bound in Theorem 4 is asymptotically tight, and furthermore conjecture that there exists
a construction matching this upper bound where the bounded degree graph is a path.

Conjecture 7. For any fixed integer c > 2, there exists an integer t such that for infinitely
many graphs H with treewidth t and paths P , every c-colouring of H � P has clustering
Ω(|V (H � P )|c/(c2−c+1)).

We also believe that the upper bounds in Theorems 3 and 6 are asymptotically tight.

Conjecture 8. There exists an integer t > 1 such that for infinitely many graphs H1, H2

with treewidth t, every 3-colouring of H1 �H2 has clustering Ω(|V (H1 �H2)|4/7).

Conjecture 9. For any fixed integer c > 4 there exists an integer k such that for
infinitely many graphs H1, H2 with treewidth k, every c-colouring of H1�H2 has clustering
Ω(|V (H1 �H2)|1/((1+oc(1))

√
c)).

2 Definitions and tools

We use standard graph-theoretic notation. In particular, given a graph G, we write V (G)
for its vertex set and E(G) for its edge set.

For a non-empty tree T , a T -decomposition of a graph G is a collec-
tion W = (Wx : x ∈ V (T )) of subsets of V (G) indexed by the nodes of T such that:
(i) for every edge vw ∈ E(G), there exists a node x ∈ V (T ) with v, w ∈ Wx; and
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(ii) for every vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ Wx} induces a (connected) subtree
of T .

Each set Wx in W is called a bag . The width of W is max{|Wx| : x ∈ V (T )} − 1. A
tree-decomposition is a T -decomposition for any tree T . The treewidth of a graph G,
denoted by tw(G), is the minimum width of a tree-decomposition of G. Intuitively, the
treewidth of G measures how ‘tree-like’ G is. For example, trees have treewidth 1, and
outerplanar graphs have treewidth at most 2. Treewidth is of fundamental importance in
the graph minor theory of Robertson and Seymour and in algorithmic graph theory; see
[3, 15, 27] for surveys on treewidth.

Denote by Pn the path on n vertices. Let Fn be the fan graph consisting of a path Pn
(called the base) and one additional dominant vertex adjacent to every vertex along the
path. If v is the dominant vertex and (w1, . . . , wn) is the base path, then the sequence
{v, w1, w2}, {v, w2, w3}, . . . , {v, wn−1, wn} defines a Pn−1-decomposition of Fn with width
2. This demonstrates that tw(Fn) 6 2. The following is another well-known fact about
fans.

Lemma 10. Every 2-colouring of Fn has clustering at least b
√
nc.

Proof. Consider any red/blue colouring of Fn with clustering k. Without loss of generality,
the dominant vertex of Fn is red. So there are at most k − 1 red vertices in the base
path Pn of Fn. Thus there are at most k blue components in Pn, each with at most k
vertices. Hence n 6 (k − 1) + k2 < (k + 1)2, implying k >

√
n− 1 and k > b

√
nc.

The cartesian product of graphs G and H, denoted by G�H, is the graph with vertex
set V (G)× V (H), where (u, v) is adjacent to (u′, v′) in G�H if u = u′ and vv′ ∈ E(H),
or v = v′ and uu′ ∈ E(G).

The strong product of graphs G and H, denoted by G�H, is the graph with vertex
set V (G)× V (H), where (u, v) is adjacent to (u′, v′) in G�H if u = u′ and vv′ ∈ E(H),
or v = v′ and uu′ ∈ E(G), or uu′ ∈ E(G) and vv′ ∈ E(H).

Strong products and clustered colouring are inherently related. In particular, it follows
from the definitions that a graph G is c-colourable with clustering at most k if and only if
G is contained in H �Kk for some c-colourable graph H. Here, a graph G is contained in
a graph G′ if a subgraph of G′ is isomorphic to G.

For an integer m > 1 and a graph G, define mG
∧

to be the graph constructed by taking
m pairwise disjoint copies of G and adding one additional vertex adjacent to all vertices
in each copy. Note that

tw(mG
∧

) 6 tw(G) + 1. (1)

To see this, take a tree-decomposition of each copy of G, each with width tw(G). Add the
new dominating vertex to each bag of each decomposition, and add some edges to connect
the trees together, forming one large tree. This is a tree-decomposition of mG

∧
with width

tw(G) + 1, hence tw(mG
∧

) 6 tw(G) + 1.
Several proofs in this article use the following two results of Dvořák and Wood [12].

The first allows us to find separators in graphs with bounded treewidth.
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Lemma 11 ([12] Lemma 25). For any integers n, t > 1 and any real number p > 0, every
graph G on n vertices with treewidth at most t has a set S of at most p vertices such that
each component of G− S has at most (t+1)n

p
vertices.

The second lemma is a corollary of the isoperimetric inequality of Bollobás and
Leader [4].

Lemma 12 ([12] Lemma 13). If S is any set of at most n2

2
vertices in G := Pn � Pn and

k 6 n2

e2
and each component of G− S has at most k vertices, then n2 6 4|S|k1/2.

In addition, the constructions in this paper typically involve taking the strong products
of graphs that contain long paths, producing grid structures. To analyse clustered colourings
of these, we use the following result known as the Hex Lemma; see [14, 16] for background,
and see [23, Proposition 6.1.4] for the precise version of the statement below.

Lemma 13 (Hex Lemma). Let G be a plane internal triangulation with outer-cycle
(a, b, c, d). In every 2-colouring χ of G with χ(a) = χ(c) and χ(b) = χ(d), there is a
monochromatic path either between a and c or between b and d.

3 Two colours

We start by studying 2-colourings of graph products, proving Theorem 1. In this case,
we demonstrate that the upper bound with no maximum degree restriction and the
lower bound with a bounded degree graph are asymptotically tight up to a multiplicative
constant. Theorem 1 follows immediately from Lemmas 14 and 15.

Lemma 14. For any graphs H1 and H2 both with treewidth at most t, the graph G :=
H1 �H2 is 2-colourable with clustering at most 2((t+ 1)|V (G)|)2/3.

Proof. Let ni := |V (Hi)| for i ∈ {1, 2}. Let n := |V (G)| = n1n2. By Lemma 11, for
each i ∈ {1, 2}, there is a set Si of at most (t+ 1)2/3ni/n

1/3 vertices in Hi such that each
component ofHi−Si has at most ((t+1)n)1/3 vertices. LetX := (S1×V (H2))∪(V (H1)×S2).
So

|X| 6 |S1|n2 + |S2|n1 6 (t+ 1)2/3n1n2/n
1/3 + (t+ 1)2/3n2n1/n

1/3 = 2((t+ 1)n)2/3.

Colour each vertex in X blue and colour all other vertices red. Each red component Y is
contained in Y1�Y2 for some component Y1 of H1−S1 and some component Y2 of H2−S2.
Thus |V (Y )| 6 |V (Y1�Y2)| 6 ((t+ 1)n)2/3. Hence G is 2-coloured with clustering at most
2((t+ 1)n)2/3.

We now prove that Lemma 14 is asymptotically tight, even when H2 is a path.

Lemma 15. There are infinitely many graphs H with treewidth 2 and paths P such that
every 2-colouring of H � P has clustering at least 1

3
|V (H � P )|2/3.
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Proof. Let n be a sufficiently large integer so that 1
2
n2 > 1

3
(n3 + n2)2/3, and let P := Pn,

H := Fn2 , and G := H �P so that |V (G)| = n3 +n2. With x being the dominating vertex
of the fan H, we refer to {(x, v) : v ∈ P}, the set of copies of x in G, as the spine of G.

Suppose, toward a contradiction, that there exists a 2-colouring of G in red and blue
with clustering less than 1

2
n2. Suppose that two adjacent vertices of the spine are coloured

differently. Then there is a red vertex and a blue vertex of G both dominating the same
copy of Pn2 . Without loss of generality, at least 1

2
n2 of these vertices are coloured red, and

they are all connected into one component by the dominating red vertex, contradicting
the fact that the colouring has clustering less than 1

2
n2.

It follows that the entire spine is monochromatic. Let this colour be red. Since vertices
along the spine are dominating in their respective copies of H, this means that all red
vertices in the graph G are joined into a single component and therefore there are less
than 1

2
n2 red vertices in G.

Consider the crossed (n2 × n)-grid, Pn2 � Pn, where the first factor is the base of the
fan H. At most 1

2
n2 columns contain a red vertex. So at least 1

2
n2 columns are all-blue.

Moreover, there is a row R with less than 1
2
n red vertices. There are at most 1

2
n+ 1 blue

components in R. At least one of these components intersects at least (1
2
n2)/(1

2
n+1) > 1

2
n

all-blue columns, which are thus contained in a blue component with at least (1
2
n)n = 1

2
n2

vertices.

Note that the bound tw(H) 6 2 in Lemma 15 is best possible. In particular, for any
trees T1 and T2, by Proposition 36 there exists a 2-colouring of T1 � T2 with clustering at
most |V (T1 � T2)|1/2.

We present an alternative proof that the upper bound in Lemma 14 is asymptotically
tight, using a symmetric construction.

Lemma 16. For any integer n > 8, every 2-colouring of Fn � Fn has clustering at
least 1

3
(n+ 1)4/3.

Proof. Let A and B be copies of Fn, with V (A) = {a0, a1, . . . , an} and V (B) =
{b0, b1, . . . , bn}, where a0 dominates the path a1, . . . , an in A, and b0 dominates the path
b1, . . . , bn in B. The graph A � B contains an induced copy of Pn � Pn on the vertices
(ai, bj) with 1 6 i, j 6 n, and consider its subgraph H ∼= Pn � Pn.

Suppose, for the sake of contradiction, that there exists a 2-colouring of A�B with
clustering less than k := 1

3
(n + 1)4/3. Without loss of generality, assume that (a0, b0) is

red. Note that, since n > 8, we have k 6 n2

2
and k 6 n2

e2
.

Let S be the set of red vertices in H. Since (a0, b0) dominates A�B, we have |S| 6 k.
Each component of H − S is contained in a monochromatic component of A � B, and
thus has at most k vertices. By Lemma 12,

n2 6 4|S|k1/2 6 4k3/2 6 4(1
3
(n+ 1)4/3)3/2 < n2,

since n > 8, which is the desired contradiction.
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4 Three colours

We now move to 3-colourings of graph products, proving Theorems 2 and 3.

4.1 Unrestricted maximum degree

We start by proving Theorem 3, where H1, H2 both have bounded treewidth. For the
upper bound, we build on the 2-colour construction from Lemma 14 to prove the following
result with three colours. This approach leads to a bound for all c by induction. However,
for c > 4, Lemma 32 yields a better bound than would be achieved with this strategy.

Lemma 17. For any graphs H1 and H2 both with treewidth at most t, the graph G :=
H1 �H2 is 3-colourable with clustering at most 2(t+ 1)6/7|V (G)|4/7.

Proof. Let ni := |V (Hi)| for i ∈ {1, 2}. Let n := |V (G)| = n1n2. By Lemma 11, for
each i ∈ {1, 2}, there is a set Si of at most (t + 1)6/7ni/n

3/7 vertices in Hi such that
each component of Hi − Si has at most (t+ 1)1/7n3/7 vertices. Let X := (S1 × V (H2)) ∪
(V (H1)× S2). So

|X| 6 |S1|n2 + |S2|n1 6 (t+ 1)6/7n1n2/n
3/7 + (t+ 1)6/7n2n1/n

3/7 = 2(t+ 1)6/7n4/7.

Each component Y of G−X is contained in Y1�Y2 for some component Y1 of H1−S1 and
some component Y2 of H2−S2, implying that |V (Y1�Y2)| 6 (t+ 1)2/7n6/7. By Lemma 14,
Y1 � Y2 (and hence also Y ) is 2-colourable with clustering at most

2((t+ 1)|V (Y1 � Y2)|)2/3 6 2((t+ 1)(t+ 1)2/7n6/7)2/3 6 2(t+ 1)6/7n4/7.

By using a third colour for X, we obtain a 3-colouring of G with clustering at most
2(t+ 1)6/7n4/7.

The next lemma proves the lower bound in Theorem 3, and shows that the upper
bound in Theorem 2 for the bounded degree scenario is not optimal in the unrestricted
scenario.

Lemma 18. Every 3-colouring of Fn � Fn has clustering at least
(

1− 1√
2

)
n.

Proof. Let A and B be copies of Fn, with V (A) = {a0, a1, . . . , an} and V (B) =
{b0, b1, . . . , bn}, where a0 dominates the path a1, . . . , an in A, and b0 dominates the path
b1, . . . , bn in B. Suppose there exists a red/blue/green-colouring of G := A � B with
clustering less than δn, where δ := 1− 1√

2
. We may assume without loss of generality that

the dominating vertex (a0, b0) is red. In particular, there are less than δn red vertices in
G.

Let X = {(a0, bi) : i ∈ [n]} and Y = {(ai, b0) : i ∈ [n]}. Note that for any i, j ∈ [n], the
vertices (a0, bi) and (aj, b0) are adjacent in G. Assume that X contains at least one blue
vertex and at least one green vertex. Since each vertex of X dominates Y , it follows that
Y contains less than δn blue and less than δn green vertices. This is a contradiction, since
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there are less than δn red vertices in G and δ < 1/3 while |Y | = n. Therefore, without
loss of generality, X contains more than (1− δ)n blue vertices and no green vertices.

We can apply similar reasoning to Y . Given that X contains at least one blue vertex, Y
has less than δn blue vertices, and therefore Y contains more than (1− δ)n green vertices
and no blue vertices.

Now focus on the subgraph H of G induced by {(ai, bj) : i, j ∈ [n]}, which forms a copy
of Pn � Pn. Each vertex of X dominates a row of H, and each vertex of Y dominates a
column. Since there are less than δn red vertices in G, there exist more than (1− δ)n rows
with no red vertices, each dominated by a blue vertex from X. Each such row contains
less than δn blue vertices, and hence more than (1 − δ)n green vertices. Therefore, H
contains more than (1− δ)2n2 green vertices. If we consider columns dominated by green
vertices, an identical argument yields that there are more than (1− δ)2n2 blue vertices in
H. Since 2(1− δ)2 = 1, there are more than n2 vertices in H coloured blue or green, but
this is a contradiction since H has only n2 vertices.

Note that the clustering value in Lemma 18 is best possible (up to the multiplicative
constant) for 3-colourings of Fn � Fn. To see this, colour all the high-degree vertices red.
What remains is Pn � Pn, which can be 2-coloured by alternating rows. So Fn � Fn is
3-colourable with clustering n.

4.2 Bounded maximum degree

We now focus on Theorem 2, when H2 has bounded treewidth and bounded maximum
degree. The upper bound follows directly from the general c > 2 result, Theorem 4,
presented in Section 5. We prove that this upper bound is asymptotically tight (up to the
multiplicative factor) when c = 3, which concludes the proof of Theorem 2.

Recall that Fn is the fan graph with base path Pn. Define Hn := n2 Fn4

∧

, and let x
be the dominating vertex in Hn (see Figure 1). The fans of Hn refer to the n2 pairwise
disjoint copies of Fn4 in Hn. Note that Hn is planar, and tw(Hn) 6 tw(Fn4) + 1 = 3 by (1).

x

n4 n4 n4 n4

n2

Figure 1: Hn = n̂2 Fn4
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Lemma 19. For any δ < 1/2 and any n large enough, every 3-colouring of G := Hn�Pn
has clustering at least δn3.

Since |V (G)| = n7 + n3 and tw(Hn) 6 3, Lemma 19 proves the lower bound of Theo-
rem 2.

Proof overview: The proof is by contradiction. We first show in Claim 20 that a
specific set of vertices of G must be monochromatic, say red. This allows us to bound the
total number of red vertices in G. We then restrict our attention to a copy J of Fn4 � Pn
with fewer than δn red vertices. We recognise two subgraphs in J : a path induced by the
copies of the dominant vertex of Fn4 and a grid L formed by the strong product of the
path of Fn4 with Pn. As there are few red vertices, linearly many vertices of the path of J
must be of the same non-red colour, say blue. In Claim 21 we argue moreover that these
blue vertices all lie in the same blue component S of J . We then consider the intersection
K of rows with blue associated dominant vertex and columns disjoint from S in L, and
note in Claim 22 that vertices u, v ∈ K in the same component of L− S remain so when
deleting all blue vertices. This allows us to conclude the proof as, loosely speaking, the red
vertices split K into few components so there must be a large monochromatic component
in the last remaining colour.

Proof. Let H := Hn. We refer to {(x, v) : v ∈ Pn}, the set of copies of x in G, as the spine
of G. Suppose, toward a contradiction, that the vertices of G are 3-coloured in red, blue
and green, with clustering at most δn3.

Claim 20. The spine of G is monochromatic.

Proof. Suppose that the spine of G is not monochromatic. Let r, b be two adjacent vertices
of Pn such that (x, r) and (x, b) have different colours, say red and blue respectively. In G,
every vertex w ∈ Pn has an associated copy H(w) of H on vertex set {(z, w) : z ∈ V (H)}
(and edges between two vertices (y, w) and (z, w) precisely when y and z are adjacent
in H). Since r and b are adjacent in Pn, then (x, r) and (x, b) are both dominating vertices
for H(r). Therefore, as G contains no monochromatic component of size δn3, there must
be less than δn3 red and less than δn3 blue vertices in H(r).

Let F (r) be the set of fans of H(r). As |F (r)| = n2, by averaging there is some F ∈ F (r)

which contains less than 2δn < n vertices coloured red or blue. Hence, the path of length n4

in F contains a subpath of green vertices of length at least n3, a contradiction.

Without loss of generality, we may assume that all vertices of the spine are coloured
red. Since the spine is a dominating set for G, there are less than δn3 red vertices in G.
Let F be the set of fans in H. By averaging, there is an F ∈ F such that the subgraph J
of G induced by V (F )× V (Pn) contains less than δn red vertices.

Consider the restriction of the colouring of G to J . Note that J contains a copy of the
grid Pn4 � Pn, formed by the strong product of the path of F with Pn (see the graph G[J ]
on the left of Figure 2). In this grid, rows are copies of the path of F and columns are of
the form {v}� Pn, where v is a vertex of the path of F .

Let y be the dominating vertex of the fan F and call a vertex of J of the form (y, v)
with v ∈ V (Pn) a top vertex .
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Rs

Rt

C C ′

Figure 2: Subgraph G[J ] and the subgrid of L bounded by Rs and Rt.

As previously, for v ∈ V (Pn), denote by F (v) the copy of F associated to v in J . Since
there are less than δn red vertices in J , we may assume without loss of generality that
there are at least 1−δ

2
n blue top vertices.

Claim 21. All blue top vertices of J are in the same monochromatic blue component in J .

Proof. Let (y, s), (y, t) be two blue top vertices in J , for some s, t ∈ [n]. We show that
there exists a blue path between (y, s) and (y, t) in J . Let Rs and Rt be the vertices in
the paths of the fans F (s) and F (t) respectively, both of size n4. Note that in J , these two
rows bound a subgrid of L. Let C denote the first column of this subgrid, and C ′ the last.

Add two dummy vertices us, ut adjacent to all vertices in Rs and Rt (respectively).
Colour them blue. Add two dummy vertices v, v′ adjacent to all vertices in C and C ′

(respectively). Colour them red or green (see Figure 3 for an illustration).
Then by the Hex Lemma (Lemma 13), either there is a blue path from us to ut, or

there is a path from v to v′ with no blue vertices. Suppose the latter occurs. As previously,
this yields a path of length n4 with no blue vertices. Since there are less than δn red
vertices in J , it contains a subpath of n3 green vertices and we are done. We may therefore
assume that there is a blue path from us to ut. This blue path intersects both Rs and Rt.
Since (y, s) (respectively (y, t)) is dominating for Rs (respectively Rt), this extends to a
blue path from (y, s) to (y, t), as claimed.

Let S be the vertices of the monochromatic blue component of J containing all blue
top vertices. Note that there may be blue vertices in J which are not in S, and as G
contains no monochromatic component of size δn3, we have that |S| < δn3.
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Rs

Rt

C C ′v v′

us

ut

Figure 3: Subgrid of L bounded by Rs and Rt with dummy vertices.

Say that a row of L is blue dominated if its associated top vertex is blue, and that a
column of L is S-free if it does not intersect S. In particular, as there are n4 columns in
L and less than δn3 elements in S, for any ε > 0, for n large enough, there are (1− ε)n4

columns which are S-free. Define the boundary of S in J , denoted by ∂S, to be the set of
vertices outside of S that are adjacent to a vertex in S.

Claim 22. Let u, v ∈ ∂S be vertices simultaneously on blue dominated rows and S-free
columns. Suppose u, v are in the same component Q of the grid L after the vertices of S
have been removed, and that Q contains an S-free column. Then, there is a path consisting
of red and green vertices between u and v in L. In other words, u, v remain in the same
component of L after removing all blue vertices.

Proof. Let Q be a component of L− S that contains an S-free column. Let R1, R2, C1,
C2 be the top row, bottom row, leftmost column, and rightmost column of L, respectively,
see Figure 4a.

Let D be the smallest component of L containing Q, bounded up and down by R1 and
R2, left by a blue path S1 from R1 to R2 (or S1 = C1 if such a path does not exist), and
right by a blue path S2 from R1 to R2 (or S2 = C2 if such a path does not exist).

We now restrict our attention to D. Let R and R′ denote the vertices of its top and
bottom rows, and fix a full S-free column K of Q, see Figure 4b. By the Hex Lemma
(Lemma 13), either there is a blue path from S1 to S2 or a red/green path from R to R′.

Suppose there is a blue path B from S1 to S2. If S1 = C1 and S2 = C2, then this path
has length at least n4, and is therefore a monochromatic component of size at least δn3, a
contradiction. Otherwise, at least one of S1, S2 is a blue monochromatic path crossing
every row in D. Without loss of generality, suppose S1 is such a path. As some rows of L
are blue dominated, this path is entirely in S. Hence, as B is blue and touches S1, B ⊂ S
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(c) Vertex u

Figure 4: Proof of Claim 22

as well. But B certainly intersects K, an S-free column, which is impossible.
Hence, there must be a path P from R to R′ whose vertices are not blue.
It now suffices to show that for each u ∈ Q which is the intersection of an S-free

column with a blue dominated row, there is a path from u to P whose vertices are not
blue. Indeed, any u, v ∈ Q are then connected with non-blue vertices by concatenating
the paths from u to P , from v to P , and P itself.

If u ∈ P we are done, so we may assume that u 6∈ P . Let C∗ and R∗ be the column
and row of u, respectively, see Figure 4c. We let

• P1 be the shortest path from u to P in D that uses only vertices of C∗ above u and
possibly vertices of R, and x ∈ P the other endpoint of P1, and

• P2 be the shortest path from u to P in D that uses only vertices of C∗ below u and
possibly vertices of R′, and y ∈ P the other endpoint of P2.

Let A be the subgraph of D induced by the vertices in the region enclosed by P1, P2

and the subpath of P between x and y. By the Hex Lemma (Lemma 13), either there is a
blue path from P1 − u to P2 − u, or there is a red/green path from u to P .

Suppose there is a blue path P ′ from P1 − u to P2 − u. Note that, as all vertices of P1

lie above or on row R∗ and all vertices of P2 lie below or on row R∗, any path from P1 to
P2 must cross row R∗. In particular, P ′ must be entirely in S as it is blue. Consider the
endpoints of P ′. If they lie in R and R′, then, as P ′ is blue and in S, both of its endpoints
lie to one side of the S-free column K ⊆ Q. Thus, P ′ splits D into two non-trivial parts
with one containing Q, contradicting the minimality of D. Hence, by construction, some
endpoint of P ′ must lie on C∗. But C∗ is an S-free column, so this is also a contradiction.
Therefore, there is a red/green path from u to P , as desired.

Let K ⊂ ∂S be the set of vertices of L simultaneously on blue dominated rows and
S-free columns. Recall that L contains at least (1− ε)n4 S-free columns and at least 1−δ

2
n

blue top vertices, therefore |K| > (1−ε)(1−δ)
2

n5.
Since |S| < δn3, at least one of the n rows of the grid L contains less than δn2 vertices

from S. It follows that the S-free columns of L live in at most δn2 components of L− S.

the electronic journal of combinatorics 32(3) (2025), #P3.15 13



As K contains only vertices from S-free columns, the vertices of K live in at most δn2

components of L− S. By Claim 22 the vertices of K still live in at most δn2 components
of L after all blue vertices are removed. We now remove the less than δn red vertices. Note
that for any ε′ > 0, for n large enough, we have at least (1− ε′)|K| green vertices in K.
As each vertex of L has degree at most 8, at each removal we add at most 7 components.
After removing all red vertices, for any ε′′ > 0, for n large enough, we still have less than
(δ + ε′′)n2 components. Therefore, using δ < 1/2 and choosing ε, ε′, and ε′′ small enough,
there is a component of size at least

(1− ε)(1− ε′)(1− δ)
2(δ + ε′′)

n3 > δn3

containing only green vertices, a contradiction.

5 Arbitrary number of colours

We now present our most general results, with an arbitrary number of colours.

5.1 Bounded maximum degree

5.1.1 The upper bound

In this section, we prove Theorem 4, a general upper bound for products of bounded
treewidth graphs, when one graph is additionally assumed to have bounded maximum
degree. Specifically, we show the following.

Theorem 23. For any integers t, c,∆ > 1, for any graph H1 with treewidth at most t,
and any graph H2 with treewidth at most t and maximum degree at most ∆, the graph
G := H1 �H2 is c-colourable with clustering at most 6c+1(t+ 1)2∆c |V (G)|c/(c2−c+1).

The following lemma is a slightly more precise version of a result by Linial et al. [21,
Theorem 1.2].

Lemma 24. For any integers t, c > 1, every graph G with treewidth at most t has a
c-colouring with clustering at most (t+ 1)(c−1)/c |V (G)|1/c.

As remarked by Linial et al. [21, Theorem 1.2], this bound is asymptotically optimal
for fixed c, since there exists a graph Gc with treewidth at most c, on O(nc/2) vertices and
such that every c-colouring has clustering Ω(

√
n).

Proof of Lemma 24. We proceed by induction on c. The c = 1 case is trivial. Now
assume that c > 2. Let G be a graph with n vertices and treewidth at most t. Let
p := (t+ 1)1/cn(c−1)/c. If p 6 t+ 1, then n 6 t+ 1 and any colouring of G has clustering
at most n 6 (t+ 1)(c−1)/cn1/c as desired. Now assume that p > t+ 1. By Lemma 11, there
exists a set S of at most p vertices in G such that each component of G− S has at most

(t+ 1)n

p
=

(t+ 1)n

(t+ 1)1/cn(c−1)/c
= (t+ 1)(c−1)/cn1/c
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vertices. By induction, there exists a (c− 1)-colouring of G[S] with clustering

(t+ 1)(c−2)/(c−1)p1/(c−1) = (t+ 1)(c−2)/(c−1)
(
(t+ 1)1/cn(c−1)/c

)1/(c−1)
6 (t+ 1)(c−1)/cn1/c.

Extend this (c− 1)-colouring of G[S] to a c-colouring of G by giving one new colour to
all vertices in G− S. This has clustering at most (t+ 1)(c−1)/cn1/c.

Lemma 24 is only interesting if c 6 t, since if c > t+ 1, then G is (c− 1)-degenerate
and thus properly c-colourable.

We use the following three lemmas from the literature.

Lemma 25 ([13, Lemma 14]). If a graph G is c-colourable with clustering k, then G�K`

is c-colourable with clustering k`.

Lemma 26 ([13, Lemma 32]). If a graph G is c-colourable with clustering k and T is a
tree with maximum degree at most ∆ > 3, then G� T is (c+ 1)-colourable with clustering
less than 2k(∆− 1)c−1.

Distel and Wood [9] proved the following extension of a classical result of Ding and
Oporowski [5].

Lemma 27 ([9, Theorem 2]). Every graph H with treewidth at most t and maximum
degree at most ∆ is contained in T �K18(t+1)∆ for some tree T with maximum degree at
most 6∆ and with |V (T )| 6 max{|V (H)|/2(t+ 1), 1}.

We are now ready to prove Theorem 23, which is a more precise version of Theorem 4.

Proof of Theorem 23. The statement is trivially true if c = 1, so we will assume c > 2.
By Lemma 27, there exists a tree T with ∆(T ) 6 6∆ and |V (T )| 6 max{|V (H2)|/2(t+1), 1}
such that G is contained in H1 � T �K18(t+1)∆.

Define F := H1 � T and let h := |V (H1)|, ` := |V (T )|, f := |V (F )| and n := |V (G)|.
Note that f = h` 6 n

2(t+1)
.

We start by showing that F admits a c-colouring with a bound on its clustering.
Assume first that h > `c(c−1). Then

`c(c−1)2 6 hc−1,

hc
2−c+1`c(c

2−c+1) 6 (h`)c
2

,

h1/c` 6 (h`)c/(c
2−c+1).

By Lemma 24, there exists a c-colouring of H1 with clustering at most (t+ 1)(c−1)/ch1/c.
For each x ∈ V (H1) and each y ∈ V (T ), colour (x, y) ∈ V (F ) by the colour assigned to x.
We obtain a c-colouring of F with clustering at most

(t+ 1)(c−1)/ch1/c` 6 (t+ 1)(c−1)/c(h`)c/(c
2−c+1).

Now assume that h 6 `c(c−1). Hence,

h(c2−c+1) 6 (h`)c(c−1),
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h1/(c−1) 6 (h`)c/(c
2−c+1).

By Lemma 24, H1 admits a (c− 1)-colouring with clustering at most

(t+ 1)(c−2)/(c−1)h1/(c−1) 6 (t+ 1)(c−1)/ch1/(c−1).

Since T has maximum degree at most 6∆, it follows from Lemma 26 that F has a
c-colouring with clustering at most

2(t+ 1)(c−1)/ch1/(c−1)(6∆− 1)c−2 6 2(t+ 1)(c−1)/c(6∆− 1)c−1(h`)c/(c
2−c+1).

Finally, let

α := 2(t+ 1)(c−1)/c(6∆− 1)c−218(t+ 1)∆

(
1

2(t+ 1)

)c/(c2−c+1)

6 6c+1(t+ 1)2∆c.

Since h` 6 n
2(t+1)

, it follows from Lemma 25 that G ⊆ H1�T �K18(t+1)∆ has a c-colouring
with clustering at most αnc/(c2−c+1).

5.1.2 A lower bound

We now turn our attention to the lower bound for this general case, proving Proposition 5.

Lemma 28. For any integers c, k > 2, let H be a graph and P be a path such that
every (c − 1)-colouring of H has clustering at least k, and every c-colouring of H � P
has clustering at least k. Let J := (k − 1)H

∧

. Then every (c+ 1)-colouring of J � P has
clustering at least k.

Proof. By definition, J is obtained from k− 1 disjoint copies H1, . . . , Hk−1 of H by adding
one dominant vertex. Say P = (v1, . . . , vp). Let J i be the copy of J in J�P corresponding
to vi. For j ∈ {1, . . . , k−1}, let H i

j be the copy of Hj in J i, and call Xj := V (H1
j ∪· · ·∪H

p
j )

a column. Consider any (c+ 1)-colouring of J � P .
First, suppose there exist consecutive vertices vi and vi+1 that are assigned dis-

tinct colours, say red and blue respectively. In J � P , each of vi and vi+1 dominate
H i

1, . . . , H
i
k−1, H

i+1
1 , . . . , H i+1

k−1. If at least k − 1 of H i
1, . . . , H

i
k−1, H

i+1
1 , . . . , H i+1

k−1 contain
a red vertex, then with vi we have a red component on at least k vertices, as de-
sired. If at least k − 1 of H i

1, . . . , H
i
k−1, H

i+1
1 , . . . , H i+1

k−1 contain a blue vertex, then
with vi+1 we have a blue component on at least k vertices, as desired. Now assume
that at most k − 2 of H i

1, . . . , H
i
k−1, H

i+1
1 , . . . , H i+1

k−1 contain a red vertex, and at most
k − 2 of H i

1, . . . , H
i
k−1, H

i+1
1 , . . . , H i+1

k−1 contain a blue vertex. Thus, at least one of
H i

1, . . . , H
i
k−1, H

i+1
1 , . . . , H i+1

k−1 contains no red vertex and no blue vertex, and is there-
fore (c− 1)-coloured. By assumption, this copy of H has a monochromatic component on
at least k vertices, as desired.

Now assume that v1, . . . , vp are monochromatic, say red. Since v1, . . . , vp is a connected
dominating set in J � P , the red subgraph is connected. Thus, at most k − 1 vertices are
red. Hence, at most k − 2 vertices not in {v1, . . . , vp} are red. In particular, at most k − 2
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columns contain a red vertex, so some column Xj contains no red vertex. The subgraph of
J �P induced by Xj , which is isomorphic to H �P , is c-coloured, and thus has clustering
at least k, as desired.

The next lemma is folklore, see for instance [25, 26, 28].

Lemma 29. For any integers c, k > 2, if H is a graph such that every c-colouring of H
has clustering at least k, then every (c+ 1)-colouring of (k − 1)H

∧

has clustering at least k.

Proof. Consider any (c + 1)-colouring of (k − 1)H
∧

. Say the dominant vertex is red. If
every copy of H contains a red vertex, then the red component has at least k vertices, as
desired. Otherwise, some copy of H is c-coloured, and thus has clustering at least k by
assumption.

The following is a variant of a result by Linial et al. [21].

Lemma 30. For any integers n, k > 2 such that k 6 n3, let G2 = n2 Fn4

∧

, and for c > 2,
let Gc+1 := (k − 1)Gc

∧

. Then for every c > 2, every c-colouring of Gc has clustering at
least k.

Proof. We proceed by induction on c > 2. For the base case c = 2, suppose there exists a
red/blue colouring of G2 with clustering less than k. Say the dominant vertex of G2 is red.
So there exists a copy of Fn4 in G2 with less than k/n2 red vertices. The path of length n4

in this copy of Fn4 contains a subpath of length at least n6/k > n3, whose vertices are all
blue, a contradiction. Now assume that c > 2 and every c-colouring of Gc has clustering
at least k. By Lemma 29, every (c + 1)-colouring of Gc+1 has clustering at least k, as
desired.

We now prove the following precise version of Proposition 5, which follows immediately
since (1) implies that tw(Gc) 6 tw(Gc−1) + 1 6 c+ 1.

Proposition 31. For any fixed integers k, c > 3 and any large enough integer n, let
G2 := n2 Fn4

∧

, and Gd := (k − 1)Gd−1

∧

for every d ∈ [3, c]. Let δ < 1/2 such that k = 2δn3.
Then every c-colouring of Gc−1 � Pn has clustering at least δ

7
3c−2 |V (Gc−1 � Pn)|1/(c− 2

3
).

Proof. Let n be large enough such that for every d ∈ [3, c] we have

|V (Gd−1 � Pn)| = (2δ)d−3n3d−2 + o(n3d−2) 6 2d−2δd−3n3d−2.

Therefore for every d ∈ [3, c] we obtain

δ
7

3d−2 |V (Gd−1 � Pn)|1/(d−
2
3

) 6 δ
7

3d−2 δ
3(d−3)
3d−2 21−4/(3d−2)n3 6 2δn3 = k.

We reason by induction on d up to c, proving that every d-colouring of Gd−1 � Pn has
clustering at least k. The base case d = 3 is true by Lemma 19. Assume now that the
statement is true for some d ∈ [3, c); that is, every d-colouring of Gd−1 � Pn has clustering
at least k. It follows from Lemma 30 that every (d− 1)-colouring of Gd−1 has clustering at
least k. Therefore Lemma 28 implies that every (d+ 1)-colouring of Gd�Pn has clustering
at least k.
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5.2 Unrestricted maximum degree

By colouring each graph separately with the smallest clustering possible, and then using
a product colouring, we prove the following statement that implies the upper bound
of Theorem 6.

Lemma 32. For any integers c, t > 1 and any graphs H1 and H2 both with treewidth at
most t, the graph H1 �H2 is c-colourable with clustering at most

(t+ 1)2(1−1/
√
c) |V (H1 �H2)|1/b

√
cc.

Proof. Let s = b
√
cc. Given H1 and H2 both with treewidth at most t, let ni := |V (Hi)|,

n = n1n2, apply Lemma 24 to each Hi with s colours, and take the product colouring. So
H1 �H2 is s2-colourable with clustering at most

(t+ 1)(s−1)/s n
1/s
1 (t+ 1)(s−1)/s n

1/s
2 6 (t+ 1)2(

√
c−1)/

√
c n1/b

√
cc.

We now prove the lower bound of Theorem 6. Fix an integer t > 1. Consider graphs
H1 and H2 with treewidth at most t. So both H1 and H2 are properly (t+ 1)-colourable.
A product colouring shows that H1 �H2 is properly (t+ 1)2-colourable. That is, H1 �H2

is (t + 1)2-colourable with clustering 1. Esperet and Wood [13] showed that in such a
result with bounded clustering, (t + 1)2 colours is best possible. That is, there exists a
family of graphs H1, H2 with treewidth at most t such that for any c < (t + 1)2, in any
c-colouring of H1 �H2 the clustering must increase with |V (H1 �H2)|. We extract the
following result from their proof.

Lemma 33. For any integer c > 2, there are infinitely many graphs H1, H2 with treewidth
at most

√
c such that every c-colouring of G := H1 �H2 has clustering Ω(|V (G)|1/2

√
c).

Proof. For t, n ∈ N, define the graph Ct,n recursively as follows. Let C1,n := K1, and
Ct,n := nCt−1,n

∧
for t > 2. Given c, let t be the integer such that t2 6 c < (t + 1)2.

By (1), tw(Ct+1,n) 6 t 6
√
c. Let G := Ct+1,n � Ct+1,n, where n � t. Note that

|V (Ct+1,n)| = nt + O(nt−1) and thus |V (G)| = n2t + O(n2t−1). Esperet and Wood [13,
Theorem 16]1 showed that in any c-colouring of G, there is a monochromatic component
with maximum degree at least n

(t+1)412t+1 . Thus, for fixed t, any c-colouring of G has
clustering

Ω(n) = Ω(|V (G)|1/2t) = Ω(|V (G)|1/2
√
c).

Consider graphs H1 and H2 with bounded treewidth on n1 and n2 vertices (respectively).
By Lemma 24, each Hi is 2-colourable with clustering O(

√
ni). Let n := |V (H1 �H2)| =

n1n2. By using the product colouring as in the proof of Lemma 32, H1�H2 is 4-colourable
with clustering O(

√
n). Therefore, to prove that the upper bound of Lemma 32 is

asymptotically tight when c = 4, one must choose H1 and H2 to be graphs such that every
1Esperet and Wood [13] actually work in the more general setting of fractional p : q-colourings, where
a c-colouring is equivalent to a c : 1-colouring. They also define Ct,n as the closure of a rooted tree,
which is equivalent to our recursive definition.
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2-colouring of Hi has clustering Θ(
√
ni), which is as large as possible. Fans have this

property by Lemma 10. This makes fans the natural candidates to show that Lemma 32 is
asymptotically tight. However, we now show that Fn � Fn is 4-colourable with clustering
O(n2/3), and this bound is tight.

Proposition 34. There exists an absolute constant δ > 0 such that for all n > 1, every
4-colouring of Fn � Fn has clustering at least δn2/3.

Proof. Let δ := (48)−2/3. We make no attempt to optimise this constant.
Let A and B be copies of Fn, with V (A) = {a0, a1, . . . , an} and V (B) = {b0, b1, . . . , bn},

where a0 dominates the path a1, . . . , an in A, and b0 dominates the path b1, . . . , bn in B.
Let A′ := {(a1, b0), . . . , (an, b0)} and B′ := {(a0, b1), . . . , (a0, bn)}.

Suppose, for the sake of contradiction, that A�B has a 4-colouring with clustering
at most δn2/3. Let the colours be red, green, blue, and black, where (a0, b0) is red. A
colour c is A′-empty if no vertex in A′ is coloured c, otherwise c is A′-nonempty . Similarly,
a colour c is B′-empty if no vertex in B′ is coloured c, otherwise c is B′-nonempty . A
colour c is A′-small if at most δn2/3 vertices in A′ are coloured c, otherwise c is A′-big .
Similarly, a colour c is B′-small if at most δn2/3 vertices in B′ are coloured c, otherwise c
is B′-big .

Since (a0, b0) is dominant in G, there are at most δn2/3 red vertices in total, so red is
both A′-small and B′-small. If some colour c is both A′-big and B′-nonempty, then all
the vertices in A′ ∪ B′ coloured c are in a single monochromatic component, which is a
contradiction. So no colour is both A′-big and B′-nonempty. Similarly, no colour is both
A′-nonempty and B′-big. Since n > 4δn2/3, at least one colour is A′-big, and at least one
colour is B′-big.

If at least two colours are A′-big and at least two colours are B′-big, then some colour is
both A′-big and B′-big, which is a contradiction. Thus, without loss of generality, exactly
one colour is B′-big. We may assume that black is B′-big and A′-empty, blue is B′-small,
and green is B′-small.

Let H be the subgraph of G induced by {a1, . . . , an} × {b1, . . . , bn}. So H ∼= Pn � Pn.
Let S be the union of:
• the set Sb of black vertices in H,
• the set Sr of red vertices in H,
• the set Sr+ of vertices in H (of any colour) adjacent to a red vertex in A′ ∪B′,
• the set S` of blue vertices in H adjacent to a blue vertex in A′ ∪B′,
• the set Sg of green vertices in H adjacent to a green vertex in A′ ∪B′.
We claim that |Sb| 6 4δn5/3. Let I := {j ∈ {1, . . . , n} : (a0, bj) is black}. For

each j ∈ I there are at most δn2/3 black vertices (ai, bj) (since they are dominated by
(a0, bj)). Thus |Sb| 6 |I| δn2/3 + (n− |I|)n. Since each of red, blue and green is B′-small,
n− 3δn2/3 6 |I| 6 n implying |Sb| 6 4δn5/3, as claimed.

We have |Sr| < δn2/3 directly. Each red vertex in A′ ∪ B′ contributes at most 3n
vertices to Sr+, so |Sr+| 6 3δn5/3.

We claim that |S`| 6 2δn5/3. Each vertex in S` is adjacent to a blue vertex in
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A′ ∪ B′. Each blue vertex in A′ ∪ B′ contributes at most δn2/3 vertices to S`. So
|S`| 6 |A′ ∪B′|δn2/3 6 2δn5/3. By the same argument, |Sg| 6 2δn5/3.

In total, |S| < 4δn5/3 + δn2/3 + 3δn5/3 + 2δn5/3 + 2δn5/3 6 12δn5/3.
Every vertex in H −S is blue or green. Suppose, for the sake of contradiction, that vw

is an edge of H − S with v blue and w green. Say v = (ai, bj) and w = (ai′ , bj′). Since vw
is an edge of H−S, we have |i− i′| 6 1 (and |j− j′| 6 1). Thus v and w are both adjacent
to (ai, b0) and (ai′ , b0). Since v 6∈ S`, neither (ai, b0) nor (ai′ , b0) is blue. Since w 6∈ Sg,
neither (ai, b0) nor (ai′ , b0) is green. Since black is A′-empty, both (ai, b0) and (ai′ , b0) are
red, which implies that v and w are in Sr+, giving a contradiction. Hence, there is no
blue–green edge in H −S. This implies that the components of H −S are monochromatic,
so each component of H−S has at most δn2/3 vertices. Now by Lemma 12 with k = δn2/3,

n2 6 4|S|k1/2 < 4 · 12δn5/3 (δn2/3)1/2 = 48 δ3/2n2 6 n2,

which is a contradiction.

The clustering value in Proposition 34 is again best possible (up to the multiplicative
constant), as demonstrated by the following result.

Proposition 35. For any integer n > 2, there exists a 4-colouring of Fn3 � Fn3 with
clustering at most 7n2.

Proof. Let G := Fn3 � Fn3 . We label the vertices of G as {(i, j) : 0 6 i, j 6 n3}, where
(0, 0) is dominating for G, and for all i ∈ [n3], (i, 0) is adjacent with all vertices in
{(i, j) : j ∈ [n3]}, and (0, i) is adjacent with all vertices in {(j, i) : j ∈ [n3]}. Then the
vertices {(i, j) : 1 6 i, j 6 n3} form a copy of Pn3 � Pn3 in G.

Start by colouring (0, 0) black. Let X = {(0, i) : i ∈ [n3]} and Y = {(i, 0) : i ∈ [n3]}, as
illustrated in Figure 5. The vertices of X induce a path of length n3. Colour almost all
vertices of X blue, inserting three consecutive black vertices after every n blue vertices.
Formally, for every integer ` ∈ {1, . . . , n2}, colour (0, `n− 1), (0, `n) and (0, `n+ 1) black,
and the rest of X blue. Similarly, colour Y red, inserting black vertices. Note that there
are at most 7n2 black vertices.

For every ` ∈ {1, . . . , n2} and i, j ∈ {1, . . . , n3}, colour vertices of the form (`n, j),
(i, `n) as follows. Fix ` ∈ {1, . . . , n2}. For every j ∈ {1, . . . , n3}, colour (`n, j) blue, except
vertices (`n, `′n) where 0 < `′ 6 n2 and ` 6= `′ (mod 2). Colour all other vertices of the
form (`n, j), (i, `n) red.

Finally, colour all remaining vertices green. Note that there is no red vertex in red-
dominated columns (or adjacent to one), and no blue vertex in blue-dominated rows (or
adjacent to one). The largest blue component has size 2n+ 5, likewise for red, and the
largest green component has size (n+ 2)2 < 7n2.

6 Products of bounded degree graphs

This section considers clustered colouring of the strong product of two graphs, both with
bounded treewidth and bounded degree. This setting is much simpler than with none or
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Figure 5: A 4-colouring of Fn3 � Fn3 with clustering at most 7n2.

one of the graphs having bounded degree. We only require the following proposition to
solve this case.

Proposition 36. For any integer k > 1 and any graphs H1, H2 that are c-colourable with
clustering k, the graph H1 �H2 is c-colourable with clustering k |V (H1 �H2)|1/2.

Proof. Let G := H1�H2 and n := |V (G)|. Without loss of generality, |V (H2)| 6 |V (H1)|,
so |V (H2)| 6 n1/2. Fix a c-colouring of H1 with clustering k. Colour each vertex (x, y) of G
by the colour assigned to x. Now G is c-coloured. If (x1, y1)(x2, y2) is a monochromatic
edge in G, then x1 and x2 had the same colour in H1, and x1 = x2 or x1x2 ∈ E(H1).
Hence, each monochromatic component M in G projects to a monochromatic component
in H1, implying that |V (M)| 6 k |V (H2)| 6 k n1/2, as claimed.
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Now consider graphs H1, H2 with treewidth at most t and maximum degree at most ∆.
By Lemma 27, each Hi is contained in Ti �KO(t∆) for some tree Ti. As noted by Alon,
Ding, Oporowski, and Vertigan [1, Theorem 2.2], any proper 2-colouring of Ti determines
a 2-colouring of Hi with clustering O(t∆). Therefore:

• For c = 2, Proposition 36 implies that H1 � H2 is 2-colourable with clustering
O(t∆ |V (H1 � H2)|1/2). This bound is tight for fixed t and ∆, since the Hex
Lemma (Lemma 13) implies that any 2-colouring of Pn � Pn has clustering at
least n = |V (Pn � Pn)|1/2.

• For c = 3, Esperet and Wood [13, Theorems 4 and 33] proved that H1 � H2 is
3-colourable with bounded clustering, at most O(t3∆4).

• For c = 4, using the product of the 2-colourings of each Hi, it is easy to see that
H1 �H2 is 4-colourable with bounded clustering, at most O(t2∆2).

7 Planar graphs

Now consider clustered colouring of planar graphs. Linial et al. [21] introduced the following
definition. Let fc(n) be the minimum integer such that every n-vertex planar graph is
c-colourable with clustering fc(n). The 4-Colour Theorem says that fc(n) = 1 for every
c > 4. Linial et al. [21] showed that f2(n) = Θ(n2/3) and Ω(n1/3) 6 f3(n) 6 O(n1/2).

One approach for closing the gap in these bounds on f3(n) is to apply the Planar
Graph Product Structure Theorem of Dujmović, Joret, Micek, Morin, Ueckerdt, and
Wood [10], which says that every planar graph is contained in H � P for some graph H of
treewidth at most 8 and some path P . The idea is to 3-colour H�P with small clustering,
thus determining a 3-colouring of G. Two issues arise, however. First, it may be that
|V (H � P )| is significantly larger than |V (G)| (the best bounds are |V (H)| 6 |V (G)| and
|V (P )| 6 O(|V (G)|(1+ε)/2) by Hendrey and Wood [17]). So clustering O(|V (H � P )|β)
does not immediately imply clustering O(|V (G)|β). Second, by Lemma 19, there are
graphs H with treewidth 3 and there are paths P such that every 3-colouring of H � P
has clustering Ω(|V (H � P )|3/7). So the best upper bound on f3(n) that one could hope
for using this method is f3(n) 6 O(n3/7), which is between the known bounds mentioned
above. Determining f3(n) is a tantalising open problem.
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