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Abstract

Nordhaus and Gaddum proved sharp upper and lower bounds on the sum and
product of the chromatic number of a graph and its complement. Over the years,
similar inequalities have been shown for a plenitude of different graph invariants.
In this paper, we consider such inequalities for the number of cliques (complete
subgraphs) in a graph G, denoted k(G). We note that some such inequalities have
been well-studied, e.g., lower bounds on k(G) + k(G) = k(G) + i(G), where i(G) is
the number of independent subsets of G, has been come to be known as the study of
Ramsey multiplicity. We give a history of such problems. One could consider fixed
sized versions of these problems as well. We also investigate multicolor versions of
these problems, meaning we r-color the edges of Kn yielding graphs G1, G2, . . . , Gr

and give bounds on
∑

k(Gi) and
∏

k(Gi).

Mathematics Subject Classifications: 05C30, 05C35, 05C69

1 Introduction

Extremal results in graph theory often involve maximizing or minimizing some graph
invariant over graphs on a fixed number of vertices with some sort of restriction on the
number of edges. The restriction on the number of edges can be dispensed with if one
considers both the graph and its complement simultaneously. Nordhaus and Gaddum
[13] gave upper and lower bounds on the sum and product of the chromatic numbers of a
graph on n vertices and its complement.

Theorem 1 (Nordhaus, Gaddum 1956). If G is a graph on n vertices, then

2
√
n 6 χ(G) + χ(G) 6 n+ 1,

and

n 6 χ(G)χ(G) 6

(
n+ 1

2

)2

.
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In fact, as Nordhaus and Gaddum noted, the lower bound on χ(G)χ(G) was already
known as it had been proved by Zykov [17]. Prompted by this result, there has been an
abundance of papers that have studied Nordhaus-Gaddum inequalities for a variety of
graph invariants. (See [1] for a survey.)

More recently, there has been interest in studying Nordhaus-Gaddum inequalities for
the number of certain sets in a graph. For example, Wagner [16] gave the following lower
bound on ∂(G) + ∂(G), where ∂(G) is the number of dominating sets in a graph G.

Theorem 2 (Wagner 2013). If G is a graph on n vertices, then

∂(G) + ∂(G) > 2n.

Keough and Shane [12], prompted by a question of Wagner, proved an upper bound
on ∂(G) + ∂(G) that is sharp in the lead term.

We will be interested in Nordhaus-Gaddum-type inequalities for i(G), the number of
independent sets in G, and k(G), the number of cliques (complete subgraphs) in G. We
also let it(G) be the number of independent sets of size t in G and, likewise, kt(G) be the
number of cliques of size t in G. It should be noted that i0(G) = k0(G) = 1 for any graph
G and i1(G) = k1(G) = n for any graph G on n vertices.

We are interested in studying the behavior of k(G) + k(G) = i(G) + k(G) and
k(G)k(G) = i(G)k(G) as G ranges over all graphs on n vertices. We are also inter-
ested in fixed size versions of these quantities, that is, it(G) + kt(G) and it(G)kt(G).
Bounds on these have been studied in various other contexts and we will present those
via Nordhaus-Gaddum inequalities. Hu and Wei [10] gave the following upper bound on
i(G) + k(G).

Theorem 3 (Hu, Wei 2018). If G is a graph on n vertices, then

i(G) + k(G) 6 2n + n+ 1,

with equality if and only if G is Kn or En.

In fact, Hu and Wei were more interested in studying Nordhaus-Gaddum inequalities
for connected graphs, and Theorem 3 was a corollary of their main result. We note,
however, that this result is, in fact, rather easy to prove as every subset of a graph can
be either empty or complete, but not both unless it is the empty set or a single vertex.
The only graphs in which every subset of the vertex set is either complete or empty (or
both) are Kn and En.

As for a lower bound on i(G) + k(G), it should be noted this problem is equivalent to
finding the minimum number of complete monochromatic subgraphs in a 2-edge-coloring
of Kn. This is a well-studied problem that is known as Ramsey multiplicity. We use log to
represent the natural logarithm throughout this paper. Feige, Kenyon and Kogan proved
the following in [6].

Theorem 4 (Feige et al. 2020). If G is a graph on n vertices, then

i(G) + k(G) > n( 1
4
+o(1)) log2 n > n0.36 logn.
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This was an improvement over a result of Székely [15] from 1984 which showed that
i(G) + k(G) > n0.2275 logn On the other hand, the random graph shows that this bound

cannot be improved beyond n( 1
2
+o(1)) log2 n ≈ n0.72 logn. See the proof of Proposition 6 for

details.
The first of the main result of this paper is the following, which bounds i(G)k(G) both

above and below.

Theorem 5. For any graph G on n vertices

n( 1
2
+o(1)) log2 n 6 i(G)k(G) 6 (n+ 1)2n.

Furthermore, the upper bound is attained by Kn and En.

We prove the upper bound in Section 2 using compression. The proof of the lower
bound uses main idea of the proof of Feige et al. [6] which appears in Section 3. We also
note that Theorem 5 implies Theorem 4 by the AM-GM inequality. The random graph
G(n, 1/2) shows that the lower bound cannot be improved beyond n(1+o(1)) log2 n.

Proposition 6. Let G ∼ G(n, 1/2). Then i(G)k(G) 6 n(1+o(1)) log2 n with high probability.

Proof. Note that G and G are both distributed as G(n, 1/2). The expected number of
cliques in G is bounded by

∑
i>0

(
n

i

)
2−(i

2) 6
∑
i>0

(
ne
√

2

i · 2i/2

)i

where we used the estimate
(
n
i

)
6
(
ne
i

)i
. Let i∗ be the (real) value of i which maximizes

the summand on the right hand ride. Using calculus, we find that i∗ satisfies n
√

2 = i∗2
i∗

(i.e., i∗ ∼ log2

(
n
√
2

log2 n

)
∼ log2 n). Thus we have

E[k(G)] 6 n · (e2i∗/2)i∗ = n( 1
2
+o(1)) log2 n

So using Markov’s inequality, we have that w.h.p. k(G) 6 n( 1
2
+o(1)) log2 n and so by the

union bound (over G and G), we have that w.h.p.

i(G)k(G) 6 n(1+o(1)) log2 n.

One can also consider fixed size versions of these problems. So, using the notation
introduced above, we would like to find upper and lower bounds for it(G) + kt(G) and
it(G)kt(G). Two of these bounds are, in fact, trivial. Note that if G is a graph on n
vertices and t > 2, then

it(G) + kt(G) 6

(
n

t

)
and 0 6 it(G)kt(G).
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Also, both inequalities are sharp for G = En or Kn. (Note that i0(G) + k0(G) = 2,
i0(G)k0(G) = 1, i1(G) + k1(G) = 2n, and i1(G)k1(G) = n2 for all G on n vertices.)

The other two bounds are much more interesting. The lower bound on it(G) + kt(G)
is a well-studied and difficult problem under the umbrella of Ramsey multiplicity. The
history begins with Goodman [9] who gave a lower bound for t = 3. Improving a result
of Erdős [5], Conlon [2] proved the following.

Theorem 7 (Conlon 2012). If n is large enough and G is a graph on n vertices, then

it(G) + kt(G) >
nt

C(1+o(1))t2
,

where C ≈ 2.18 is an explicit constant.

For an upper bound on it(G)kt(G), we note that a related problem was studied (inde-
pendently) by Huang et al. [11] and Frankl et al. [7]. Both of these groups were interested
in finding

max {min {kt(G), it(G)} : G is a graph on n vertices} .

In fact, Huang et al. were able to do a bit more as the size of the complete graphs and
independent sets could be different. In Section 4, we find an upper bound on it(G)kt(G).
While we are able to use some elements of the techniques of Frankl et al., the proof
requires quite a few new ideas. Our result is as follows.

Theorem 8. Let t > 3 be fixed and define µt = 1
4
t−2+

√
t2+4t−4
t−1 and

ft(x) = xt(1− x)t−1(1 + (t− 1)x).

For any graph G on n vertices,

kt(G)it(G) 6

(
nt

t!

)2

ft(µt) +O(n2t−1).

Moreover, this bound is tight with equality achieved by the threshold graph with code
(+)(1−µt)n(−)µtn or with code (−)(1−µt)n(+)µtn.

It is natural to consider multicolored versions of these problems as well. To be precise,
we color the edges of Kn with, say, r colors, yielding graphs G1, G2, . . . , Gr. We can then
attempt to bound

r∑
i=1

k(Gi) and
r∏
i=1

k(Gi).

When r = 2, these of course reduce to the problems outlined above. The upper bound on
the sum is once again straightforward, generalizing Theorem 3.

Proposition 9. Let r > 2. Suppose Kn is r-colored and that Gi is the graph of color i
for each i ∈ [r]. Then

∑r
i=1 k(Gi) 6 (r− 1)(n+ 1) + 2n. Moreover, this bound is achieved

when Gi = Kn for some i ∈ [r].
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Proof. Consider any A ⊆ [n] with |A| > 2. Then A can be a clique in at most one of
the colors. Thus the total number of monochromatic cliques of size at least 2 is at most
2n−n−1. On the other hand, when |A| = 0 or when |A| = 1, then A is considered a clique
in every color. Thus we have

∑r
i=1 k(Gi) 6 r(n+1)+2n−n−1 = (r−1)(n+1)+2n. The

only way to achieve equality is for every subset of the vertices to yield a monochromatic
clique, which can only happen when the entire graph is monochromatic.

A lower bound on the product can be obtained by modifying the technique of Feige
et al. [6], which is done in Section 3. A lower bound on the sum follows from this as a
simple corollary. Perhaps most interestingly, the upper bound on the product does not
follow from the same argument as the two-color case as compression no longer works. One
may still suspect that, as in the sum case, the construction where one color is complete
and the remaining colors are empty gives the optimal bound, but we show that this is
not the case. We are able to give an upper bound that is sharp up to a constant multiple
depending on the number of colors. This is done in Section 5. Our results for r colors are
summarized in the following theorem.

Theorem 10. Let r > 3. Suppose the edges of Kn have been r-colored and for all i ∈ [r],
and Gi represents the graph of i-colored edges. Then there is a constant Cr such that

n( 1
2
+o(1)) logr n 6

r∏
i=1

k(Gi) 6 Crn
(r
2)

2n.

Furthermore, the upper bound is tight up to the constant Cr and the lower bound is tight
up to a multiple of 3 log3 r in the exponent.

2 Upper bound on i(G)k(G)

One tool that helps us in some cases is that of compression. Compression has been used
many times to prove various results in extremal graph theory. Given two vertices x and
y in a graph G, they partition the rest of the vertices into four sets:

Nx(G) = {v ∈ V (G) \ {x, y} : v ∼ x, v 6∼ y} ,
Ny(G) = {v ∈ V (G) \ {x, y} : v 6∼ x, v ∼ y} ,
Nxy(G) = {v ∈ V (G) \ {x, y} : v ∼ x, v ∼ y} , and

Oxy(G) = {v ∈ V (G) \ {x, y} : v 6∼ x, v 6∼ y} .

We then define the compression of G from x to y, denoted Gx→y, to be the graph with
vertex set V (G) and edge set consisting of all edges of G except those between x and
Nx, and with the addition of edges between y and Nx. In other words, Nx(Gx→y) = ∅,
Ny(Gx→y) = Nx(G) ∪ Ny(G), Nxy(Gx→y) = Nxy(G), and Oxy(Gx→y) = Oxy(G). The
following lemma is well-known (see, e.g., [4]), but we include a sketch of a proof for
completeness.
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Lemma 11. If G is a graph with vertices x and y, then i(G) 6 i(Gx→y) and i(G) 6
i(Gx→y).

Proof. We show that there is an injection from I(G) \ I(Gx→y) to I(Gx→y) \ I(G). Note
that if I ∈ I(G) \ I(Gx→y), then it must contain an edge of Gx→y that does not exist
in G. Thus, y ∈ I and there is some z ∈ Nx(G) such that z ∈ I. But then x 6∈ I since
xz ∈ E(G) and so I 4 {x, y} ∈ I(Gx→y) \ I(G). It is straightforward to check that the
map I 7→ I 4 {x, y} is an injection. Thus, we have that i(G) 6 i(Gx→y).

For the other inequality, note that compression in G yields compression in G as well.
In particular, Gx→y = Gy→x. Thus, we also have that i(G) 6 i(Gx→y).

In fact, the same proof yields that the number of independent sets of fixed size does
not decrease under compression.

Corollary 12. If G is a graph with vertices x and y, then it(G) 6 it(Gx→y) and it(G) 6
it(Gx→y).

Proof. Note that in the proof of Lemma 11, the map I 7→ I 4 {x, y} is in fact a map
between sets of the same size. The result follows.

Note that compressions force neighborhoods to become nested, in the sense that for any
two vertices x and y, we have that N(x) \ {y} ⊆ N(y) \ {x} or N(y) \ {x} ⊆ N(x) \ {y}.
So, repeated compressions yield a graph in which the neighborhoods can ordered by
containment. Such graphs are known as threshold graphs.

Definition 13. A graph is a threshold graph if it can be formed iteratively from a single
vertex by, at each step, adding either an isolated vertex or a dominating vertex.

A threshold graph on n vertices, by definition, can be represented by a binary code of
length n − 1 (the initial vertex does not need to be encoded) where + corresponds to a
dominating vertex and − corresponds to an isolate. We call this the code of a threshold
graph and write it from right to left, so that the rightmost vertex in the code is added
first and the leftmost vertex last.

Lemma 14. For any graph G on n vertices, there is a threshold graph T on n vertices
such that

i(G)k(G) 6 i(T )k(T ) and it(G)kt(G) 6 it(T )kt(T ).

Theorem 15. If G is a graph on n vertices, then

i(G)k(G) 6 (n+ 1)2n = i(Kn)k(Kn).

Proof. We prove the statement by induction on n and note that the statement is trivial
for n = 1. Thus, assume the statement is true for n and let G be a graph on n + 1
vertices. By Lemma 14, we know that there is a threshold graph T on n+ 1 vertices with
i(G)k(G) 6 i(T )k(T ). Note that if T is a threshold graph, then T is also a threshold graph
(with complementary code to that of T ). Further, we know that i(T )k(T ) = i(T )k(T )
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and so may assume that the final vertex, say x, added to T was a dominating vertex. Let
T ′ = T − x. Then, since x is a dominating vertex, it can be added (or not) to any clique
of T ′ to get a clique in T . Also, the vertex x is only in one independent set in T , namely
{x}. So, we have i(T )k(T ) = (i(T ′) + 1)2k(T ′). So,

i(T )k(T ) = (i(T ′) + 1)2k(T ′)

= 2i(T ′)k(T ′) + 2k(T ′)

6 2[(n+ 1)2n] + 2 · 2n

= (n+ 2)2n+1,

where the inequality follows from the induction hypothesis and the fact that k(T ′) 6
2n.

3 Lower bound for i(G)k(G)

In this section, we prove the lower bounds in Theorem 5 and Theorem 10.

Theorem 16. Let r > 2 and suppose that rm 6 n < rm+1. Suppose Kn is r-colored and
that Gi is the graph of color i for each i ∈ [r]. Then

r∏
i=1

k(Gi) > r
1
2
m2−O(m logm) = n( 1

2
+o(1)) logr n

Proof. As noted in the introduction, we use a modification of a technique of Feige et
al. [6]. Let G be an r-colored Kn. We say that a sequence of distinct vertices (v1, . . . , vq)
is good if for all i = 1, . . . q − 1, there exists Ci ∈ [r] such that {vi+1, . . . , vq} ⊆ NCi

(vi).
Here, NC(v) refers to the C-colored neighborhood of v, i.e. {w ∈ G : vw is color C}.

Let X (G, q) be the set of all good sequences of G of length q. Define the recursive
sequence a1 = n and ak+1 =

⌈
ak−1
r

⌉
for all k > 1. Note that since n > rm, we have that

ak > rm−k+1 for all 1 6 k 6 m. Indeed, by induction, we have that ak+1 =
⌈
ak−1
r

⌉
>⌈

rm−k+1−1
r

⌉
= rm−k.

We now claim that
q∏
i=1

ai 6 X (G, q) 6 q! ·
r∏
i=1

k(Gi) (1)

To see the lower bound, we note that there are a1 = n choices for the first vertex, v1, in
a good sequence. Now v1 has at least a2 neighbors of some color C1 ∈ [r] and so there
are at least a2 choices for v2. We restrict G to NC1(v1) and note that v2 has at least a3
neighbors in NC1(v1) of some color C2 ∈ [r]. Continuing in this manner (restricting to the
nested monochromatic neighborhoods at each step) we have the lower bound.

To see the upper bound, notice that all the vertices vi in a good sequence with Ci = k
form a clique in color k. So each good sequence corresponds to a tuple of monochromatic
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cliques (A1, . . . , Ar). A set of vertices {v1, . . . , vq} can appear in at most q! many good
sequences. Rearranging (1) and setting q = m, we have

r∏
i=1

k(Gi) >
1

m!

m∏
i=1

ai >
1

m!

m∏
i=1

rm−i+1 > r
1
2
m2−O(m logm).

The tightness mentioned in Theorem 10 follows from considering a randomly 3-colored
Kn. A nearly identical proof to that of Proposition 6 shows that in this case, with high
probability,

3∏
i=1

k(Gi) 6 n( 3
2
+o(1)) log3 n = n(3 log3 r)·( 12+o(1)) logr n.

It is interesting to note that in this case, taking a randomly r-colored Kn would lead to
an exponent of essentially r

2
logr n which is larger than the given exponent for r = 2 and

all r > 3.
We have the following Corollary which provides a lower bound for

∑r
i=1 k(Gi) for

r > 2. The result follows simply by applying the AM-GM inequality
∑r

i=1 k(Gi) >

r · (
∏r

i=1 k(Gi))
1/r

.

Corollary 17. Let r > 2 and suppose that rm 6 n < rm+1. Suppose Kn is r-colored and
that Gi is the graph of color i for each i ∈ [r]. Then

r∑
i=1

k(Gi) > r
1
2r
m2−O(m logm) = n( 1

2r
+o(1)) logr n.

4 Upper bound on it(G)kt(G)

In this section we prove Theorem 8. As noted in the introduction, to find an upper bound
on it(G)kt(G), we begin by following the method of Frankl et al. [7]. We give a moderately
terse description of the setup and refer the reader to Section 2.3 of [7] for more details.

Firstly, we note that by Lemma 14, we need only to maximize it(T )kt(T ) among
threshold graphs. As noted above, a threshold graph T on n vertices is formed by suc-
cessively adding dominating and isolated vertices and so can be associated with a binary
code where + denotes an added dominating vertex and − denotes an isolate. The set of
all dominating vertices forms a clique, say VK , in T and the set of all isolates forms an
independent set, say VI . Note that V (T ) is the disjoint union of VI and VK and there
is, of course, a bipartite graph between VI and VK . If we want to count the number of
cliques of size t in T , then we get

SK := kt(T ) =

(
|VK |
t

)
+
∑
w∈VI

(
dT (w)

t− 1

)
.
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Likewise, if we want to count the number of independent sets of size t, we get

SI := it(T ) =

(
|VI |
t

)
+
∑
v∈VK

(
dT (v)

t− 1

)
.

We can order the vertices in VK and VI according to their degree in T and T ,
respectively (note that we are effectively ignoring the edges within VK since we only
consider dT (v) for all v ∈ VK). We let VK = {v1, v2, . . . , vr} where dT (vi) = ai and
a1 > a2 > · · · > ar. Also, VI = {w1, w2, . . . , ws} where dT (wj) = bj and b1 6 b2 6 · · · 6 bs.
Thus, we have

SK =
1

t!

(
rt + t

s∑
j=1

bt−1j +O(nt−1)

)
and SI =

1

t!

(
st + t

r∑
i=1

at−1i +O(nt−1)

)
.

So, we are interested in maximizing the product SKSI . In order to do this, we would
like to shift to a continuous version of the problem. However, we must first limit the types
of sequences a = (a1, a2, . . . , ar) and b = (b1, b2, . . . , bs). We can do this using the well-
known Gale-Ryser Theorem [8, 14] that classifies the degree sequences of bipartite graphs.
Recall that given a sequence c = (c1, c2, . . . , cs), we obtain its conjugate c∗ = (c∗1, c

∗
2, . . .)

by defining c∗j = |{i : ci > j}|. Also we say that a sequence a is majorized by c, denoted

a ≺ c, if
∑k

i=1 ai 6
∑k

i=1 ci for all k (where we extend one of the sequences by appending
0s if necessary).

Theorem 18 (Gale, Ryser). Let a = (a1, a2, . . . , ar) and c = (c1, c2, . . . , cs) be non-
increasing sequences of non-negative integers with the same sum. Then there is a bipartite
graph G with partition V (G) = A ∪ C such that a and c are the degree sequences of A
and C if and only if a ≺ c∗.

Note that we cannot apply the Gale-Ryser Theorem to our sequences a and b above
since a is a degree sequence in T and b is a degree sequence in T . But if we let cj = r−bj,
then c = (c1, c2, . . . , cs) is the degree sequence of VI in T and, further, c1 > c2 > · · · > cs.
Since

∑r
i=1 ai =

∑s
j=1 cj, the Gale-Ryser Theorem yields that a ≺ c∗.

Since at−1i is a convex function, we note that if a ≺ â, then
∑
at−1i 6

∑
ât−1i . Suppose

that we fix the sequence b so that SK is fixed. Then we’d like to maximize SI or,
equivalently, maximize

∑
at−1i . But since a ≺ c∗, we need to take a = c∗. If a =

(a1, a2, . . . , ar) and b = (b1, b2, . . . , bs), where s > a1 > a2 > · · · ar > 0 and 0 6 b1 6 b2 6
· · · 6 bs 6 r, then we say a and b are packed if a = c∗ where c = (r−b1, r−b2, . . . , r−bs).
We are interested in

gt(r, s) =
1

(t!)2
max

{(
rt + t

s∑
j=1

bt−1j

)(
st + t

r∑
i=1

at−1i

)
: a and b are packed

}
,

where the a and b in the maximization problem are as above. Lastly, we let

gt(n) = max {gt(r, s) : 1 6 r 6 s 6 n, r + s = n} .
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We have that for any G on n vertices, it(G)kt(G) 6 gt(n). The packing requirement on
a and b means that if we are given r, s, and b, then a is determined. Further, we can
visualize this packing by noting that a and b can be packed into an r×s rectangle of unit
squares where the border between the a squares and the b squares yields an “up-right”
path from (0, 0) to (s, r). As an example, let s = 4, r = 3 and b = (0, 1, 1, 3). Then
c = (3, 2, 2, 0) and so a = c∗ = (3, 3, 1). This example is visualized in Figure 1.

3

3

1

0 1 1 3

a

b

Figure 1: Packing a = (3, 3, 1) and b = (0, 1, 1, 3) into a 3× 4 rectangle.

These paths generalize easily to a continuous setting. We let p, q ∈ R+ be such that
p+ q = 1 (interpreting p as r/n and q as s/n). Let x : [0, 1]→ [0, q] and y : [0, 1]→ [0, p]
be differentiable. The path ` = {(x(τ), y(τ)) : 0 6 τ 6 1} is said to be a border if

1. ` starts at (0, 0) and ends at (q, p), i.e., x(0) = y(0) = 0, x(1) = q, and y(1) = p,

2. ` is non-decreasing, i.e., x′(τ) > 0 and y′(τ) > 0 for all τ ∈ [0, 1], and

3. each segment of ` is either a horizontal or a vertical line, i.e., x′(τ)y′(τ) = 0 for all
τ ∈ [0, 1].

Let L = L(q) be the set of all borders with a finite number of turns. So, we have
L = ∪i>1Li, where Li is the set of borders with exactly i turns. Finally, define

ht(q) = max
`∈L

(
pt + tIX(`)

) (
qt + tIY (`)

)
, (2)

where

IX(`) = IX =

∫ 1

0

(y(τ))t−1x′(τ) dτ and IY (`) = IY =

∫ 1

0

(x(τ))t−1y′(τ) dτ

for ` = {(x(τ), y(τ)) : 0 6 τ 6 1} ∈ L. So, we have

IX(`) 6 qpt−1 and IY (`) 6 pqt−1,

for all ` ∈ L. We then have that for any G on n vertices,

it(G)kt(G) 6

(
nt

t!

)2

max
q∈[0,1]

ht(q) +O(n2t−1). (3)
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Our goal is to show that, in fact, that the maximum in (2) occurs in L1 (which contains
only two paths: “up-right” and “right-up.”). These paths correspond to threshold graphs
with only one sign change in their code. Once we know this, the maximization in (3)
becomes a simple single variable calculus problem. Crucially, the following result of
Frankl et al. [7], which is Lemma 6 in their paper, tells us that we can already restrict
our attention to borders in L1 ∪ L2.

Theorem 19 (Frankl, Kato, Katona, Tokushige [7]). Let n > 3. For every ` ∈ Ln, there
is an `′ ∈ Ln′ with n′ < n such that

IX(`′) > IX(`) and IY (`′) > IY (`).

Further, paths in L2 either start going up, turn right, go all the way across, and finally
turn up to end at (q, p), or they start going right, turn up, go all the way up, and turn
right to end at (q, p). By symmetry, we can analyze the former case which is pictured in
Figure 2.

(0, 0)

(0, a) (q, a)

(q, p)

Figure 2: An example of a path ` in L2 with turn points (0, a) and (q, a).

Note that, using (0, a) as the point at which the border turns right as in Figure 2, we
have

IX(`) = qat−1 and IY (`) = (p− a)qt−1.

We let b = p−a, so that p = a+ b, and let q = c. Then by (2), we are trying to maximize(
(a+ b)t + tcat−1

) (
ct + tbct−1

)
(4)

subject to a, b, c > 0 and a + b + c = 1. Note that if c = 0, then this product is 0, so we
will assume below that c 6= 0. We would like to show that the maximum is achieved on
the boundary (when either a = 0 or b = 0).

Lemma 20. If g(a, b, c) = ((a+ b)t + tcat−1) (ct + tbct−1) has a maximum on{
(a, b, c) ∈ R3 : a+ b+ c = 1, a, b, c > 0

}
at a point (a∗, b∗, c∗), then a∗ = 0 or b∗ = 0.
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Proof. We prove this by fixing the second factor of (4), i.e., y := ct + tbct−1, letting c
vary, and then maximizing the first factor of (4), i.e., x := (a+ b)t + tcat−1. Suppose that
y = ct + tbct−1 = K for some fixed constant K. Notice, then, that the largest possible
value of c in this case occurs when b is as small as possible (i.e., b = 0) and the smallest
possible value of c occurs when b is as large as possible (i.e., a = 0). Since y = K is fixed,
we have

dy

dc
= tct−1

(
1 +

db

dc

)
+ t(t− 1)bct−2 = 0.

So, solving for db/dc, we get
db

dc
= −1− (t− 1)

b

c
.

Since a+ b+ c = 1, we know that da
dc

+ db
dc

+ dc
dc

= 0, and so da
dc

+ db
dc

= −1 and da
dc

= (t− 1) b
c
.

So, differentiating x, we get

dx

dc
= t(a+ b)t−1

(
da

dc
+
db

dc

)
+ tat−1 + t(t− 1)cat−2

da

dc

= tat−1 + t(t− 1)2bat−2 − t(a+ b)t−1. (5)

The maximum of x (as a function of c along the level curve y = K), occurs at either the
largest possible c (which happens when b = 0), the smallest possible c (which happens
when a = 0), or at a value of c where dx/dc = 0. Let us rule out this third possibility.
We have that dx/dc = 0 implies

at−1 + (t− 1)2bat−2 = (a+ b)t−1.

Note that if a 6= 0, we can divide through by at−1 to get

1 + (t− 1)2
b

a
=

(
1 +

b

a

)t−1
.

Letting λ = b/a, we have
1 + (t− 1)2λ = (1 + λ)t−1.

But then by Descartes’ rule of signs, this polynomial equation has a unique positive
solution at some λ∗ ∈ (0,∞).

Putting this all together, we have that at the smallest possible c, it is the case that
a = 0, and so using (5), we have dx/dc = −tbt−1 < 0. At the largest possible c, we have
b = 0, and so dx/dc = tat−1 − tat−1 = 0. We’ve just shown that at exactly one point
between, namely where b = λ∗a, we have dx/dc = 0. And so x = (a + b)t + tcat−1, as a
function of c, starts off decreasing, reaches a point where the derivative is 0 and so that
point in the middle cannot be a maximum. This shows that the maximum occurs when
either a = 0 or b = 0.

We now know that the maximum in (2) occurs in L1 = {`1, `2} where `1 is the path that
goes up then right, and `2 is the path that goes right then up. Note that for `1, we have
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that IY (`1) = 0 and IX(`1) = qpt−1. For `2, we have that IX(`2) = 0 and IY (`2) = pqt−1.
Thus

ht(q) = max
{

(pt + tqpt−1)qt, pt(qt + tpqt−1)
}
.

Note that these two functions are symmetric in q and p = 1 − q and correspond to `1
and `2 respectively. Thus if we find a maximum of the first function at q = µt, then the
second function has a maximum at p = µt. Let

f(x) = ((1− x)t + tx(1− x)t−1)xt = xt(1− x)t−1(1 + (t− 1)x)

and note that f(q) is the first function in the maximum and f(1− q) is the second. Then

f ′(x) = xt−1(1− x)t−2t
(
−(2t− 2)x2 + (t− 2)x+ 1

)
and we find that f ′ has a unique zero on (0, 1) at µt := 1

4
t−2+

√
t2+4t−4
t−1 and f(x) has a

maximum at this point (since f(0) = f(1) = 0). Thus (referring to (3)) the upper bound
in Theorem 8 is proved.

Returning to the original interpretation discussed at the beginning of this section,
the path `1 corresponds to a threshold graph in which |VK | = r = pn = (1 − q)n and
|VI | = s = qn where a1, . . . , ar = 0. In other words dT (v) = 0 for all v ∈ VT , and so T
is complete between VK and VI . This corresponds to a threshold graph where all the +
symbols are to the left of all the − symbols. The maximum of SKSI in this case occurs
when q = µt and is attained by a threshold graph with code (+)(1−µt)n(−)µtn. Similarly
for `2, we have a threshold graph T where the bipartite graph between VK and VI is
empty (i.e., a disjoint union of a clique and an independent set). The maximum of SKSI
in this case occurs when q = 1 − µt and is attained by the threshold graph with code
(−)(1−µt)n(+)µtn.

5 An upper bound on the multicolored product

In this section, we will prove an upper bound on
∏r

i=1 k(Gi) where Gi is the graph induced
by the ith color in an r-coloring of the edges of Kn.

Theorem 21. Let G1, . . . , Gr be edge disjoint graphs on the same vertex set V of n
vertices. Then the number of ordered sequences of sets of vertices (S1, . . . , Sr) such that
Sj induces a clique on Gj for all j = 1, 2, . . . , r and

⋃r
j=1 Sj = V is at most

(4r − 2)r(r−1)n(r
2).

Proof. If there are no such sequences, then we are done. So suppose there is at least one
such sequence. By omitting repeated vertices, if necessary, we can choose such a sequence
where the unions are disjoint, say T1, . . . , Tr. If Ti = V for some i, then Gi is complete.
In this case, there are at most (n+ 1)r−12r−1 sequences (S1, . . . , Sr) since every other Sj
is either a singleton or empty.
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Say that a vertex v is viable for graph Gk if it is adjacent, in Gk, to all but at most
r − 1 vertices in Tk. Define the directed graph H on the vertex set [r] = {1, . . . , r} by
having an edge from j to k if there are at least 2r − 1 vertices in Tj which are viable for
Gk.

Then there are no vertices j and k in H such that both j → k and k → j are edges in
H. For, otherwise, there would be a subset Uj of Tj of size 2r− 1 such that every u ∈ Uj
is viable for Gk. Likewise, there would be a subset Uk of Tk of size 2r− 1 such that every
u ∈ Uk is viable for Gj. Every vertex which is viable for Gk is adjacent, in Gk, to all but
at most r − 1 vertices in Tk and therefore to at least 2r − 1− (r − 1) = r vertices in Uk.
So Gk contains at least r(2r − 1) edges between Uj and Uk. But, by the same argument,
so does Gj. This is a contradiction as Gj and Gk are edge-disjoint and there are only
|Uj||Uk| = (2r − 1)2 such edges in total. Thus there are at most

(
r
2

)
directed edges in H.

Let us first count how many choices there are for (S1, . . . , Sr) such that the Si form an
almost partition of V . An almost partition of V is a sequence (S1, . . . , Sr) whose union

is V and such that Si ∩ Ti = Ti \
(⋃

j 6=i Sj

)
. Note that this allows for Si and Sj to

intersect in some Tk. The main idea is that any almost partition must “mostly” look like
(T1, . . . , Tr). Indeed, for any j 6= k, Sj∩Tk must form a clique in both edge disjoint graphs
Gj and Gk which implies that |Sj∩Tk| 6 1. So we have that for all i ∈ [r], |Ti \Si| 6 r−1
and |Si \ Ti| 6 r − 1. Since Si contains all but at most r − 1 elements of Ti, and Si is a
clique in Gi, each element of Si must be viable for Gi.

Note that (S1, . . . , Sr) is determined if we specify the elements in Si ∩ Tj for i 6= j.
If v ∈ Si ∩ Tj, then v ∈ Tj and v is viable for Gi. If ji is not an edge of H, then there
are at most 2r − 2 vertices in Tj which are viable for Gi and so there are at most 2r − 1
choices for Si ∩Tj (including the empty set). If ji is an edge of H, then there are at most
|Tj|+ 1 choices for Si∩Tj (again including the empty set). Thus the number of sequences
(S1, . . . , Sr) that form an almost partition is at most

(2r − 1)r(r−1)
∏

j→i∈H

(|Tj|+ 1) 6 (2r − 1)r(r−1)n(r
2),

using the facts that |Tj| 6 n− 1 for all j ∈ [r] and e(H) 6
(
r
2

)
.

Now we consider sequences of sets (S1, . . . , Sr) that do not necessarily form an al-
most partition of V . Each such sequence can be obtained by starting with a sequence
(S ′1, . . . , S

′
r) that does form an almost partition and then adding some subset of Ti \S ′i to

S ′i. Thus each such (S ′1 . . . , S
′
r) gives rise to at most (2|Ti\S

′
i|)r 6 2r(r−1) many sequences

(S1, . . . , Sr). Thus the total number of sequences is at most

(2r − 1)r(r−1)n(r
2) · 2r(r−1) = (4r − 2)r(r−1)n(r

2).

Corollary 22. Let G1, . . . , Gr be edge-disjoint graphs on the same set of n vertices. Then

r∏
i=1

k(Gi) 6 (4r − 2)r(r−1)n
(r
2)

2n.
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Proof. Let V be the common vertex set of the Gis. Firstly, note that
∏r

i=1 k(Gi) is simply
the number of r-tuples (S1, S2, . . . , Sr) where Si is a clique in Gi for all i = 1, 2, . . . , r. If
we specify that ∪ri=1Si = S for some S ⊆ V with |S| = k, then Theorem 21 implies that
the number of such tuples is at most

(4r − 2)r(r−1)kr(r−1)/2.

But then,
r∏
i=1

k(Gi) 6
n∑
k=1

∑
S⊆V
|S|=k

(4r − 2)r(r−1)kr(r−1)/2

= (4r − 2)r(r−1)
n∑
k=1

(
n

k

)
kr(r−1)/2

6 (4r − 2)r(r−1)nr(r−1)/22n,

where we used the inequality
∑

k

(
n
k

)
kt 6 nt2n in the final step.

We are able to construct edge-disjoint graphs G1, G2, . . . , Gr on n vertices where∏r
i=1 k(Gi) matches the bound in Corollary 22 up to the constant multiple depending

on r. Note that the following construction works for any n and r, but the bound is much
cleaner to state when n is divisible by

(
r
2

)
. An example of the construction is given in

Figure 3.

1 2

34

1→ 2

1→ 3

1→ 4

3→ 2

4→ 2

4→ 3

Figure 3: An example of the construction in Theorem 23. The tournament on the left
leads to the coloring of V on the right.

Theorem 23. If
(
r
2

)
divides n, there exist edge-disjoint graphs G1, . . . , Gr on a set of n

vertices such that
r∏
i=1

k(Gi) >

(
n(
r
2

))(r
2)

2n.
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Proof. Let T be any tournament on the vertices 1, 2, . . . , r. Split the n vertices of V into
r(r − 1)/2 sets of equal size (or as equal as possible in the case that

(
r
2

)
does not divide

n) and label each set by an edge of the tournament, i.e., Si→j for some edge i→ j. Then
let Gi consist of all edges within each set Si→j and all edges between elements of Se1 and
Se2 where e1 and e2 are distinct edges both incident to vertex i. Note that the Gi graphs
are edge-disjoint. Also, note that in this construction, we do not color all edges of Kn as
we do not assign edges between Se and Sf for disjoint e and f in T to any of the Gi’s.

If we choose any subset of each Si→j and at most one vertex from each Sj→i, we will
get a clique in Gi. Thus the number of cliques in Gi is∏

e:e=j→i

(1 + |Se|) ·
∏

f :f=i→k

2|Sf |.

If we multiply these factors over all i, each edge of T counts once towards each of the
products above. And so,

r∏
i=1

k(Gi) =
∏
e∈T

(1 + |Se|)2|Se|

= 2n
∏
e

(1 + |Se|)

> 2n
∏
e

n(
r
2

)
= 2n

(
n(
r
2

))(r
2)

.

6 Conclusion

In this paper we have explored upper and lower bounds on the product and sum of the
number of independent sets in a graph and its complement. More generally, we have also
investigated the fixed size and multicolor versions of these problems. Many interesting
open problems remain.

In Theorem 8 we proved a tight upper bound on kt(G1)kt(G2) where G2 = G1. We
made use of compression to show that the G which attains the maximum must be a
threshold graph. One may pursue a multicolor version of this theorem, i.e., finding a
(tight) upper bound for

∏r
k=1 kt(Gi). As mentioned earlier, we know of no multicolor

analogue of graph compression which makes the problem much more difficult. We trivially
have an upper bound of

(
n
t

)r ∼ 1
t!r
ntr. Partitioning Kn into r vertex disjoint cliques shows

that there is a graph with
∏r

k=1 kt(Gi) >
(
n/r
t

)r ∼ 1
rtrt!r

ntr.
Another interesting place for improvement is in the lower bound for the multicolor

product
∏r

i=1 k(Gi) in Theorem 16. In this case, the proven lower bound and the tightness
example differ by a factor of 3 log3 r in the exponent. While finding the exact exponent
may be a difficult problem, it may be nice to find a tightness example which differs only
by a factor not depending on r.
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Finally, a possible area of future exploration is that of a lower bound on the multicolor
fixed-size sum

∑r
i=1 kt(Gi). The case of r = 3 colors and triangles (t = 3) is relatively

well-known and was settled by Cummings et al. [3]. The authors of that paper also asked
about triangles in graphs colored with more than three colors.
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