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Abstract

In this article we study two discrete curvature notions, Bakry-Émery curva-
ture and Ollivier Ricci curvature, on Cayley graphs. We introduce Right Angled
Artin-Coxeter Hybrids (RAACHs) generalizing Right Angled Artin and Coxeter
groups (RAAGs and RACGs) and derive the curvatures of Cayley graphs of certain
RAACHs. Moreover, we show for general finitely presented groups Γ = 〈S | R〉
that addition of relators does not lead to a decrease in the weighted curvatures of
their Cayley graphs with adapted weighting schemes.

Mathematics Subject Classifications: 05C50, 53A70

1 Introduction

In recent decades, various notions of Ricci curvature were introduced and studied on
discrete spaces like combinatorial and weighted graphs. Two natural curvature concepts
are due to Ollivier and Bakry-Émery and their computation can be described as a specific
linear optimization problem. They are the curvature notions considered in this paper.
An interesting class of graphs are Cayley graphs, which are metric realisations of finitely
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generated groups. Various papers are concerned with curvature properties of certain
Cayley graphs (see, e.g., [5, 18, 17, 2, 16, 14, 20, 3, 12, 15, 26, 27, 24]). For example,
it is well known that abelian Cayley graphs have both non-negative Ollivier Ricci and
Bakry-Émery curvature (see [18, 16] and also [7] with its references). Since Cayley graphs
are vertex transitive and both curvature notions are local and invariant under graph
isomorphisms, it suffices to study curvature properties of Cayley graphs near the identity.
In this paper, we provide curvature results for the Cayley graphs of some Right Angled
Artin-Coxeter Hybrids (RAACHs), which are a generalization of Right Angled Coxeter
Groups (RACGs) and Right Angled Artin Groups (RAAGs), and which are special cases
of so-called Dyer groups. In the case of Bakry-Émery curvature, we give a description of
the curvature matrix (whose smallest eigenvalue is the curvature) and relate the curvature
under certain conditions to the second smallest eigenvalue of the negative Laplacian of
a weighted graph encoding the defining properties of the RAACH. We study also the
effect on the Cayley graph curvatures when adding relators in finitely presented groups.
Generally, the Cayley graphs become more connected under this process and one would
expect that their curvatures do not decrease. In this introduction, we discuss briefly the
relevant concepts, present our results and provide an outline of the paper.

1.1 Concepts

Cayley graphs are vertex transitive graphs associated to finitely generated groups. Let Γ
be a group with a finite set S of non-trivial generators. Henceforth, we use the notation
S∗ = {s, s−1 | s ∈ S} for the symmetrized set of generators. The associated Cayley
graph is a combinatorial graph, denoted by Cay(Γ, S), with vertex set Γ and an edge
between γ, γ′ ∈ Γ if and only if we have γ′ = γs for some s ∈ S∗. Γ acts transitively on
Cay(Γ, S) by left multiplication. For general combinatorial graphs we use the notation
G = (V,E), where V denotes the vertex set of G and E denotes its set of edges. We call
x, y ∈ V neighbours, if they are connected by an edge and we write x ∼ y. Connected
combinatorial graphs have a natural distance function d : V × V → N∪ {0}, and spheres
and ball around a vertex x ∈ V are defined by Sk(x) = {y ∈ V | d(x, y) = k} and
Bk(x) = {y ∈ V | d(x, y) 6 k}, respectively. All graphs in this paper will be simple, that
is, they do not have loops or multiple edges, but they may be weighted.

We like to emphasize that, in this paper, Cayley graphs associated to Γ and S are
always simple, even though γ′ = γs implies γ = γ′s−1 with s, s−1 ∈ S∗, and readers
might therefore be tempted to insert two edges connecting γ and γ′ in the case ord(s) >
3. However, such a relation between γ, γ′ ∈ Γ leads to only one indirected edge in
Cay(Γ, S) in this paper. In the context of Theorem 9 below, we will encounter the issue
of merging and collapsing of generators, but we will then take care of this phenomenon by
keeping the underlying Cayley graph simple and dealing with the merging of generators
by introducing weights. Readers may think that collapsing of generators would lead to
loops, but we simply ignore these collapsed generators and therefore avoid any loops in
the corresponding Cayley graphs. These comments are meant to avoid any confusion
about Cayley graphs now and later in this introduction.

A combinatorial graph G is called weighted, if it comes with a vertex measure m : V →
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(0,∞) and/or edge weights w : E → (0,∞). Sometimes it is convenient to consider edge
weights as a symmetric function w : V × V → [0,∞) where we have w(x, y) = w(y, x),
and w(x, y) = 0 if and only if x 6∼ y. The degree of a vertex x ∈ V , denoted by
deg(x), is the number of its neighbours in the case of an unweighted graph, and defined
as deg(x) =

∑
y∼xw(x, y) in the case of a weighted graph (G,m,w). The Laplacian on a

weighted graph (G,m,w) is defined on functions f : V → R as follows:

∆f(x) =
1

m(x)

∑
y∈V

w(x, y)(f(y)− f(x)). (1)

In the case of an unweighted graph we choose m ≡ 1V and w(x, y) = 1 for x ∼ y.
We refer to this Laplacian as the non-normalized Laplacian. Another possible choice is
m(x) = deg(x) and w(x, y) = 1 for x ∼ y, in which case the associated Laplacian is
called the normalized Laplacian. If m(x) >

∑
y∈V w(x, y) for all x ∈ V , we can think

of µx(y) = w(x,y)
m(x)

as transition probabilities of a random walk with laziness µx(x) =

1 −
∑

y∼x µx(y), and we call the associated Laplacian the random walk Laplacian. The
normalized Laplacian coincides with the Laplacian associated to the simple random walk
without laziness. Note that −∆ has only real eigenvalues and is non-negative. We denote
its eigenvalues in increasing order by

0 = λ1(−∆) 6 λ2(−∆) 6 · · · 6 λn(−∆),

where n is the number of vertices of G. For a weighted graph with missing vertex measure
or missing edge weigths, we choose the trivial vertex measure m ≡ 1V or trivial edge
weights w ≡ 1E for the corresponding Laplacian, unless stated otherwise.

Let us now introduce a special family of finitely presented groups which we call Right
Angled Artin-Coxeter Hybrids (RAACHs). These groups are special cases of a family
of groups which were recently coined Dyer groups (see [30, 23] and Dyer’s paper [11]).
A RAACH Γ is determined by a finite weighted graph (H,m) with vertex set S and a
function m : S → {2, 3, 4,∞}. The elements of S are the generators of Γ and their orders
are determined by m. Henceforth, we use the notation

Rj := {s ∈ S | ord(s) = j}

for the generators of order j ∈ {2, 3, 4,∞}. By abuse of notation, we will also use the
same symbol Rj for the set of relations {sj = e | s ∈ Rj}. The only other defining
relations of a RAACH Γ are commutator relations [s, t] = s−1t−1st = e, which are present
if and only if s, t ∈ S are neighbours in H. Collecting all this commutator relations into
the set CH , we define the RAACH Γ as

Γ = 〈S | R2 ∪R3 ∪R4 ∪R∞ ∪ CH〉.

In the case R∞ = S, Γ is a Right Angled Artin Group (RAAG), and in the case R2 = S,
Γ is a Right Angled Coxeter Group (RACG). We refer to the graph (H,m) as the defining
graph of the RAACH Γ.
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Let us finish with some background about the two curvature notions considered in this
paper.

Ollivier Ricci curvature is motivated by the following fact in Riemannian Geometry:
positive/negative Ricci curvature implies, in the setting of Riemannian manifolds, that the
average distance between corresponding points in closeby small balls is smaller/larger than
the distance between their centers (see [31]). Ollivier transferred this property to metric
spaces with random walks in [22] with the help of probability measures on balls in the
language of Optimal Transport Theory. In the setting of graphs, Ollivier Ricci curvature
κp depends on an idleness parameter p ∈ [0, 1] and can be understood as a curvature
notion on their edges. In this paper we will use a slight variation of this curvature notion
due to Lin-Lu-Yau [17], defined by

κLY Y (x, y) = lim
p→1

κp(x, y)

1− p

for adjacent vertices x ∼ y representing an edge. We will also use an alternative limit-free
description of κLLY by Münch-Wojciechowski [21] using the random walk Laplacian ∆,
which is based on the duality principle:

κLLY (x, y) = inf
f∈1–Lip

f(y)−f(x)=1

∆f(x)−∆f(y).

The reformulation of Ollivier Ricci curvature via Laplacians allows to consider Ollivier
Ricci curvature for general weighted graphs and to remove the original restriction to
probability measures.

Bakry-Émery curvature was introduced in [1], and it is motivated by the curvature-
dimension inequality. This inequality is closely related to Bochner’s formula, a fundamen-
tal analytic identity in Riemannian Geometry involving the Laplacian. Its translation into
the setting of graphs has been discussed in many papers (see, e.g., [13], [25] and [18]) and
leads to a curvature notion on the vertices of a graph associated to a dimension param-
eter N ∈ (0,∞]. In this paper, we restrict our considerations to the choice N = ∞
and denote the Bakry-Émery curvature of a vertex x ∈ V by K(x). It was discovered
independently in [26, 27] and in [9] that the Bakry-Émery curvature K(x) agrees with the
minimal eigenvalue of a certain symmetric matrix A(x), that is

K(x) = λmin(A(x)).

This viewpoint reduces the computation of Bakry-Émery curvature from a semidefinite
programming problem to an eigenvalue problem, which is numerically much easier to
handle. The matrix A(x), which we call the curvature matrix at the vertex x ∈ V , is
derived in the graph setting from the above-mentioned curvature-dimensional inequality
by a manipulation involving the Schur complement. We will use this eigenvalue description
in the proof of our Bakry-Émery curvature results for certain RAACHs.

Both curvature notions are local concepts, that is, we only need to know about a
small neighbourhood of a vertex or an edge in the graph to compute the curvature. In
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the case of Bakry-Émery curvature, this neighbourhood of a vertex x is the incomplete
2-ball B̊2(x), that is, the induced subgraph of the 2-ball around x with all edges between
two vertices in the 2-sphere removed (see, e.g., [12, 10]). Since Cayley graphs are vertex
transitive, they have constant Bakry-Émery curvature and the Ollivier curvatures of edges
around each vertex are the same.

1.2 Results

Let us now provide a description of the main results in this paper. Our first result can be
viewed as an amusing general fact about Right Angled Artin-Coxeter Hybrids (RAACHs).

Proposition 1 (Elimination of R4 and R∞). Let Γ be a RAACH with generating set

S = R2 ∪R3 ∪R4 ∪R∞.

Then there exists another RAACH Γ′ with generating set

S ′ = R′2 ∪R′3

such that the Cayley graphs G = Cay(Γ, S) and G′ = Cay(Γ′, S ′) are isomorphic and have
therefore the same Bakry-Émery and Ollivier Ricci curvatures.

While we do not utilize this fact in our curvature investigations, it tells us that it
suffices to investigate only Cayley graphs of RAACHs with all generators of order 2, 3,
since all generators of other orders can be eliminated by specific processes described in
the proof of the proposition. Note however, that only the Cayley graphs G and G′ in the
proposition are isomorphic and not the underlying groups Γ and Γ′.

For our curvature results, we need to introduce one more concept, the associated pair
(H∗, w) of a RAACH Γ with generating set S. H∗ is a combinatorial graph with vertex
set S∗ = {s, s−1 | s ∈ S}. The edges of H∗ are determined by w : S∗ × S∗ → {0, 1, 2},
which is defined as follows:

w(s, t) =


1, if s and t commute and s 6= t, t−1,

1, if t = s−1 and ord(s) = 4,

2, if t = s−1 and ord(s) = 3,

0, otherwise.

(2)

Two vertices s, t ∈ S∗ are adjacent in H∗ if and only if w(s, t) > 0.
In other words, the vertices of H∗ are the extension of the generating set S of Γ to the

corresponding symmetric generating set S∗, and edges in H corresponding to [s, t] = e for
s, t ∈ S give rise to at most four weight 1 edges {s±1, t±1} in H∗. This is in accordance
with the fact that [s, t] = e implies [s±1, t±1] = e. Furthermore, there are edges of weight
1 or 2 in H∗ between s ∈ S and s−1 if ord(s) = 4 or ord(s) = 3, respectively.

In the special case of a Right Angled Coxeter Group (RACG) with defining graph
(H,m), we have m ≡ 2, and the associated pair (H∗, w) consists of the same combinatorial
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graph H∗ = H without new vertices and edges and with trivial edge weights, that is,
w ≡ 1.

Throughout the paper, we denote the set of integers from 1 to n by [n].
We have the following explicit curvature results.

Theorem 2 (Ollivier Ricci curvature for RAACHs). Let Γ be a RAACH with generating
set S, defining graph (H,m) and associated pair (H∗, w). Then we have for any s ∈ S∗,
representing an edge in G = Cay(Γ, S) incident to the identity e ∈ Γ and representing a
vertex in H∗,

κLLY (s) =
a+ 2 degH∗(s)

D
− 2

with D = degG(e) = |S∗| and

a =

{
4, if ord(s) 6= 3,

3, if ord(s) = 3.

In the particular case of R2 = S (that is, Γ is a RACG and H∗ = H), we have for
any s ∈ S, representing an edge in G = Cay(Γ, S) incident to e ∈ Γ and representing a
vertex in H,

κLLY (s) =
4 + 2 degH(s)

D
− 2

with D = degG(e) = |S|.

Theorem 3 (Bakry-Émery curvature for certain RAACHs). Let Γ be a RAACH with
generating set S, defining graph (H,m) and associated pair (H∗, w). Let G = Cay(Γ, S)
and D = degG(e) = |S∗|. We enumerate the elements in the 1-sphere S1(e) around the
identity e ∈ Γ as follows:

S1(e) = S∗ = {t1, . . . , tD},
with ord(ti) = 3 for i ∈ [`] and ord(tj) 6= 3 for j ∈ [D] \ [`]. Then the curvature matrix at
e ∈ Γ is given by

A(e) = (2−D) IdD +J −∆H∗ +
1

2
diag(1, . . . , 1︸ ︷︷ ︸

`

, 0, . . . , 0︸ ︷︷ ︸
D−`

),

where J is the D×D all-one matrix, ∆H∗ is Laplacian of the weighted graph (H∗, w) with
m ≡ 1, defined in (1), and diag(a1, . . . , an) is the n × n diagonal matrix with diagonal
entries a1, . . . , an. Moreover, we have the following:

(a) If R3 = ∅ and D > 2, we have

K(e) = 2−D + λ2(−∆H∗).

(b) If R3 = S and D > 4, we have

K(e) =
5

2
−D + λ2(−∆H∗).
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Remark 4. The curvatures in Theorem 3 are based on the choice of the non-normalized
Laplacian. If one chooses the normalized Laplacian instead, the corresponding curvatures
rescale by a factor 1/D, since G is D-regular.

We illustrate the above results with the following examples.

Example 5 (Cayley graphs of Coxeter groups). Coxeter groups Γ are of the form

Γ = 〈S | (sisj)
mij = e for i, j ∈ [D]〉

with generating set S = {s1, . . . , sD}, mii = 1 for i ∈ [D] (that is, all generators are of
order 2), and mij ∈ {2, 3, . . . ,∞} for i, j ∈ [D], i 6= j. Note that mij = 2 means that
the generators si and sj commute. The corresponding Coxeter diagram has D vertices
representing the elements of S with an edge between si and sj if and only if si and sj
do not commute. The Cayley graph G = Cay(Γ, S) of a Coxeter group has only cycles
of even length and, since our curvatures are local concepts, any cycles of length > 6 do
not change the curvature values. Therefore, it suffices to restrict our considerations to
Coxeter groups with mij only taking values 2 or ∞, that is, RACGs. We note that the
defining graph H = H∗ of a Coxeter group Γ is the complement of the corresponding
Coxeter diagram, which we denote therefore by Hc. As stated in [12, Theorem 9.6], the
Bakry-Émery curvature of the Cayley graph of a general Coxeter group with Coxeter
diagram Hc is given by

K(e) = 2− λmax(−∆Hc). (3)

Since ∆H + ∆Hc = J −D IdD, we conclude that

λmax(−∆Hc) = D − λ2(−∆H),

showing that (3) agrees with the curvature formula in Theorem 3(a) in the case of RACGs.
We like to mention that another independent Bakry-Émery curvature description of Cay-
ley graphs of Coxeter groups was given in [26, 27]. Bakry-Émery curvatures for Hasse
diagrams of Bruhat orders of finite Coxeter groups can be found in [28], and for Bruhat
graphs of finite Coxeter groups in [29].

Example 6 (Regular triangle trees). Let H be the disjoint union of D0 > 2 isolated
vertices S = {s1, . . . , sD0} without edges and m(s) = 3 for all s ∈ S. The Cayley graph
G = Cay(Γ, S) of the RAACH Γ with defining graph (H,m) has a treelike structure with
triangles as building blocks (see Figure 1). In fact, the only cycles of G are triangles,
every edge of G is contained in a (unique) triangle, and every vertex has degree 2D0. The
associated pair (H∗, w) is the disjoint union of D0 copies of K2 with all edges of weight
2. Since H∗ is not connected, we have λ2(−∆H∗) = 0. Consequently, all edges of G have
constant Ollivier Ricci curvature

κLLY =
7

2D0

− 2

and constant Bakry-Émery curvature

K =
5

2D0

− 2,
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Figure 1: Local structures of 2D0-regular triangle trees for D0 = 2 and D0 = 3.

where we used the normalized Laplacian for comparison reasons (see Remark 4).

Example 7 (Regular Trees). The Cayley graphs of RAACHs Γ with generating sets

S = R2 = {s1, . . . , sD} (D > 2)

or
S = R∞ = {s1, . . . , sD0} (D0 > 1) and D = 2D0

and defining graphs (H,m) without edges are D-regular trees. They have constant Ollivier
Ricci curvature κLLY = 4

D
− 2 and constant Bakry-Émery curvature K = 2

D
− 1, based

on the normalized Laplacian (see Remark 4). Adding edges into H means also adding
edges into H∗ and adding commutator relations into CH . It is straightforward to see
from the formulas in Theorem 2 that Ollivier Ricci curvature does not decrease under
this process. It follows also from Theorem 3(a) that Bakry-Émery curvature does not
decrease under the addition of commutator relations into CH , since λ2(−∆H∗) = 0 for
H∗ without edges, and since the addition of any edge {ti, tj} (of weight 1) into H∗ with
vertex set S∗ = {t1, . . . , tD} translates into adding a special non-negative matrix Mij into
the matrix representation of −∆H∗ . The matrix Mij has non-zero entries only in the
positions (i, i), (i, j), (j, i) and (j, j), where it is of the form(

1 −1
−1 1

)
,

which is obviously a positive semidefinite matrix.

In Example 7, we observed that the addition of commutator relations in certain
RAACHs does not decrease the curvatures of their Cayley graphs. Our final result states
such a fact regarding the addition of general relators in arbitrary Cayley graphs (see also
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[12, Conjecture 9.3]). Since the precise formulation of this result is subtle, we need to first
have a deeper look in the concept of Cayley graphs and to extend some of our notation.
Let Γ be finitely presented as Γ = 〈S | R〉. We refer to S as the alphabet of Γ. The set
R is a finite set of words in S∗ = {s, s−1 | s ∈ S}. The elements of R are called relators
in the presentation of Γ. The group Γ is then given by equivalence classes [w]R of words
w with letters in S∗ modulo the relators in R and Cay(Γ, S) is the corresponding Cayley
graph. The group Γ can be understood as the quotient of the free group FS in S with
no relations other than ss−1 = s−1s = e by the normal closure of the set R. The normal
closure of R is the smallest normal subgroup of FS containing R. In the presentation of
Γ and its Cayley graph, we used a slight abuse of notation, since the elements of S are
not elements of Γ, but only their equivalence classes. We will use the notation SΓ for the
set of non-trivial equivalence classes [s]R corresponding to s ∈ S. The set SΓ may have
a smaller cardinality than S, and its elements are generators of the group Γ. The set
S∗Γ is defined similarly as the set of non-trivial equivalence classes [s]R corresponding to
s ∈ S∗. Strictly speaking, we would need to write Γ = 〈SΓ | R〉 and Cay(Γ, SΓ〉 for the
group presentation and its associated Cayley graph. We will use the simpler notation if
the context is clear and only use the more precise notation Γ = 〈SΓ|R〉 and Cay(Γ, SΓ)
when we want to avoid confusion.

Let Γ′ = 〈S | R′〉 be a second group with the same alphabet and a larger set R′

of relators, that is R′ ⊃ R. Since the elements of Γ (and of Γ′) are equivalence classes
of words defined via the relators, we have a canonical map Φ : Γ → Γ′, mapping the
equivalence class [w]R to the corresponding equivalence class [w]R′ . This map induces a
1-Lipschitz map (with respect to the graph distances) on the corresponding Cayley graphs
G = Cay(Γ, S) and G′ = Cay(Γ′, S), which we also denote by Φ. Note that the larger
set of relators in R′ may lead to various identifications of different group elements under
the map Φ, and different generators of Γ may be identified in Γ′ or even collapse to the
identity. Therefore, it is difficult to understand the nature of this map Φ geometrically,
and even its local behaviour is non-trivial. Note also that, by the very definition, we
collect only non-trivial equivalence classes [s]R′ in the sets SΓ′ and S∗Γ′ . A natural guess
is that the curvatures do not decrease under this process, that is,

K(x′) > K(x)

for vertices x and x′ in the Cayley graphs G and G′ and

κLLY (x′, y′) > κLLY (x, y)

for corresponding edges x ∼G y and x′ ∼G′ y′ under the map Φ. The following example
shows, however, that the curvature monotonicity assumption is not always true in this
original form.

Example 8. Let S = {a, b} and R = {a4, b−1a2}. Then the group Γ = 〈S |R〉 is cyclic of
order 4 (with generator a), and the Cayley graph Cay(Γ, S) is isomorphic to the complete
graph K4 with constant Bakry-Émery curvature K(x) = 3 and constant Ollivier Ricci
curvature κLLY (x, y) = 4. Setting R′ = R ∪ {a2} and Γ′ = 〈S |R′〉, the corresponding
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Cayley graph Cay(Γ′, S) is isomorphic to K2 with K(x′) = 2 and κLLY (x′, y′) = 2. These
curvature values can be easily verified with the graph curvature calculator (see [8] and
the freely accessible web-app at https://www.mas.ncl.ac.uk/graph-curvature/). In
this case both curvature types decrease under the transition from Γ to Γ′.

Let us have a closer look at this example. The equivalence classes of the generators
[a]R, [a

−1]R, [b]R = [b−1]R in Γ are different and non-trivial. However, this is not true for
their Φ-images. The equivalence class [b]R′ is trivial (the collapse of a generator) and the
equivalence classes [a]R′ and [a−1]R′ coincide (merging of generators). It turns out that the
violation of our above curvature monotonicity assumption is not caused by the collapse
of generators but by the merging of generators. Since there is a one-one correspondence
between the generators and the edges incident to any Cayley graph vertex, we take care of
this merging of generators by introducing a weighting scheme on our Cayley graphs, and
by assigning increased weights on edges which are merged, and to use weighted Laplacians
and their corresponding weighted Bakry-Émery and Ollivier Ricci curvatures. In the case
of our Cayley graph G = Cay(Γ, S), we choose the trivial vertex measure m = 1Γ and
edge weight functions w which are invariant under the Γ-left action. This means that w
is determined by a function w0 : S∗Γ → (0,∞) satisfying w0(s) = w0(s−1) for all s ∈ SΓ

via the assignment w(g, gs) := w0(s) for all g ∈ Γ and s ∈ S∗Γ. A special choice of edge
weights on G is the trivial choice, given by w0 ≡ 1. we have the following curvature
monotonicity results for weighted Cayley graphs:

Theorem 9 (Curvature monotonicity under addition of relators). Let Γ = 〈S |R〉 and
Γ′ = 〈S |R′〉 be two finitely presented groups with R′ ⊃ R and Φ : G→ G′ be the canonical
associated 1-Lipschitz map on their Cayley graphs G = Cay(Γ, S) and G′ = Cay(Γ′, S).
Let (m,w) and (m′, w′) be weighting schemes on G and G′ with trivial vertex measures
m,m′ and edge weights associated to the functions w0 : S∗Γ → (0,∞) and w′0 : S∗Γ′ →
(0,∞), respectively. Assume that w0 and w′0 satisfy the following for all s′ ∈ S∗Γ′:

w′0(s′) =
∑

s∈S∗Γ:Φ(s)=s′

w0(s). (4)

Then the graphs (G,m,w) and (G′,m′, w′) have constant weighted Bakry-Émery curva-
tures KG and KG′ satisfying

KG′ > KG.

Moreover, for every edge {x′, y′} ∈ E ′ in G′ and every edge {x, y} ∈ E in G with {x′, y′} =
Φ({x, y}), the corresponding weighted Ollivier Ricci curvatures satisfy

κLLY (x′, y′) > κLLY (x, y).

Let us finish this subsection with two remarks about the above theorem:

(a) In the setting of the Theorem 9, there exists, for every edge {x′, y′} ∈ E in G′, at
least one edge in G which is mapped to {x′, y′} under Φ. Hence the sum in (4) is
non-empty. In the case w0 ≡ 1, the weights of all edges in G are equal to 1, and
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the adapted edge weights induced by w′0 on G′ are also integer-valued, where w′0(s′)
counts the number of generators s in S∗Γ, which are merged into s′ ∈ S∗Γ′ under the
map Φ.

(b) The theorem confirms Conjecture 9.3 of [12] in the case of infinite dimensionN =∞.
The conjecture there was formulated carefully to avoid any merging and collapsing
of edges. It is easy to verify that the proof of our theorem in Section 5 works equally
well for finite dimension N <∞. In this paper, however, we chose to not introduce
Bakry-Émery curvature for finite dimension, in order to keep the presentation a bit
simpler.

1.3 Outline

In Section 2 we discuss and prove some interesting combinatorial properties of RAACHs
and their Cayley graphs. A detailed introduction into Ollivier Ricci and Bakry-Émery
curvature is given in Section 3. The main curvature results for RAACHs (Theorems 2
and 3) are proved in Section 4. Finally, monotonicity of weighted curvatures on Cayley
graphs under addition of relators (Theorem 9) is proved in Section 5.

2 Fundamental facts about RAACHs

Proposition 1 is a straightforward consequence of the following two propositions, which
allow successive removal of all elements in the sets R4 and R∞ of a RAACH Γ without
changing the combinatorics of its Cayley graph Cay(Γ, S).

Proposition 10. Let Γ be a RAACH with defining graph (H,m), non-empty set R4, and
(H∗, w) be the associated pair. Fix an element s0 ∈ R4 and define another defining graph
(H ′,m′) with vertex set S ′ as follows:

• S ′ = S \ {s0} ∪ {s′, s′′};

• m′(s) =

{
m(s) if s ∈ S \ {s0},
2 if s ∈ {s′, s′′};

• all edges {s, t} in H with s, t 6= s0 are also edges in H ′, all edges {s0, t} in H give
rise to pairs of edges {s′, t}, {s′′, t} in H ′, and a new edge {s′, s′′} is introduced in
H ′.

Let Γ′ be the RAACH to the new defining graph (H ′,m′) and ((H ′)∗, w′) be the corre-
sponding associated pair. Then there is an isomorphism between (H∗, w) and ((H ′)∗, w′)
and between the Cayley graphs G = Cay(Γ, S) and G′ = Cay(Γ′, S ′).

In short, any generator in R4 can be replaced by a pair of commuting generators in
R2 without changing the combinatorics of the associated pairs and Cayley graphs.
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Proof. In the transition from H to H ′ the vertex s0 ∈ R4 ⊂ S is replaced by the two new
vertices s′, s′′ ∈ R′2 ⊂ S ′. Since s0 ∈ R4, we have w(s0, s

−1
0 ) = 1, and by introducing a

new edge {s′, s′′} in H ′ we have also w′(s′, s′′) = 1 and we require that s′ and s′′ commute
in Γ′. Moreover, every edge {s0, t} in H gives rise to the edges {s±1

0 , t±1} in H∗ and, by
introducing the edges {s′, t} and {s′′, t} in H ′, we also have the edges {s′, t−1} and {s′′, t−1}
in (H ′)∗ if t−1 6= t. All other edges are unaffected. These arguments show that we have
a canonical graph isomorphism H∗ → (H ′)∗ by preserving S∗ \ {s0, s

−1
0 } = (S ′)∗ \ {s′, s′′}

and mapping s0 and s−1
0 in S∗ to s′ and s′′ in (S ′)∗, respectively. Moreover, the edge

weights w and w′ agree under this isomorphism.
Next we describe the graph isomorphism Φ : Γ → Γ′ between the Cayley graphs G

and G′. For γ ∈ Γ, we choose a word w with letters in S∗ representing γ. We then replace
any power of s0 (also negative ones) by a string of the simple letter s0 representing the
same power (for example, s−1

0 is replaced by s0s0s0). Finally, by parsing the new word
from left to right, we create a word w′ by alternatingly replacing any appearance of s0 by
s′ and s′′ (ignoring all other letters in between) and starting with s′ from the left. Then
Φ(γ) is the element in Γ′ represented by the word w′. For example, if γ = s0s1s

2
0s
−1
2 s0,

we obtain w′ by the following process

w = s−1
0 s1s

2
0s
−1
2 s0 7→ s0s0s0s1s0s0s

−1
2 s0 7→ s′s′′s′s1s

′′s′s−1
2 s′′ = w′.

It is easy to see that all manipulations of w via the powers and commutators in the
presentation of Γ can be mirrored by corresponding manipulations of w′ via the powers
and commutators in the presentation of Γ′. This shows that the map Φ is well-defined.

The description of the inverse Φ−1 is a bit more complicated: Given γ′ ∈ Γ′, choose a
word w′ with letters in (S ′)∗ representing γ′. We first remove any even power of s′ and
replace any odd power of s′ by s′ itself in w′, and we do the same with s′′. In the second
step we replace succcessively each occurence of s′, s′′ by s0, s

−1
0 in a certain way by parsing

through the word from left to right. If s′ appears first in the word, we replace it by s0,
if it is s′′, we replace it by s−1

0 . Thereafter, we continue with replacements of s′, s′′ by
s0, s

−1
0 following this rule: in the case of two consecutive s′, s′ or s′′, s′′ (potentially with

other letters in between), we replace them by different powers of s±1
0 , and in the case of

s′, s′′ or s′′, s′ we replace them by the same powers of s±1
0 . Then Φ−1(γ′) is the element in

Γ represented by the resulting word w. Here is an example for that process:

w′ = s1(s′)−1s2(s′′)2s′s1s
′′s′s3s

′ 7→ s1s
′s2s

′s1s
′′s′s3s

′ 7→ s1s0s2s
−1
0 s1s

−1
0 s−1

0 s3s0 = w.

It is straighforward to verify that Φ−1 ◦Φ = IdΓ and Φ ◦Φ−1 = IdΓ′ . This shows that Φ is
bijective. Moreover, by construction, Φ maps adjacent vertices in G to adjacent vertices
in G′ and is therefore a graph isomorphism. Note that Φ cannot a group isomorphism,
since the groups Γ and Γ′ are not isomorphic.

Proposition 11. Let Γ be a RAACH with defining graph (H,m), non-empty set R∞, and
(H∗, w) be the associated pair. Fix an element s0 ∈ R∞ and define another defining graph
(H ′,m′) with vertex set S ′ as follows:

• S ′ = S \ {s0} ∪ {s′, s′′};
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• m′(s) =

{
m(s) if s ∈ S \ {s0},
2 if s ∈ {s′, s′′};

• all edges {s, t} in H with s, t 6= s0 are also edges in H ′, and all edges {s0, t} in H
give rise to pairs of edges {s′, t}, {s′′, t} in H ′.

Let Γ′ be the RAACH to the new defining graph (H ′,m′) and ((H ′)∗, w′) be the corre-
sponding associated pair. Then there is an isomorphism between (H∗, w) and ((H ′)∗, w′)
and between the Cayley graphs G = Cay(Γ, S) and G′ = Cay(Γ′, S ′).

In short, any generator in R∞ can be replaced by a pair of non-commuting generators
in R2 without changing the combinatorics of the associated pairs and Cayley graphs.

Proof. The proof of this proposition is similar to the proof of the previous proposition. In
the transition from H to H ′ the vertex s0 ∈ R∞ ⊂ S is replaced by the two new vertices
s′, s′′ ∈ R′2 ⊂ S ′. Since s0 ∈ R∞, we have w(s0, s

−1
0 ) = 0, which matches w′(s′, s′′) = 0,

meaning that s′ and s′′ do not commute in Γ′. The arguments for all other edges are as
in the previous proof and we conclude that we have a canonical isomorphism H∗ → (H ′)∗

by preserving S∗ \{s0, s
−1
0 } = (S ′)∗ \{s′, s′′} and mapping s0 and s−1

0 in S∗ to s′ and s′′ in
(S ′)∗, respectively. Moreover, the edge weights w and w′ agree under this isomorphism.

Next we describe the map Φ : Γ → Γ′. For γ ∈ Γ, we choose a word w with letters
in S∗ representing γ. We then replace any positive power of s0 by a string of the simple
letter s0 and any negative power of s0 by a string of the letter s−1

0 . In the second step we
parse through the word from left to right, and if the first occurrence of one of the letters
s±1

0 is s0, we replace it by s′, and if it is s−1
0 , we replace it by s′′. For later replacements

to obtain a new word w′, we follow this rule: two consecutive s0, s0 or s−1
0 , s−1

0 (possibly
with other letters in between) are replaced by an alternating pair s′, s′′ or s′′, s′ (with
the same letters in between), and two consecutive s±1

0 , s∓1
0 with different powers (possibly

with other letters in between) are replaced by the pair s′, s′ or s′′, s′′ (note that these
pairs do not need to cancel each other out since there may be other letters in between).
Then Φ(γ) is the element represented by the word w′. Here is an example illustrating this
replacement process:

w = s−2
0 s1s

2
0s2s0 7→ s−1

0 s−1
0 s1s0s0s2s0 7→ s′′s′s1s

′s′′s2s
′ = w′.

As in the previous proof, it is easy to see that all manipulations of w via the powers and
commutators in the presentation of Γ can be mirrored by corresponding manipulations
of w′ via the powers and commutators in the presentation of Γ′, showing that Φ is well-
defined.

The description of the inverse Φ−1 is as follows: Given γ′ ∈ Γ′, choose a word w′ with
letters in (S ′)∗ representing γ′. We first remove any even power of s′ and replace any odd
power of s′ by s′ itself in w′, and we do the same with s′′. The second step starts with
finding the first occurrence (from the left) of one of s′, s′′ in the word, and if it is s′, we
replace it by s0, and if it is s′′, we replace it by s−1

0 . Then any pair of consecutive s0, s0

or s−1
0 , s−1

0 (possibly with letters in between) are replaced by alternating pairs s′, s′′ or
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s′′, s′, and any pair of consecutive s±1
0 , s∓1

0 with different powers are replaced by pairs s′, s′

or s′′, s′′. Then Φ−1(γ′) is the element in Γ represented by the resulting word w. Let us
again illustrate this replacement process by an example:

w′ = (s′)−1s1s
′s′′s2

2s
′(s′′)2 7→ s′s1s

′s′′s2
2s
′ 7→ s0s1s

−1
0 s−1

0 s2
2s
−1
0 = w.

As in the previous proof, we conclude that Φ is bijective and maps adjacent vertices in G
to adjacent vertices in G′ and is therefore a graph isomorphism.

In our next result, we describe short cycles in the Cayley graph of a RAACH.

Proposition 12. Let Γ be a RAACH with defining graph (H,m) and S∗ = {s, s−1 | s ∈
S}. Then all 3-, 4- and 5-cycles in G = Cay(Γ, S) have the following form:

(i) Any 3-cycle containing the identity e ∈ Γ is of the form s, s2, s3 with s3 = e for
some s ∈ S∗ with ord s = 3.

(ii) Any 4-cycle containing e is of the form s, s2, s3, s4 with s4 = e for some s ∈ S∗ with
ord s = 4 or of the form s, st, t, e for s, t ∈ S∗, [s, t] = e and t 6= s, s−1.

(iii) For any 5-cycle
s1, s1s2, s1s2s3, s1s2s3s4, s1s2s3s4s5

containing e with s1, s2, s3, s4, s5 ∈ S∗ and s1s2s3s4s5 = e, there must exist two com-
muting elements s, t ∈ S∗ with t 6= s, s−1 and ord(t) = 3, such that {s1, s2, s3, s4, s5} =
{s±1, t±1} and if s1 = s5, then ord(s1) = 3.

Proof. Let Γ be a RAACH with defining graph (H,m) and generators S. It follow from
the nature of the relations that

w = s1s2 . . . sn = e (5)

with s1, . . . , sn ∈ S∗ implies that the exponents of each generator s ∈ S in the word w
must add up to an integer multiple of m(s). Therefore, if we have for some s ∈ S∗ that
s appears in (5), then there must be at least two different si, sj with 1 6 i < j 6 n with
si, sj ∈ {s, s−1}. Therefore, any 3-cycle s1, s1s2, s1s2s3 = e cannot involve s±1, t± of two
different generators s, t ∈ S, and it must be of the form described in (i).

Similarly, for any 4- or 5-cycle s1, . . . , s1s2 · · · sn = e with n = 4, 5 there can be at
most two s, t ∈ S∗ with s 6= t, t−1 such that s1, . . . , sn ∈ {s±1, t±1}.

If a 4-cycle involves only one s ∈ S∗, then it must be of the form s, s2, s3, s4 = e or
s−1, s−2, s−3, s−4 = e, since cycles to do allow multiple appearances of the same vertex.
In this case we have ord(s) = ord(s−1) = 4.

If a 4-cycle involves s, t ∈ S∗, s 6= t, t−1, possibly with their inverses, then we can
assume, without loss of generality, that this 4-cycle starts off either with s, s2 or with
s, st. In the first case, it must continue with s, s2, s2t (after possibly renaming t by t−1),
and the full 4-cycle must be of the form s, s2, s2t, s2t2 (s, s2, s2t, s2 and s, s2, s2t, s2ts±1

are ruled out due to multiple occurrences of vertices or the fact that the last vertex is not
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the identity). Since we require s2t2 = e, we conclude that ord(s) = ord(t) = 2, which is
a contradiction since then s2 = e and the sequence s, s2 = e, s2t, s2t2 = e would not be
a cycle. Therefore, the 4-cycle must start with s, st, and the next vertex must be either
st2 or sts±1. In the first case, the last vertex must be st2s±1 (st3 is ruled out since it
cannot represent the identity), which would lead to ord(t) = 2 and, consequently, to a
contradiction to the cycle condition since then st2 = s. It remains to consider 4-cycles
starting with s, st, sts±1, which can only be completed by s, st, stsε1 , stsε1tε2 = e with
ε1, ε2 ∈ {±1}, since otherwise the last vertex could not be the identity. The choice ε1 = 1
would lead to ord(s) = 2, in which case we would have s = s−1. As similar argument
applies to t. Therefore, the 4-cycle involving s, t ∈ S∗ with t 6= s, s−1 must be of the form
s, st, sts−1, sts−1t−1 = e, which implies that s and t commute. In this case the 4-cycle
simplifies to s, st, t, e, completing the proof of (ii).

For the proof of (iii), note first that w = s1s2s3s4s5 cannot involve only one generator
s ∈ S∗ and its inverse, since we can only have ord s ∈ {2, 3, 4,∞}, which rules this
possibility out. Therefore, the word w must involve two elements s, t ∈ S∗ with t 6= s, s−1,
that is {s1, s2, s3, s4, s5} ⊂ {s±1, t±1}. Since the exponents of s and t in w must each add
up to integer multiples of ord(s) and ord(t), respectively, we must have 2 occurrences of
s±1 and 3 occurrences of t±1, or vice versa. Without loss of generality, assume that t±1

has 3 occurrences in w. This forces the order of t to be 3. By changing s into s−1, if
needed, we can assume that w contains the letters s, s or the letters s, s−1. In the first
case, we must have ord(s) = 2, which means that s = s−1, therefore, we can assume
that the element represented by w can also be expressed by a word, written again as
s1s2s3s4s5 with 3 occurrences of t (if there are 3 occurrences of t−1 instead, we can also
replace t by t−1) as well as one occurrence of each s and s−1. Since w comes from a
5-cycle without multiple vertices and since we can cyclically shift the letters of the word
w such that s comes to the front, we can conclude that we must have either the relation
sts−1tt = e or stts−1t = e. In the first case we obtain [s−1, t−1] = e, and in the second
case [s−1, t] = e, that is s and t must commute and the 5-cycle can be written that all
four elements s, s−1, t, t−1 are involved. Moreover, the words sts−1tt and stts−1t and their
cyclic shifts imply that the condition s1 = s5 necessarily implies s1 = t, and therefore
ord(s1) = 3. This concludes the proof of (iii).

We finish this section with the following fact, whose proof is straightforward and
therefore omitted.

Proposition 13. Let Γ1 and Γ2 be two RAACHs with defining graphs (H1,m1) and
(H2,m2), respectively. The direct product Γ1× Γ2 is again a RAACH with defining graph
(H,m), where H is the disjoint union of H1 and H2 with additional edges between any
pair of vertices in H1 and H2 and the vertex measure m, restricted to the vertices of Hi,
i = 1, 2, coincides with the vertex measure mi.
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3 Curvature notions

In this section we provide a detailed introduction into Olliver Ricci curvature and Bakry-
Émery curvature.

3.1 Ollivier Ricci curvature

Ollivier Ricci curvature was introduced in [22] and is based on Optimal Transport Theory.
A fundamental concept in this theory is the Wasserstein distance between probability
measures.

Definition 14. Let G = (V,E) be a graph. Let µ1, µ2 : V → [0, 1] be two probability
measures on V , that is,

∑
x∈V µi(x) = 1 for i = 1, 2. The Wasserstein distance W1(µ1, µ2)

between µ1 and µ2 is defined as

W1(µ1, µ2) = inf
π

∑
y∈V

∑
x∈V

d(x, y)π(x, y), (6)

where the infimum runs over all transport plans π : V × V → [0, 1] satisfying

µ1(x) =
∑
y∈V

π(x, y), µ2(y) =
∑
x∈V

π(x, y).

The transport plan π moves a mass distribution given by µ1 into a mass distribution
given by µ2, and W1(µ1, µ2) is a measure for the minimal effort which is required for such a
transition. If π attains the infimum in (6) we call it an optimal transport plan transporting
µ1 to µ2. We define the following probability measures µx for any x ∈ V, p ∈ [0, 1]:

µpx(z) =


p, if z = x,
1−p
dx
, if z ∼ x,

0, otherwise.

(7)

These measures can be viewed as probabilistic realisations of 1-balls around x or, alter-
natively, as random walks with idleness p.

Definition 15. The p−Ollivier-Ricci curvature of an edge {x, y} ∈ E in G = (V,E) is

κp(x, y) = 1−W1(µpx, µ
p
y).

The Ollivier Ricci curvature introduced by Lin-Lu-Yau in [17] is defined as

κLLY (x, y) = lim
p→1

κp(x, y)

1− p
.

A fundamental concept in the optimal transport theory is Kantorovich duality. First
we recall the notion of a 1–Lipschitz functions and then state Kantorovich duality.
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Definition 16. Let G = (V,E) be a combinatorial graph and f : V → R. We say that f
is 1-Lipschitz if

|f(x)− f(y)| 6 d(x, y)

for all x, y ∈ V. The set of all 1–Lipschitz functions is denoted by 1–Lip.

Theorem 17 (Kantorovich duality). Let G = (V,E) be a combinatorial graph and µ1, µ2

be two probability measures on V . Then

W1(µ1, µ2) = sup
φ:V→R
φ∈1–Lip

∑
x∈V

φ(x)(µ1(x)− µ2(x)).

If φ ∈ 1–Lip attains the supremum we call it an optimal Kantorovich potential transport-
ing µ1 to µ2.

The following result allows us to use a convenient choice of idleness parameter p to
compute κLLY (x, y) from κp(x, y).

Theorem 18 (see [4]). Let G = (V,E) be a combinatorial graph. Let x, y ∈ V with x ∼ y.
Then the function p 7→ κp(x, y) is concave and piecewise linear over [0, 1] with at most 3
linear parts. Furthermore κp(x, y) is linear on the intervals[

0,
1

lcm(deg(x), deg(y)) + 1

]
and

[
1

max(deg(x), deg(y)) + 1
, 1

]
.

Thus, if p ∈
[

1
max(deg(x),deg(y))+1

, 1
]

then

κLLY (x, y) =
1

1− p
κp(x, y). (8)

The probability measures (7) give rise to a corresponding random walk Laplacian,
defined on functions f : V → R as follows:

∆f(x) =
∑
y∈V

µpx(y)(f(y)− f(x)).

We can choose other graph Laplacians ∆ which are no longer based on probability mea-
sures. In fact, the definition

κLLY (x, y) = inf
f∈1–Lip

f(y)−f(x)=1

∆f(x)−∆f(y)

in [21] recovers the original Ollivier Ricci curvature for random walk Laplacians and leads
to a generalization of Ollivier Ricci curvature for more general Laplacians. We use this
more general viewpoint for the results in Theorem 9.
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3.2 Bakry-Émery curvature

Bakry-Émery introduced in [1] a curvature notion which was based on two symmetric
bilinear Γ-operators involving the generator (Laplacian) of a continuous time Markov
process. In the setting of a combinatorial graph G = (V,E), these Γ-operators are defined
via a graph Laplacian ∆ for a pair of functions f, g : V → R as follows:

Γ(f, g) =
1

2
(∆(fg)− f∆g − g∆f) ,

Γ2(f, g) =
1

2
(∆Γ(f, g)− Γ(f,∆g)− Γ(g,∆f)) .

In the case of an unweighted combinatorial graph, the Laplacian for Bakry-Émery curva-
ture used in the paper is the non-normalized Laplacian given by

∆f(x) =
∑
y∼x

(f(y)− f(x)). (9)

We write Γf for Γ(f, f) and, similarly, Γ2f for Γ2(f, f). Usually, the Bakry-Émery
curvature involves a dimension parameter N ∈ (0,∞], but we restrict our consideration
to the case N =∞. In the graph theoretical setting, Bakry-Émery curvature is a function
K : V → R on the vertices.

Definition 19. The Bakry-Émery curvature K(x) (for dimension N = ∞) of a vertex
x ∈ V in G = (V,E) is the supremum of all values K ∈ R such that

Γ2f(x)−KΓf(x) > 0 for all f : V → R. (10)

Let us reformulate the condition (10) in matrix form. Firstly, Γf(x) and Γ2f(x) do
not change by adding a constant to the function f , so we can restrict the condition (10)
to functions f : V → R with f(x) = 0. Next, we employ the fact that the left hand side
of (10) does only depend on the values of f in the 2-ball around x: Assume that there
are n = dx vertices at distance 1 from x and m vertices as distance 2 from x and denote
these vertices by y1, . . . , yn and z1, . . . , zm, respectively. Let

~f1(x) = (f(y1), . . . , f(yn)) and ~f2(x) = (f(z1), . . . , f(zm)).

Then the inequality in (10) can be reformulated with the help of a suitable symmetric
n× n matrix Γ(x) and of a suitable symmetric (n+m)× (n+m) matrix Γ2(x) as

(~f1, ~f2)Γ2(x)

(
~f1

~f2

)
− ~f1(KΓ(x))~f1 > 0.

This reduces the determination of K(x) as a semidefinite programming problem.
Writing Γ2(x) as a block matrix with blocks of size n and m,

Γ2(x) =

(
(Γ2(x))S1,S1 (Γ2(x))S1,S2

(Γ2(x))S2,S1 (Γ2(x))S2,S2

)
,

the electronic journal of combinatorics 32(3) (2025), #P3.21 18



we can reformulate (10) further as(
(Γ2(x))S1,S1 −KΓ(x) (Γ2(x))S1,S2

(Γ2(x))S2,S1 (Γ2(x))S2,S2

)
< 0, (11)

where A < B and A � B for symmetric matrices mean that A−B is positive semidefinite
and that A−B is positived definite, respectively. Now we employ the Schur complement
for symmetric block matrices

M =

(
M11 M12

M21 M22

)
with invertible M22, defined by

M/M22 := M11 −M12M
−1
22 M21.

Using the fact that M < 0 if and only if M22 < 0, (11) is equivalent to

Q(x)−KΓ(x) < 0 (12)

where
Q(x) = Γ2(x)/ (Γ2(x))S2,S2

.

Note that the block matrix (Γ2(x))S2,S2
is diagonal with positive diagonal entries given in

[9, (A.8) and (A.9)] and therefore invertible.
All derivations so far were carried out with respect to the non-normalized Laplacian

(9), but they are equally valid in the case of the weighted Laplacian (1). The non-
normalized Laplacian can be viewed as the weighted Laplacian with trivial vertex measure
m = 1V and trivial edge weights w = 1E. Introducing finally the symmetric matrix

A(x) := 2D(x)−1Q(x)D(x) with D(x) = diag(
√
w(x, y1), . . . ,

√
w(x, yn)),

where diag(c1, . . . , cn) denotes the diagonal matrix with entries c1, . . . , cn on its diagonal,
(12) is equivalent to A(x)−KIdn < 0. It follows from these manipulations that the deter-
mination of the Bakry-Émery curvature K(x) reduces to finding the smallest eigenvalue
of the matrix A(x), that is

K(x) = λmin(A(x)).

The references for this reformulation process are [26, 27] and [9]. We will make use of the
following description of the curvature matrix:

A(x) = −2∆S1(x) − 2∆S′1(x) + J +
3− n

2
Id− 1

2
diag(d+

1 , . . . , d
+
n ). (13)

Here J is the n × n all-one matrix, ∆S1(x) is the Laplacian of the subgraph induced by
S1(x) with weights wij = 1 if and only if vertices yi and yj are neighbours in this induced
subgraph, ∆S′1(x) is the Laplacian of the weighted graph with vertex set S1(x), vertex

measure m ≡ 1, and edge weights w
S′1(x)
ij =

∑
z∈S2(x)

wyizwyjz

d−z
for i 6= j and 0 otherwise,

where wyz = 1 if z ∈ S2(x) is adjacent to vertex y ∈ S1(x) and 0 otherwise, and d−z is the
in-degree of z ∈ S2(x), that is, the number of vertices in S1(x) adjacent to z. Note that
the matrices representing Laplacians have the property that their rows sums are all equal
to zero.
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4 Curvatures of RAACHs

In the next two subsections, we prove the curvature results for the Cayley graphs of certain
RAACHs stated in the introduction (Theorems 2 and 3). Due to vertex transitivity, it
suffices to consider Ollivier Ricci curvatures κLLY (s) of generators in s ∈ S∗ (which
represent the edges incident to e ∈ Γ) and the Bakry-Émery curvature K(e) at e ∈ Γ.

4.1 Ollivier Ricci curvature of RAACHs

We start with the following general fact about Ollivier Ricci curvature.

Lemma 20. Let G = (V,E) be a combinatorial graph with two adjacent vertices x, y ∈ V .
Assume that the neighbourhood structures of x and y are as illustrated in Figure 2, with
or without an additional common vertex z (illustrated in blue), that is, the degrees of x
and y are equal and either n+ `+ 1 or n+ `+ 2 (depending on whether z 6∈ V or z ∈ V ).
Assume further that we have the following distances between these vertices in G:

(i) dG(xi, yj) = 3 for i, j ∈ [`],

(ii) dG(xi, vj) = dG(yi, uj) = 3 for i ∈ [`] and j ∈ [n],

(iii) dG(uj, vj) = 1 for j ∈ [n].

Then we have

κLLY (x, y) =

{
2−2`
n+`+1

, if z 6∈ V ,
3−2`
n+`+2

, if z ∈ V .

Proof. Let us fist consider the case z 6∈ V and set D = deg(x) = deg(y) = n + ` + 1 and
p = 1/(D + 1). Consider the transport plan transporting µpx to µpy given by π(x, x) =
π(y, y) = 1/(D + 1), π(xi, yi) = 1/(D + 1) for all i ∈ [`] and π(uj, vj) = 1/(D + 1) for all
j ∈ [n] and π(w1, w2) = 0 for all other choices of pairs of vertices. Then we have

W1(µpx, µ
p
y) 6

3`+ n

D + 1
.

Let
V0 := {x1, . . . , x`, x, y, y1, . . . , y`, u1, . . . , un, v1, . . . , vn},

and φ0 : V0 → R be a 1-Lip function given by

φ0(w) =


3, if w = xi for i ∈ [`],

2, if w = x or w = uj for j ∈ [n],

1, if w = y or w = vj for j ∈ [n],

0, if w = yi for i ∈ [`].
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Figure 2: The labelling of the vertices in the neighbourhoods of x and y.

This function can be extended to a 1-Lip function φ : V → R via (see [19] or Kirszbraun
Theorem)

φ(w) = sup{φ0(w0)− d(w0, w) | w0 ∈ V0},

and Kantorovich duality (Theorem 17) yields

W1(µpx, µ
p
y) >

∑
w∈V

φ(w)(µpx(w)− µpy(w)) =
3`+ n

D + 1
.

Consequently, we obtain using (8),

κLLY (x, y) =
D + 1

D
κp(x, y) =

D + 1− (3`+ n)

D
=

2− 2`

n+ `+ 1
.

The case z ∈ V is treated similarly with D = n+ `+ 2, the same transport plan and
the same function φ0. We then obtain W1(µpx, µ

p
y) = 3`+n

D+1
and

κLLY (x, y) =
D + 1− (3`+ n)

D
=

3− 2`

n+ `+ 2
.

Now we present the proof of the Ollivier Ricci curvature result for RAACHs from the
introduction.

Proof of Theorem 2. Let Γ be a RAACH with generating set S, defining graph (H,m)
and associated pair (H∗, w). Let s ∈ S∗.
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Assume first that ord(s) 6= 3, 4. Let G = Cay(Γ, S). Then we have the situation
illustrated in Figure 2 (without the vertex z) with x = e, y = s and u1, . . . , un the elements
in S∗ \ {s, s−1} which commute with s and n = degH∗(s), x1 = s−1, and x2, . . . , x` the
elements in S∗ which do not commute with s. Similarly, v1, . . . , vn are the elements suj
for j ∈ [n] and y1 = s2, yi = sxi for i ∈ [`] \ {1}. The distance condition d(xi, yj) = 3
of Lemma 20 is satisfied since s, yj cannot be completed to a 3-, 4- or 5-cycle containing
xi because of Proposition 12 and since x1 = s−1 (which would imply ord(s) = 3 in the
case that s, x1 and e would be contained in a 5-cycle) and xi does not commute with s for
i ∈ [`] \ {1}. Similarly, the distance condition d(xi, vj) = 3 is satisfied since u1, v1 = su1

cannot be completed to a 3-, 4- or 5-cycle containing xi for the same reason. A similar
argument shows d(yi, uj) = 3. So we can apply Lemma 20 with n = degH∗(s) and
n+ `+ 1 = degG(e), and we obtain

κLLY (s) =
2− 2`

n+ `+ 1
=

4 + 2 degH∗(s)

degG(e)
− 2. (14)

In the case ord(s) = 4, the arguments are almost the same, with the only difference
that s−1 belongs now to the set {u1, . . . , un} and s2 to the set {v1, . . . , vn} (instead of
x1 = s and y1 = s2). This leads to the same end result (14).

In the case ord(s) = 3, we have the situation illustrated in Figure 2 (with the vertex
z) with x = e, y = s, z = s2 and u1, . . . , un the elements in S∗ \ {s, s−1} which commute
with s and x1, . . . , x` the elements in S∗ which do not commute with s. Again, we set
vj = suj for j ∈ [n] and yi = sxi for i ∈ [`]. The distance conditions of Lemma 20 are
verified via the same arguments, and we obtain

κLLY (s) =
3− 2`

n+ `+ 2
=

3 + 2 degH∗(s)

degG(e)
− 2.

Finally, if we have R2 = S, then H∗ agrees with H, S∗ agrees with S, and we have no
generators in S∗ of order 3, and (14) simplifies to

κLLY (s) =
4 + 2 degH(s)

degG(e)
− 2.

4.2 Bakry-Émery curvatures of certain RAACHs

Our next aim is to derive the Bakry-Émery curvature matrix A(e) of the Cayley graph of
a RAACH Γ with generating set S. A first step into this direction is the following lemma.

Lemma 21. The associated pair (H∗, w) of a RAACH Γ with generating set S determines
the combinatorial structure of the incomplete 2-ball B̊2(e) of the Cayley graph Cay(Γ, S).
Moreover, we have the following identity between Laplacians:

∆H∗ = 2∆S1(e) + 2∆S′1(e) (15)

with the Laplacians on the right hand side defined in (13).
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Proof. The vertices in S1(e) coincide with S∗, which is the vertex set of H∗. To understand
B̊2(e), we need to understand the 3-cycles and 4-cycles containing e. They are described
in Proposition 12 and are of the form e, s, s−1 for s ∈ R3 ⊂ S, e, s, s2, s3 for s ∈ R4 ⊂ S,
and e, s, st, t for any commuting pair of s, t ∈ S∗ with s 6= t, t−1. This shows that any edge
of Cay(Γ, S) connecting two different vertices in S1(e) is precisely described by vertices
s, t ∈ S∗ with w(s, t) = 2 (and therefore t = s2, e = s3) and the corresponding off-
diagonal entries of ∆H∗ and 2∆S1(e) = 2∆S1(e) + 2∆S′1(e) coincide. Moreover, any 4-cycle
containing e must stem from a commuting pair of different generators s, t ∈ S∗ satisfying
s 6= t−1 unless ord(s) = 4. This is precisely described by the property w(s, t) = 1 and the
corresponding off-diagonal of ∆H∗ agrees with the corresponding off-diagonal matrix of
2∆S′1(e), since in this case s and t have a unique common neighbour in S2(e), namely st,
whose in-degree is equal to 2. Moreover, the corresponding off-diagonal of ∆S1(e) is zero.
This shows that all off-diagonal entries of ∆H∗ and 2∆S1(e) + 2∆S′1(e) agree and, since the
off-diagonal entries uniquely determine the diagonal entries of Laplacians, we have the
agreement (15) stated in the lemma.

We need the following lemma.

Lemma 22. Let Γ be a RAACH with generating set S and defining graph (H,m), (H∗, w)
be its associated pair, S∗ = {s, s−1 | s ∈ S} and D = |S∗|. If R3 = ∅ and D > 2 or R3 = S
and D > 4, we have

λ2(−∆H∗) 6 |S∗|.

Proof. We have the following variational characterization of λ2(−∆H∗) (see, e.g., [6,
(1.14)]):

λ2(−∆H∗) = inf

{
1
2

∑
s,s′∈S∗ w(s, s′)(f(s′)− f(s))2∑

s∈S∗(f(s))2

∣∣∣ ∑
s∈S∗

f(s) = 0

}
. (16)

In the case R3 = ∅ with D > 2, we can choose t1, t2 ∈ S∗, t1 6= t2, such that f(t1) =
−f(t2) = 1 and f(s) = 0 for all s ∈ S∗ \ {t1, t2}. In the case R3 = S with D > 4, we
can choose s1, s2 ∈ S, s1 6= s2, such that f(s1) = f(s−1

1 ) = −f(s2) = −f(s−1
2 ) = 1 and

f(s) = f(s−1) = 0 for all s ∈ S \ {s1, s2}, to satisfy
∑

s∈S∗ f(s) = 0. Note that this
choice implies that w(s, s′) ∈ {0, 1} for all s, s′ ∈ S∗ with f(s′)− f(s) 6= 0, and the above
Rayleigh quotient characterization (16) yields

λ2(−∆H∗) 6
1
2

∑
s,s′∈S∗(f(s′)− f(s))2∑

s∈S∗(f(s))2
.

In the case R3 = ∅, this estimate yields

λ2(−∆H∗) 6
4 + 4 + 4(D − 2)

4
= D.

Similarly, in the case R3 = S, we obtain

λ2(−∆H∗) 6
8 · 4 + 8(D − 4)

8
= D.
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Now we can provide the proof of the Bakry-Émery curvature result for certain RAACHs
from the introduction.

Proof of Theorem 3. Using (13) for the curvature matrix A(e) and the identity (15), we
obtain

A(e) = −∆H∗ + J +
3−D

2
Id− 1

2
diag(d∗1, . . . , d

+
D).

Let S1(e) be the 1-sphere of e in the Cayley graph G. Since a vertex s ∈ S1(e) is adjacent
to at most one other vertex in S1(e), in which case we have ord(s) = 3, we conclude that

diag(d∗1, . . . , d
+
D) = (D − 2, . . . , D − 2︸ ︷︷ ︸

`

, D − 1, . . . , D − 1︸ ︷︷ ︸
D−`

).

Combining these facts, we end up with

A(e) = (2−D)Id + J −∆H∗ +
1

2
diag(1, . . . , 1︸ ︷︷ ︸

`

, 0, . . . , 0︸ ︷︷ ︸
D−`

).

Since K(e) = λmin(A(e)), we conclude in the case R3 = ∅ that

K(e) = 2−D + λmin(J −∆H∗).

The assumption R3 = ∅ implies also that (H∗, w) does not have any edges of weight 2
and ∆H∗ is therefore the Laplacian of the combinatorial graph H∗.

Note that J and −∆H∗ have a common orthogonal eigenvector decomposition: the
eigenvalue of J − ∆H∗ to the constant eigenvector is D and the eigenvalues of all other
eigenvectors (perpendicular to the constant eigenvector) are λj(−∆H∗) for j ∈ [D] \ {1}.
Since

λ2(−∆H∗) 6 λ2(−∆KD
) = D,

(where KD denotes the complete graph with D vertices), we obtain

K(e) = 2−D + λ2(−∆H∗).

Similarly, we conclude in the case R3 = S that

K(e) =
5

2
−D + λmin(J −∆H∗).

The eigenvalue analysis of J−∆H∗ remains the same and we still have λ2(−∆H∗) 6 D.
Therefore, we obtain

K(e) =
5

2
−D + λ2(−∆H∗).
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5 Adding relators does not decrease curvatures

Before we present the proof of Theorem 9 in the introduction, we first prove a more general
result about surjective 1-Lipschitz maps. A map Φ : V → V ′ between the vertex sets of
two combinatorial graphs G = (V,E) and G′ = (V ′, E ′) is called a surjective 1-Lipschitz
map if we have Φ(V ) = V ′ and

d′(Φ(x),Φ(y)) 6 d(x, y),

where d and d′ are the combinatorial distance functions of the graphs G and G′. Note
that Φ does not necessarily induce a map between the edge sets E and E ′ (since two
adjacent vertices x, y ∈ V in G can be mapped to the same vertex Φ(x) = Φ(y) in
G′). The following relation between weigthed Laplacians of surjective 1-Lipschitz maps is
important for our curvature results.

Lemma 23. Let Φ : V → V ′ be a surjective 1-Lipschitz map between G = (V,E) and
G′ = (V ′, E ′). Let (m,w) and (m′, w′) be weigthing schemes on G and G′, respectively.
We assume the following relation between them:

(i) For all x′ ∈ V ′ and x ∈ Φ−1(x):

m(x) = m′(x′). (17)

(ii) For all x′, y′ ∈ V ′ with x′ ∼ y′ and all x ∈ Φ−1(x′):

w′(x′, y′) =
∑

y∈Φ−1(y′)

w(x, y). (18)

Then we have the following relation between the weighted Laplacians ∆ and ∆′ on G and
G′:

(∆(f ′ ◦ Φ)(x)) = (∆′f ′)(Φ(x))

for all functions f ′ : V ′ → R and x ∈ V .

Proof. Let x′ = Φ(x) and f = f ′ ◦Φ : V → R. Since G is simple, we can extend our edge
weights w : E → (0,∞) to a symmetric map w : V × V → [0,∞) with w(x, y) = 0 for
x = y and for x 6= y which are not adjacent. We will also write wxy for w(x, y). Similarly,
we can extend the map w′ of G′, and we have

(∆f)(x) =
1

m(x)

∑
y∈V

wxy(f(y)− f(x))

=
1

m(x)

∑
y′∈V ′

∑
y∈Φ−1(y′)

wxy(f(y)− f(x))

=
1

m′(x′)

∑
y′∈V ′

 ∑
y∈Φ−1(y′)

wxy

 (f ′(y′)− f ′(x′))
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=
1

m′(x′)

∑
y′∈V ′

wx′y′(f
′(y′)− f ′(x′))

= (∆′f ′)(x′).

Remark 24. Note that the edge weight function w′ : E ′ → (0,∞) is a positive function.
Therefore, the right hand sum of the relation (18) must be non-empty. This implies under
the assumptions of the lemma that for every edge {x′, y′} ∈ E ′ and every x ∈ Φ−1(x′),
there must be at least one edge {x, y} ∈ E with Φ(y) = y′.

Now we can state the following general result about curvature relations:

Theorem 25. Let Φ : V → V ′ be a surjective 1-Lipschitz map between G = (V,E) and
G′ = (V ′, E ′). Let (m,w) and (m′w′) be weigthing schemes on G and G′, respectively,
satisfying the relations (17) and (18). Then we have for every edge {x′, y′} ∈ E ′,

κGLLY (x′, y′) > κG
′

LLY (x, y), (19)

where {x, y} ∈ E is any edge with x′ = Φ(x) and y′ = Φ(y) (such an edge {x, y} exists
due to the previous remark). Moreover, we have for every x′ ∈ V ′ and every x ∈ Φ−1(x′),

KG′(x′) > KG(x). (20)

Proof. Let {x′, y′} ∈ E ′ and {x, y} ∈ E be edges with x′ = Φ(x) and y′ = Φ(y). Let
us first prove the statement (19) about the Ollivier Ricci curvature. Note that we have
d(x, y) = d′(x′, y′) = 1.

Next we observe the following facts about 1–Lip functions: if f ′ : V ′ → R is 1–Lip in
G′, then f = f ′ ◦ Φ : V → R is 1–Lip in G, since we have for u, v ∈ V ,

|f(u)− f(v)| = |f ′(Φ(u))− f ′(Φ(v))| 6 d′(Φ(u),Φ(v)) 6 d(u, v).

On the other hand, there may be 1–Lip functions f : V → R which are not of the form
f = f ′ ◦ Φ.

Bringing these facts together, we conclude with Lemma 23 that

κG
′

LLY (x′, y′) = inf
f ′∈1–Lip

f ′(y′)−f ′(x′)=1

∆′f ′(x′)−∆′f ′(y′) > inf
f∈1–Lip

f(y)−f(x)=1

∆f(x)−∆f(y) = κGLLY (x, y),

since the infimum on the right hand side may be over a larger set of 1–Lip functions.
For the proof of the Bakry-Émery curvature relation (20), we observe the following

relations between the bilinear forms Γ,Γ2 and Γ′,Γ′2 on G and G′: We conclude with
Lemma 23 that, for f ′ : V ′ → R, f = f ◦ Φ and x ∈ Φ−1(x′),

Γ′f ′(x′) =
1

2

(
∆′((f ′)2)(x′)− 2f ′(x′)(∆′f ′)(x′)

)
=

1

2

(
∆((f)2)(x)− 2f(x)(∆f)(x)

)
= Γf(x),
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and similarly,
Γ′2f

′(x′) = Γ2f(x).

This implies

KG′(x′) = inf
f ′: Γ′f ′(x′)=1

Γ′2f
′(x′) > inf

f : Γf(x)=1
Γ2f(x) = KG(x),

since the infimum on the right hand side might be over a larger set of functions.

We finish this section by showing that the statement in Theorem 9 is a special case of
the more general Theorem 25.

Proof of Theorem 9. Let G = Cay(Γ, SΓ), G′ = Cay(Γ′, SΓ′) and Φ : Γ → Γ′ be defined
by Φ([w]R) = [w]R′ . This construction implies that the map Φ is surjective and maps
adjacent vertices [w]R and [ws]R in G either to adjacent vertices [w]R′ and [ws]R′ or to the
same vertex [w]R′ = [ws]R′ . This implies that Φ is a surjective 1-Lipschitz map. Moreover,
every edge incident to the identity element in G′ corresponds to a non-trivial equivalence
class [s]R′ for some s ∈ S, and the assumption R′ ⊃ R implies that the equivalence
class [s]R is also non-trivial. This shows that the statement in Remark 24 is satisfied.
The vertex measures m = 1V and m′ = 1V ′ on G and G′ satisfy the relation (17), and
condition (4) implies the edge weight relation (18). Therefore, we can apply Theorem 25
and finish the proof.
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are Bakry-Émery curvature sharp. Discrete Math., 343(3): Paper No. 111767, 2020.
doi:10.1016/j.disc.2019.111767

[11] M. Dyer. Reflection subgroups of Coxeter systems. J. Algebra, 135(1): 57–73, 1990.

[12] D. Cushing, S. Liu and N. Peyerimhoff. Bakry-Émery curvature functions on graphs.
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