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Abstract

A brick is a non-bipartite matching covered graph without nontrivial tight cuts.
The importance of bricks stems from the fact that they are building blocks of the
matching covered graphs. The bi-contraction of a vertex u of degree two in a graph
G, with precisely two neighbors u1 and u2, consists of shrinking the set {u, u1, u2}
to a single vertex. The retract of a matching covered graph G is the graph obtained
from G by repeatedly bi-contracting vertices of degree two. An edge e of a brick
G is thin if the retract of G − e is a brick. By showing the existence of thin edge
in every brick (other than three basic bricks), Carvalho et al. presented inductive
tools for building all the bricks from three basic bricks. However, the lower bound
of the number of thin edges in a brick is still unknown.

In this paper, we provide the first nontrivial family of graphs, the numbers of
thin edges of which are not a constant: we show that every claw-free brick G with at
least 8 vertices has at least 3|V (G)|/8 thin edges. Consequently, we prove that every
claw-free minimal brick G has at least 3|V (G)|/16 cubic vertices, which shows that
Norine and Thomas’s conjecture about linear bound of the number of cubic vertices
in minimal bricks [J. Combin. Theory Ser. B, 96(4) (2006)] holds for claw-free
minimal bricks.

Mathematics Subject Classifications: 05C70,05C75

1 Introduction

Graphs considered in this paper are simple graphs. We follow [1] for undefined notations
and terminologies. Let G be a graph with the vertex set V (G) and the edge set E(G).
For X, Y ⊆ V (G), by E[X, Y ] we mean the set of edges of G with one end vertex in
X and the other end vertex in Y . Let ∂(X) = E[X,X] be an edge cut of G, where
X = V (G) \X. An edge cut ∂(X) is trivial if |X| = 1 or |X| = 1. We say that ∂(X) is a
k-cut if |∂(X)| = k.
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Let G be a graph with a perfect matching. An edge e in G is forbidden if e does not lie
in any perfect matchings of G. A nontrivial graph is matching covered if it is connected
and each of its edges is not forbidden. We denote by G/X → x the graph obtained
from G by contracting X to a single vertex x (and removing any resulting loops, multiple
edges). The graphs G/X → x and G/X → x are the two ∂(X)-contractions of G. An
edge cut ∂(X) is tight if every perfect matching contains exactly one edge of ∂(X). A
matching covered graph without nontrivial tight cuts is called a brace if it is bipartite,
and a brick if it is non-bipartite. Let G be a matching covered graph. We may apply to
G a procedure, called a tight cut decomposition of G, which produces a list of bricks and
braces. Lovász [13] proved that any matching covered graph can be decomposed into a
unique list of bricks and braces. Denote by b(G) the number of bricks yield by tight cut
decompositions of a matching covered graph G.

We say that an edge e in a matching covered graph G is removable if G−e is matching
covered. Moreover, a removable edge is b-invariant if b(G − e) = b(G). In particular, if
e is a b-invariant edge of a brick G, then b(G − e) = 1. Carvalho et al. [2, 3] proved a
conjecture of Lovász which states that every brick, distinct from K4, the triangular prism
(the complement of a cycle of length 6) and the Petersen graph, has a b-invariant edge. A 2-
edge-connected cubic graph is essentially 4-edge-connected if it does not contain nontrivial
3-cuts. A brick G is near-bipartite if it has a pair of edges {e1, e2} such that G− {e1, e2}
is bipartite and matching covered. Kothari et al. [9] showed that every essentially 4-edge-
connected cubic non-near-bipartite brick G, distinct from the Petersen graph, has at least
|V (G)| b-invariant edges. Moreover, they conjectured every essentially 4-edge-connected
cubic near-bipartite brick G, distinct from K4, has at least |V (G)|/2 b-invariant edges; Lu
et al. [11] confirmed this conjecture. A brick is solid if G− (V (C1)∪V (C2)) has no perfect
matching for any two vertex disjoint odd cycles C1 and C2. Carvalho et al. [2] proved
that every removable edge of a solid brick, distinct from K4, is b-invariant; consequently,
every solid brick, distinct from K4, has at least |V (G)|

2
b-invariant edges.

The bi-contraction of a vertex u of degree two in a graph G, with precisely two neigh-
bors u1 and u2, consists of shrinking the set {u, u1, u2} to a single vertex. The retract of a
matching covered graph G is the graph obtained from G by repeatedly bi-contracting ver-
tices of degree two. An edge e of a brick G is thin if the retract of G− e is a brick. (Thus
thin edges of bricks are special types of b-invariant edges.) Carvalho et al. [4] showed that
every brick, distinct from K4, the triangular prism and the Petersen graph, has a thin
edge; with the help of thin edges, all the bricks may be generated from three basic bricks:
K4, the triangular prism and the Petersen graph. Similarly, we may define thin edges in
braces: an edge e of a brace G is thin if the retract of G− e is a brace. Carvalho et al. [6]
proved that every brace of order six or more has at least two thin edges. Moreover, they
conjectured there exists a positive constant c such that every brace on n vertices has cn
thin edges.

For a vertex set X ⊂ V (G), denote by G[X] the subgraph induced by X, by N(X),
or simply N(u) when X = {u}, the set of all vertices in X adjacent to vertices in X.
For a vertex x in G, the degree of x, denoted by dG(x), or simply d(x), is the number of
edges incident with x. If d(u) = 3, then u is called a cubic vertex. We say that a graph
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isomorphic to the complete bipartite graph K1,3 is a claw. Let G[{u, u1, u2, u3}] be a claw
and ui ∈ N(u) for i ∈ {1, 2, 3}. We say that u is the claw-center. A graph that contains
no induced subgraphs isomorphic to the K1,3 is claw-free. Claw-free graphs have received
a lot of attention in connection with the study of various graph properties. Plummer [15]
proved that every 3-connected claw-free graph with even number of vertices is a brick. In
this paper, we consider the thin edges in claw-free bricks.

Theorem 1. Let e be an edge of a claw-free brick G. Then e is b-invariant if and only if
e is thin.

Theorem 2. Let G be a claw-free brick with at least 8 vertices. Then G has at least
3|V (G)|/8 thin edges.

A brick G is minimal if G − e is not a brick for any e ∈ E(G). Carvalho et al. [4]
proved that every minimal brick has a cubic vertex. Norine and Thomas [14] showed that
every minimal brick has at least three cubic vertices. Moreover, they made the following
conjecture.

Conjecture 3 ( [14]). There exists α > 0 such that every minimal brick G has at least
α|V (G)| cubic vertices.

Lin et al. [10] showed that every minimal brick has at least four cubic vertices. He
and Lu [8] proved that every solid minimal brick G has at least 2

5
|V (G)| cubic vertices.

As an application of Theorem 2, we confirm Conjecture 3 to be true for claw-free minimal
bricks.

Theorem 4. Let G be a claw-free minimal brick with at least 8 vertices. Then G has at
least 3|V (G)|

16
cubic vertices.

In Section 2, we will present some basic properties of removable edges in claw-free
bricks. Theorem 1 will be showed in Section 3. Theorems 2 and 4 will be proved in
Section 4.

2 Preliminaries

Let G be a graph with a perfect matching. A nonempty vertex set B of G is a barrier of
G if o(G− B) = |B|, where o(G− B) is the number of components with odd number of
vertices of G−B. A barrier B is trivial if |B| = 1; otherwise, it is nontrivial. We define a
connected subgraph to be an odd (even) component if it contains an odd (even) number
of vertices.

Theorem 5. (Tutte, see [12]) A graph G has a perfect matching if and only if
o(G−X) 6 |X|, for every X ⊆ V (G).

By Theorem 5, we have the following results directly.
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Proposition 6. If G is matching covered, then, for every barrier B, G−B has no even
components and E(G[B]) = ∅.

Lemma 7 ( [5]). Assume that G is a graph with a perfect matching. An edge xy is
forbidden if and only if there exists a barrier containing x and y.

Let G be a matching covered graph. An edge cut C of G is a barrier-cut if there exists
a barrier B of G and an odd component O of G − B such that C = ∂(V (O)). Let D
be a vertex 2-cut in G, that is, G − D is disconnected and |D| = 2. Then D is called
a 2-separation if each component of G − D is even. Let {u, v} be a 2-separation of G,
and let us divide the components of G−{u, v} into two nonempty subgraphs G1 and G2.
Each of the two cuts ∂(V (G1)+u) and ∂(V (G1)+v) is a 2-separation cut associated with
{u, v}. It can be checked that barrier-cuts and 2-separation cuts are tight cuts.

Theorem 8 ( [7]). Every matching covered graph that contains a nontrivial tight cut has
a nontrivial barrier or a 2-separation.

Lemma 9 ( [16]). Let G be a claw-free brick. Assume that xy is a non-removable edge in
G, an edge ab is forbidden in G−xy, and B0 is a barrier of G−xy such that {a, b} ⊆ B0.
Then |B0| 6 3 and G − xy − B0 contains no even components. Moreover, if |B0| = 3,
then the components of G− xy −B0 containing x and y are singletons, respectively.

Proposition 10. Let G be a claw-free brick. Assume that N(u) = {u1, u2, u3} and
G[{u, u2, u3}] is a triangle. Then uu1 is not removable.

Proof. As {u2, u3} is barrier of G − uu1 and u2u3 ∈ E(G), u2u3 is forbidden in G − uu1
by Lemma 7. So the result holds.

If e is a removable edge and G − e is not a brick, then G − e contains a nontrivial
barrier or a 2-separation by Theorem 8. We say a nontrivial barrier (2-separation) in
G− e is the barrier (2-separation) associated with e. Now we present some properties of
a brick after removing a removable edge.

Lemma 11. Assume that uv is a removable edge in a brick G and D is either a nontrivial
barrier or a 2-separation of G−uv. Then u and v lie in different components of G−uv−D.
Moreover, N(u) ∩N(v) ⊂ D.

Proof. Suppose, to the contrary, that u and v lie in a common component of G−uv−D.
Then D is either a nontrivial barrier or a 2-separation in G, contradicting the assumption
that G is a brick. Thus, u and v lie in different components of G − uv −D. Therefore,
N(u) ∩N(v) ⊂ D.

Lemma 12. Let G be a claw-free brick. Assume that uv is a removable edge in G and B
is a nontrivial barrier of G− uv. Then |B| 6 3.
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Proof. By Lemma 11, u and v lie in different components of G−uv−B. Assume that G1

and G2 is the components of G−uv−B that contain u and v, respectively. Let Ki consist
of vertices in B adjacent to vertices in i components of G − uv − B and let ki = |Ki|.
As G is claw-free, we have i 6 3. Contracting every component of G − uv − B into a
vertex and removing all the resulting multiedges, we get a bipartite graph Q. Assume
that the color class of Q containing vertices in B is X, the other one is Y . Assume that
u′ and v′ are the vertices of Y obtained from contracting the components of G− uv −B
containing u and v, respectively. Then the degree of every vertex in X is at most 3
as G is claw-free. Specially, if x ∈ X and dQ(x) = 3, then u and v are adjacent to x
in G. Therefore, the number of edges in Q with one end in X is k1 + 2k2 + 3k3. On
the other hand, each component in G − uv − B is incident with at least 3 vertices in
B, except G1 and G2, as G is 3-connected and uv ∈ E(G). Moreover, G1 and G2 are
incident with at least two vertices in B, respectively, as G is 3-connected again. Then
dQ(u′) + dQ(v′) > max{2k3, 4}. Therefore, the number of edges of Q with one end in Y
is at least max{2k3, 4}+ 3(k1 + k2 + k3 − 2) (By Proposition 6, G− uv −B has no even
components). As Q is bipartite, k1 + 2k2 + 3k3 > max{2k3, 4}+ 3(k1 + k2 + k3 − 2). We
have 6 > 2k1 + k2 +max{2k3, 4}, and hence 2k1 + k2 6 2. If k1 6= 0, then k1 = 1, k2 = 0
and k3 6 2. As |B| > 1, we have k3 > 1. Note that |B| > 3. We have k3 = 2 and so
|B| = 3. Assume that G0 is the component of G − uv − B other than G1 and G2. As
G is 3-connected, every vertex in B has a neighbor in V (G0). Assume that x ∈ B and
N(x) lies in exactly one component of G − uv − B. As |B \ {x}| = 2, G − (B \ {x}) is
disconnected, contradicting G is 3-connected. Hence k1 = 0 and k2 6 2.

Suppose that k3 > 2. Recall that u is adjacent to every vertex of degree 3 of B. So
d(u) > 3. Since E(G[B]) = ∅, we have a claw with u as the claw-center, a contradiction.
So k3 6 2. Since k1 = 0 and k2 6 2, we have |B| = k1 + k2 + k3 6 4. If k2 + k3 = 4, then
k2 = 2 = k3. So |V (Q)| = 8. Assume that x1, x2 ∈ X, and dQ(x1) = dQ(x2) = 3. As Q is
a simple graph, {x1y1, x2y2} ⊂ E(G) or {x1y2, x2y1} ⊂ E(G) where {y1, y2} = Y \{u′, v′}.
Then dQ(y1) > 3 and dQ(y2) > 3. Therefore dQ(u′) = 2 = dQ(v′). Then E[{u′, v′}, B] =
{x1u′, x1v′, x2u′, x2v′} in Q. So N(V (G1)∪ V (G2)) = {x1, x2} in G. Then G−{x1, x2} is
disconnected, contradicting G is 3-connected. So the result holds.

Lemma 13. Assume that uv is a removable edge in a claw-free brick G and B is a
nontrivial barrier of G − uv. If |B| = 3, then the components of G − uv − B containing
u and v are singletons, respectively. Moreover, d(u) = d(v) = 3 and |N(u) ∩N(v)| = 1.

Proof. Assume that Gi (i ∈ {1, 2, 3}) is the component of G − uv − B, where G1 and
G2 contain u and v, respectively, and Ki and ki is defined the same as in Lemma 12 for
i ∈ {1, 2, 3}. By the proof of Lemma 12, we have k1 = 0, k2 6 2 and k3 6 2. Since
|B| = 3, we have k2 + k3 = 3. As G is 3-connected, every vertex in B is adjacent to some
vertex in G3.

Assume that B = {x1, x2, x3}. If k2 = 1, then k3 = 2. Let {x1} = K2. So N(x1) ∩
V (G1) = ∅ or N(x1)∩ V (G2) = ∅. Note that N(xi)∩ V (G1) = {u} and N(xi)∩ V (G2) =
{v} for i ∈ {2, 3}. (Otherwise, suppose, without loss of generality, that N(x2) ∩ V (G1) \
{u} 6= ∅. Then x2, together with a vertex in N(x2)∩V (G1)\{u}, a vertex in N(x2)∩V (G2)
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and a vertex in N(x2) ∩ V (G3), forms a claw.) If |V (G1)| 6= 1, then G − {u, x1} is
disconnected; and if |V (G2)| 6= 1, then G− {v, x1} is disconnected. So V (G1) = {u} and
V (G2) = {v}. Then ux1 ∈ E(G) or vx1 ∈ E(G). Assume, without loss of generality, that
ux1 ∈ E(G). As {ux2, ux3} ⊂ E(G) and E(G[B]) = ∅, we have a claw with u as the claw-
center, a contradiction. So k2 = 2 and then k3 = 1. Let {x1, x2} = K2. Similar to the case
when k2 = 1 and k3 = 2, we haveN(x3)∩V (G1) = {u} andN(x3)∩V (G2) = {v}. Assume,
without loss of generality, that N(x1) ∩ V (G2) = ∅. Then G − {u, x1} is disconnected if
|V (G1)| > 1. Therefore, G1 is a singleton. Similarly, G2 is a singleton.

Then N(u) \ {v} ⊂ B. As G is claw-free and E(G[B]) = ∅, |N(u) \ {v}| 6 2. Since G
is 3-connected, |N(u) \ {v}| = 2, that is, d(u) = 3. Similarly, d(v) = 3. So |N(u)∩B| = 2
and |N(v) ∩ B| = 2. By the inclusion-exclusion principle, |N(u) ∩N(v)| > 1 as |B| = 3.
Suppose, to the contrary, that |N(u) ∩ N(v)| > 1. Then |N(u) ∩ N(v)| = 2 and so
G− {N(u) ∩N(v)} is disconnected, a contradiction. Therefore, |N(u) ∩N(v)| = 1.

Lemma 14. Let uv be a removable edge in a claw-free brick G, B be a nontrivial barrier of
G−uv and G0 be a nontrivial component of G−uv−B. Assume that (G−uv)/V (G0)→ g0
has a nontrivial barrier B′. Then B′ ∪B \ {g0} is a barrier of G− uv.

Proof. Let H := (G−uv)/V (G0)→ g0 and B0 := B′∪B\{g0}. Then g0 ∈ B′. (Otherwise,
B′ is a nontrivial barrier of G, contradicting the assumption that G is a brick.)

Note that the component of G−uv−B, other than G0, is a component of G−uv−B0,
and the component of H −B′ is also the component of G− uv−B. So o(G− uv−B0) =
|B| − 1 + |B′| = |B0|, that is, B0 is a barrier of G− uv.

3 The b-invariant edges of claw-free bricks

We first present a lemma, the proof of which will be given in Section 5.

Lemma 15. Let G be a claw-free brick with at least 8 vertices and u ∈ V (G). If d(u) > 4,
then u is incident with at least d(u)− 3 b-invariant edges; if d(u) = 3, all the removable
edges incident with u are b-invariant.

Let G be a matching covered graph and let e be a removable edge of G. Let C := ∂(X)
be a edge cut of G. We say that C is peripheral if C is nontrivial, the cut C− e is tight in
G−e and a (C−e)-contraction is bipartite. Let C be peripheral. Then J := (G−e)/X → x
has bipartition {B, I}, with x in I. We then refer to I \{x} as the inner part of J , whereas
B is the outer part of J . We say that (I \ {x}, B) is a pair of vertex sets associated with
e. Note that |I \ {x}| = |B| − 1.

Theorem 16 ( [5]). Let G be a brick and let e be a b-invariant edge of G such that G− e
is not a brick. Assume that H is the brick of G− e, obtained by a tight cut decomposition
of G− e. Then, one of the following three alternatives holds:
(i) either G has a peripheral cut C1 := ∂(X1) such that J1 := (G−e)/X1 → x1 is bipartite,
H = (G − e)/X1 → x1 and edge e has one end in the inner part of J1, the other end in
V (H)− x1, or

the electronic journal of combinatorics 32(3) (2025), #P3.17 6



(ii) G has two peripheral cuts Ci := ∂(Xi), for i = 1, 2, such that X1 and X2 are disjoint,
Ji := (G− e)/Xi → xi is bipartite, H = ((G− e)/X1 → x1)/X2 → x2 and edge e has one
end in the inner part of J1, the other end in the inner part of J2, or
(iii) G has a peripheral cut C1 := ∂(X1) such that J1 := (G − e)/X1 → x1 is bipartite,
H = (G− e)/X1 → x1 and edge e has both ends in the inner part of J1.

Proof of Theorem 1. By the definition of thin edges, every thin edge is b-invariant.
Conversely, assume that uv is b-invariant in G. If G − uv is a brick, then uv is thin.
Suppose that G − uv is not a brick. Then one of the three statements of Theorem 16
holds. Let (I1, B1) be a pair of vertex sets associated with uv such that u ∈ I1.

Assume that (ii) of Theorem 16 holds, that is, there exists another pair of vertex sets
(I2, B2) associated with uv such that v ∈ I2, and B1∩B2 = ∅. Note that N(u)\{v} ⊂ B1

and N(v) \ {u} ⊂ B2. Therefore, u, v and two vertices of N(u) ∩ B1 form a claw as
E(G[B1]) = ∅, a contradiction.

Next, we assume that (iii) of Theorem 16 holds. Then {u, v} ⊂ I1. As |B1| = |I1|+ 1,
we have |B1| > 3. Since G is a claw-free brick and uv is b-invariant of G, we have |B1| 6 3
by Lemma 12. Hence |B1| = 3. By Lemma 13, d(u) = d(v) = 3. Note that G − uv
has exactly two vertices of degree two: u and v. As N(u) ∪ N(v) \ {u, v} ⊂ B1 and
|N(u) ∩ N(v)| = 1 (by Lemma 13), N(u) ∪ N(v) \ {u, v} = B1. Thus, the retract of
G−uv can be obtained from G−uv by contracting I1∪B1 to a singleton. Therefore, the
retract of G− uv is a brick by Theorem 16, that is uv is thin in this case.

Now we assume that (i) of Theorem 16 holds. As u ∈ I1, we have |B1| > 2. By
Lemma 12, |B1| 6 3. Hence |B1| = 2 or |B1| = 3. If |B1| = 3, then |I1| = 2. Let
{t} = I1 \ {u}. If t = v, then {u, v} ⊂ I1. Similar to last paragraph, the retract of G−uv
is a brick. Now we assume that t 6= v. As G is 3-connected and N(t) ⊂ B1, t is adjacent
to every vertex in B1. Since E(G[B1]) = ∅, G[{t} ∪ B1] is a claw, a contradiction. So
we consider the case when |B1| = 2. Let B1 = {u1, u2}. As N(u) \ {v} ⊂ B1, we have
d(u) = 3. So N(u) = {v, u1, u2}. As G is claw-free and u1u2 /∈ E(G), at least one of u1
and u2 is adjacent to v. Assume that d(v) = 3. If u1v ∈ E(G) and u2v ∈ E(G), then
N({u, v}) \ {u, v} = {u1, u2}. So G − {u1, u2} is disconnected, a contradiction. Hence
either u1v ∈ E(G) or u2v ∈ E(G). Assume, without loss of generality, that u1v ∈ E(G)
and u2v /∈ E(G). Let {v1} = N(v) \ {u, u1} and B′1 = {u1, u2, v1}. Denote by Q the
component of G− uv − B′1 containing no u and v. Since |V (Q)| = V (G) \ (B′1 ∪ {u, v}),
|V (Q)| is odd. As N(u) ∪N(v) \ {u, v} ⊂ B′1, o(G− uv − B′1) = 3. So B′1 is a nontrivial
barrier of G− uv. Moreover, E(G[B′1]) = ∅. (Otherwise, B′1 contains a forbidden edge in
G− uv by Lemma 7, contradicting the assumption that uv is removable.) Recalling that
d(u) = d(v) = 3 and N(u) ∪ N(v) \ {u, v} = B′1, the retract of G − uv is isomorphic to
(G − uv)/Q → q. Note that (G − uv)/Q → q is a bipartite. As uv is a b-invariant edge
of G, (G − uv)/Q → q contains no nontrivial tight cuts. So (G − uv)/Q → q is a brick.
Therefore, the retract of G − uv is a brick. Now assume that d(v) > 4. Note that u is
the only vertex in G− uv of degree two. So the retract of G− uv can be obtained from
G − uv by contracting I1 ∪ B1 to a singleton. Thus, the retract of G − uv is a brick by
Theorem 16. Therefore, uv is a thin edge in G. The proof is complete.
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4 The lower bound of thin edges in claw-free bricks

For convenience, we denote by K−4 the graph obtained from K4 by removing an edge. We
first present several lemmas.

Lemma 17 ( [16]). Let G be a claw-free brick with at least 8 vertices and u ∈ V (G).
1. If u is incident with no removable edges, then d(u) = 3. Moreover, one of the following
statements holds.

a). u lies in a triangle xuv of G, d(v) = d(x) = 3 and N({u, v, x}) \ {u, v, x} is a
subset of a clique in G with at least five vertices.

b). G[{u} ∪N(u)] ∼= K4 or K−4 and at most one vertex in N(u) is of degree 3.
2. If d(u) > 4, then u is incident with at least d(u)− 2 removable edges.

We say that a vertex u of a claw-free brick is special if it is incident with no removable
edges and G[{u}∪N(u)] is isomorphic to K4 or K−4 . By Lemma 17, we have d(u) = 3. We
call the subgraph induced by a special vertex and its three neighbors is a special subgraph.
We say that a vertex is a half vertex if it lies in exactly two special subgraphs. Denote by
dr(u) and dt(u) the number of removable edges incident with u and the number of thin
edges incident with u, respectively. Therefore, the graph G has at least (

∑
u∈V (G)

dt(u))/2

thin edges. By Lemma 15 and Theorem 1, for every vertex x ∈ V (G), if d(x) = 3
and x is incident with at least one removable edge, then dt(x) > 1; if d(x) > 4, then
dt(x) > d(u)− 3.

Lemma 18. Let H be a special subgraph of a claw-free brick G. Then H contains exactly
one special vertex.

Proof. Let V (H) = {u, v, x, y}, where u is a special vertex of G. As G is 3-connected and
N(u) = {v, x, y}, every vertex in N(u) has at least one neighbor not in V (H). Suppose
that v is also a special vertex of G. Then d(v) = 3. By Lemma 17, at most one vertex in
N(u) is of degree 3. Therefore, H ∼= K−4 , d(x) > 4 and d(y) > 4. Assume that E(H) =
{uv, ux, uy, vy, xy}. As v is a special vertex, vy is not removable in G. Assume that B is
a nontrivial barrier of G− vy associated with vy, and Gi is the component of G− vy−B,
for i ∈ {1, 2, . . . , |B|}, such that v ∈ V (G1) and y ∈ V (G2). As {ux, uy} ⊂ E(G), u ∈ B.
By Lemma 2.5 of [16], we have |B| 6 3. If |B| = 2, then x ∈ B as N(u) = {v, x, y}
and E(G[B]) 6= ∅. As d(v) = 3, (N(v) \ {u, y}) ∩ V (G1) 6= ∅. By Lemma 2.6 of [16],
N(u) ∩ V (G1) \ {v} 6= ∅. Then d(u) > 4, a contradiction. Now we assume that |B| = 3.
By Lemma 2.7 of [16], N(v) ∪ N(y) \ {v, y} ⊂ B. Then {u, x} ⊂ B. As d(u) = 3,
N(u) ∩ V (G3) = ∅. Then G− (B \ {u}) is disconnected, a contradiction. So H contains
exactly one special vertex.

Proof of Theorem 2. Assume that L1 is the set of vertices in G satisfying a). of
Lemma 17. If u ∈ L1, then we assume that the triangle that u lies in is uu1v and
N(u) ∪ N(v) ∪ N(u1) \ {u, v, u1} = {u2, u′1, v1}. Let Vu = {u, v, u1, u2, v1, u′1} and V1 =
{∪u∈L1Vu}.
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Claim 1. ( [16]) For every vertex s in V1, there exists only one vertex t in L1, such that
s ∈ Vt.
Claim 2.

∑
u∈V1

dt(u) > |V1|.

Proof. By Claim 1, every vertex s in V1, there exists only one vertex t in L1, such that
s ∈ Vt. Assume that u ∈ L1. Then every vertex in {u2, u′1, v1} is of degree at least 5. By
Lemma 3.3 of [16], for s ∈ {u2, u′1, v1}, we have dr(s) > 3. By Lemma 15 and Theorem 1,
for s ∈ {u2, u′1, v1}, we have dt(s) > 2. Therefore,

∑
u∈Vu

dt(u) > |Vu|.

Assume that L2 is the set of vertices in V (G) \ V1 incident with no removable edges.
By Lemma 17, every vertex in L2 satisfies b). of Lemma 17. Assume that u′ ∈ L2.
Then u′ lies in a subgraph Hu′ isomorphic to K4 or K−4 . Let V2 = {∪u′∈L2V (Hu′)} and
V3 = V (G) \ (V1 ∪ V2). By Lemma 17, V1, V2 and V3 are a partition of V (G).

Claim 3.
∑
u∈V2

dt(u) > 3|V2|
4

.

Proof. Assume that u ∈ V2. Note that, for a subgraph that contains u and is isomorphic
to K4 or K−4 , a special subgraph contains less removable edges than a non-special one.
To get the lower bound of thin edges, we may assume that u lies in a special subgraph.

Let H := G[{u}∪N(u)] be a special subgraph. We assume firstly that H is isomorphic
to K4. By Lemma 4.4 of [16], for s ∈ V (H)\{u}, we have d(s) > 4 and dr(s) > 2.
By Lemma 15 and Theorem 1, for every vertex s ∈ V (H)\{u}, dt(s) > 1. Therefore,∑
s∈V (H)

dt(s) >
3|V (H)|

4
. We now assume H is isomorphic to K−4 . By Lemma 18, H contains

exactly one special vertex. Assume that H contains no half vertices. At most one vertex
in V (H)\{u} is of degree 3, as G is 3-connected and claw-free. By Lemma 4.5 of [16],
for s ∈ V (H)\{u}, if d(s) = 3, then dr(s) > 1; if d(s) > 4, then dr(s) > 2. By Lemma

15 and Theorem 1 again,
∑

s∈V (H)

dt(s) > 3|V (H)|
4

. Assume that H contains half vertices.

By Lemma 4.2 of [16], this special subgraph contains exactly one half vertex x, and x
lies in exactly two special subgraphs, say H1 and H2. Let H1 := G[{u} ∪ {x, y, z}] and
H2 := G[{u1}∪{x, y1, z1}], where u and u1 are special vertices of H1 and H2, respectively,
{x, y, z} = N(u) and {x, y1, z1} = N(u1). By Lemma 4.3 of [16], we have d(z) > 3,
d(z1) > 3, d(y) > 4. And if y1z1 /∈ E(G), then d(x) > 5 and d(y1) > 4; if xz1 /∈ E(G),
then d(x) > 4 and d(y1) > 5. So dr(z) > 1, dr(z1) > 1, dr(y) > 2 and dr(x) + dr(y1) > 5.
Then, by Lemma 15 and Theorem 1, dt(z) > 1, dt(z1) > 1, dt(y) > 1 and dt(x)+dt(y1) > 3.

Therefore,
∑

s∈V (H1)∪V (H2)

dt(s) >
6|V (H1)∪V (H2)|

7
. So the claim holds.

Note that every vertex in V3 is incident with at least one removable edge. By Lemma
15 and Theorem 1, every vertex in V3 is incident with at least one thin edge. Therefore,∑
s∈V3

dt(s) > |V3|. By Claims 2 and 3, the result follows.

Lemma 19. Assume that u is a cubic vertex in a claw-free brick G. Then u is incident
with at most two thin edges.
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Proof. We will show that u is incident with at most two removable edges. Suppose, to
the contrary, that uui (i ∈ {1, 2, 3}) is removable in G. By Proposition 10, G[{u, u2, u3}]
is not a triangle when uu1 is removable. So u2u3 /∈ E(G). Similarly, u1u2 /∈ E(G) and
u1u3 /∈ E(G). Then G[{u, u1, u2, u3}] is a claw, a contradiction. So u is incident with at
most two removable edges. As every thin edge is removable, the result follows.

Proof of Theorem 4. If |V (G)| 6 6, then it can be checked that G is K4, the triangular
prism and W5. So we consider |V (G)| > 6. By Theorem 2, a claw-free brick G with at
least 8 vertices has at least 3|V (G)|/8 thin edges. If e is a thin edge in a claw-free minimal
brick, at least one of the end vertex of e is cubic by Theorems 1 and 16. Therefore, the
Theorem 4 holds by Lemma 19.

5 Proof of the Lemma 15

5.1 The structure of non-b-invariant edges of claw-free bricks

In this subsection, we will consider the structure of non-b-invariant edges in claw-free
bricks and we have the following lemmas.

Lemma 20. Assume that uv is a removable edge in a claw-free brick G such that there
exists a barrier B of G− uv with size 3. Then uv is b-invariant.

Proof. By Lemma 13, G − uv − B has only one nontrivial odd component, say G0. Let
H := (G−uv)/V (G0)→ g0. As (G−uv)/V (G0)→ g0 is bipartite, to complete the proof,
we will show that H is a brick by contradiction.

Suppose that B′ is a nontrivial barrier of H. Then g0 ∈ B′. (Otherwise, B′ is
a nontrivial barrier of G, contradicting the assumption that G is a brick.) Let B0 =
B′∪B \{g0}. By Lemma 14, B0 is barrier of G−uv and |B0| = |B′|−1+ |B|. As |B| = 3
and |B′| > 2, we have |B0| = |B′| + 2 > 3, which contradicts Lemma 12. Therefore, H
contains no nontrivial barriers.

Next, we suppose that S is a 2-separation of H. Then g0 ∈ S. (Otherwise, S is
a 2-separation of G, contradicting the assumption that G is a brick.) Let S = {g0, t}.
Assume that ∂(X) is a 2-separation cut of H associated with S such that g0 ∈ X. Denote
by Q1 and Q2 the subgraphs of H induced by X \ {g0} and X \ {t}, respectively.

Let B = {u1, u2, u3} and U = B ∪ {t}. By Lemma 13, N(u) ∪ N(v) \ {u, v} ⊂
{u1, u2, u3} and the components of G−uv−B that contain u and v are trivial, respectively.
So N({u, v})∩ (V (Q1)∪V (Q2)) = ∅ and then the components of G−uv−U that contain
u and v are trivial, respectively. Hence U is a vertex 4-cut in G − uv. By contracting
Q1 and Q2 into singletons q1 and q2, respectively, and removing the edge uv, edges in
G[U ] and all the resulting multiedges, we obtain a graph Q. As NQ(u) ∪NQ(v) ⊂ U and
q1q2 /∈ E(Q), Q is a bipartite graph. Then U and W = {u, v, q1, q2} are the color classes
of Q. By Lemma 13 again, exactly one of {u1, u2, u3}, say u1, is adjacent to both u and
v; exactly one of {u2, u3}, say u2, is adjacent to u; and then u3 is adjacent to v. As G
is claw-free, each vertex of {u1, u2, u3} is adjacent to exactly one of q1 and q2. Note that
tq1 ∈ E(Q) and tq2 ∈ E(Q). By calculating, |EQ[U,W ]| = 9. On the other hand, each
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component in G − uv − U is incident with at least three vertices in U , except the two
components that u and v lie in, respectively, as G is 3-connected and uv ∈ E(G). By
Lemma 13 again, d(u) = d(v) = 3. So exactly two vertices in U are incident with both
components that u and v lie in. Then |EQ[U,W ]| > 10, a contradiction. Therefore, H is
a brick. So the result holds.

Lemma 21. Assume that uv is a removable edge in a claw-free brick G. If B is a barrier
of G− uv with size 2 and one component of G− uv−B is trivial, then uv is b-invariant.

Proof. If the components of G−uv−B are both trivial, then |V (G)| = 4, that is, G ∼= K−4 ,
which contradicts the assumption that G is matching covered. Assume, without loss of
generality, that the component of G− uv − B that u lies in is trivial. Denote by G0 the
only nontrivial odd component of G − uv − B. Let H := (G − uv)/V (G0) → g0. As
(G − uv)/V (G0) → g0 is bipartite, to complete proof we will show that H is a brick by
contradiction.

Suppose that B′ is a nontrivial barrier of H. Then g0 ∈ B′. (Otherwise, B′ is
a nontrivial barrier of G, contradicting the assumption that G is a brick.) Let B0 =
B′ ∪ B \ {g0}. By Lemma 14, B0 is barrier of G − uv and |B0| = |B′| − 1 + |B|. Since
|B| = 2, we have |B′| = 2 by Lemma 12. Hence |B0| = 3. By Lemma 20, uv is b-invariant.

Next, we suppose that S is a 2-separation of H. Then g0 ∈ S. (Otherwise, S is
a 2-separation of G, contradicting the assumption that G is a brick.) Let S = {g0, t}.
Assume that ∂(X) is a 2-separation cut of H associated with S such that g0 ∈ X. Denote
by Q1 and Q2 the subgraphs of H induced by X \ {g0} and X \ {t}, respectively.

Assume that B = {u1, u2} and U = B ∪ {t}. Hence U is a vertex 3-cut in G− uv. If
t = v, then N(v) ∩ V (Q1) 6= ∅ and N(v) ∩ V (Q2) 6= ∅. So v, u, a vertex in N(v) ∩ V (Q1)
and a vertex in N(v)∩ V (Q2) form a claw, a contradiction. Thus assume, without loss of
generality, that v lies in Q1. As G is claw-free, at least one of u1v and u2v belongs to E(G),
otherwise, we have a claw with u as the claw-center. As G is 3-connected, N(u1)∩V (Q2) 6=
∅. If N(u1) ∩ V (Q1) \ {v} 6= ∅, then u1, u, a vertex in N(u1) ∩ V (Q1) \ {v} and a vertex
in N(u1) ∩ V (Q2) form a claw, a contradiction. So N(u1) ∩ V (Q1) \ {v} = ∅. Similarly,
N(u2) ∩ V (Q1) \ {v} = ∅. Note that |V (Q1)| > 2. Then G − {v, t1} is disconnected, a
contradiction. Therefore, H is a brick and hence uv is b-invariant.

Corollary 22. Let G be a claw-free brick. If uv is a removable but non-b-invariant edge
in G, then G−uv contains a vertex 2-cut D and G−uv−D contains exactly two nontrivial
components.

Proof. By Theorem 8, G− uv has a nontrivial barrier or a 2-separation. If G− uv has a
nontrivial barrier B, then |B| 6 2 by Lemmas 12 and 20. By Lemma 21, we have |D| = 2
and G − uv −D contains two nontrivial components. If G − uv has a 2-separation, the
result follows by the definition of 2-separation. So the result follows.

Lemma 23. Let v1v2 be a removable but non-b-invariant edge in a claw-free brick G.
Assume that D is a vertex 2-cut of G− v1v2, where D = {s1, s2}, and G1 and G2 are two
components of G − v1v2 −D such that vi ∈ V (Gi) for i ∈ {1, 2}. Then N(si) ∩ V (G1) \
{v1} 6= ∅ for i ∈ {1, 2}.
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Proof. By Corollary 22, we have |V (G1)| > 1. If N(si) ∩ V (G1) \ {v1} = ∅, then G −
{s3−i, v1} is disconnected, contradicting the fact G is 3-connected.

By Lemma 11 and Corollary 22, we have the following corollary.

Corollary 24. Let G be a claw-free brick. If an edge uv is removable but not b-invariant
in G, then |N(u) ∩N(v)| 6 2.

In the rest of this paper. Let G be a claw-free brick and uv be a removable but
non-b-invariant edge of G. Denote by D a vertex 2-cut of G− uv and by G1 and G2 the
components of G − uv − D such that u ∈ V (G1) and v ∈ V (G2). By Corollary 22, we
have |V (Gi)| > 2 for i ∈ {1, 2}. Let N(u) = {v, u1, u2, . . . , udG(u)−1}.

Lemma 25. If u1 ∈ N(u)∩D, then N(u1)∩ V (G1) \ {u} ⊂ N(u)∩ V (G1). Moreover, if
u1v /∈ E(G), then N(u1) ∩ V (G1) \ {u} = N(u) ∩ V (G1).

Proof. By Lemma 23, N(u1) ∩ V (G1) \ {u} 6= ∅ and N(u1) ∩ V (G2) \ {v} 6= ∅. Suppose,
to the contrary, that there exists a vertex a in N(u1) ∩ V (G1) \ {u} such that a /∈
N(u)∩V (G1). Then we have a claw with u1 as the claw-center, a contradiction. Therefore,
N(u1) ∩ V (G1) \ {u} ⊂ N(u) ∩ V (G1).

Assume that u1v /∈ E(G). If there exists a vertex a1 in N(u) ∩ V (G1) such that
a1 /∈ N(u1) ∩ V (G1), then G[{u, a1, u1, v}] is a claw, a contradiction. So the result
holds.

Lemma 26. Let uv be a removable edge of a claw-free brick G. If uv is not b-invariant,
then d(u) > 4 and d(v) > 4.

Proof. Suppose, to the contrary, that d(u) = 3. If N(u)∩D = ∅, then G[N(u)\{v}∪{u}]
is a triangle as G is claw-free. By Proposition 10, uv is non-removable, a contradiction. If
|N(u)∩D| = 2, then V (G1) = {u}, contradicting Corollary 22. So we have |N(u)∩D| = 1.
If N(u) ∩ D = {u1}, then u2 ∈ V (G1). By Lemma 23, N(u1) ∩ V (G1) \ {u} 6= ∅. By
Lemma 25, N(u1) ∩ V (G1) \ {u} ⊂ N(u). Then u1u2 ∈ E(G). So G[N(u) \ {v} ∪ {u}]
is a triangle. By Proposition 10 again, uv is non-removable, a contradiction. Therefore,
d(u) > 4. Similarly, d(v) > 4.

By Lemma 26, the following corollary can be derived directly.

Corollary 27. Let uv be a removable edge in a claw-free brick G. If at least one of end
vertex of uv is cubic, then it is b-invariant.

Lemma 28. Assume that an edge uv is removable but not b-invariant in a claw-free brick
G. If G[N(u) \ {v}] is a complete graph and uu1 is a removable edge in G, then uu1 is
b-invariant.

Proof. Suppose, to the contrary, that uu1 is not b-invariant in G. By Corollary 22, we may
assume thatD′ is a vertex 2-cut ofG−uu1, G′i (i ∈ {1, 2}) is the component ofG−uu1−D′,
u ∈ V (G′1), u1 ∈ V (G′2) and |V (G′i)| > 2 for i ∈ {1, 2}. By Lemma 26, we have d(u) > 4
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and d(v) > 4. SinceG[N(u)\{v}] is a complete graph, D′ ⊇ N(u1)∩N(u) ⊇ N(u)\{v, u1}.
By Corollary 24, we have d(u) 6 4. So d(u) = 4, that is, N(u1) ∩N(u) = {u2, u3}. Then
D′ = {u2, u3} and so v ∈ V (G′1). By Lemmas 23 and 25, N(ui) ∩ V (G′1) \ {u} = {v} for
i ∈ {2, 3}. If |V (G′1)| > 2, then G − {u, v} is disconnected, contradicting the fact G is
3-connected. If |V (G′1)| = 2, then d(v) = 3, a contradiction. Therefore, uu1 is b-invariant
in G.

Lemma 29. Assume that uv is removable but not b-invariant in a claw-free brick G and
Z = N(u) ∩N(v). Then both G[N(u) \ ({v} ∪ Z)] and G[N(v) \ ({u} ∪ Z)] are complete
graphs.

Proof. If |N(u) \ ({v} ∪ Z)| = 1, then G[N(u) \ ({v} ∪ Z)] is a complete graph. Now we
consider |N(u) \ ({v} ∪ Z)| > 2. Suppose, to the contrary, that G[N(u) \ ({v} ∪ Z)] is
not a complete graph. Assume that {u1, u2} ⊂ N(u) \ ({v} ∪Z) and u1u2 /∈ E(G). Then
G[{u, u1, u2, v}] is a claw, a contradiction. Similarly, G[N(v) \ ({u} ∪ Z)] is a complete
graph.

Lemma 30. Let G be a brick and uv be a removable but non-b-invariant edge. If G− uv
contains at least two vertex-disjoint 2-separations, then N(u) ∩N(v) = ∅.

Proof. As G is 3-connected, u and v lie in different components of G − D − uv (and
G−D′−uv), respectively, where D and D′ are two vertex-disjoint 2-separations of G−uv.
Denote by Q1 and Q2 the component of G−D − uv that u lies in and the component of
G − D′ − uv that v lies in, respectively. Since G is 3-connected, Q1 ⊂ Q2 or Q2 ⊂ Q1.
As D and D′ are two vertex-disjoint 2-separations of G− uv, every path in G− uv from
u to v contains at least one vertex of D and one vertex of D′, respectively, thereby the
distance between u and v is greater than 2 in G− uv. Therefore N(u) ∩N(v) = ∅.

5.2 Adjacent non-b-invariant edges in claw-free bricks

To complete the proof of Lemma 15, we will consider a vertex incident with two b-invariant
edges in claw-free bricks in this subsection.

Lemma 31. Assume that uv and uu1 are removable but not b-invariant in a claw-free
brick G and D is a vertex 2-cut of G− uv. Then u1 /∈ D.

Proof. Suppose, to the contrary, that u1 ∈ D. Let D = {u1, t}. By Corollary 22, we
may assume that D′ is a vertex 2-cut of G − uu1, G

′
i (i ∈ {1, 2}) is the component of

G− uu1 −D′, u ∈ V (G′1), u1 ∈ V (G′2) and |V (G′i)| > 2 for i ∈ {1, 2}. By Lemma 26, we
have d(u) > 4.

Assume that N(u) ∩ D = {u1}. If u1v /∈ E(G), then G[N(u) \ {v}] is a complete
graph by Lemma 29. By Lemma 28, uu1 is b-invariant, contradicting the assumption
that uu1 is not b-invariant. So u1v ∈ E(G). As v ∈ N(u) ∩ N(u1), v ∈ D′. By Lemma
29, G[N(v) \ {u, u1}] is complete. However, by Lemma 23, N(v) ∩ V (G′1) \ {u} 6= ∅ and
N(v) ∩ V (G′2) \ {u1} 6= ∅, a contradiction.
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Now we assume that N(u)∩D = {u1, u2}. If u1v /∈ E(G), then N(u1)∩V (G1)\{u} =
N(u) ∩ V (G1) by Lemma 25. By Corollary 24, we have |N(u) ∩ N(u1)| 6 2, thereby
d(u) 6 5. As G is claw-free, G[N(u)\{v, u2}] is complete. If d(u) = 5, then u1u2 /∈ E(G).
Otherwise, since G[N(u)\{v, u2}] is complete, we have |N(u1)∩N(u)| = 3, contradicting
Corollary 24. So N(u1) ∩ N(u) = {u3, u4} by Lemma 25. Then D′ = {u3, u4} and so
{u2, v} ⊂ V (G′1). Hence |V (G′1)| > 3. By Lemmas 23 and 25, ∅ 6= N(ui)∩ V (G′1) \ {u} ⊂
N(u) ∩ V (G′1) for i ∈ {3, 4}. Note that u3v /∈ E(G) and u4v /∈ E(G). Then (N(u3) ∪
N(u4)) ∩ V (G′1) = {u, u2}. Recalling that |V (G′1)| > 3, G − {u, u2} is disconnected, a
contradiction. So we consider the case when d(u) = 4. By Lemmas 23 and 25, ∅ 6= N(ui)∩
V (G1) \ {u} ⊂ N(u) ∩ V (G1) for i ∈ {1, 2}. Then (N(u1) ∪ N(u2)) ∩ V (G1) = {u, u3}.
If |V (G1)| > 3, then G − {u, u3} is disconnected, a contradiction. So |V (G1)| = 2, and
then d(u3) = 3. As u3 ∈ N(u1)∩N(u), u3 ∈ D′. By Lemma 23, N(u3)∩V (G′1) \ {u} 6= ∅
and N(u3) ∩ V (G′2) \ {u1} 6= ∅. Then d(u3) > 4 (note that {uu3, u1u3} ⊂ E(G)), a
contradiction.

Now assume that u1v ∈ E(G). By Lemmas 23 and 25, ∅ 6= N(u1) ∩ V (G1) \ {u} ⊂
N(u)∩V (G1). By Corollary 24, |N(u1)∩N(u)| 6 2. Then |N(u1)∩V (G1)\{u}| = 1 and
so u1u2 /∈ E(G). Hence D′ = N(u1)∩N(u) = {u3, v} and u2 ∈ V (G′1). By Lemmas 23 and
25, ∅ 6= N(v)∩ V (G′1) \ {u} ⊂ N(u)∩ V (G′1) and N(v)∩ V (G′2) \ {u1} 6= ∅. On the other
hand, as G is claw-free, G[N(v) \ {u, u1, u2}] is complete. So N(v)∩ V (G′1) \ {u} = {u2},
that is, u2v ∈ E(G). Then N(v) ∩ N(u2) = {u} (note that u3v /∈ E(G)). However, by
Lemmas 23 and 25, N(u2) ∩N(v) ∩ V (G2) 6= ∅, a contradiction. Therefore, u1 /∈ D.

Lemma 32. Let uv and uu1 be removable but non-b-invariant edges in a claw-free brick
G. Assume that D = {x, y} is a vertex 2-cut of G− uv.

1) If |N(u) ∩D| < 2, then d(u) 6 5.
2) If |N(u) ∩D| = 2 and xy /∈ E(G), then d(u) 6 5.
3) If |N(u) ∩D| = 2 and xy ∈ E(G), then d(u) > 5 and u1 /∈ N(D).

Proof. By Corollary 22, we have |V (Gi)| > 2 for i ∈ {1, 2}. By Lemma 26, we have
d(u) > 4. By Lemma 31, u1 /∈ D and hence u1 ∈ V (G1).

By Lemma 29, G[N(u)∩V (G1)] is complete. ThenN(u)∩V (G1)\{u1} ⊂ N(u1)∩N(u).
By Corollary 24, |N(u) ∩ V (G1) \ {u1}| 6 2. If |N(u) ∩D| < 2, then d(u) 6 5. Then 1)
holds.

Now we consider |N(u) ∩ D| = 2 and xy /∈ E(G), that is, D = {u2, u3} and u2u3 /∈
E(G). As G is claw-free, at least one of u1u2 and u1u3 belongs to E(G), otherwise, we
have a claw with u as the claw-center. Recall that G[N(u) ∩ V (G1)] is complete. If
d(u) > 6, then |N(u1) ∩ N(u)| > 3, contradicting Corollary 24. So we have d(u) 6 5.
Then 2) holds.

Next, we consider the case when |N(u) ∩ D| = 2 and xy ∈ E(G), that is, D is a
2-separation of G − uv and D = {u2, u3}. Suppose, to the contrary, that d(u) = 4.
By Lemmas 23 and 25, ∅ 6= N(uj) ∩ V (G1) \ {u} ⊂ N(u) ∩ V (G1) for j ∈ {2, 3}. So
(N(u2) ∪ N(u3)) ∩ V (G1) \ {u} = {u1}. Recall that |V (G1)| > 2. If |V (G1)| > 2,
then G − {u, u1} is disconnected, a contradiction. Hence |V (G1)| = 2. So d(u1) = 3,
contradicting Lemma 26. Therefore, we have d(u) > 5.
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Now we suppose, without loss of generality, that u1 ∈ N(u2). Recall that G[N(u) ∩
V (G1)] is complete. Then N(u) ∩ V (G1) \ {u1} ⊂ N(u) ∩ N(u1). Since u1u2 ∈ E(G),
d(u) = 5 and u1u3 /∈ E(G) by Corollary 24. By Corollary 22, we may assume that
D′ is a vertex 2-cut of G − uu1, G

′
i (i ∈ {1, 2}) is the component of G − uu1 − D′,

u ∈ V (G′1) and u1 ∈ V (G′2). Note that N(u1) ∩ N(u) = {u2, u4}. Hence D′ = {u2, u4}
and {u3, v} ⊂ V (G′1). So we have |V (G′1)| > 3. Assume that u2v /∈ E(G). Note that
u4v /∈ E(G). By Lemma 25, (N(u2) ∪ N(u4)) ∩ V (G′1) \ {u} = {u3}. As |V (G′1)| > 3,
G−{u, u3} is disconnected, a contradiction. So we assume that u2v ∈ E(G). By Lemma
25, N(u2)∩V (G1)\{u} ⊂ N(u)∩V (G1) and N(u2)∩V (G2)\{v} ⊂ N(v)∩V (G2). Hence
N(u2) \ {v, u1, u3, u4} ⊂ N(v) \ {u2}. As {u3, v} ⊂ V (G′1) and N(v) \ {u2} ⊂ V (G′1),
N(u2) \ {u1, u4} ⊂ V (G′1). Then N(u2) ∩ V (G′2) \ {u1} = ∅, contradicting Lemma 23.
Therefore, u1 /∈ N(u2). Similarly, u1 /∈ N(u3). So 3) holds.

Lemma 33. Assume uv is a removable but non-b-invariant edge in a claw-free brick G
and D is a vertex 2-cut of G− uv. If u1 /∈ D, |N(u) ∩D| = 2, E(G[D]) = ∅ and uu1 is
a removable edge in G, then uu1 is b-invariant.

Proof. Then u1 ∈ V (G1). Suppose, to the contrary, that uu1 is not b-invariant. By
Corollary 22, we may assume that D′ is a vertex 2-cut of G− uu1, G′i (i ∈ {1, 2}) is the
component of G− uu1 −D′, u ∈ V (G′1) and u1 ∈ V (G′2). Let D = {u2, u3}.

By Lemmas 26 and 32, we have d(u) = 4 or d(u) = 5. Assume that d(u) = 5. As
G is claw-free, G[N(u) ∩ V (G1)] is complete, that is, |N(u1) ∩ N(u) ∩ V (G1)| = 1 when
d(u) = 5. Since u2u3 /∈ E(G) and G is claw-free, at least one of u1u2 and u1u3 belongs
to E(G). If {u1u2, u1u3} ⊂ E(G), then |N(u) ∩ N(u1)| = 3, contradicting Corollary 24.
Therefore, either u1u2 ∈ E(G) or u1u3 ∈ E(G). Assume, without loss of generality, that
u1u2 ∈ E(G) and u1u3 /∈ E(G). Then N(u1) ∩ N(u) = {u2, u4} and so D′ = {u2, u4}.
Hence {u3, v} ⊂ V (G′1), thereby |V (G′1)| > 3. By Lemmas 23 and 25, ∅ 6= N(u2)∩V (G′1)\
{u} ⊂ N(u) ∩ V (G′1). Then u2v ∈ E(G) (note that u2u3 /∈ E(G)). On the other hand,
N(u2) ∩ V (G2) \ {v} ⊂ N(v) ∩ V (G2) by Lemma 25. Recall that N(u2) ∩ V (G1) \ {u} ⊂
N(u) ∩ V (G1) and u2u3 /∈ E(G). So N(u2) \ {v, u1, u4} ⊂ N(v) \ {u2} ⊂ V (G′1). Hence
N(u2) ∩ V (G′2) \ {u1} = ∅, which contradicts Lemma 23. Therefore, we have d(u) = 4.
By Lemmas 23 and 25, ∅ 6= N(ui) ∩ V (G1) \ {u} ⊂ N(u) ∩ V (G1) for i ∈ {2, 3}. Then
(N(u2) ∪ N(u3)) ∩ V (G1) \ {u} = {u1}. By Corollary 22, we have |V (G1)| > 2. If
|V (G1)| > 2, then G − {u, u1} is disconnected, a contradiction. If |V (G1)| = 2, then
d(u1) = 3, contradicting Lemma 26. Therefore, uu1 is b-invariant.

Lemma 34. Let uv and uu1 be two adjacent removable edges of a claw-free brick G.
Assume that uv and uu1 are not b-invariant and G − uv has a nontrivial barrier. Then
d(u) = 4. Moreover, uu2 and uu3 are b-invariant.

Proof. Let B be a nontrivial barrier of G− uv associated with uv. Assume that G1 and
G2 are the components of G− uv −B, where u ∈ V (G1) and v ∈ V (G2). By Lemma 21,
we have |B| = 2 and |V (Gi)| > 3 for i ∈ {1, 2}. By Lemmas 26 and 32, we have d(u) = 4
or d(u) = 5. By Lemma 31, u1 /∈ B and so u1 ∈ V (G1).
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If N(u)∩B = ∅, then G[N(u) \ {v}] is complete by Lemma 29. By Lemma 28, uu1 is
b-invariant, contradicting the assumption that uu1 is not b-invariant. If |N(u) ∩ B| = 2,
then uu1 is b-invariant by Lemma 33 (note that E(G[B]) = ∅), a contradiction. So we
consider the case when |N(u) ∩B| = 1. Let N(u) ∩B = {u2}.
Claim A. d(u) = 4, u2 ∈ V (G′1) and u1u2 /∈ E(G).

Proof. We will consider the following two cases.
Case 1. There exists a nontrivial barrier B′ of G− uu1.
Assume that G′1 and G′2 are the components of G − uu1 − B′, where u ∈ V (G′1) and

u1 ∈ V (G′2). By Lemma 21, |B′| = 2 and |V (G′i)| > 3 for i ∈ {1, 2}.
Assume that u2v /∈ E(G). Then G[N(u)\{v}] is complete by Lemma 29. So by Lemma

28, uu1 is b-invariant, a contradiction. Now we consider the case when u2v ∈ E(G).
Assume that d(u) = 5. As N(u)∩N(v) = {u2}, G[N(u) \ {u2, v}] is complete by Lemma
29. So uu1 lies in a subgraph that is isomorphic to K4 when d(u) = 5. By Lemma 11,
N(u) ∩ N(u1) ⊂ B′. So E(G[B′]) 6= ∅, contradicting the fact that uu1 is removable.
Therefore, d(u) = 4. Recalling that G[N(u)\{u2, v}] is complete, u3 ∈ N(u1)∩N(u) and
hence u3 ∈ B′. If u2 ∈ B′, then v ∈ V (G′1). Since E(G[B′]) = ∅, u2u3 /∈ E(G). Thus,
uv is b-invariant by Lemma 33, a contradiction. So u2 /∈ B′ and hence u2 ∈ V (G′1) and
u1u2 /∈ E(G).

Case 2. G− uu1 contains no nontrivial barriers.
Then G − uu1 contains only 2-separations. Assume that G − uu1 contains at least

two vertex-disjoint 2-separations. Then N(u1) ∩ N(u) = ∅ by Lemma 30. As G is claw-
free, G[N(u) \ {u1}] is complete. Thus, uv is b-invariant by Lemma 28, a contradiction.
Therefore, all the 2-separations of G− uu1 have a common vertex.

Assume that S ′ is a 2-separation of G− uu1 and G′i is the component of G− uu1− S ′
for i ∈ {1, 2}, where u ∈ V (G′1) and u1 ∈ V (G′2). By Corollary 22, we have |V (G′i)| > 2
for i ∈ {1, 2}.

If u2v /∈ E(G), then G[N(u) \ {v}] is complete by Lemma 29. By Lemma 28, uu1 is
b-invariant, a contradiction. Now we consider the case when u2v ∈ E(G). Assume that
d(u) = 5. By Lemma 29, G[N(u)\{u2, v}] is complete, that is, |N(u)∩N(u1)| = 2. Hence
u1u2 /∈ E(G) by Corollary 24. So N(u1) ∩ N(u) = {u3, u4} and hence S ′ = {u3, u4}.
Then {u2, v} ⊂ V (G′1). As |V (G′1)| is even, |V (G′1)| > 3. By Lemmas 23 and 25,
∅ 6= N(ui) ∩ V (G′1) \ {u} ⊂ N(u) ∩ V (G′1) for i ∈ {3, 4}. Note that u3v /∈ E(G)
and u4v /∈ E(G). Therefore, (N(u3) ∪ N(u4)) ∩ V (G′1) = {u, u2}, that is, {u, u2} is a
vertex 2-cut in G, a contradiction. So d(u) = 4. Since G[N(u) \ {u2, v}] is complete,
u3 ∈ N(u1) ∩ N(u) and hence u3 ∈ S ′. If u2 ∈ S ′, then v ∈ V (G′1). By Lemmas 23
and 25, ∅ 6= N(u3) ∩ V (G′1) \ {u} ⊂ N(u) ∩ V (G′1). Then N(u3) ∩ V (G′1) \ {u} = {v}
as d(u) = 4, which contradicts u3v /∈ E(G). Hence u2 /∈ S ′, thereby u2 ∈ V (G′1) and
u1u2 /∈ E(G).

Recall that N(u) ∩ B = {u2}. By the Claim A, we have d(u) = 4 and u1u2 /∈ E(G).
By Lemmas 23 and 25, ∅ 6= N(u2)∩V (G1)\{u} ⊂ N(u)∩V (G1). Then u2u3 ∈ E(G). By
Lemma 23, N(u2)∩V (G2)\{v} 6= ∅. Therefore, d(u2) > 4 (note that {uu2, u2v} ⊂ E(G)).
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Now we claim that uu2 is removable. Suppose, to the contrary, that uu2 is non-
removable. By Lemmas 7 and 9, there exists a nontrivial barrier B0 of G−uu2 containing
a forbidden edge of G − uu2 and |B0| 6 3. As N(u) ∩ N(u2) = {u3, v} ⊂ B0 and
u3v /∈ E(G), |B0| 6= 2. So |B0| = 3. Then the components of G− uu2 − B0 containing u
and u2 are singletons, respectively, by Lemma 9. Hence B0 = N(u) \ {u2} = {u1, u3, v}.
Note that {u2u3, u2v} ⊂ E(G) and u1u2 /∈ E(G). Then d(u2) = 3, contradicting the fact
that d(u2) > 4. Therefore, uu2 is removable.

Suppose, to the contrary, that uu2 is not b-invariant. Since |N(u) ∩ N(u2)| 6= ∅, all
the 2-separations of G− uu2 have a common vertex by Lemma 30. Assume that D′ is a
vertex 2-cut of G−uu2. As N(u)∩N(u2) = {u3, v}, D′ = {u3, v}. By Lemma 31, v /∈ D′,
a contradiction. Therefore, uu2 is b-invariant. Similarly, uu3 is b-invariant.

Lemma 35. Assume that uv is a removable but non-b-invariant edge of a claw-free brick
G and G − uv contains at least two vertex-disjoint 2-separations. If uu1 is a removable
edge in G, then uu1 is b-invariant.

Proof. By Lemma 30, N(u) ∩ N(v) = ∅. As G is claw-free, G[N(u) \ {v}] is complete.
Then uu1 is b-invariant by Lemma 28.

Lemma 36. Let uv and uu1 be two adjacent removable edges of a claw-free brick G.
Assume that uv and uu1 are not b-invariant and G−uv has a 2-separation. Then d(u) = 4
or d(u) = 6, and each edge of ∂({u}) \ {uv, uu1} is b-invariant.

Proof. Let S be a 2-separation of G − uv. Assume that G1 and G2 are the components
of G− uv − S, where u ∈ V (G1) and v ∈ V (G2). Then |V (Gi)| > 2 by Corollary 22, for
i ∈ {1, 2}. By Lemma 26, d(u) > 4. By Lemma 31, u1 /∈ S and then u1 ∈ V (G1).

As uu1 is removable but not b-invariant, assume that S ′ is a 2-separation of G− uu1
and G′i (i ∈ {1, 2}) is the components of G−uu1−S ′, where u ∈ V (G′1) and u1 ∈ V (G′2).
By Corollary 22, we have |V (G′i)| > 2 for i ∈ {1, 2}. If N(u)∩ S = ∅, then G[N(u) \ {v}]
is complete by Lemma 29. By Lemma 28, N(u) ∩ S 6= ∅. Now we consider the following
two cases.

Case a. |N(u) ∩ S| = 1
Let N(u) ∩ S = {u2}. Assume that u2v /∈ E(G). By Lemma 29, G[N(u) \ {v}] is

complete. Then uu1 is b-invariant by Lemma 28, a contradiction. So we consider the case
when u2v ∈ E(G). By Lemma 29, G[N(u) \ {u2, v}] is complete. Then N(u) ∩ V (G1) \
{u1} ⊂ N(u1) ∩ N(u). By Corollary 24, |N(u) ∩ V (G1) \ {u1}| 6 2. As |N(u) ∩ S| = 1,
d(u) 6 5. Assume that d(u) = 5. Then u1u2 /∈ E(G). Otherwise, |N(u1) ∩ N(u)| = 3,
contradicting Corollary 24. So N(u1) ∩ N(u) = {u3, u4} and hence S ′ = {u3, u4}. Then
{u2, v} ⊂ V (G′1). As |V (G′1)| is even, |V (G′1)| > 3. By Lemma 25, N(ui)∩V (G′1) \ {u} ⊂
N(u) ∩ V (G′1) for i ∈ {3, 4}. Note that u3v /∈ E(G) and u4v /∈ E(G). So (N(u3) ∪
N(u4))∩V (G′1) = {u, u2}. Hence G−{u, u2} is disconnected, a contradiction. Therefore,
d(u) = 4. Recall that N(u)∩V (G1)\{u1} ⊂ N(u1)∩N(u). Then u3 ∈ N(u1)∩N(u) and
hence u3 ∈ S ′. If u2 ∈ S ′, then v ∈ V (G′1). By Lemma 23, N(u3) ∩ V (G′1) \ {u} = {v} as
d(u) = 4. However, u3v /∈ E(G). Hence u2 /∈ S ′, thereby u2 ∈ V (G′1) and u1u2 /∈ E(G).
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Now we claim that uu2 is removable. Suppose, to the contrary, that uu2 is non-
removable. By Lemma 23, N(u2) ∩ V (G1) \ {u} 6= ∅ and N(u2) ∩ V (G2) \ {v} 6= ∅. So
d(u2) > 4 (note that {uu2, u2v} ⊂ E(G)). By Lemmas 7 and 9, there exists a nontrivial
barrier B0 of G − uu2 containing a forbidden edge of G − uu2 and |B0| 6 3. As N(u) ∩
N(u2) = {u3, v} ⊂ B0 and u3v /∈ E(G), |B0| 6= 2. So |B0| = 3. Then the components
of G − uu2 − B0 containing u and u2 are singletons, respectively, by Lemma 9. Hence
B0 = N(u) \ {u2} = {u1, u3, v}. Note that {u2u3, u2v} ⊂ E(G) and u1u2 /∈ E(G). Then
d(u2) = 3, contradicting the fact that d(u2) > 4. Therefore, uu2 is removable.

Suppose, to the contrary, that uu2 is not b-invariant. As N(u) ∩ N(u2) 6= ∅, all the
2-separations of G−uu2 have a common vertex by Lemma 30. Assume that D′ is a vertex
2-cut of G − uu2. As N(u) ∩ N(u2) = {u3, v}, D′ = {u3, v}. By Lemma 31, v /∈ D′, a
contradiction. Thus, uu2 is b-invariant. Similarly, uu3 is b-invariant.

Case b. |N(u) ∩ S| = 2
Let S = {u2, u3}. Assume that u2u3 /∈ E(G). By Lemma 33, uu1 is b-invariant, a

contradiction. Now we consider the case when u2u3 ∈ E(G). By 3) of Lemma 32, we have
d(u) > 5 and u1 /∈ N(ui) for i ∈ {2, 3}.

Suppose, without loss of generality, that u2v /∈ E(G). By Lemmas 23 and 25, N(u2)∩
V (G1) \ {u} = N(u) ∩ V (G1) 6= ∅. Then u1 ∈ N(u2), a contradiction. Therefore,
u2v ∈ E(G). Similarly, u3v ∈ E(G). By Lemma 25, N(ui)∩V (G1)\{u} ⊂ N(u)∩V (G1)
for i ∈ {2, 3}. Note that u1u2 /∈ E(G) and u1u3 /∈ E(G). As G is 3-connected, |(N(u2) ∪
N(u3)) ∩ V (G1)| > 2. So d(u) > 6. By Lemma 29, G[N(u) ∩ V (G1)] is complete. As
N(u) ∩ V (G1) ⊂ N(u1) ∩N(u), we have d(u) 6 6 by Corollary 24. Therefore, d(u) = 6.

Now we claim that uu2 is removable. Suppose, to the contrary, that uu2 is non-
removable. By Lemmas 7 and 9, there exists a nontrivial barrier B0 of G−uu2 containing a
forbidden edge of G−uu2 and |B0| 6 3. By Lemmas 23 and 25, ∅ 6= N(u2)∩V (G1)\{u} ⊂
N(u) ∩ V (G1), thereby |(N(u2) ∩ N(u)) ∩ V (G1)| > 1. As {u3, v} ⊂ N(u2) ∩ N(u),
|N(u2) ∩ N(u)| > 3. Since N(u2) ∩ N(u) ⊂ B0, we only need to consider the case
when |B0| = |N(u2) ∩ N(u)| = 3. By Lemma 9, N(u) \ {u2} ⊂ B0. Then d(u) = 4, a
contradiction. Therefore, uu2 is removable. Recalling that |N(u2) ∩ N(u)| > 3, uu2 is
b-invariant by Corollary 24. Similarly, uu3, uu4 and uu5 are b-invariant.

Proof of Lemma 15. By Lemmas 34, 35 and 36, u is incident with at least d(u) − 3
b-invariant edges when d(u) > 4. If d(u) = 3, all the removable edges incident with u are
b-invariant by Corollary 27.
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