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Abstract

For an integer k > 2, a spanning tree of a graph without vertices of degree from
2 to k is called a [2, k]-ST of the graph. The concept of [2, k]-STs is a natural
extension of a homeomorphically irreducible spanning tree (or HIST), which is a
well-studied graph structure. In this paper, we give a new strategy for finding [2, k]-
STs. By using the strategy, we refine or extend a known degree-sum condition for
the existence of a HIST. Furthermore, we also investigate a degree-product condition
for the existence of a [2, k]-ST.

Mathematics Subject Classifications: 05C05, 05C07

1 Introduction

For a graph G, let V (G) and E(G) denote the vertex set and the edge set of G, respec-
tively. For u ∈ V (G), let NG(u) and dG(u) denote the neighborhood and the degree of u,
respectively; thus NG(u) = {v ∈ V (G) : uv ∈ E(G)} and dG(u) = |NG(u)|. For an integer
i > 0, let Vi(G) = {u ∈ V (G) : dG(u) = i} and V>i(G) = {u ∈ V (G) : dG(u) > i}. We let
δ(G) denote the minimum degree of G. We define

σ2(G) = min{dG(u) + dG(v) : u, v ∈ V (G), u 6= v, uv /∈ E(G)}

if G is not complete; σ2(G) =∞ if G is complete. Also, we define

π2(G) = min{dG(u)dG(v) : u, v ∈ V (G), u 6= v, uv /∈ E(G)}

if G is not complete; π2(G) =∞ if G is complete.
For a tree T , each vertex in V>2 (resp., V1(T )) is called a stem (resp., a leaf). For a

graph G, a spanning tree of G without vertices of degree 2 is called a homeomorphically
irreducible spanning tree (or a HIST) of G; i.e., a spanning tree T of G is a HIST if and
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only if V2(T ) = ∅. A structure of HISTs is sometimes used as an essential tool to construct
graph classes; for example, in an explicit class of edge-minimal 3-connected plane graphs
given by Halin [8], HISTs play a key role. Motivated by such uses, the existence of a HIST
(or a large subtree having no vertex of degree 2) has been widely studied (for example,
see [1–3, 9, 13]). It is well known that a number of sufficient conditions for the existence
of a hamiltonian path have been naturally generalized to those for the existence of a
spanning k-tree, which is a spanning tree in which every stem has degree lying between 2
and k. Similar to this, the concept of HISTs was naturally extended: A spanning tree T
of G is called a [2, k]-ST of G if

⋃
26i6k Vi(T ) = ∅ (for further historical background and

related results, we refer the reader to [6]).
Our aim in this series is to refine and to extend some known degree conditions for the

existence of HISTs. In this paper,

(i) we give two results which essentially extend a known degree-sum condition assuring
us the existence of a HIST, and

(ii) we focus on a degree-product condition, which seems to be more reasonable for the
existence of a HIST, and find a [2, k]-ST using such a condition.

We start with a degree-sum condition for the existence of HISTs, which was recently
given by Ito and Tsuchiya [10].

Theorem 1 (Ito and Tsuchiya [10]). Let G be a connected graph of order n > 8. If
σ2(G) > n− 1, then G has a HIST.

They also showed that the bound on σ2 is best possible, i.e., for each integer n > 8,
there exists a graph G of order n with σ2(G) = n− 2 having no HIST. Our first result is
a refinement of Theorem 1 with a characterization of sharp examples. For integers k > 2
and n > 2k + 1, let Gk,n be the family of graphs G of order n satisfying the following
conditions (see Figure 1):

(L1) V (G) is the disjoint union of four non-empty sets L1, L2, L3 and L4,
(L2) L1 ∪ L2 and L4 are cliques of G,
(L3) for every u1 ∈ L1, NG(u1) ∩ (L3 ∪ L4) = ∅,
(L4) for every u2 ∈ L2, NG(u2) ∩ L3 6= ∅, NG(u2) ∩ L4 = ∅ and dG(u2) 6 k, and
(L5) for every u3 ∈ L3, NG(u3) ∩ L2 6= ∅, L4 ⊆ NG(u3) and dG(u3) > n− |L1 ∪ L2| − 1.

Let k > 2 be an integer, and let ck =
√
k(k − 1)(k + 2

√
2k + 2). Let n0(k) be the smallest

positive integer such that n− 4ck
√
n− 2k2− 4k− 4 > 0 for every integer n > n0(k). Our

first result is the following.

Theorem 2. Let k > 2 be an integer. Let G be a connected graph of order n > n0(k), and
suppose that σ2(G) > n− 2. Then G has a [2, k]-ST if and only if G is not isomorphic to
any graph in Gk,n.
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Figure 1: Graphs G belonging to Gk,n.

Theorem 2 is a generalization of Theorem 1 for sufficiently large graphs. On the other
hand, one can easily calculate that n0(2) = 295, and so it in fact does not cover Theorem 1
when a target graph is small. Actually, in the previous paper [6] of this series, we obtained
the same result as Theorem 2 for the case where k = 2 and n > 10 in a different way. So
the order condition n > n0(k) in Theorem 2 is not best possible.

Recently, Shan and Tsuchiya [12] introduced a blocking set, which is a new concept
on cutsets closely related to the existence of a HIST. We extend the concept to a [2, k]-ST
version. Let k > 2 be an integer, and suppose that G is connected. A cutset U ⊆ V (G)
of G is k-blocking set of G if U ⊆

⋃
26i6k Vi(G). If a graph G has a [2, k]-ST T , then for

a cutset L of G, there exists a vertex u ∈ L with dT (u) > k + 1. In particular, if a graph
has a [2, k]-ST, then the graph has no k-blocking set.

If a graph G satisfies (L1)–(L5), then L2 is a k-blocking set. Thus, considering The-
orem 2, one might expect that the degree-sum condition can be greatly improved if we
omit the existence of a k-blocking set. Our second result affirms the expectation. Let
n1(k) be the smallest positive integer such that n+2k−2

4
− 2ck

√
n − k2 − 2k − 1 > 0 for

every integer n > n1(k). Note that n1(2) = 1091.

Theorem 3. Let k > 2 be an integer. Let G be a connected graph of order n > n1(k), and
suppose that σ2(G) > n+2k−2

2
. Then G has a [2, k]-ST if and only if G has no k-blocking

set.

Our third result is to propose a new concept on degree conditions. To explain it in
detail, we start with two more natural results on degree conditions for the existence of
HISTs (or [2, k]-STs). The following theorem is the first result discussing a relationship
between a HIST and a degree condition.

Theorem 4 (Albertson, Berman, Hutchinson and Thomassen [1]). Let G be a connected
graph of order n, and suppose that δ(G) > 4

√
2n. Then G has a HIST.

Note that c2 = 4 because ck =
√
k(k − 1)(k + 2

√
2k + 2). Recently, Theorem 4 was

refined and extended in the previous paper of this series as follows.
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Theorem 5 (Furuya, Saito and Tsuchiya [6]). Let k > 2 be an integer. Let G be a
connected graph of order n, and suppose that δ(G) > ck

√
n. Then G has a [2, k]-ST.

The coefficient of
√
n in Theorem 5 might be further improved. On the other hand, for

any integers k > 2 and d > k−1 such that d
k−1 is an integer, Furuya et al. [6] constructed

a connected graph G with δ(G) = d =
√

4(k − 1)|V (G)|+ (2k − 1)2 − 2k + 1 having no
[2, k]-ST. Therefore the degree condition in Theorem 5 is asymptotically best possible.

Now we focus on a large gap between Theorems 1 and 4. For example, the following
two theorems are well-known, and their degree conditions are best possible:

• Dirac’s Theorem [5]: If a graph G of order n > 3 satisfies δ(G) > n
2
, then G has a

Hamiltonian cycle.

• Ore’s Theorem [11]: If a graph G of order n > 3 satisfies σ2(G) > n, then G has a
Hamiltonian cycle.

In particular, Ore’s Theorem implies Dirac’s Theorem. On the other hand, a degree
condition in Theorem 1 is much bigger than one in Theorem 4. Considering the fact that
the root of the order of a graph appears in Theorem 4, one natural question occurs: Is
there a degree-product condition close to the order assuring us the existence of HISTs? We

give an affirmative answer for the problem. Recall that ck =
√
k(k − 1)(k + 2

√
2k + 2)

for an integer k > 2. For an integer k > 2, let

pk =
5c2k + 3ck

√
c2k + 4k2 + 8k + 4

2
+ k2 + 2k + 1.

Our third result is the following.

Theorem 6. Let k > 2 be an integer. Let G be a connected graph of order n > k + 2,
and suppose that π2(G) > pkn. Then G has a [2, k]-ST.

As with Theorems 4 and 5, we do not know whether the coefficient of n in Theorem 6
is best possible or not. However, the degree-product condition, which is an unprecedented
work as we know, seems to be essential for the existence of HISTs (or [2, k]-STs).

The proofs of Theorem 2–6 depend on a common strategy. In Section 2, we introduce
key lemmas for the strategy. In Section 3, we prove Theorems 2 and 3 at the same
time, and discuss the sharpness of the degree-sum condition appearing in Theorem 3. In
Section 4, we prove Theorem 6.

1.1 Notations

In this subsection, we prepare the notation required for our proofs. For terms and symbols
not defined in this paper, we refer the reader to [4].

Let G be a graph. For F ⊆ E(G), let V (F ) = {u, v : uv ∈ F}. For a subgraph H of G
and a subset F of E(G), let H +F be the subgraph of G with V (H +F ) = V (H)∪V (F )
and E(H +F ) = E(H)∪F . Let compo(G) be the number of components of G. A vertex
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u of G is called a cut-vertex of G if compo(G − u) > compo(G). Note that cut-vertices
are defined in disconnected graphs. Let cut(G) be the number of cut-vertices of G.

Let k > 2 be an integer. For a tree T and a subset U of V (T ), T is (k, U)-good if
V (T ) \ U ⊆ V1(T ) ∪ V>k+1(T ) and U ⊆ V>k(T ). Note that a spanning (k, ∅)-good tree of
a graph G is a [2, k]-ST of G. If a tree is (k, {u})-good, then the tree is simply said to be
(k, u)-good.

2 Key lemmas

In this section, we introduce a key lemma for our argument (Lemma 8) and arrange it
for the existence of [2, k]-STs (Lemmas 9 and 10). Our strategy is that first we take
the vertex set S in a graph G consisting of all small degree vertices, where small means
half or the root of the degree condition (by the definitions of degree conditions, we can
show that S induces a clique). Then we can see that each component of G − S has
large minimum degree. In order to take [2, k]-STs of G, we guarantee the existence of
convenient structures in such components by proving Lemmas 9 and 10.

Lemma 7. Let G be a graph of order n, and suppose that δ(G) > 2
√
n. Then cut(G) +

compo(G)− 1 6 2
√
n.

Proof. We proceed by induction on n. If n 6 5, then there is no graph G of order n with
δ(G) > 2

√
n, and hence the lemma holds. Thus we may assume that n > 6.

Since δ(G) > 2
√
n, every component of G contains more than 2

√
n vertices, and hence

compo(G) < n
2
√
n

=
√
n
2

. In particular, if G has no cut-vertex, then cut(G) + compo(G)−
1 < 0 +

√
n
2
− 1 < 2

√
n, as desired. Thus we may assume that a component G1 of G has

a cut-vertex.
Let L be an end-block of G1, which is a block of G containing exactly one cut-vertex.

Let u be the unique cut-vertex of G1 with u ∈ V (L). For a vertex u′ ∈ V (L) \ {u},
2
√
n 6 δ(G) 6 dG(u′) 6 |V (L) \ {u′}| = |V (L)| − 1. Hence

|V (L)| > 2
√
n+ 1. (1)

Since u is a cut-vertex of G1, V (G1) \ V (L) 6= ∅. Furthermore, since L is an end-block,
all cut-vertices of G1 other than u are contained in V (G1) \ V (L). Let X be the set of
cut-vertices of G1 other than u such that they are not cut-vertices of G1 − V (L).

Fix a vertex v ∈ X, and let H be the component of G1 − V (L) containing v. Then
v belongs to exactly two blocks of G1 and all neighbors of v in one of them have been
deleted in G − V (L). This implies that uv ∈ E(G) and G1[{u, v}] is a block of G1. In
particular, V (H)∩X = {v}. Since v is arbitrary, |X| = |{H : H is the component of G1−
V (L) containing a vertex in X}| 6 compo(G1 − V (L)). This implies that

cut(G− V (L)) + compo(G− V (L)) + 1

= (cut(G− V (G1)) + cut(G1 − V (L))) + (compo(G)− |{G1}|+ compo(G1 − V (L))) + 1

> cut(G− V (G1)) + (cut(G1)− |{u} ∪X|) + compo(G)− 1 + |X|+ 1

= cut(G) + compo(G)− 1. (2)
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Since (2
√
n− 2)2 −

(
2
√

n− 2
√
n− 1

)2
= 8 > 0, we have

2
√
n− 2 > 2

√
n− 2

√
n− 1. (3)

By (1) and (3), δ(G−V (L)) > δ(G)−1 > 2
√
n−1 > 2

√
n− 2

√
n− 1 > 2

√
|V (G− V (L))|.

Hence, by the induction hypothesis on G− V (L), (1) and (3), we have

cut(G−V (L))+compo(G−V (L)) 6 2
√
|V (G− V (L))|+1 6 2

√
n− 2

√
n− 1+1 < 2

√
n−1,

This together with (2) leads to

cut(G) + compo(G)− 1 6 cut(G− V (L)) + compo(G− V (L)) + 1 < (2
√
n− 1) + 1,

as desired.

Lemma 8. Let m > 0 be an integer. Let G be a connected graph of order n, and let
u ∈ V (G) and Y ⊆ V (G) \ {u}. If δ(G) > 2

√
n + m + |Y |, then there exists a set

X ⊆ NG(u) \ Y with |X| = m such that G−X is connected.

Proof. We proceed by induction on m. If m = 0, then the desired conclusion clearly
holds. Thus we may assume that m > 1.

Since G is connected, it follows from Lemma 7 that cut(G) 6 2
√
n. Since dG(u) >

2
√
n + m + |Y |, this implies that there exists a vertex v ∈ NG(u) \ Y which is not a

cut-vertex of G. Let G′ = G − v. Then G′ is connected and δ(G′) > δ(G) − 1 >
2
√
n + (m − 1) + |Y | > 2

√
|V (G′)| + (m − 1) + |Y |. Hence by the induction hypothesis

on G′, there exists a set X ′ ⊆ NG′(u) \ Y (= NG(u) \ (Y ∪ {v})) with |X ′| = m− 1 such
that G′ −X ′ (= G− ({v} ∪X ′)) is connected. Consequently, X := {v} ∪X ′ is a desired
subset of NG(u) \ Y .

In the remainder of this section, we implicitly use the fact that ck > 2 for every integer
k > 2.

Lemma 9. Let k > 2 be an integer. Let G be a connected graph of order n, and let
U ⊆ V (G) be a set with U 6= ∅. If δ(G) > ck

√
n + (k + 1)|U | − 1, then there exists a

spanning forest of G consisting of exactly |U | components F1, F2, . . . , F|U | such that for
every integer i with 1 6 i 6 |U |, |V (Fi) ∩ U | = 1 and Fi is a (k, V (Fi) ∩ U)-good tree.

Proof. Write U = {u1, u2, . . . , ut} where t = |U |. Since (k + 1)t− (k + t) = k(t− 1) > 0,
we have δ(G) > ck

√
n + (k + 1)t − 1 > 2

√
n + k + t − 1 = 2

√
n + k + |U \ {ut}|. This

together with Lemma 8 with (m,u, Y ) = (k, ut, U \ {ut}) implies that there exists a set
X ⊆ NG(ut) \ (U \ {ut}) (= NG(ut) \ U) with |X| = k such that G−X is connected.

We proceed by induction on t. Suppose that t = 1, i.e., U = {u1}. Then δ(G−X) >
δ(G) − k > ck

√
n > ck

√
|V (G−X)|. Hence by Theorem 5, G − X has a [2, k]-ST T0.

Since X ⊆ NG(u1), F1 := T0 + {u1v : v ∈ X} is a [2, k]-ST of G, and in particular, F1 is
a spanning (k, u1)-good tree of G, and hence it is a desired forest. Thus we may assume
that t > 2.
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Let C be the family of components of G−({ut}∪X), and let C1 = {C ∈ C : V (C)∩U 6=
∅} and C2 = C \ C1. Since t > 2, we have C1 6= ∅.

Fix C ∈ C1. Let IC = {i : 1 6 i 6 t− 1, ui ∈ V (C)}, and let tC = |IC |. Then

δ(C) > δ(G)− |{ut} ∪X|
> ck
√
n+ (k + 1)t− 1− (k + 1)

= ck
√
n+ (k + 1)(t− 1)− 1

> ck
√
|V (C)|+ (k + 1)tC − 1.

By the induction hypothesis on C, C has a spanning forest consisting of exactly tC com-
ponents Fi (i ∈ IC) such that for every integer i ∈ IC , |V (Fi) ∩ U | = 1 and Fi is a
(k, V (Fi) ∩ U)-good tree. Since C is arbitrary,

∑
C∈C1

tC (= t − 1) vertex-disjoint sub-
trees F1, F2, . . . , Ft−1 of G have been defined. Note that

⋃
16i6t−1 V (Fi) =

⋃
C∈C1

V (C) =
V (G) \ ({ut} ∪X ∪ (

⋃
C′∈C2

V (C ′))).
Remark that C2 might be empty. Assume that C2 6= ∅ and fix C ′ ∈ C2. Since G−X is

connected, there exists a vertex vC′ ∈ NG(ut)∩ V (C ′). Since (k + 1)t− 1− (k + 1)− k =
(k + 1)(t− 2) > 0, (k + 1)t− 1− (k + 1) > k, and hence

δ(C ′) > δ(G)− |{ut} ∪X| > ck
√
n+ (k + 1)t− 1− (k + 1) > ck

√
|V (C ′)|+ k.

By the induction hypothesis on C ′, C ′ has a spanning (k, vC′)-good tree TC′ . Let F ′ be
the subgraph of G with V (F ′) = {ut} ∪ X and E(F ′) = {utv : v ∈ X}. Then F ′ is
a (k, ut)-good subtree of G. Let Ft = (F ′ ∪ (

⋃
C′∈C2

TC′)) + {utvC′ : C ′ ∈ C2}, where
Ft = F ′ if C2 = ∅. Then Ft is a (k, ut)-good tree, V (Ft) = {ut} ∪X ∪ (

⋃
C′∈C2

V (C ′)) and
V (Ft) ∩ U = {ut}.

Consequently, the graph
⋃

16i6t Fi is a desired spanning forest of G.

Lemma 10. Let k > 2 be an integer. Let G be a connected graph of order n, and let
U ⊆ V (G) be a set with U 6= ∅. If δ(G) > ck

√
n+ k|U | − 1, then there exists a spanning

(k, U)-good tree of G.

Proof. Write U = {u1, u2, . . . , ut} where t = |U |. We recursively define t setsX1, X2, . . . , Xt

such that for each integer i with 1 6 i 6 t,

(A1) Xi ⊆ NG(ui) \ (U ∪ (
⋃

16j6i−1Xj)),

(A2) |Xi| = k − 1, and

(A3) G− (
⋃

16j6iXj) is connected

as follows: We let i0 be an integer with 1 6 i0 6 t, and assume that we have defined i0−1
sets X1, X2, . . . , Xi0−1 satisfying (A1)–(A3) for every integer i with 1 6 i 6 i0 − 1. Let
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Gi0 = G− (
⋃

16i6i0−1Xi). Then Gi0 is connected and

δ(Gi0) > δ(G)−

∣∣∣∣∣ ∑
16j6i0−1

Xj

∣∣∣∣∣
> ck
√
n+ kt− 1− (i0 − 1)(k − 1)

> 2
√
n+ kt− 1− (t− 1)(k − 1)

= 2
√
n+ k − 1 + |U \ {ui0}|.

This together with Lemma 8 with (G,m, u, Y ) = (Gi0 , k − 1, ui0 , U \ {ui0}) implies that
there exists a set Xi0 ⊆ NGi0

(ui0) \ (U \ {ui0}) (= NGi0
(ui0) \ U) with |Xi0| = k − 1 such

that Gi0−Xi0 (= G− (
⋃

16i6i0
Xi)) is connected. Thus X1, X2, . . . , Xi0 satisfy (A1)–(A3)

for for every integer i with 1 6 i 6 i0. Consequently, we obtain desired sets.
Let G′ = G− (

⋃
16i6tXi). By (A3), G′ is connected. Since X1, X2, . . . , Xt are pairwise

disjoint by (A1), it follows from (A2) that δ(G′) > δ(G)− |
∑

16i6tXi| > ck
√
n+ kt− 1−

t(k − 1) > ck
√
|V (G′)|. Hence by Theorem 5, G′ has a [2, k]-ST T . Then T + {uiv : 1 6

i 6 t, v ∈ Xi} is a spanning (k, U)-good tree of G.

3 Proof of Theorems 2 and 3

Proposition 11. Let k > 2 and n > 2k + 1 be integers. Then for every G ∈ Gk,n, G is a
connected graph of order n and satisfies σ2(G) = n− 2.

Proof. Let G ∈ Gk,n. By the definition of Gk,n, it is clear that G is a connected graph
of order n. Let L1, L2, L3 and L4 be subsets of V (G) satisfying (L1)–(L5). Then the
following hold.

• For every u1 ∈ L1, it follows from (L2) and (L3) that dG(u1) = |L1 ∪ L2| − 1.

• For every u2 ∈ L2, it follows from (L2) and (L4) that dG(u2) = |L1∪L2|−1+ |NG(u2)∩
L3| > |L1 ∪ L2|. Since dG(u2) 6 k for u2 ∈ L2, this implies that |L1 ∪ L2| 6 k.

• For every u3 ∈ L3, it follows from (L5) that dG(u3) > n− |L1 ∪ L2| − 1.

• For every u4 ∈ L4, it follows from (L1)–(L5) that dG(u4) = |L3∪L4|−1 = n−|L1∪L2|−1.

Since n− |L1 ∪ L2| − 1 > (2k + 1)− k − 1 = k > |L1 ∪ L2| − 1, it follows that

• for u ∈ L1 ∪ L2 and u′ ∈ L3 ∪ L4 with uu′ /∈ E(G), dG(u) + dG(u′) > (|L1 ∪ L2| − 1) +
(n− |L1 ∪ L2| − 1) = n− 2,

• for u1 ∈ L1 and u4 ∈ L4, dG(u1) +dG(u4) = (|L1∪L2|−1) + (n−|L1∪L2|−1) = n−2,
and

• for u3, u
′
3 ∈ L3 with u3 6= u′3 and u3u

′
3 /∈ E(G), dG(u3)+dG(u′3) > 2(n−|L1∪L2|−1) >

(n− |L1 ∪ L2| − 1) + (|L1 ∪ L2| − 1) = n− 2.
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Consequently, we obtain σ2(G) = n− 2.

Now we prove Theorems 2 and 3.

Proof of Theorems 2 and 3. Let k > 2 be an integer. For an integer n > n0(k), since
0 6 n− 4ck

√
n− 2k2 − 4k − 4 < n− 2k, i.e., n > 2k + 1, it follows from Proposition 11

that each element of Gk,n satisfies the assumption of Theorem 2. Furthermore, if a graph
G satisfies (L1)–(L5), then L2 is a cutset of G, and so L2 is a k-blocking set of G by (L4).
As we mentioned in Section 1, if a graph has a k-blocking set, then the graph has no
[2, k]-ST. Therefore, to complete the proof of Theorems 2 and 3, it suffices to show that
a connected graph G of order n satisfying one of the following has a [2, k]-ST:

(G1) n > n0(k), σ2(G) > n− 2 and G is not isomorphic to any graph in Gk,n, or

(G2) (G1) does not hold, n > n1(k), σ2(G) > n+2k−2
2

and G has no k-blocking set.

Since k > 2,

ck =

√
k(k − 1)(k + 2

√
2k + 2) >

√
k(k − 1)(k + 2) >

√
k3. (4)

By the definition of n0(k) and n1(k), we have

(N1) if n > n0(k), then n > 4ck
√
n+ 2k2 + 4k + 4, and

(N’1) if n > n1(k), then n+2k−2
4

> 2ck
√
n+ k2 + 2k + 1.

By (4), if k3 > n1(k), then

0 6
k3 + 2k − 2

4
− 2ck

√
k3 − k2 − 2k − 1

<
k3 + 2k − 2

4
− 2
√
k3 ·
√
k3 − k2 − 2k − 1

= −7k3 + 4k2 + 6k + 6

4
< 0,

which is a contradiction. Thus n1(k) > k3. In particular, if n > n1(k), then

n− n+ 2k − 2

4
=

3n− 2k + 2

4
>

3k3 − 2k + 2

4
> 0,

and by (4),

ck
√
n >
√
k3 ·
√
k3 = k3 > 2k2. (5)

Consequently, it follows from (N’1) that

(N’2) if n > n1(k), then n > n+2k−2
4

> ck
√
n+ 3k2 + 2k + 1.
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(N’3) if n > n1(k), then n+2k−2
4

> 5k2 + 2k + 1.

Let s0 = n− 2 if (G1) holds; and let s0 = n+2k−2
2

if (G2) holds. Let S = {u ∈ V (G) :
dG(u) < s0

2
}. Then for vertices u, u′ ∈ S with u 6= u′, we have dG(u)+dG(u′) < s0 6 σ2(G),

and hence uu′ ∈ E(G). This implies that S is a clique of G.
If δ(G) > ck

√
n, then by Theorem 5, G has a [2, k]-ST. Thus we may assume that

δ(G) < ck
√
n. If (G1) holds, then by (N1), s0

2
= n−2

2
> (4ck

√
n+2k2+4k+4)−2

2
> ck

√
n; if

(G2) holds, by (N’1), s0
2

= n+2k−2
4

> 2ck
√
n+ k2 + 2k+ 1 > ck

√
n. In either case, we have

s0
2
> ck
√
n, and hence there exists a vertex u0 ∈ S such that dG(u0) = δ(G) (< ck

√
n).

In particular, S 6= ∅. Since S is a clique of G,

|S| = |(NG(u0) ∩ S) ∪ {u0}| 6 dG(u0) + 1 < ck
√
n+ 1. (6)

Let Q be the family of components of G−S. If Q = ∅, then by (6), n = |S| < ck
√
n+1,

which contradicts (N1) or (N’2). Thus Q 6= ∅. Furthermore, for each Q ∈ Q,

δ(Q) > min{dG(v) : v ∈ V (Q)} − |S| > s0
2
− |S| =

{
n−2
2
− |S| (if (G1) holds)

n+2k−2
4
− |S| (if (G2) holds).

(7)

Claim 12. For u ∈ S and Q ∈ Q, V (Q) \NG(u) 6= ∅.

Proof. Suppose that V (Q) ⊆ NG(u). Then |V (Q)| + |S| − 1 = |V (Q) ∪ (S \ {u})| 6
dG(u) < s0

2
. On the other hand, for a vertex v ∈ V (Q), we have |V (Q)| + |S| − 1 =

|(V (Q) \ {v}) ∪ S| > dG(v) > s0
2

, which is a contradiction.

Take Q1 ∈ Q so that |V (Q1)| is as small as possible. Then

|V (Q1)| 6
n− |S|
|Q|

. (8)

Claim 13. (i) If (G1) holds, then |Q| = 1.

(ii) If (G2) holds, then |Q| 6 3.

(iii) If (G2) holds and |S| 6 3k − 2, then |Q| 6 2.

Proof. Recall that u0 is a vertex in S with dG(u0) < ck
√
n. By Claim 12 with (u,Q) =

(u0, Q1), there exists a vertex v1 ∈ V (Q1) \ NG(u0). In order to prove statements of the
claim, we show that d(u0) + d(u1) does not satisfy the degree-sum condition. By (8),

dG(v1) 6 |V (Q1) \ {v1}|+ |S \ {u0}|

6

(
n− |S|
|Q|

− 1

)
+ (|S| − 1)

=
n+ (|Q| − 1)|S|

|Q|
− 2. (9)
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To prove (i), (ii) and (iii), we prepare three equations as follows. If n > n0(k), then by
(N1),

n− 2−
(
ck
√
n+

n+ ck
√
n+ 1

2
− 2

)
=
n− 3ck

√
n− 1

2

>
(4ck
√
n+ 2k2 + 4k + 4)− 3ck

√
n− 1

2

>
ck
√
n+ 2k2 + 4k + 3

2
> 0. (10)

If n > n1(k), then by (N’1),

n+ 2k − 2

2
−
(
ck
√
n+

n+ 3ck
√
n+ 3

4
− 2

)
=
n+ 2k − 2

4
− 7ck

√
n− 2k − 3

4

> (2ck
√
n+ k2 + 2k + 1)− 7ck

√
n− 2k − 3

4

=
ck
√
n+ 4k2 + 10k + 7

4
> 0 (11)

and

n+ 2k − 2

2
−
(
ck
√
n+

n+ 6k − 4

3
− 2

)
=

2

3
· n+ 2k − 2

4
− 3ck

√
n+ 4k − 8

3

>
2(2ck

√
n+ k2 + 2k + 1)

3
− 3ck

√
n+ 4k − 8

3

=
ck
√
n+ 2k2 + 10

3
> 0. (12)

Suppose that (G1) holds and |Q| > 2. By (6), n+(|Q|−1)|S|
|Q| 6 n+|S|

2
< n+ck

√
n+1

2
. This

together with (9) and (10) implies that

σ2(G) 6 dG(u0) + dG(v1) < ck
√
n+

(
n+ ck

√
n+ 1

2
− 2

)
< n− 2,

which contradicts the assumption on σ2(G) in (G1).

Suppose that (G2) holds. If |Q| > 4, then it follows from (6) that n+(|Q|−1)|S|
|Q| 6 n+3|S|

4
<

n+3(ck
√
n+1)

4
, and hence by (9) and (11),

σ2(G) 6 dG(u0) + dG(v1) < ck
√
n+

(
n+ 3ck

√
n+ 3

4
− 2

)
<
n+ 2k − 2

2
;
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if |S| 6 3k − 2 and |Q| = 3, then n+(|Q|−1)|S|
|Q| 6 n+2(3k−2)

3
, and hence by (9) and (12),

σ2(G) 6 dG(u0) + dG(v1) < ck
√
n+

(
n+ 6k − 4

3
− 2

)
<
n+ 2k − 2

2
.

In either case, we obtain a contradiction to the assumption on σ2(G) in (G2).

A set S ′ ⊆ S dominates Q if for each Q ∈ Q, there exists a vertex u ∈ S such that
NG(u) ∩ V (Q) 6= ∅.

Claim 14. If there exists a vertex u ∈ S such that {u} dominates Q and dG(u) > k + 1,
then G has a [2, k]-ST.

Proof. Since |NG(u) \ (
⋃

Q∈Q V (Q))| = |NG(u) ∩ S| = |S| − 1, there exists a set X ⊆
NG(u)∩ (

⋃
Q∈Q V (Q)) such that |X| = max{|Q|, k+ 1− (|S| − 1)} and X ∩ V (Q) 6= ∅ for

all Q ∈ Q. Note that 1 6 |X ∩ V (Q)| 6 k+ 1 for every Q ∈ Q. Fix Q ∈ Q. If (G1) holds,
then by (N1), (6) and (7),

δ(Q) >
n− 2

2
− |S|

>
n− 2

2
− ck
√
n− 1

>
(4ck
√
n+ 2k2 + 4k + 4)− 2

2
− ck
√
n− 1

= ck
√
n+ (k + 1)2 − 1

> ck
√
|V (Q)|+ (k + 1)|X ∩ V (Q)| − 1;

if (G2) holds, then by (N’1), (6) and (7),

δ(Q) >
n+ 2k − 2

4
− |S|

>
n+ 2k − 2

4
− ck
√
n− 1

> (2ck
√
n+ k2 + 2k + 1)− ck

√
n− 1

= ck
√
n+ (k + 1)2 − 1

> ck
√
|V (Q)|+ (k + 1)|X ∩ V (Q)| − 1.

In either case, δ(Q) > ck
√
|V (Q)|+ (k + 1)|X ∩ V (Q)| − 1. This together with Lemma 9

with (G,U) = (Q,X ∩ V (Q)) implies that there exists a spanning forest of Q consisting
of exactly |X ∩ V (Q)| components FQ,1, FQ,2, . . . , FQ,|X∩V (Q)| such that for every integer i
with 1 6 i 6 |X ∩ V (Q)|, |V (FQ,i)∩X| = 1 and FQ,i is a (k, V (FQ,i)∩X)-good tree. Let

T1 :=

⋃
Q∈Q

 ⋃
16i6|X∩V (Q)|

FQ,i

+ {uv : v ∈ (S \ {u}) ∪X}.

Then dT1(u) = (|S| − 1) + |X| > (|S| − 1) + k + 1− (|S| − 1) = k + 1, and hence T1 is a
[2, k]-ST of G.
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By Claim 14, we may assume that

if {u} dominates Q, then dG(u) 6 k. (13)

Note that S dominates Q because G is connected. Choose a set S̃ ⊆ S dominating Q

so that

(S1) S̃ is minimal, i.e., S̃ \ {ũ} does not dominate Q for every ũ ∈ S̃,

(S2) subject to (S1), |S̃| is as large as possible, and

(S3) subject to (S2),
∑

ũ∈S̃ dG(ũ) is as large as possible.

If (G1) holds, then by Claim 13(i), |S̃| = |Q| = 1; if (G2) holds, then by Claim 13(ii),
|S̃| 6 |Q| 6 3. Write S̃ = {ũ1, ũ2, . . . , ũs} where s = |S̃|.

For Q ∈ Q, let AQ = {u ∈ S : NG(u) ∩ V (Q) 6= ∅}.

Claim 15. Let Q ∈ Q. If (G2) holds and max{dG(u) : u ∈ AQ} 6 k, then |Q| = 1 and
AQ = S.

Proof. If |Q| > 2 or AQ 6= S, then AQ is a cutset of G. Since G has no k-blocking set,
this leads to the desired conclusion.

Now we divide the proof into two cases.

Case 1: |S̃| = 1.
Note that S̃ = {ũ1}. By (13), dG(ũ1) 6 k.

Claim 16. We have |Q| = 1, i.e., Q = {Q1}.

Proof. Suppose that |Q| > 2. By Claim 13(i), we can assume (G2) holds. By Claim 15, for
each Q ∈ Q, there exists a vertex uQ ∈ AQ with dG(uQ) > k+ 1. Note that {uQ : Q ∈ Q}
dominates Q. Take a minimal set S̃0 ⊆ {uQ : Q ∈ Q} dominating Q. Since |S̃| = 1, it
follows from (S1) and (S2) that |S̃0| = 1. However, dG(ũ1) 6 k and dG(ũ) > k+1 where ũ
is the unique element of S̃0, which contradicts (S3). Thus |Q| = 1, and so Q = {Q1}.

Claim 17. We have AQ1 = S.

Proof. It follows from (13) that

max{dG(u) : u ∈ AQ1} 6 k. (14)

If (G2) holds, then by Claim 15 and (14), AQ1 = S. Thus we may assume that (G1)
holds.

Suppose that AQ1 6= S. Let L1 = S \ AQ1 , L2 = AQ1 , L3 =
⋃

u∈AQ1
(NG(u) ∩ V (Q1))

and L4 = V (Q1) \ L3. Note that L1, L2 and L3 are non-empty sets. By Claim 16, V (G)
is the disjoint union of L1, L2, L3 and L4.

For u2 ∈ L2 (= AQ1), it follows from (14) that

|NG(u2) ∩ V (Q1)| 6 dG(u2)− |L1| 6 k − 1
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and

|L2| 6 |L1 ∪ L2| − 1 6 (|NG(u2) ∪ {u2}| − 1)− 1 6 ((k + 1)− 1)− 1. (15)

In particular, |L3| 6
∑

u2∈L2
|NG(u2) ∩ V (Q1)| 6 (k − 1)2. Hence by (N1) and (15),

|L4| = |V (Q1) \ L3| = n− |L1 ∪ L2| − |L3| > n− k − (k − 1)2 > 0. Hence L4 6= ∅.
Let u ∈ L1. For v3 ∈ L3,

n− 2 6 σ2(G) 6 dG(u) + dG(v3) = |(L1 ∪ L2) \ {u}|+ dG(v3),

and hence dG(v3) > n− |L1 ∪ L2| − 1. For v4 ∈ L4,

n− 2 6 σ2(G) 6 dG(u) + dG(v4)

6 |(L1 ∪ L2) \ {u}|+ |V (Q1) \ {v4}|
= (|L1 ∪ L2| − 1) + (n− |L1 ∪ L2| − 1)

= n− 2,

which forces NG(v4) = V (Q1) \ {v4}. Since v3 and v4 are arbitrary, it follows from (14)
that (G,L1, L2, L3, L4) satisfies (L1)–(L5). Consequently, G is isomorphic to a graph in
Gk,n, which contradicts (G1).

By Claims 16 and 17, for each u ∈ S, there exists a vertex vu ∈ NG(u) ∩ V (Q1). Let
W = {vu : u ∈ S}. Then

|W | 6 |S| = |S \ {ũ1}|+ 1 = (dG(ũ1)− |NG(ũ1) ∩ V (Q1)|) + 1 6 k − 1 + 1 = k. (16)

If (G1) holds, then by (N1), (7) and (16),

δ(Q1) >
n− 2

2
− |S|

>
n− 2

2
− k

>
(4ck
√
n+ 2k2 + 4k + 4)− 2

2
− k

> ck
√
n+ k2 − 1

> ck
√
|V (Q1)|+ k|W | − 1;

if (G2) holds, then by (N’2), (7) and (16),

δ(Q1) >
n+ 2k − 2

4
− |S|

>
n+ 2k − 2

4
− k

> (ck
√
n+ 3k2 + 2k + 1)− k

> ck
√
n+ k2 − 1

> ck
√
|V (Q1)|+ k|W | − 1.
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In either case, we have δ(Q1) > ck
√
|V (Q1)| + k|W | − 1. Hence by Lemma 10 with

(G,U) = (Q1,W ), there exists a spanning (k,W )-good tree T of Q1. Then T + {uvu :
u ∈ S} is a [2, k]-ST of G.

Case 2: |S̃| ∈ {2, 3}.
By Claim 13(i), we can assume (G2) holds. For the moment, we suppose that |S| >

(k − 1)|S̃| + 2. Recall that s = |S̃|. Since |S \ S̃| > (k − 1)|S̃| − (|S̃| − 2), there exists a
partition {S1, S2, . . . , Ss} of S \ S̃ such that

• if |S̃| = 2, then |Si| > k − 1 for i ∈ {1, 2}, and

• if |S̃| = 3, then |Si| > k − 1 for i ∈ {1, 3} and |S2| > k − 2.

Fix Q ∈ Q. Since S̃ dominates Q, we can take an edge uQvQ ∈ E(G) with uQ ∈ S̃ and
vQ ∈ V (Q). By (N’1), (6) and (7),

δ(Q) >
n+ 2k − 2

4
− |S|

>
n+ 2k − 2

4
− ck
√
n− 1

> (2ck
√
n+ k2 + 2k + 1)− ck

√
n− 1

> ck
√
n+ k − 1

> ck
√
|V (Q)|+ k|{vQ}| − 1.

Hence by Lemma 10 with (G,U) = (Q, {vQ}), there exists a spanning (k, vQ)-good tree
TQ of Q. Let P = ũ1ũ2 · · · ũs be a path on S̃, and let

T ∗1 =

((⋃
Q∈Q

TQ

)
∪ P

)
+ ({uQvQ : Q ∈ Q} ∪ {ũiu : 1 6 i 6 s, u ∈ Si}).

For ũi ∈ S̃, |Si| + dP (ũi) > k and, by (S1), there exists Q ∈ Q such that ũi = uQ, and
hence dT ∗1 (ũi) = dP (ũi) + |{Q ∈ Q : ũi = uQ}| + |Si| > k + 1. This implies that T ∗1 is a

[2, k]-ST of G. Thus we may assume that |S| 6 (k − 1)|S̃|+ 1 (6 (k − 1)|Q|+ 1).
If |Q| = 3, then |S| 6 3k − 2, which contradicts Claim 13(iii). Thus |Q| = |S̃| = 2. In

particular,

2 = |S̃| 6 |S| 6 2(k − 1) + 1 = 2k − 1. (17)

Write Q \ {Q1} = {Q2}. We may assume that NG(ũi) ∩ V (Qi) 6= ∅ for each i ∈ {1, 2}.
Then by (S1),

for i ∈ {1, 2}, NG(ũi) ∩ V (Q3−i) = ∅, i.e., NG(ũi) ⊆ (S \ {ũi}) ∪ V (Qi). (18)

Claim 18. If dG(u) 6 2k − 1 for every u ∈ S, then G has a [2, k]-ST.
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Proof. It follows from (18) that NG(ũ2) ∩ V (Q1) = ∅. Hence by (17) and the assumption
of the claim, we have∣∣∣∣∣⋃

u∈S

(NG(u) ∩ V (Q1))

∣∣∣∣∣ 6 ∑
u∈S\{ũ2}

|NG(u) ∩ V (Q1)|

6
∑

u∈S\{ũ2}

(dG(u)− |S \ {u}|)

6 (|S| − 1)(2k − 1− (|S| − 1))

= (|S| − 1)(2k − |S|)
6 (2k − 2)2.

On the other hand, it follows from (N’3), (7) and (17) that

|V (Q1)| > δ(Q1) + 1

>
n+ 2k − 2

4
− |S|+ 1

>
n+ 2k − 2

4
− (2k − 1) + 1

> (5k2 + 2k + 1)− (2k − 1) + 1

> (2k − 2)2.

Thus V (Q1) \ (
⋃

u∈S NG(u)) 6= ∅. Let v∗ ∈ V (Q1) \ (
⋃

u∈S NG(u)). Recall that we choose
Q1 so that |V (Q1)| is as small as possible. Then by (8), dG(v∗) = |NG(v∗) ∩ V (Q1)| 6
|V (Q1) \ {v∗}| 6 n−|S|

2
− 1.

Fix i ∈ {1, 2}. Let pi = |NG(ũi) ∩ V (Qi)|. Since ũiv
∗ /∈ E(G),

n+ 2k − 2

2
6 σ2(G) 6 dG(ũi) + dG(v∗) 6 dG(ũi) +

n− |S|
2

− 1,

and hence dG(ũi) > k + |S|
2

. This together with (18) implies that

pi = dG(ũi)− |S \ {ũi}| > k +
|S|
2
− (|S| − 1) = k − |S|

2
+ 1. (19)

Let S ′1 ⊆ S \ S̃ be a set with |S ′1| = d |S\S̃|
2
e, and let S ′2 = S \ (S̃ ∪ S ′1). Note that

|S ′1| > |S ′2| = b
|S\S̃|
2
c = b |S|−2

2
c > |S|−3

2
. Let Wi = (NG(ũi) ∩ V (Qi)) ∪ S ′i. Then by (19),

|Wi| = pi + |S ′i| >
(
k − |S|

2
+ 1

)
+
|S| − 3

2
= k − 1

2
.

Since |Wi| is an integer, this implies that |Wi| > k. By (18) and the assumption of the
claim, we have

|NG(ũi) ∩ V (Qi)| = pi = dG(ũi)− |NG(ũi) ∩ S| 6 (2k − 1)− |{ũ3−i}| = 2k − 2.
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Hence by (N’2), (7) and (17),

δ(Qi) >
n+ 2k − 2

4
− |S|

>
n+ 2k − 2

4
− (2k − 1)

> (ck
√
n+ 3k2 + 2k + 1)− 2k + 1

> ck
√
n+ (k + 1)(2k − 2)− 1

> ck
√
|V (Qi)|+ (k + 1)|NG(ũi) ∩ V (Qi)| − 1.

This together with Lemma 9 with (G,U) = (Qi, NG(ũi)∩V (Qi)) implies that there exists
a spanning forest of Qi consisting of exactly pi components F ′i,1, F

′
i,2, . . . , F

′
i,pi

such that for
every integer j with 1 6 j 6 pi, |V (F ′i,j)∩NG(ũi)| = 1 and F ′i,j is a (k, V (F ′i,j)∩NG(ũi))-
good tree. Then ⋃

i∈{1,2}

( ⋃
16j6pi

F ′i,j

)+ ({ũiv : i ∈ {1, 2}, v ∈ Wi} ∪ {ũ1ũ2})

is a [2, k]-ST of G.

By Claim 18, we may assume that max{dG(u) : u ∈ S} > 2k. Since |S| 6 2k − 1, a
vertex u′ ∈ S with dG(u′) = max{dG(u) : u ∈ S} satisfies NG(u′) \ S 6= ∅. This together
with (13) and (S3) forces dG(ũi0) > 2k for some i0 ∈ {1, 2}. Furthermore, it follows
from Claim 15 that max{dG(u) : u ∈ AQ3−i0

} > k + 1. Hence by (13) and (S2), we
have dG(ũ3−i0) > k + 1. Take a set Z3−i0 ⊆ NG(ũ3−i0) \ {ũi0} such that |Z3−i0| = k and
Z3−i0∩V (Q3−i0) 6= ∅. Then by (18), |NG(ũi0)∩Z3−i0 | = |Z3−i0|−|Z3−i0∩V (Q3−i0)| 6 k−1,
and hence |NG(ũi0) \ (Z3−i0 ∪ {ũ3−i0})| > 2k − ((k − 1) + 1) = k. In particular, we can
take a set Zi0 ⊆ NG(ũi0) \ (Z3−i0 ∪ {ũ3−i0}) such that 1 6 |Zi0 ∩ V (Qi0)| 6 k 6 |Zi0| and
S \ (Z3−i0 ∪ S̃) ⊆ Zi0 .

Fix i ∈ {1, 2}. Then by the definition of Zi, we have qi := |Zi∩V (Qi)| 6 k. By (N’2),
(7) and (17),

δ(Qi) >
n+ 2k − 2

4
− |S|

>
n+ 2k − 2

4
− (2k − 1)

> (ck
√
n+ 3k2 + 2k + 1)− 2k + 1

> ck
√
n+ (k + 1)k − 1

> ck
√
|V (Qi)|+ (k + 1)|Zi ∩ V (Qi)| − 1.

Hence by Lemma 9 with (G,U) = (Qi, Zi ∩ V (Qi)), there exists a spanning forest of Qi

consisting of exactly qi components Fi,1, Fi,2, . . . , Fi,qi such that for every integer i with
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Figure 2: Graph G′k,n.

1 6 j 6 qi, |V (Fi,j) ∩ Zi| = 1 and Fi,j is a (k, V (Fi) ∩ Zi)-good tree. Then ⋃
i∈{1,2}

( ⋃
16j6qi

Fi,j

)+ ({ũiv : i ∈ {1, 2}, v ∈ Zi} ∪ {ũ1ũ2})

is a [2, k]-ST of G.
This completes the proof of Theorem 3.

The degree-sum condition in Theorem 3 is best possible in a sense: Let k > 2 be an
integer, and let n be an odd integer with n > n1(k). Since n > 2k2 + 1 by (N’2), we have
n−3
2
−(k+1) = n−2k−5

2
> (2k2+1)−2k−5

2
= (k+1)(k−2) > 0, i.e., n−3

2
> k+1. Let A0, A1 and

A2 be vertex-disjoint complete graphs with |V (A0)| = 3 and |V (A1)| = |V (A2)| = n−3
2

.
Write V (A0) = {u, v1, v2}, and for each i ∈ {1, 2}, take a setWi ⊆ V (Ai) with |Wi| = k−1.
Let G′k,n = (

⋃
06i62Ai) + ({uw : w ∈ W1} ∪ {v1w, v2w : w ∈ W2}) (see Figure 2). Then

G′k,n is a connected graph of order n and σ2(G
′
k,n) = n+2k−3

2
. Furthermore, G′k,n has no

k-blocking set. Thus the following proposition gives a sharpness of Theorem 3.

Proposition 19. There exists no [2, k]-ST of G′k,n.

Proof. Suppose that G′k,n has a [2, k]-ST T . Since u is a cut-vertex of G′k,n, we have
dT (u) = k+1; since {v1, v2} is a cutset of G′k,n, we have dT (vi) = k+1 for some i ∈ {1, 2}.
This implies that uv1v2u is a cycle of T , which contradicts the fact that T is a tree.

4 Proof of Theorem 6

Since pk =

(
3ck+
√

c2k+4k2+8k+4

2

)2

, we have

√
pk =

3ck +
√
c2k + 4k2 + 8k + 4

2
> 2ck. (20)

By (20), we obtain the following:
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(M1) Since ck > 4, we have
√
pk > ck + 1

ck
, and hence

ck(
√
pk − ck)− 1 > ck

((
ck +

1

ck

)
− ck

)
− 1 = 0.

(M2) Since
√
pk >

ck+
√

c2k+4k

2
, we have

pk −
k
√
pk√

pk − ck
=

√
pk(
√
pk(
√
pk − ck)− k)

√
pk − ck

>

√
pk

(
ck+
√

c2k+4k

2

(
ck+
√

c2k+4k

2
− ck

)
− k
)

√
pk − ck

= 0.

(M3) We have

(
√
pk − 2ck)(

√
pk − ck)

=

(
3ck +

√
c2k + 4k2 + 8k + 4

2
− 2ck

)(
3ck +

√
c2k + 4k2 + 8k + 4

2
− ck

)
= k2 + 2k + 1.

Let S = {u ∈ V (G) : dG(u) <
√
pkn}. Then for vertices u, u′ ∈ S with u 6= u′, we

have dG(u)dG(u′) < pkn 6 π2(G), and hence uu′ ∈ E(G). This implies that S is a clique
of G.

If δ(G) > ck
√
n, then it follows from Theorem 5 that G has a [2, k]-ST. Thus we

may assume that δ(G) < ck
√
n. This together with (20) implies that δ(G) <

√
pkn. In

particular, S 6= ∅. Since S is a clique of G, for a vertex u0 ∈ S with dG(u0) = δ(G), we
have

|S| = |(NG(u0) ∩ S) ∪ {u}| 6 dG(u0) + 1 < ck
√
n+ 1. (21)

Let Q be the family of components of G − S. If Q = ∅, i.e., G = G[S], then G is a
complete graph of order at least k+ 2, and hence G has a [2, k]-ST. Thus we may assume
that Q 6= ∅. By (20) and (21), for each Q ∈ Q,

δ(Q) > min{dG(v) : v ∈ V (Q)} − |S| > √pkn− (ck
√
n+ 1). (22)

Claim 20. For u ∈ S and Q ∈ Q, V (Q) \NG(u) 6= ∅.

Proof. Suppose that V (Q) ⊆ NG(u). Then |V (Q)| + |S| − 1 = |V (Q) ∪ (S \ {u})| 6
dG(u) <

√
pkn. On the other hand, for a vertex v ∈ V (Q), we have |V (Q)| + |S| − 1 =

|(V (Q) \ {v}) ∪ S| > dG(v) >
√
pkn, which is a contradiction.
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Take Q1 ∈ Q so that |V (Q1)| is as small as possible. Then

|V (Q1)| 6
n− |S|
|Q|

<
n

|Q|
. (23)

Claim 21. We have |Q| <
√
n√

pk−ck
, and in particular,

√
n >
√
pk − ck.

Proof. By Claim 20, there exists a vertex v ∈ V (Q1) such that S 6⊆ NG(v), and hence

|V (Q1) ∪ S| > dG(v) + 2 >
√
pkn+ 2. (24)

If |Q| >
√
n√

pk−ck
, then it follows from (21) and (23) that

|V (Q1) ∪ S| <
n

|Q|
+ |S| < n

√
n√

pk−ck

+ (ck
√
n+ 1) =

√
pkn+ 1,

which contradicts (24).

A set S ′ ⊆ S dominates Q if for each Q ∈ Q, there exists a vertex u ∈ S such that
NG(u) ∩ V (Q) 6= ∅. Note that S dominates Q because G is connected. Take a minimum
set S̃ ⊆ S dominating Q, and write S̃ = {ũ1, ũ2, . . . , ũs} where s = |S̃|. By Claim 21 and
the minimality of S̃,

s 6 |Q| <
√
n

√
pk − ck

. (25)

Claim 22. For each ũ ∈ S̃, dG(ũ) > sk + 1.

Proof. Suppose that dG(ũ) 6 sk. By Claim 20, there exists a vertex v ∈ V (Q1) such that

vũ /∈ E(G). By (23) and (25), dG(v) < |V (Q1) ∪ S| 6 n−|S|
|Q| + |S| 6 n−|S|

s
+ |S|. This

together with (M1), (M2), (21) and (25) leads to

π2(G) 6 dG(ũ)dG(v)

< sk

(
n− |S|

s
+ |S|

)
= k(n+ (s− 1)|S|)

< k

(
n+

( √
n

√
pk − ck

− 1

)
(ck
√
n+ 1)

)
= k

((
1 +

ck√
pk − ck

)
n−

(ck(
√
pk − ck)− 1)

√
n

√
pk − ck

− 1

)
<

k
√
pkn√

pk − ck
< pkn,

which is a contradiction.
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By Claim 22, |NG(ũ) \ S̃| > sk + 1 − (s − 1) = sk − s + 2 for every ũ ∈ S̃. Hence
there exist s disjoint subsets W1,W2, . . . ,Ws of V (G) \ S̃ such that for each integer i with
1 6 i 6 s, Wi ⊆ NG(ũi) and

|Wi| =


k + 1 (if s = 1)

k (if s > 2 and i ∈ {1, s})
k − 1 (if s > 2 and 2 6 i 6 s− 1).

Let W =
⋃

16i6sWi. Note that |W | = sk − s+ 2.

By the minimality of S̃, for each integer i with 1 6 i 6 s, there exists Di ∈ Q such
that (

⋃
v∈V (Di)

NG(v))∩ S̃ = {ũi}. We may assume that V (Di)∩W 6= ∅. For each Q ∈ Q,

if Q ∈ {Di : 1 6 i 6 s}, then 1 6 |V (Q) ∩ W | 6 k + 1 (6 k + (s − 1)(k − 2) + 1);
otherwise, |V (Q) ∩W | 6 |W | −

∑
16i6s |V (Di) ∩W | 6 sk − 2s + 2. In either case, we

have |V (Q) ∩W | 6 sk − 2s + 3. Let Q1 = {Q ∈ Q : V (Q) ∩W = ∅}. For each Q ∈ Q1,
it follows from the definition of S̃, there exists an edge ũQvQ (ũQ ∈ S̃, vQ ∈ V (Q)) of G.
Let W ′ = W ∪ {vQ : Q ∈ Q1}.

Fix Q ∈ Q. Then 1 6 |W ′ ∩ V (Q)| 6 sk − 2s+ 3, and hence by Claim 21, (M3), (22)
and (25),

δ(Q) > (
√
pk − ck)

√
n− 1

= ck
√
n+ (

√
pk − 2ck)

√
n− 1

> ck
√
|V (Q)|+ (

√
pk − 2ck)

√
n− 1

= ck
√
|V (Q)|+ (k + 1)2

√
n

√
pn − ck

− 1

= ck
√
|V (Q)|+ (k + 1)((k − 2)

√
n+ 3

√
n)

√
pn − ck

− 1

> ck
√
|V (Q)|+

(k + 1)((k − 2)
√
n+ 3(

√
pn − ck))

√
pn − ck

− 1

> ck
√
|V (Q)|+ (k + 1)(s(k − 2) + 3)− 1

> ck
√
|V (Q)|+ (k + 1)|W ′ ∩ V (Q)| − 1.

This together with Lemma 9 with (G,U) = (Q,W ′ ∩ V (Q)) implies that there exists a
spanning forest ofQ consisting of exactly |W ′∩V (Q)| components FQ,1, FQ,2, . . . , FQ,|W ′∩V (Q)|
such that for every integer i with 1 6 i 6 |W ′ ∩ V (Q)|, |V (FQ,i) ∩W ′| = 1 and FQ,i is
a (k, V (FQ,i) ∩W ′)-good tree. Let H be the graph obtained from the path ũ1ũ2 · · · ũs by
joining ũ1 and all vertices in S \ (S̃ ∪W ′). Then⋃

Q∈Q

 ⋃
16i6|W ′∩V (Q)|

FQ,i

 ∪H
+ ({ũiw : 1 6 i 6 s, w ∈ Wi} ∪ {ũQvQ : Q ∈ Q1})

is a [2, k]-ST of G.
This completes the proof of Theorem 6.
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