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Abstract

We consider a card guessing game with complete feedback. A ordered deck of
n cards labeled 1 up to n is riffle-shuffled exactly one time. Then, the goal of the
game is to maximize the number of correct guesses of the cards, where one after
another a single card is drawn from the top, and shown to the guesser until no
cards remain. Improving earlier results, we provide a limit law for the number
of correct guesses. As a byproduct, we relate the number of correct guesses in this
card guessing game to the number of correct guesses under a two-color card guessing
game with complete feedback. Using this connection to two-color card guessing, we
can also show a limiting distribution result for the first occurrence of a pure luck
guess.

Mathematics Subject Classifications: 05A15, 05A16, 60F05, 60C05

1 Introduction

Different card guessing games have been considered in the literature in many articles [7,
9, 17, 18, 22, 23, 24, 28, 29, 30, 31]. An often discussed setting is the following. A deck of
a total of M cards is shuffled, and then the guesser is provided with the total number of
cards M , as well as with the individual numbers of say hearts, diamonds, clubs and spades.
After each guess of the type of the next card, the person guessing the cards is shown the
drawn card, which is then removed from the deck. This process is continued until no
more cards are left. Assuming that the guesser tries to maximize the number of correct
guesses, one is interested in the total number of correct guesses. Such card guessing games
are not only of purely mathematical interest, but there are applications to the analysis
of clinical trials [5, 10], fraud detection related to extra-sensory perceptions [7], guessing
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so-called Zener Cards [28], as well as relations to tea tasting and the design of statistical
experiments [11, 29].

The card guessing procedure can be generalized to an arbitrary number n > 2 of
different types of cards. In the simplest setting there are two colors, red (hearts and
diamonds) and black (clubs and spades), and their numbers are given by non-negative
integers m1, m2, with M = m1+m2. One is then interested in the random variable Cm1,m2 ,
counting the number of correct guesses. Here, not only the distribution and the expected
value of the number of correct guesses is known [9, 18, 24, 30, 31], but also multivariate
limit laws and additionally interesting relations to combinatorial objects such as Dyck
paths and urn models are given [9, 22, 23]. For the general setting of n different types of
cards we refer the reader to [9, 17, 28, 29] for recent developments.

Different models of card guessing games involving so-called riffle shuffles are also of
importance and are the main topic of this work. The riffle shuffle, also called dovetail
shuffle, is a famous card shuffling technique. It consists of splitting a deck of cards in two
portions. Then, the two packets are riffled together. The famous Gilbert-Shannon-Reeds
model (see Subsection 2.1 for details) is the standard mathematical model for such riffle
shuffles. We note that experiments reported by Diaconis [8] show that this model is a
good description of the way people really shuffle cards; we also refer the reader to the
work of Bayer and Diaconis [2] for important applications to mixing up cards.

In this work we consider the following problem. A deck of n cards labeled consecutively
from 1 on top to n on bottom is face down on the table. The deck is riffle shuffled once,
assuming the Gilbert-Shannon-Reeds model, and placed back on the table, face down.
A guesser tries to guess at the cards one at a time, starting from the top. The goal
is to maximize the number of correct guesses Xn, assuming that complete feedback is
given, i.e., the drawn card is shown to the guessing person, and further assuming that
the guesser is using the optimal strategy. Recently, Liu [25] and also Krityakierne and
Thanatipanonda [21] made progress on this problem. In [25] an asymptotic expansion of
the expected value E(Xn) is provided for n tending to infinity. An enumerative analysis
and a study of higher moments has been carried out in [21]. Therein, precise asymptotics
of the first few moments E(Xn), E(X2

n), etc. were provided using both enumerative and
symbolic methods. We note in passing that such questions are classical; see for example
Ciucu [6], where he studied an optimal strategy under the no feedback game, such that
the identities of the card guessed are not revealed, nor is the guesser told whether a
particular guess was correct or not. Progress for the no feedback variant was recently
obtained in [19, 20]. However, so far the limit law of Xn has proven to be elusive for both
variants.

In this work we determine the limit law of the number of correct guesses Xn in the full
feedback model, starting with n cards labeled one up to n, once riffle shuffled. We translate
the enumerative analysis of [21] into a distributional equation. We establish a direct link
between the number of correct guesses Cm1,m2 in the two-color card guessing game and the
corresponding quantity Xn in the once riffle shuffled model, previously unknown best to
the knowledge of the authors. This link allows us to derive the limit law for the number
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Xn of correct guesses in the once riffle shuffled case. For the reader’s convenience we
summarize our main results in the following theorem, collecting the individual results of
Theorems 10, 14 and Proposition 13.

Theorem 1. The normalized random variable Yn = (Xn−n
2
)/
√
n converges in distribution

to a generalized gamma distributed random variable G:

Xn − n
2√

n

L→G,

with density of G given by f(x) =
√

2
π
· 8x2e−2x2, x > 0. Moreover, the r-th integer

moments E(Y r
n ) converge, for arbitrary but fixed r > 1 and n → ∞, to the moments of

the limit law G, expressed in terms of the Gamma function:

E
(Xn − n

2√
n

)r
→

Γ
(
r+3
2

)
2
r
2
−1√π

, r > 0.

If the guesser follows the optimal strategy, the chances of a correct guess are always
greater or equal 50 percent. Starting with a deck of n cards, we are also interested in
the number of cards Pn (divided by two) remaining in the deck when the first “pure luck
guess” with only a 50 percent success chance occurs. We will show in Theorem 23 that
Pn, properly normalized, satisfies an arcsine limit law.

1.1 Notation

As a remark concerning notation used throughout this work, we always write X
L
=Y to

express equality in distribution of two random variables (r.v.) X and Y , and Xn
L→X for

the weak convergence (i.e., convergence in distribution) of a sequence of random variables
Xn to a r.v. X. Furthermore we use xs := x(x−1) . . . (x−(s−1)) for the falling factorials,
and xs := x(x + 1) . . . (x + s − 1) for the rising factorials, s ∈ N0. Moreover, fn � gn
denotes that a sequence fn is asymptotically smaller than a sequence gn, i.e., fn = o(gn),
n→∞.

2 Distributional analysis

2.1 Riffle shuffle model

A riffle shuffle is a certain card shuffling technique. In the mathematical modeling of card
shuffling, the Gilbert-Shannon-Reeds model [2, 9, 14] describes a probability distribution
for the outcome of such a shuffling. We consider a sorted deck of n cards labeled con-
secutively from 1 up to n. The deck of cards is cut into two packets, assuming that the
probability of selecting k cards in the first packet and n−k in the second packet is defined
as a binomial distribution with parameters n and 1/2:(

n
k

)
2n
, 0 6 k 6 n.
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Afterwards, the two packets are interleaved back into a single pile: one card at a time
is moved from the bottom of one of the packets to the top of the shuffled deck, such
that if m1 cards remain in the first and m2 cards remain in the second packet, then the
probability of choosing a card from the first packet is m1/(m1+m2) and the probability of
choosing a card from the second packet is m2/(m1 +m2). See Figure 1 for an example of
a riffle shuffle of a deck of five cards. For a one-time shuffle, the operation of interleaving

1
2
3
4
5

top (left)
pile

bottom
(right)
pile

1
2

3
4
5

2
5
4
1
3

Figure 1: Example of a one-time riffle shuffle: a deck of five cards is split after 2 with
probability

(
5
2

)
/25 = 5/16 and then interleaved.

described above gives rise to an ordered deck (corresponding to the identity permutation)
in n + 1 ways. Each other shuffled deck corresponds to a permutation which contains
exactly two proper increasing subsequences and each has multiplicity 1; in total there are
2n − n− 1 different such permutations.

In a more combinatorial setting, the outcome of a one-time shuffling in this model
might be generated from the 2n different {a, b}-sequences of length n, i.e., length-n words
over the alphabet {a, b}, by replacing the a’s in such a sequence, let us assume there are
0 6 k 6 n many, by the increasing sequence 1, 2, . . . , k, and the b’s in the sequence by
the increasing sequence k+ 1, k+ 2, . . . , n. Thus, the a’s and b’s, respectively, correspond
to the packet of cards below and above the cut, respectively. Let us denote by Dn this
multiset of permutations on [n] = {1, 2, . . . , n} generated by the family Wn = {a, b}n of
length-n words. Then the n + 1 words in Wn of the kind akbn−k, with 0 6 k 6 n, all
generate the identity permutation idn in Dn, whereas the remaining 2n − n− 1 words in
Wn generate pairwise different permutations in Dn.

2.2 First drawn card and the optimal strategy

The optimal strategy for maximizing the number Xn of correctly guessed cards, starting
with a deck of n cards, based on the Gilbert-Shannon-Reads model, after a one-time riffle
shuffle was discussed before in the literature [21, 25], based on earlier work [9, 14]. This
strategy, summarized below, is based on the following Proposition.

Proposition 2 (Guessing the first card [21, 25]). Assume that a deck of n cards has been
riffle shuffled once. The probability pn(m) that the first card being m, 1 6 m 6 n, is given
by

pn(m) =


1

2
+

1

2n
, for m = 1,(

n−1
m−1

)
2n

, for 2 6 m 6 n.

(1)
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For the sake of completeness we include a short proof.

Proof. First, we condition on the cut leading to two decks containing {1, . . . , k} and

{k + 1, . . . , n}, 0 6 k 6 n, which happens with probability
(nk)
2n

. Each resulting deck has
the same probability 1/

(
n
k

)
. Then, we observe that the probability of a top one is in the

case k > 0 given by (
n−1
k−1

)(
n
k

) =
k

n
,

as there are
(
n−1
k−1

)
different ways of choosing the positions of the other cards. Of course,

for k = 0 the top card is always one. Thus, we obtain

pn(1) =
1

2n
+

n∑
k=1

(
n
k

)
2n
· k
n

=
1

2n
+

1

2
.

Similarly, for m > 1 we observe that only a cut at m− 1 may lead to a top card labeled
m, thus in this situation the subsequences to be interleaved have to be 1, . . . ,m− 1 and
m, . . . , n. If m is the top card, there are

(
n−1
n−m

)
different ways of choosing the positions of

the other cards, which yields

pn(m) =

(
n

m−1

)
2n

·
(
n−1
n−m

)(
n

m−1

) =

(
n−1
m−1

)
2n

.

Now we turn to the optimal strategy. The guesser should guess 1 on the first card, as
his chance of success is more than 50% by Proposition 2.

If the first guess is incorrect, say the shown card has label m > 2, this implies that
the cut was made exactly at m− 1. The person is left with two increasing subsequences
1, 2, . . . ,m − 1 and m + 1, . . . , n. The remaining numbers are then guessed according to
the proportions of the lengths of the remaining subsequences until no cards are left.

If the first guess was correct, then the person continues with guessing the number two,
etc., i.e., as long as all previous such predictions turned out to be correct, the guesser
makes a guess of the number j for the j-th card. This is justified, since by considerations
as before one can show easily that the probability that the j-th card has the number j
conditioned on the event that the first j−1 cards are the sequence of numbers 1, 2, . . . , j−1
is for 1 6 j 6 n given by

2n−j + j

2n−j+1 + j − 1
=

1

2
+

(1 + j)2−(n−j+2)

1 + (j − 1)2−(n−j+1)
,

and thus exceeds 50%. If such a prediction turns out to be wrong, i.e., gives a number
m > j for the j-th card, then again one can determine the two involved remaining
subsequences j, j + 1, . . . ,m− 1 and m + 1, . . . , n, and all the numbers of the remaining
cards are again guessed according to the proportions of the lengths of the remaining
subsequences until no cards are left.
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2.3 Enumeration and distributional decomposition

Our starting point is the recurrence relation for the generating function

Dn(q) :=
∑
σ∈Dn

q# correct guesses for deck σ = 2n · E(qXn) = 2n
n∑
`=0

P{Xn = `} q`,

counting the number of correct guesses using the optimal strategy when starting with a
once-shuffled deck of n different cards, which has been stated in [21] and basically stems
from Proposition 2.

Lemma 3 (Recurrence relation for Dn(q) [21]). The generating function Dn(q) satisfies
the following recurrence:

Dn(q) = qDn−1(q) + qn +
n−2∑
j=0

Fn−1−j,j(q), n > 1, D0(q) = 1, (2)

where the auxiliary function Fm1,m2(q) is for m1 > m2 > 0 defined recursively by

Fm1,m2(q) = qFm1−1,m2(q) + Fm1,m2−1(q),

with initial values Fm1,0(q) = qm1, and for m2 > m1 > 0 by the symmetry relation

Fm1,m2(q) = Fm2,m1(q).

Proof. To keep the work self-contained we give a proof of this recurrence, where we use
the before-mentioned combinatorial description of once-shuffled decks of n cards σ =
(σ1, . . . , σn) ∈ Dn by means of length-n words w = w1 . . . wn ∈ Wn. We count the number
of correct guesses, where we distinguish according to the first letter w1. If w1 = a then
the first drawn card is 1, σ1 = 1, and this card will be predicted correctly by the guesser.
The guesser keeps his strategy of guessing for the deck of remaining cards, which is order-
isomorphic to a deck of n− 1 cards generated by the length-(n− 1) word w′ = w2 . . . wn;
to be more precise, if σ = (1, σ2, . . . , σn) ∈ Dn and σ′ = (σ′1, . . . , σ

′
n−1) ∈ Dn−1 are the

labels of the cards in the deck generated by the words w = aw′ ∈ Wn and w′ ∈ Wn−1,
respectively, then it simply holds σi = σ′i−1 + 1, 2 6 i 6 n. Since w′ is a random word
of length n − 1 if started with a random word w of length n, this yields the summand
qDn−1(q) in equation (2).

If w1 = b then we first consider the particular case that w = bn, i.e., that the cut of
the deck has been at 0. Since in this case the deck of cards corresponds to the identity
permutation σ = idn, the guesser will predict all cards correctly using the optimal strategy,
which leads to the summand qn in (2). Apart from this particular case, w1 = b corresponds
to a deck of cards where the first card is m > 2 and thus will cause a wrong prediction
by the guesser; however, due to complete feedback, now the guesser knows that the cut is
at m− 1, or in alternative terms, he knows that the remaining deck is generated from a
word w′ = w2 . . . wn that has j := n−m b’s and n−1− j = m−1 a’s, with 0 6 j 6 n−2.
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From this point on the guesser changes the strategy, which again could be formulated
in alternative terms by saying that the guesser makes a guess for the next letter in the
word, in a way that the guess is a if the number of a’s exceeds the number of b’s in the
remaining subword, that the guess is b in the opposite case, and (in order to keep the
outcome deterministic) that the guess is a if there is a draw between the number of a’s
and b’s. More generally, let us assume that the word consists of m1 > 0 a’s and m2 > 0 b’s
and each of these

(
m1+m2

m1

)
words occur with equal probability, then let us define the r.v.

Ĉm1,m2 counting the number of correct guesses by the before-mentioned strategy as well

as the generating function Fm1,m2(q) =
(
m1+m2

m1

)
E(qĈm1,m2 ). It can be seen immediately

that Ĉm1,m2 and so Fm1,m2(q) is symmetric in m1 and m2, and that Fm1,m2(q) satisfies the
recurrence stated in Lemma 3. Moreover, these considerations yield the third summand∑n−2

j=0 Fn−1−j,j(q) in equation (2).

When considering the two-color card guessing game (with complete feedback) starting
with m1 cards of type (color) a and m2 cards of type (color) b it apparently corresponds to
the guessing game for the letters of a word over the alphabet {a, b} consisting of m1 a’s and
m2 b’s as described in the proof of Lemma 3. Thus, the r.v. Cm1,m2 counting the number of
correct guesses when the guesser uses the optimal strategy for maximizing correct guesses,
i.e., guessing the color corresponding to the larger number of cards present [9, 18, 22, 23],

and the r.v. Ĉm1,m2 are equally distributed, Cm1,m2

L
= Ĉm1,m2 . Consequently, the auxiliary

function Fm1,m2(q) stated in Lemma 3 is the generating function of Cm1,m2 :

Fm1,m2(q) =

(
m1 +m2

m1

)
· E(qCm1,m2 ). (3)

Remark 4. In most works considering Cm1,m2 it is assumed without loss of generality that
m1 > m2 > 0. However, we note that by definition of the two-color card guessing game the
order of the parameters is not of relevance under the optimal strategy: Cm1,m2 = Cm2,m1 .

Remark 5. As has been pointed out in [22], the two-color guessing procedure for the cards
of a deck with m1 cards of type a (say color red) and m2 cards of type b (say color black)
can be formulated also by means of the so-called sampling without replacement urn model
starting with m1 and m2 balls of color red and black, respectively, where in each draw a
ball is picked at random, the color inspected and then removed, until no more balls are
left. Then the urn histories can be described via weighted lattice paths from (m1,m2) to
the origin with step sets “left” (−1, 0) and “down” (0,−1): at position (k1, k2), a left-step
and a down-step have weights k1

k1+k2
and k2

k1+k2
, respectively, and reflect the draw of a

red ball or a black ball, resp., occurring with the corresponding probabilities. Several
quantities of interest for card guessing games can be formulated also via parameters of
the sample paths of this urn, such as the first hitting of the diagonal or the first hitting
of one of the coordinate axis, which is used in a subsequent section.

Concerning a distributional analysis of Xn, an important intermediate result is the fol-
lowing distributional equation, which we obtain by translating the recurrence relation (2)
into a recursion for probability generating functions.
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Theorem 6 (One-time riffle and two-color card guessing). The random variable X = Xn

of correctly guessed cards, starting with a deck of n cards, after a one-time riffle satisfies
the following decomposition:

Xn
L
= I1

(
X∗n−1 + 1

)
+ (1− I1)

(
I2 · n+ (1− I2) · Cn−1−Jn,Jn

)
, (4)

where I1
L
= Be(0.5), I2

L
= Be(0.5n−1), and Cm1,m2 denotes the number of correct guesses in a

two-color card guessing game, with Be(p) denoting a Bernoulli distribution with parameter

p, such that P{I = 1} = p and P{I = 0} = 1 − p for I
L
= Be(p). Additionally, X∗n−1 is

an independent copy of X defined on n− 1 cards. Moreover, Jn
L
= B∗(n− 1, p) denotes a

truncated binomial distribution:

P{Jn = j} =

(
n− 1

j

)
/(2n−1 − 1), 0 6 j 6 n− 2.

All random variables I1, I2, Jn, as well as Cm1,m2 are mutually independent.

Proof. By definition, the probability generating function of Xn is given as follows:

E(qXn) =
Dn(q)

2n
.

Thus, we get from (2) the equation

E(qXn) =
1

2
· E(qXn−1+1) +

1

2n
· qn +

1

2n

n−2∑
j=0

Fn−1−j,j(q). (5)

As pointed out above, the probability generating function of Cm1,m2 is given via

E(qCm1,m2 ) =
Fm1,m2(q)(
m1+m2

m1

) .
Thus, the last summand in (5) yields the following representation

1

2n

n−2∑
j=0

Fn−1−j,j(q) =
1

2n

n−2∑
j=0

E(qCn−1−j,j) ·
(
n− 1

j

)

We note that
(n−1

j )
2n

cannot be directly translated into a probabilistic setting, as for q = 1

the sum
∑n−2

j=0

(
n−1
j

)
reduces to 2n−1 − 1, instead of 2n. However, we observe that the

term

P{Jn = j} =

(
n−1
j

)
2n−1 − 1
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corresponds to a truncated binomial distribution Jn with support {0, . . . , n − 2}. Thus
we obtain further

1

2n

n−2∑
j=0

Fn−1−j,j(q) =
2n−1 − 1

2n

n−2∑
j=0

E(qCn−1−j,j) ·
(
n−1
j

)
2n−1 − 1

=
1

2

(
1− 1

2n−1

) n−2∑
j=0

E(qCn−1−j,j)P{Jn = j} =
1

2

(
1− 1

2n−1

)
E(qCn−1−Jn,Jn ),

where the two prefactors are translated into the stated Bernoulli distributed random
variables. Translating these expressions for the probability generating functions involved
into a distributional equation leads to the stated result. Note that the fact that X∗n−1
indeed has the same distribution as X defined on a deck of n − 1 cards follows from
equation (2).

The distributional decomposition together with the properties of the binomial distri-
bution and the limit laws of the two-color card guessing game allow to obtain a limit law
for Xn. By the classical de Moivre–Laplace theorem, we can approximate the binomial
distribution Jn with mean n

2
and standard deviation

√
n/2 by a normal random variable.

This suggests that we need to study Cn−1−j,j for j = n
2

+ x
√
n, as n tends to infinity. We

recall the limit law for the two-color card guessing game in the required range (see [22, 23]
for a complete discussion of all different limit laws of Cm1,m2 depending on the growth
behavior of m1, m2; additionally, we also refer to [9, 31] for the case m1 = m2).

Theorem 7 (Limit law for two-color card guessing [22, 23]). Assume that the numbers
m1, m2 satisfy m1−m2 ∼ ρ ·√m1, as m1 →∞, with ρ > 0. Then, the number of correct
guesses Cm1,m2 is asymptotically linear exponentially distributed,

Cm1,m2 −m1√
m1

L→LinExp(ρ, 2),

or equivalently by explicitly stating the cumulative distribution function of LinExp(ρ, 2):

P{Cm1,m2 6 m1 +
√
m1z} → 1− e−z(ρ+z), for z > 0.

In order to derive a limit law for Xn we require first a limit law for Cn−1−Jn,Jn as
occurring in Theorem 6.

Lemma 8. The random variable Cn−1−Jn,Jn, with Jn denoting a truncated binomial dis-
tribution P{Jn = j} =

(
n−1
j

)
/(2n−1 − 1), 0 6 j 6 n − 2, satisfies the following limit

law:
Cn−1−Jn,Jn − n

2√
n

→ G.

Here G denotes a generalized gamma distributed random variable with probability density
function

f(x) =

√
2

π
· 8x2e−2x2 , x > 0.
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Figure 2: Plot of the density function f(x) of the generalized Gamma distribution occur-
ring in Theorem 10 and Lemma 8.

Remark 9. This special instance of a generalized Gamma distribution is also known as
a Maxwell-Boltzmann distribution with parameter a = 1/2, which is of importance for
describing particle speeds in idealized gases.

The first three raw integer moments of G are

E(G) = µG =

√
2

π
≈ 0.7979, E(G2) =

3

4
, E(G3) =

√
2

π
.

Consequently, the standard deviation σG and the skewness γG are given by

σG =
√
E(G2)− µ2

G ≈ 0.3367, γG =
E(G3)− 3µGE(G2) + 2µ3

G

σ3
G

≈ 0.4857,

leading to a right-skewed distribution, in agreement with the numerical observations of
the limit law of Xn (which turns out to be G as well) in [21]. See Figure 2 for a plot of
the density function of G.

Proof of Lemma 8. We consider the distribution function

Fn(x) = P
{
Cn−1−Jn,Jn 6

n

2
+ x
√
n
}

for fixed positive real x. Conditioning on the truncated binomial distribution gives

Fn(x) =
n−2∑
j=0

P
{
Cn−1−j,j 6

n

2
+ x
√
n
}
P{Jn = j}.

We can use the symmetry of the binomial distribution, as well as of the random variable
Cm1,m2 , to get

Fn(x) ∼ 2 ·
n−2∑

j=bn/2c

P
{
Cj,n−1−j 6

n

2
+ x
√
n
}
· P{Jn = j}.
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Our task is to evaluate this sum for n tending to infinity. We proceed using standard
methods, namely the local limit theorem for the binomial distribution P{Jn = j}, as well
as approximating the sum by an integral. We also require the asymptotics of the two-
color card-guessing game in the required range, as stated in Theorem 7. Combining all
these three steps yields the desired asymptotic expansion of Fn(x). We start by replacing
the binomial distribution with the Gaussian law. By the local limit theorem for the
binomial distribution and also approximating the sum by an integral, we get for large n
the asymptotics

Fn(x) ∼ 2

∫ n−2

n/2

P
{
Cj,n−1−j 6

n

2
+ x
√
n
}
· e
− (j−µn)2

2σ2n

σn
√

2π
dj,

where µn = n/2 and σn =
√
n/2. Substituting j = µn + tσn, we obtain further

Fn(x) ∼ 2

∫ ∞
0

P
{
Cn/2+t√n/2,n−1−n/2−t√n/2 6

n

2
+ x
√
n
}
· e
− t

2

2

√
2π
dt.

Next, we use the limit law from Theorem 7 for the two-color card guessing game with

m1 = n/2 + t
√
n/2, m2 = n− 1− n/2− t

√
n/2.

Since Cm1,m2 > max{m1,m2} (see, e.g., [22]), we deduce that for t > 2x it holds

P
{
Cn/2+t√n/2,n−1−n/2−t√n/2 6

n

2
+ x
√
n
}
∼ 0.

Furthermore, in the range 0 6 t 6 2x we obtain from Theorem 7, by setting ρ =
√

2t and
z =
√

2(x− t/2),

P
{
Cn/2+t√n/2,n−1−n/2−t√n/2 6

n

2
+ x
√
n
}

→ 1− exp
(
−
√

2
(
x− t

2

)(√
2t+

√
2(x− t

2
)
))

= 1− exp
(
− 2x2 +

t2

2

)
.

This implies that

Fn(x) ∼ 2√
2π
·
∫ 2x

0

e−t
2/2
(

1− exp
(
− 2x2 +

t2

2

))
dt

=
2√
2π
·
∫ 2x

0

(
e−t

2/2 − e−2x2
)
dt =

2√
2π
·
(∫ 2x

0

e−t
2/2dt− 2xe−2x

2
)
.

Differentiating the last expression with respect to x leads to the desired density function
of the limiting r.v. G,

f(x) =
2√
2π

(
e−2x

2 · 2− 2e−2x
2

+ 8x2 · e−2x2
)

=

√
2

π
· 8x2e−2x2 .
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Next we state the main result of this work, a limit law for the number of correct
guesses Xn, as announced in the introduction. The limit law is the same as in Lemma 8,
involving the generalized Gamma distribution.

Theorem 10. The normalized random variable Yn = (Xn − n
2
)/
√
n converges in dis-

tribution to a generalized gamma distributed random variable G, Yn
L→G, with density

f(x) =
√

2
π
· 8x2e−2x2, x > 0.

Remark 11 (A fixed-point equation). Once we know that the limit law exists, one can
informally derive the limit law from the distributional equation (4) by omitting asymp-
totically negligible terms:

Yn ∼ I1 · Y ∗n−1 + (1− I1)
Cn−1−Jn,Jn − n

2√
n

,

where I1 = Be(0.5). Thus, for large n we anticipate a fixed-point equation for the limit
law Y of Yn:

Y ∼ I1 · Y ∗ + (1− I1) ·G,

where Y ∗
L
=Y denotes an independent copy of Y and G a generalized Gamma distributed

random variable, independent of Y, Y ∗ and I1. Similarly, we may anticipate that all integer
moments of Y are simply the moments of G, as the indicator variables are mutually
exclusive:

E(Y r) =
1

2
E
(
(Y ∗)r

)
+

1

2
E(Gr), such that E(Y r) = E(Gr), r > 0.

Proof of Theorem 10. According to Theorem 6 we get

P
{
Xn 6

n

2
+ x
√
n
}

=
1

2
P
{
Xn−1 + 1 6

n

2
+ x
√
n
}

+
(1

2
− 1

2n

)
P
{
Cn−1−Jn,Jn 6

n

2
+ x
√
n
}
.

Moreover, by iterating this recursive representation we observe that, for n→∞,

P
{
Xn 6

n

2
+ x
√
n
}
∼
∑
`>1

1

2`
· P
{
Cn−`−Jn+1−`,Jn+1−` 6

n

2
+ x
√
n
}
.

As n tends to infinity, Lemma 8 ensures that all the distribution functions occurring
converge to the same limit, from which the stated result follows.

2.4 Moment convergence

Krityakierne and Thanatipanonda [21] provided extremely precise results for the first
few (factorial) moments of Xn, as well as for the centered moments E((Xn − µ)r), for
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r = 1, 2, 3. We state a simplified version of their result:

µ = E(Xn) =
n

2
+

√
2n

π
− 1

2
+O(n−1/2), E

(
(Xn − µ)2

)
=
(3

4
− 2

π

)
n+O(1),

E
(
(Xn − µ)3

)
=

√
2

π

( 4

π
− 5

4

)
n3/2 +O(n1/2). (6)

First we use above expansions of E((Xn − µ)r) to determine the asymptotics of the
first moments of Yn = (Xn − n

2
)/
√
n in a straightforward way. One observes that the

limits of E
(
Y r
n

)
, r = 1, 2, 3, are in agreement with the limit law G stated in Theorem 10.

Proposition 12. Let Yn = (Xn − n
2
)/
√
n. The moments E(Y r

n ) converge for r = 1, 2, 3
to the moments of the limit law G:

E
(
Yn
)
→
√

2

π
= E(G), E

(
Y 2
n

)
→ 3

4
= E(G2), E

(
Y 3
n

)
→
√

2

π
= E(G3).

Proof. The result for the expected value E(Yn) follows directly from (6). In the following
let µ = E(Xn) = n

2
+ δn. Due to (6) it holds

δn =

√
2n

π
− 1

2
+O(n−1/2). (7)

Consequently, the second centered moment can be rewritten as follows:

E
(
(Xn − µ)2

)
= E

(
(Xn −

n

2
− δn)2

)
= E

(
(Xn −

n

2
)2
)
− 2δnE

(
Xn −

n

2

)
+ δ2n,

which gives, by using expansions (6) and (7),

E
(
Y 2
n

)
=

1

n
E
(
(Xn −

n

2
)2
)

=
1

n

[
E
(
(Xn − µ)2

)
+ 2δnE

(
Xn −

n

2

)
− δ2n

]
=

1

n

[
E
(
(Xn − µ)2

)
+ δ2n

]
∼ 3

4
.

In a similar way, by rewriting the third centered moment and using (6) and (7), one
obtains the stated result for E(Y 3

n ).

Actually, in the following we are going to show that indeed all integer moments of Yn
converge to the corresponding moments of the limit law G. We want to point out that in
general convergence in distribution does not imply moment convergence. To the best of
the authors knowledge, to guarantee moment convergence additional uniform integrability
conditions on the sequence (Yn)n∈N =

(
(Xn − n

2
)/
√
n
)
n∈N would be required (for the first

moment see, e.g., [4, p. 30ff]), which seems to be much more technical and out of reach.
Here, we will deal directly with the generating functions description to obtain the desired
moment convergence. Let us first state the moments of the limit law.
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Proposition 13. The integer moments of the generalized gamma distributed random
variable G with probability density function as defined in Lemma 8 are given as follows:

E
(
Gr
)

=
Γ
(
r+3
2

)
2
r
2
−1√π

, r > 0.

Proof. A straightforward evaluation of the defining integral of the r-th moment of G by
means of the Γ-function after substituting t = 2x2 yields the stated result:

E
(
Gr
)

= 8

√
2

π
·
∫ ∞
0

xr+2e−2x
2

dx =
1

2
r
2
−1√π

·
∫ ∞
0

t
r+1
2 e−tdt =

Γ
(
r+3
2

)
2
r
2
−1√π

.

Theorem 14. Let Yn = (Xn − n
2
)/
√
n. The r-th integer moments E(Y r

n ) converge, for
arbitrary but fixed r and n→∞, to the moments of the limit law G:

E
(
Y r
n

)
→ E

(
Gr
)

=
Γ
(
r+3
2

)
2
r
2
−1√π

, r > 0.

Remark 15. Since the generalized gamma distributed r.v. G is uniquely characterized
by its moments (which easily follows, e.g., from simple growth bounds), we note that
an application of the moment’s convergence theorem of Fréchet and Shohat (see the
original work [13], or the book [26, 11.4.C, page 187]) immediately shows convergence in
distribution of Yn to G, thus gives an alternative proof of Theorem 10.

To show Theorem 14 we will again start with the recursive description of Dn(q) given in
Lemma 3, but in order to deal with this recurrence we use an alternative approach based on
generating functions and basic techniques from analytic combinatorics [12]. Furthermore,
we use explicit formulæ for a suitable bivariate generating function of E

(
qCm1,m2

)
and the

so-called diagonal as have been derived in [18, 22]. They can be stated in the following
form.

Proposition 16 ([18, 22]). The g.f. F̃ (x, y, q) =
∑

m1>m2>0

(
m1+m2

m1

)
E
(
qCm1,m2

)
xm1ym2 and

F̃0(x, y, q) =
∑
m>0

(
2m
m

)
E
(
qCm,m

)
xmym are given as follows:

F̃ (x, y, q) =
1− y

1− qx− y
+

qxy(q − (1 + q)y)

(1− qx− y)(1−B(qxy))(1− (1 + q)B(qxy))
,

F̃0(x, y, q) =
1

1− (1 + q)B(qxy)
,

where B(t) = 1−
√
1−4t
2

=
∑

n>1
1
n

(
2n−2
n−1

)
tn denotes the g.f. of the shifted Catalan-numbers.

With these results we obtain a generating functions solution of recurrence (2) for
Dn(q).
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Lemma 17. The bivariate generating function

D(z, q) =
∑
n>0

Dn(q)zn =
∑
n>0

2nE
(
qXn
)
zn

is given by the following explicit formula, with B(t) = 1−
√
1−4t
2

:

D(z, q) =
1− z

(1− qz)2
+

z

1− qz

[
2(1− z)

1− (1 + q)z

+
2qz2(q − (1 + q)z)

(1− (1 + q)z)(1− (1 + q)B(qz2))(1−B(qz2))
− 1

1− (1 + q)B(qz2)

]
.

Proof. Introducing the auxiliary g.f. F (x, y, q) =
∑

m1>0

∑
m2>0 Fm1,m2(q)x

m1ym2 , we ob-
tain from recurrence (2) after multiplying with zn and summing over integers n > 0 the
relation

D(z, q) = qzD(z, q) +
1− z
1− qz

+ zF (z, z, q),

and further

D(z, q) =
1− z

(1− qz)2
+
zF (z, z, q)

1− qz
. (8)

Using the relation

F (x, y, q) = F̃ (x, y, q) + F̃ (y, x, q)− F̃0(x, y, q),

which is immediate from the definitions given in (3) and Proposition 16, and the explicit
formulæ given in Proposition 16, the stated result follows from (8).

We are interested in the asymptotic behaviour of the moments of the shifted r.v.
X̂n := Xn − n/2 =

√
nYn. The corresponding g.f. D̂(z, q) is closely related to D(z, q) as

defined in Lemma 17, since we get

D̂(z, q) =
∑
n>0

2nE
(
qX̂n
)
zn =

∑
n>0

2nE
(
qXn
)
q−

n
2 zn = D

( z
√
q
, q
)
. (9)

Actually, we will set q = 1 + u and use that the coefficients of the probability generating
function in a series expansion around u = 0 yield the factorial moments of X̂n:

E
(
(1 + u)X̂n

)
=
∑
r>0

ur E
((

X̂n
r

))
=
∑
r>0

E
(
X̂r
n

)ur
r!
.

Thus one gets

D̂(z, 1 + u) =
∑
r>0

gr(z)ur =
∑
r>0

ur · 1

r!

∑
n>0

2nE
(
X̂r
n

)
zn, (10)

and in order to determine the asymptotic behaviour of the factorial (and raw) moments
of X̂n we carry out a local expansion of the functions gr(z) = [ur]D̂(z, 1 + u) around the
dominant singularities followed by basic applications of so-called transfer lemmata.

The next lemma states the relevant properties of the coefficients of D̂(z, 1 + u).
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Lemma 18. Let D̂(z, q) be the g.f. of the shifted r.v. X̂n = Xn − n
2

as defined in (9).

Then the functions gr(z) = [ur]D̂(z, 1 + u) obtained as coefficients in a series expansion
of D̂(z, 1 + u) around u = 0 have radius of convergence 1

2
and, for r > 1, have the

two dominant singularities ρ1,2 = ±1
2
. Moreover, the local behaviour of gr(z) around

ρ := ρ1 = 1
2

is given as follows, with Z := 1
1−2z :

gr(z) = (r + 1)
(1

8

) r
2Z

r
2
+1 ·

(
1 +O

(
Z−

1
2

))
, r > 0.

Remark 19. We remark that a closer inspection shows that the second dominant singu-
larity ρ2 = −1

2
occurring in the functions gr(z) defined by Lemma 18 yield contributions

that do not affect the main terms stemming from the contributions of the singularity
ρ = ρ1 = 1

2
. Since we are here only interested in the main term contribution, we will

restrict ourselves to elaborate the expansion around ρ. However, the presence of two
dominant singularities is reflected by the fact, that lower order terms of the asymptotic
expansions of the r-th moments of Xn are different for n even and n odd, resp., as has
been observed in [21].

Proof. Using (9) and the explicit formula of D(z, q) given in Lemma 17, one gets after
simple manipulations

D̂(z, q) =

√
q(
√
q − z)

(
√
q − qz)2

+
2z(
√
q − z)

(
√
q − (1 + q)z)(

√
q − qz)

+
z
(√

q(q − 1) +
(
(1 + q)z − q 3

2

)(
1− 2B(z2)

))
(1− (1 + q)B(z2))(

√
q − (1 + q)z)(

√
q − qz)

. (11)

We set q = 1 +u and carry out a series expansion of the summands of (11) around u = 0.
Since this is a rather straightforward task using essentially the binomial series, but leads
to rather lengthy computations when one intends to be exhaustive in every step, we will
here only give a sketch of such computations and are omitting some of the details.

When treating the first summand in (11) and inspecting the coefficients in the series
expansion around u = q − 1 = 0,

D̂[1](z, q) :=

√
q (
√
q − z)

(
√
q − qz)2

=
∑
r>0

g[1]r (z)ur,

one easily observes that the functions g
[1]
r (z) are analytic for |z| < 1 (to be more precise,

the unique dominant singularity is at z = 1), which causes exponentially small contribu-

tions for the coefficients [zr]g
[1]
r (z) compared to the remaining summands. Thus, these

contributions are negligible and do not have to be considered further.
When expanding the second summand of (11) around u = q − 1 = 0,

D̂[2](z, q) :=
2z(
√
q − z)

(
√
q − (1 + q)z)(

√
q − qz)

=
∑
r>0

g[2]r (z)ur, (12)
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we have to treat with more care the factor (
√
q− (1+ q)z)−1. First, by using the binomial

series we get

√
q − (1 + q)z =

√
1 + u− (2 + u)z = (1− 2z)

(
1 +

u

2
+
∑
k>2

ck
1− 2z

uk
)
,

with ck =
( 1

2
k

)
, and further, by using the geometric series,

1
√
q − (1 + q)z

=
1

(1− 2z)
(
1 + u

2

(
1 +

∑
k>1

2ck+1

1−2z u
k
))

= Z
(

1 +
∑
`>1

(−1

2
)`u`

(
1 +

∑
k>1

2ck+1Zuk
)`)

. (13)

From this expansion it is apparent that all the coefficients of ur in the series expansion,
considered as functions in z, have a unique dominant singularity at z = ρ = 1

2
. Fur-

thermore, for ` > 1 we obtain the following expansion in powers of u and locally around
z = ρ, i.e., Z =∞:

(
1 +

∑
k>1

2ck+1Zuk
)`

= 1 + `(2c2)Zu+
∑̀
j=2

(
`

j

)
(2c2)

jZj
(
1 +O(Z−1)

)
uj

+ `(2c2)
`−1(2c3)Z`

(
1 +O(Z−1)

)
u`+1 +

∑
k>`+2

O(Z`)uk,

which, after plugging into (13) and using c2 = −1
8
, c3 = 1

16
leads to the required expansion:

1
√
q − (1 + q)z

= Z − Z
2
u+

∑
`>1

[
(
1

8
)`Z`+1(1 +O(Z−1))u2`

− 1

2
(
1

8
)`(2`+ 1)Z`+1(1 +O(Z−1))u2`+1

]
. (14)

Next, it is easy to see that the coefficients in the expansion around u = 0 of the remaining
factors of D̂[2](z, q) are functions in z with radius of convergence 1, and one gets

2z(
√
q − z)

√
q − qz

= 1 +O(Z−1) + (1 +O(Z−1))u+
∑
r>2

O(Z0)ur. (15)

Combining the expansions (14) and (15), we obtain that the functions g
[2]
r (z) in expan-

sion (12) have a unique dominant singularity at z = ρ and allow there the local expansions

g[2]r (z) =

{
(1
8
)`Z`+1(1 +O(Z−1)), for r = 2` even,

−1
2
(1
8
)`(2`− 1)Z`+1(1 +O(Z−1)), for r = 2`+ 1 odd.

(16)
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Finally, we consider an expansion in powers of u = q − 1 of the third summand of
(11),

D̂[3](z, q) :=
z
(√

q(q − 1) +
(
(1 + q)z − q 3

2

)(
1− 2B(z2)

))
(1− (1 + q)B(z2))(

√
q − (1 + q)z)(

√
q − qz)

. (17)

Let us define Z̃ = 1
1−4z2 . Since B(z2) = 1

2
(1− Z̃− 1

2 ), we get

1− (1 + q)B(z2) = Z̃−
1
2

(
1− 1

2
(Z̃

1
2 − 1)

)
and thus

1

1− (1 + q)B(z2)
=

Z̃ 1
2

1− 1
2
(Z̃ 1

2 − 1)u
= Z̃

1
2

(
1 +

∑
r>1

(1

2
(Z̃

1
2 − 1)u

)r)
. (18)

Therefore, for this factor of D̂[3](z, q) we obtain that the coefficients of ur are functions in z
with two dominant singularities ρ1,2 = ±1

2
. However, as already pointed out in Remark 19,

the contributions stemming from the singularity ρ2 = −1
2

do not affect the main term

contributions and thus they are not considered any further. Since Z̃ = 1
(1−2z)(1+2z)

=
1
2
Z(1 +O(Z−1)), we thus obtain from (18) the local expansion around z = ρ:

1

1− (1 + q)B(z2)
=
∑
r>0

(
1

2
)
3r+1

2 Z
r+1
2 (1 +O(Z−

1
2 ))ur. (19)

In a similar fashion one obtains the expansion

z
(√

q(q − 1) +
(
(1 + q)z − q 3

2

)(
1− 2B(z2)

))
√
q − qz

= −2
1
2Z−

3
2 (1 +O(Z−1)) + (1 +O(Z−

1
2 ))u+

∑
r>2

O(Z0)ur, (20)

whereas the last factor of D̂[3](z, q) has been treated already in (14). Combining expan-
sions (19), (20) and (14), we get

D̂[3](z, q) =
(∑
r>0

(
1

8
)
r
2Z

r
2 (1 +O(Z−

1
2 ))ur

)
(21)

·
(∑
`>0

(
1

8
)`Z`(1 +O(Z−1))u2` + (−1

2
)(

1

8
)`(2`+ 1)Z`(1 +O(Z−1))u2`+1

)
·
(
− (1 +O(Z−1)) + (

1

2
)
1
2Z

3
2 (1 +O(Z−

1
2 ))u+

∑
r>2

O(Z
3
2 )ur

)
.
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To compute the Cauchy product of the first two factors of (21) we use (with some coeffi-
cients αr, βr ∈ R):(∑

r>0

αrZ
r
2 (1 +O(Z−

1
2 ))ur

)
·
(∑
r>0

βrZb
r
2
c(1 +O(Z−

1
2 ))ur

)

=
∑
r>0

γrZ
r
2 (1 +O(Z−

1
2 ))ur, with γr =

b r
2
c∑

`=0

β2` αr−2`.

In particular, for αr = (1/8)
r
2 and β2` = (1/8)` one gets γr = (1/8)

r
2 (br/2c + 1), which

eventually shows that the coefficients g
[3]
r (z) in the expansion of D̂[3](z, q) around u =

q − 1 = 0 are given as follows:

g[3]r (z) =

{
−(1 +O(Z−1)), for r = 0,

2(1
8
)
r
2 (b r−1

2
c+ 1)Z r

2
+1(1 +O(Z− 1

2 )), for r > 1.
(22)

Thus, combining (16) and (22) one obtains, after simple manipulations, the stated

local expansion of the coefficients gr(z) = g
[1]
r (z) + g

[2]
r (z) + g

[3]
r (z) in the series expansion

of D̂(z, q) around u = q − 1 = 0.

The expansion of D̂(z, q) stated in Lemma 18 easily yields the asymptotic behaviour
of the moments of Yn.

Proof of Theorem 14. According to the definition of X̂n and relation (10) we get for the
factorial moments:

E
(
X̂r
n

)
=
r![znur]D̂(z, 1 + u)

2n
=
r![zn]gr(z)

2n
,

with gr(z) as defined in Lemma 18. Since the dominant singularity of gr(z) relevant for
the asymptotic behaviour of the main term is at z = ρ = 1

2
(see Remark 19) with a local

expansion stated in above lemma, we can apply basic transfer lemmata [12] to obtain for
the coefficients:

[zn]gr(z) = [zn](r + 1)(
1

8
)
r
2

1

(1− 2z)
r
2
+1
·
(
1 +O(

√
1− 2z)

)
= (r + 1)(

1

8
)
r
2

2nn
r
2

Γ( r
2

+ 1)
·
(
1 +O(n−

1
2 )
)
.

Thus, the asymptotic behaviour of the factorial moments is given by

E
(
X̂r
n

)
=

(r + 1)!(1
8
)
r
2

Γ( r
2

+ 1)
n
r
2 ·
(
1 +O(n−

1
2 )
)
, r > 0. (23)

Since the r-th integer moments can be obtained by a linear combination of the factorial
moments of order 6 r, due to E

(
X̂r
n

)
= E

(
X̂r
n

)
+O

(
E
(
X̂
r−1
n

))
= E

(
X̂r
n

)
·
(
1 +O(n−

1
2 )
)
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the same asymptotic behaviour (23) also holds for the raw moments. An application of
the duplication formula for the Γ-function gives then the alternative representation

E
(
X̂r
n

)
=

Γ
(
r+3
2

)
2
r
2
−1√π

n
r
2 ·
(
1 +O(n−

1
2 )
)
, r > 0. (24)

Since X̂n = Xn − n/2 =
√
nYn, equation (24) implies E(Y r

n )→ E(Gr) as stated.

3 First pure luck guess

So far, we have been interested in the total number of correct guesses. As the guesser
follows the optimal strategy, the chances of a correct guess are always greater or equal 50
percent. Starting with a deck of n cards, we might be interested in the number of cards
Pn, divided by two, remaining in the deck when the first “pure luck guess” with only a
50 percent success chance occurs. By Proposition 2 and Theorem 6, this can only happen
after the “first phase” of always guessing the smallest number remaining in the deck has
failed and thus has been finished and so the “two-color card guessing process” has been
started already. Similar to Theorem 6 we obtain for P := Pn the distributional equation

Pn
L
= I1 · P ∗n−1 + (1− I1)(1− I2) ·Hn−1−Jn,Jn ,

where I1
L
= Be(0.5), I2

L
= Be(0.5n−1), and Hm1,m2 denotes the number of cards present,

divided by two, in a two-color card guessing game when for the first time a pure luck
guess occurs. Additionally, P ∗n−1 is an independent copy of P defined on n − 1 cards.

Moreover, as in Theorem 6, Jn
L
= B∗(n− 1, p) denotes a truncated binomial distribution:

P(Jn = j) =

(
n− 1

j

)
/(2n−1 − 1), 0 6 j 6 n− 2.

All random variables I1, I2, Jn, as well as Hm1,m2 are mutually independent.

We use a limit law for Hm1,m2 , for a certain regime of m1,m2 when both parameters
are tending to infinity, relying on results of [22, 23].

First, we require a new distribution, a functional of a Lévy distributed random variable
L = Lévy(c), c > 0, with density

fL(x) =

√
c

2π

e−c/(2x)

x3/2
, x > 0. (25)

Definition 20 (Reciprocal of a shifted Lévy distribution). Let L = Lévy(c), c > 0. Then,
let R = R(c) denote the reciprocal of the shifted random variable 1 + L:

R =
1

1 + L
, with support (0, 1).

The density of R is given by

fR(x) =

√
c

2π
· 1

(1− x)3/2x1/2
· e−

cx
2(1−x) , 0 < x < 1.
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This random variable in terms of the above density function has been appeared already
in several applications. See for example [23] for the limit law of the hitting time in
sampling without replacement or [15, 16] for its occurrence in the limit law of an uncover
process for random trees. Moreover, this random variable has appeared earlier in context
of the standard additive coalescent, where also the relation to the Lévy distribution has
been observed by Aldous and Pitman [1, Corollary 5 and Theorem 6]. We further note
that the random variable also appears as the limit law of random dynamics on the edges
of a uniform Cayley tree, a so-called “fire on tree” model [3]. In contrast to the Lévy
distribution, the random variable R has integer moments of all orders. In the special case
of c = 1 the moments have a particularly interesting structure [3, Lemma 3]:

E(Rk) = E
(

exp(−χ(2k))
)
,

where χ(2k) is a chi-distributed random variable with 2k degrees of freedom and density

21−k

(k − 1)!
x2k−1 exp(−x2/2), x > 0.

Furthermore, the random variable encodes the hitting time of a Brownian bridge starting
at level y = 0 and ending at a fixed level [27]. Finally, we note that it is easy to see that
R has the stated density function:

FR(x) = P{R 6 x} = P
{ 1

1 + L
6 x

}
= P

{1

x
6 1 + L

}
= P

{
L >

1

x
− 1
}

= 1− P
{
L <

1− x
x

}
.

Consequently,

fR(x) = −fL
(
(1− x)/x

)
· (−1) · x−2 =

√
c

2π

e−cx/(2(1−x))x3/2

(1− x)3/2
· 1

x2
,

immediately leading to the stated density.

Next, we use the following result.

Lemma 21 (Hitting time and first pure luck guess). Let Hm1,m2 denote the random
variable counting the number of remaining cards, divided by two, when for the first time
a pure luck guess happens in the two-color card guessing game, starting with m1 red and
m2 black cards. Assume further that m1,m2 → ∞ and m2 = m1 − ρ

√
m1, with ρ > 0.

Then,
Hm1,m2

m1

L→R(ρ2/2).

Proof. We combine arguments of [22, 23]: by the results of [22], the weighted sample
paths of the two-color card guessing game coincide with the sample paths of the sampling
without replacement urn (see also Remark 5). In particular, this holds with respect to
the hitting position of the diagonal x = y, as a crossing of the diagonal without hitting
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cannot happen. In [23] such hitting positions have been studied in a general setting for
paths starting at (m1,m2), with m1 > tm2 + s, and absorbing lines y = x/t − s/t, for
t ∈ N and s ∈ N0. For our purpose we set t = 1 and s = 0 in [23, Theorem 2 (4)], which
gives for 0 < x < 1:

P
{Hm1,m2

m1

6 x
}
∼
∫ x

0

ρ√
2
√

2π

1
√
u (1− u)

3
2

· e−
ρ2u

4(1−u)du =

∫ x

0

fR(u)du,

with fR(x) the density of the reciprocal of a shifted Lévy distribution with parameter
c = ρ2/2. Thus, this shows the stated limit law.

In order to obtain the limit law of Pn we require the limit law of Hn−1−Jn,Jn , which
will be determined next.

Lemma 22. The random variable Hn−1−Jn,Jn has an Arcsine limit law β(1
2
, 1
2
):

Hn−1−Jn,Jn
n
2

L→ β
(1

2
,
1

2

)
,

i.e., after suitable scaling, it converges in distribution to a Beta-distributed r.v. with pa-
rameters 1/2 and 1/2 that has the probability density function

fβ(x) =
1

π

1√
x(1− x)

, 0 < x < 1.

In a way analogous to the proof of Theorem 10, this lemma readily leads to the main
result of this section.

Theorem 23. The random variable Pn counting the number of remaining cards, divided
by two, when the first pure luck guess with only a 50 percent success chance occurs, starting
with n ordered cards and performing a single riffle shuffle, has a β

(
1
2
, 1
2

)
limit law, a so-

called Arcsine distribution:
Pn
n
2

→ β
(1

2
,
1

2

)
.

Proof of Lemma 22. We proceed similar to the proof of Lemma 8. We study the distri-
bution function F (k) = P{Hn−1−Jn,Jn 6 k} and obtain

F (k) =
n−2∑
j=0

(
n−1
j

)
2n−1 − 1

P{Hn−1−j,j 6 k}.

We use the symmetry of the binomial distribution around bn/2c as well as Hm1,m2 =
Hm2,m1 and approximate the binomial distribution using the de Moivre-Laplace theorem.
This leads to

F (k) ∼ 2

∫ n

bn/2c
e
− (j−µn)2

2σ2n · 1

σn
√

2π
· P{Hj,n−1−j 6 k}dj,
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where µn = n/2 and σn =
√
n/2. Changing the range of integration and the choice

k = x ·n/2, with 0 < x < 1, leads then, together with Lemma 21, to the improper integral

F (k) = P
{Hn−1−Jn,Jn

n/2
6 x

}
∼ 2

∫ ∞
0

e−t
2/2

√
2π

∫ x

0

t√
2πu(1− u)3/2

· e−
t2u

2(1−u)du dt.

Derivation with respect to x gives then the desired density function, where the arising
improper integral is readily evaluated:∫ ∞

0

e−t
2/2 · t · e−t2g/2dt =

1

1 + g
, for g > 0.

Setting g = x/(1− x) immediately yields the Arcsine law density function

fβ(x) =
1

π

1√
x(1− x)

, 0 < x < 1.

Finally, we note that the number of guesses with success probability one, i.e., where
the guesser knows in advance to be correct, can be treated in a similar way.

4 Summary and outlook

We obtained a weak limit law for the number Xn of correct guesses with full feedback in a
once riffle-shuffled deck of n cards. Moreover, we also derived a limit law for the size of the
deck Pn when a pure luck guess happens for the first time. Concerning generalizations,
it seems difficult to generalize our results to more than one shuffles. A main difficulty
is that the descriptions of the optimal strategy become rather involved. Also, another
difficulty is that the analysis of the three-color card guessing game (or m-color guessing
game) is very involved by itself. However, the authors are currently investigating into a
once riffle shuffled deck with a so-called 3-shuffle [2, 6], where we initially split the deck
into three packs, instead of only two. Again, it seems involved to describe the optimal
strategy, but there is still a direct link to the three-color card guessing game. The authors
plan to report on this research direction elsewhere.
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