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Abstract

We show that if a set does not contain any non-trivial solutions to an invari-
ant equation of length k > 4 · 3m + 2 for some positive integer m, then its size
is at most exp(−c log1/(6+γm)N)N , where γm = 2−m. We prove a lower bound
of exp(−C log7(2/α))Nk−1 to the number of solutions of an invariant equation in
k > 4 variables, contained in a set of density α. To compliment that result in
the case of convex equations, we give a Behrend-type construction for the same
problem with the number of solutions of a convex equation bounded above by
exp(−c log2(2/α))Nk−1.

Mathematics Subject Classifications: 11B30, 11K70

1 Introduction

Finding structure in dense sets of integers has been a challenge to mathematical research
since Van der Waerden proved his theorem on arithmetic progressions in 1927 [19]. Of
particular interests have been quantitative results. We would like to have an upper-
bound to the size of a set, which does not contain a certain structure. In the case of
Roth’s Theorem [12], we consider a set A ⊆ {1, 2, . . . , N} which contains no non-trivial
solutions to the equation

x+ y = 2z.

Roth proved that for a large constant C we have

|A| 6 C
N

log logN
.

After many improvements over the years, a sensational result of Kelley and Meka [9]
showed a near-optimal bound

|A| 6 exp(−c log1/12N)N,
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where c is a sufficiently small positive constant. The exponent was later improved to 1/9
by Bloom and Sisask ([4], [5]). Other variations of this problem have been considered,
for example, since Schoen and Shkredov [15] and the subsequent work of Schoen and
Sisask [16] we know that longer equations like

x1 + x2 + x3 = 3y

avoiding non-trivial solutions also restrict the size of the subset and even better bounds
than the one from Kelley and Meka are known, namely

|A| 6 exp(−c log1/7N)N.

In this paper we show that the exponent 1/7 here can be increased for similar equations
with at least 14 variables, for example in the equation

x1 + x2 + · · ·+ x13 = 13x14

we get the exponent 2/13. Below is a formulation of our result. By a trivial solution
there, we mean one where all variables are equal.

Theorem 1. Let m > 1, k > 4 · 3m + 2 and A ⊆ {1, 2, . . . , N} be a set which contains no
non-trivial solutions to the equation

x1 + x2 + · · ·+ xk−1 = (k − 1)xk.

Then |A| 6 exp(−c log1/(6+γm)N)N , where γm = 2−m. Here c is a small constant that
depends only on the equation.

For the sake of readability, we state Theorem 1 for a specific equation of length k. Our
proof can be generalized to any invariant equation, in a similar way as in Theorem 3. We
say that a linear equation

a1x1 + a2x2 + · · ·+ akxk = 0

with coefficients ai ∈ Z is invariant when a1 + a2 + · · ·+ ak = 0.
Bloom [3] considered the counting version of the above problem. By using his result it is
possible to find an upper-bound not only if there are no non-trivial solutions, but also if
their count is abnormally small.

Theorem 2. (Bloom) Let A ⊆ {1, 2, . . . , N} be such that |A| = αN and let a1x1 +a2x2 +
· · ·+ akxk = 0 be an invariant equation in k > 3 variables. Then for some large constant
C, which depends on the coefficients of the equation, there are at least

exp(−Cα−1/(k−2) log4(2/α))Nk−1

solutions to the equation.
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Theorem 2 is still the best published bound for 3-term equations, however Kelly and
Meka [9] recently showed a much more efficient way of counting solutions to equations of
length 3. They gave a lower bound of

exp(−C log12(2/α))N2.

We shall also establish counting results for equations in at least four variables, for which
Schoen and Sisask [16](Theorem 1.4) only established density results. That this is possible
was noted by Sanders and Prendiville [11], but the details were not provided. Here we
prove such a counting result in full generality; more precisely, we prove the following
theorem.

Theorem 3. Let k > 4, A ⊆ {1, 2, . . . , N} be a set of size αN and let a1x1 +a2x2 + · · ·+
akxk = 0 be an invariant equation in k variables. Then there are at least

exp(−C log7(2/α))Nk−1

solutions to the equation, that is tuples (x1, x2, . . . , xk) ∈ Ak, for which
a1x1+a2x2+· · ·+akxk = 0. Here C is a large constant that depends only on the coefficients
of the equation.

The new bound can be used to boost results taking advantage of the Fourier Trans-
ference Principle [10]. For example, it could be applied to the result by Prendiville on
solving equations in dense Sidon sets [11]. It was noted by Prendiville that a counting
version of the result of Schoen and Sisask [16] yields improved bounds in his theorem.
More details are given in the “Applications” section.

Finally, we give a construction which complements our Theorem 3. By generalizing
[18] (Proposition 1.3) to the case of more variables, we show a lower bound similar to a
well-known Behrend’s construction [1], where a set has high density, but contains only a
few solutions to an invariant equation.

Theorem 4. Let k > 4 and let c be a sufficiently small constant depending only on k. Let
α 6 exp(−1/c). There exist infinitely many integers N > 1 and sets A ⊆ {1, 2, . . . , N}
with |A| > αN , such that A contains no more than

exp(−c log2(2/α))Nk−1

solutions to the equation x1 + · · ·+ xk−1 = (k − 1)xk.

We will prove Theorems 1 and 3 by treating A as a subset of the group Z/pZ, with p
prime, instead of the interval {1, 2, . . . , N}. If we choose p (by Bertrand’s postulate) to
satisfy

2(|a1|+ |a2|+ · · ·+ |ak|)N > p > (|a1|+ |a2|+ · · ·+ |ak|)N,
then no solutions in the integer case imply no solutions in the Z/pZ case and therefore
one version implies the other. Clearly the density of A changes by the factor of |a1| +
|a2|+ · · ·+ |ak| between these two setting, which can be neglected if we allow C and c to
depend on the coefficients of the equation.
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2 Notation

Let us fix some notation and recall a couple of well-known definitions. By c and C we
mean real, positive constants, where c is sufficiently small and C is sufficiently large for
all of our uses. If we wanted to be really precise, we would have to call the constants
c1, c2, . . . and C1, C2, . . . in various parts of different proofs, however for simplicity we
omit the indices. In the Theorems 1, 3 and 4 constants in the statements depend on the
coefficients of the equation a1, a2, . . . ak, as well as the number k. It can be assumed that
the constants c and C appearing in the proofs are all chosen for a fixed equation.
We work in the group Z/pZ, however most of the definitions are given for a general, finite,
abelian group G of size N and then applied to Z/pZ. Let A be a subset of G. Define a
normalized indicator function to be

µA = 1A ·
1

|A|
,

where 1A(x) is the function that gives 1 when x ∈ A and 0 otherwise. Write µA(X) for
the sum

∑
x∈X µA(x).

By the convolution of two functions f, g : G→ R we mean

f ∗ g(x) =
∑
t∈G

f(t)g(x− t).

We sometimes write f (k)(x) to mean multiple convolutions, that is

f (k)(x) = f ∗ f ∗ · · · ∗ f(x) where f appears k times.

Let 1 6 p <∞, the Lp norm of a function f : G→ R is defined as

||f ||p =
(∑
x∈G

|f(x)|p
)1/p

,

when p =∞ we always mean ||f ||∞ = maxx∈G |f(x)|. For a function f : G→ R we define
expectation as

Ex∈Gf(x) =
1

|G|
∑
x∈G

f(x).

Denote the group of all characters (homomorphisms) γ : G → C as Ĝ. Given a function

f : G→ R we define a Fourier coefficient at γ ∈ Ĝ as

f̂(γ) =
∑
x∈G

f(x)γ(x).

We call the function f̂ the Fourier Transform of f .
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3 Tools for finding Almost-Periods

A common technique in Additive Combinatorics is solving a problem in the group Fnp ,
before stating it for a general group or an interval of integers. The advantage of Fnp is that
we can make use of subspaces, which are not found in all groups. Fortunately, Bohr sets
act as approximate subspaces in any finite abelian group G. Translating the ideas from
the language of subspaces to the language of Bohr sets is usually possible, although quite
technical. In our work we immediately present the reasoning by using Bohr sets. The
paper by Schoen and Sisask [16] contains simpler proofs of their result in the case of Fnp
as well as the general proofs. A reader unfamiliar with Bohr sets, could consider reading
that paper as an introduction.

We record a couple of auxiliary definitions and propositions concerning the properties
of Bohr sets. For more background on Bohr sets we recommend to the reader a book by
Tao and Vu [17].

Let 0 < ρ 6 2 and let Γ ⊆ Ĝ for some finite abelian group G. The Bohr set B = Bohr(Γ, ρ)
is defined as

B = {x ∈ G : |1− γ(x)| 6 ρ for all γ ∈ Γ}.
We refer to ρ as the width and to |Γ| as the rank of B. We will only consider Bohr
sets of rank at least 1, in order to avoid special cases of the propositions below. This
does not restrict us in any way as the whole group can be trivially represented as G =
Bohr({1}, 2), where by 1 we mean the constant character. Note that often B does not
uniquely determine Γ or ρ.
If δ > 0 and B = Bohr(Γ, ρ) we write Bδ for B = Bohr(Γ, ρδ) and call it a dilate of B. A
Bohr set B with rank d > 0 is called regular when

1− 12d|δ| 6 |B1+δ|
|B|

6 1 + 12d|δ|,

for every |δ| 6 1/12d.

Proposition 5. Let B be a regular Bohr set of rank d > 0 and let B′ ⊆ Bδ where
δ 6 ε/24d, then we have

||µB ∗ µB′ − µB||1 6 ε.

Proof. Using the triangle inequality we notice that

||µB ∗ µB′ − µB||1 =
1

|B|
||1B ∗ µB′ − 1B||1 6

1

|B|

(
||1B ∗ µB′ − 1B+B′||1 + ||1B+B′ − 1B||1

)
.

Now, by regularity of B we obtain

||1B+B′ − 1B||1 = |(B +B′) \B| 6 ε|B|/2.

Again by regularity of B we have

||1B ∗ µB′ − 1B+B′||1 =
∑

x∈B+B′

1− 1

|B′|
1B ∗ 1B′(x) = |B +B′| − |B| =
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= |(B +B′) \B| 6 ε|B|/2,

which ends the proof.

We will make also use of the following three properties, for the proofs see the book by
Tao and Vu [17]. Another accessible source are the lecture notes by Thomas Bloom [2].

Proposition 6. Let B be a Bohr set. There exists δ ∈ [1
2
, 1], such that Bδ is regular.

Proposition 7. Let B be a Bohr set of rank d and let δ ∈ [0, 1]. Then we have

|Bδ| > (δ/2)3d|B|.

Proposition 8. Let B be a Bohr set of rank d and width ρ contained in a group G. Then
we have

|B| > (ρ/2π)d|G|.

Here is a basic lemma, where we choose a translate of a Bohr set, on which A has high
density.

Lemma 9. Let A ⊆ B with |A| = α|B|, where B is a regular Bohr set of rank d > 0
and radius ρ. Let δ be a positive constant with δ 6 α

240d
. There exists x ∈ G such that

|A ∩ (x+Bδ)| > 0.9α|Bδ|.

Proof. Applying Proposition 5 to Bδ we have

||µB ∗ µBδ − µB||1 6 α/10,

and by the triangle inequality we get

α = µB(A) 6 ||µB1A − (µB ∗ µBδ)1A||1 + ||(µB ∗ µBδ)1A||1

6 α/10 +
1

|B|
∑
x∈B

µBδ ∗ 1A(x).

Thus for some x ∈ B we have
µBδ ∗ 1A(x) > 0.9α

as required.

We now generalize Lemma 9 to allow multiple factors δi and multiple coefficients ai,
for which we consider ai ·A := {ai · a : a ∈ A}. This will be crucial in working with many
variables. In this lemma we have to assume that our group is Z/pZ for p prime. The
reason is that we want to define the operation of multiplying a Bohr set by an element of
the group. Let B = Bohr(Γ, ρ) and a ∈ Z/pZ be a non-zero element, we define

a ·B := {x ∈ Z/pZ : |1− γ(a−1x)| 6 ρ for all γ ∈ Γ}.

So if B = Bohr({γ1, . . . , γd}, ρ), then a ·B = Bohr({γa−1

1 , . . . , γa
−1

d }, ρ). This way if x ∈ B
then ax ∈ a ·B and a ·B is a Bohr set of the same rank and radius as B.
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Lemma 10. Let B ⊆ Z/pZ, with p prime, be a regular Bohr set of rank d > 0 and radius
ρ. Let A ⊆ B be its subset of size α|B|. Let a1, a2, . . . , ak be integers non-divisible by p.
Then there is a regular Bohr set B′, such that, for any δ1, δ2, . . . δk ∈ (0, 1] there are sets
A1, A2, . . . Ak ⊆ A− x, where x is a translate, ai · Ai ⊆ B′δi and either

|(ai · Ai) ∩B′δi | >
7

8
α|B′δi | for all i

or
|(ai · Ai) ∩B′δi | > (1 + 1/16k)α|B′δi | for some i.

Moreover, B′ can be chosen so that its rank is d and its radius is ρ2 > ρ cα
kd
, where c is a

small constant that depends on a1, a2, . . . , ak.

Proof. Let ε := 1
16k
α(Πj|aj|)−1/24d, Bi :=

(
Πj 6=iaj

)
·Bε·δi and B′ :=

(
Πjaj

)
·Bε. Clearly

B′ satisfies the conditions on the rank and the radius. Notice that it is chosen indepen-
dently of the widths δi.
B′ does not need to be regular, but by Proposition 6 there is some δ ∈ [1

2
, 1] for which B′δ

is regular. Thus in the Lemma we could consider δδ1, δδ2, . . . δδk instead of δ1, δ2, . . . , δk
to obtain a necessarily regular Bohr set B′δ. Because of this without loss of generality we
assume that δ = 1 and so B′ is regular.
If we Notice, that from Proposition 1 we have

||µB ∗ µBi − µB||1 6
1

16k
α.

Since µB(A) = α and by the application of the triangle inequality we get

kα 6
k∑
i=1

µB(A) 6
k∑
i=1

||µB1A − (µB ∗ µBi)1A||1 +
k∑
i=1

||(µB ∗ µBi)1A||1

6
1

16
α +

1

|B|

k∑
i=1

∑
x∈B

µBi ∗ 1A(x).

Thus, for some x ∈ B the sum is at least equal to the average, so

k∑
i=1

µBi ∗ 1A(x) > (k − 1/16)α.

Set Ai = (A− x) ∩ Bi. We clearly have ai · Ai ⊆ ai · Bi = B′δi for all i. If µBi ∗ 1A(x) >
(1 + 1/16k)α for some x, then the second conclusion holds immediately. On the other
hand if ||µBi ∗ 1A||∞ < (1 + 1/16k)α, then

µBi ∗ 1A(x) > (k − 1/16)α−
∑
j 6=i

µBi ∗ 1A(x)

> (k − 1/16)α− (k − 1)(1 + 1/16k)α

>
(

1− 2

16
+

1

16k

)
α

>
7

8
α
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and the first conclusion holds.

All results which use Lemma 10 will be also stated for the group Z/pZ.
Going further, one of our main tools is the Croot-Sisask lemma, here is one of its versions,
coming from the paper of Schoen and Sisask [16](Theorem 2.1).

Theorem 11. (Croot-Sisask) Fix constants ε ∈ (0, 1), k ∈ N and p > 2. Let A,L, S
be subsets of a finite abelian group and suppose that |A + S| 6 K|A|. There exists a set
T ⊆ S of size at least |T | > 0.99K−Cpk

2/ε2 |S|, such that for every t ∈ kT − kT we have

||1A ∗ 1L(·+ t)− 1A ∗ 1L||p 6 ε|A||L|1/p.

The set kT −kT is referred to as Almost Periods of 1A ∗1L, because this function does
not change by much when shifted by any one element of kT − kT .
Next, we show a corollary to the Croot-Sisask Lemma that will enable us to consider
multiple sets instead of just two. In the proof we take advantage of Young’s inequality,
which we state here.

Theorem 12. (Young’s convolution inequality - special case) Let f, g : G → R be func-
tions and let q > 1, then we have

||f ∗ g||q 6 ||f ||q||g||1.

Corollary 13. Fix constants ε ∈ (0, 1) and k ∈ N. Let A1, A2, . . . , An,M,L, S be subsets
of a finite abelian group. Suppose that |A1 +S| 6 K|A1| and that η = |M |/|L| 6 1. Then
we can find a set T ⊆ S such that

|T | > exp(−Ck2ε−2 log(2/η) log(2K))|S|

and for every t ∈ kT − kT

||1A1 ∗ · · · ∗ 1An ∗ 1M ∗ 1L(·+ t)− 1A1 ∗ · · · ∗ 1An ∗ 1M ∗ 1L||∞ 6 ε|A1| · · · |An||M |.

Proof. Let f = 1A2 ∗ 1A3 ∗ · · · ∗ 1An . By writing the definition of convolution and using
Holder’s inequality we see that for any t ∈ G and for any p, q > 1 such that 1

p
+ 1

q
= 1 we

have

||1A1 ∗ 1M ∗ f ∗ 1L(·+ t)− 1A1 ∗ 1M ∗ f ∗ 1L||∞ 6 ||1A1 ∗ 1M(·+ t)− 1A1 ∗ 1M ||q||f ∗ 1L||p.

Let us set p = log(2/η). Using Theorem 11 with ε/3 we get a set T of desired size such
that for any t ∈ T there is

||1A1 ∗ 1M(·+ t)− 1A1 ∗ 1M ||q||f ∗ 1L||p 6
1

3
ε|A1||M |1/q||f ∗ 1L||p

6
1

3
ε|A1||A2| · · · |An||M |1/q|L|1/p

=
1

3
ε|A1||A2| · · · |An||M |(|L|/|M |)1/p,

the electronic journal of combinatorics 32(3) (2025), #P3.24 8



where the second inequality follows by applying Theorem 12. The Corollary is proved
because for our choice of p we have

1

3
(|L|/|M |)1/p =

1

3
(1/η)1/ log(2/η) 6 1.

Let us now state the version of the Croot-Sisask lemma that will allow us to find
almost periods which form a large Bohr set. This is a corollary of Theorem 5.4 from the
paper of Schoen and Sisask [16] with arbitrary number of sets.

Theorem 14. Fix ε ∈ (0, 1). Let A1, A2, . . . , An,M,L be subsets of G. Let B be a
regular Bohr set of rank d > 0 and width ρ. Suppose that there exists S ⊆ B, such that
|A1 + S| 6 K|A1|. Denote the density of S in B as σ. Moreover, suppose that σ > 0 and
η = |M |/|L| 6 1. Then there exists a regular Bohr set B′ ⊂ B with the property that for
every t ∈ B′ we have

||1A1 ∗ · · · ∗ 1An ∗ 1L ∗ 1M(·+ t)− 1A1 ∗ · · · ∗ 1An ∗ 1L ∗ 1M ||∞ 6 ε|A1| · · · |An||M |.

Furthermore, B′ can be taken to have width at least ρεη1/2/(d2d′) and rank at most d+ d′

where
d′ � ε−2 log2(2/εη) log(2/η) log(2K) + log(1/σ).

Proof. We apply Theorem 5.4 from [16] to the sets A1,M,L to obtain a regular Bohr set
B′ with appropriate rank and width, such that for every t ∈ B′ we have

||1A1 ∗ 1L ∗ 1M(·+ t)− 1A1 ∗ 1L ∗ 1M ||∞ 6 ε|A1||M |.

From here we can easily deduce the desired inequality because the left-hand side can be
rewritten as

||(1A1 ∗ 1L ∗ 1M(·+ t)− 1A1 ∗ 1L ∗ 1M(·)) ∗ 1A2 ∗ · · · ∗ 1An)||∞
6 ||1A1 ∗ 1L ∗ 1M(·+ t)− 1A1 ∗ 1L ∗ 1M ||∞|A2| · · · |An|.

4 Improving the bound for many variables

Theorem 3 and the analogous result of Schoen and Sisask [16] give the relevant constant 7
in the bound (for example e−C log7(2/α)Nk−1 in Theorem 3). The Behrend-type construction
in Theorem 4 shows that this cannot be improved to less than 2 in the case of convex
equations. In this section we show how to bring the constant down almost to 6, provided
the considered equation is long enough. By the end of this section this is summed up as
the proof of Theorem 1. The main idea is Theorem 15 below, which allows us to find a
large Bohr set within wA−wA for some w. That could be looked at as a variation of the
Bogolyubov-Ruzsa lemma. After that a density increment can be obtained quite easily.
The approach builds on an idea by Konyagin. To our knowledge it was not published,
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but is mentioned by Sanders in his survey [14].
He observed that when applying Theorem 14 one can save on the K constant by choosing
S well: suppose that for some sets A and X and a positive integer k we have |A+ kX| 6
K|A|. Then by the pigeonhole principle there exists l < k for which |A+ lX| 6 K1/k|A|.
Below we attempt to exploit this observation as much as possible. We apply Theorem 14
multiple times, which allows us to decrease the set of almost periods with each step gently
instead of getting a set of almost periods in one step and decreasing it dramatically.

Theorem 15. Let A ⊆ B with |A| = α|B| where B is a regular Bohr set of rank d > 0
and width ρ contained in a finite abelian group G. Let m > 1. There exists a Bohr set
B̃ ⊆ 2 · 3mA− 2 · 3mA of rank d+ d′ and width ρB̃. Moreover, B̃ can be chosen so that

d′ 6 C log3+γ(2/α) + Cm log3(2/α),

where γ = 2−m and

ρB̃ > ρ
cα7/2

log(2/α)md5d′
.

Proof. The plan is to apply Theorem 14 on inductively constructed sets A′m and Tm. The
resulting Bohr set will have significantly smaller rank than the one we get by naively
applying Theorem 14 to the set A.

Without loss of generality assume 0 ∈ A. Define constants k0, k1, k2, . . . , km to be

ki :=
⌈
log1−2−i(2/α)

⌉
,

for 0 6 i 6 m. Notice that k0 = 1. Let k = 2(k0 + k1 + · · ·+ km), then k � m log(2/α).
We choose α

480d
6 δ 6 α

240d
to get regular Bohr set Bδ such that |B1+2δ| 6 3

2
|B|. By

Lemma 9 there exists x such that A′0 := A ∩ (x + Bδ) has density at least 0.9α within
x + Bδ. Similarly, we choose α2

Ckd2
6 αδ

480kd
6 ν 6 αδ

240kd
to get regular Bohr set Bδν such

that |Bδ(1+2kν)| 6 3
2
|Bδ|. This implies 1 + δ(1 + kν) 6 1 + 2δ, which we use later for

proving (6). Again, by Lemma 9 there exists x′ such that T0 := A∩ (x′+Bδν) has density
at least 0.9α within x′ +Bδν . We see that

|A+ A′0| 6 |B + (x+Bδ)| 6 |B1+δ| 6
3

2
|B| 6 2

α
|A|

and so

η := |A+ A′0|/|A| 6
2

α
.

Similarly we have

|A′0 + T0 − T0| 6 |Bδ(1+2ν)| 6
3

2
|Bδ| 6

3

2 · 0.9 · α
|A′0| 6

2

α
|A′0|.

We will show how to inductively construct sets A′i and Ti, for which the following condi-
tions hold. As the base case we already have the sets A0 and T0 which satisfy (6) and (7)
(i = 1 is the first step of induction).

Ti ⊆ Ti−1 ⊆ Bδν (4)
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A′i−1 ⊆ A′i ⊆ Bδ(1+kν) (5)

|A+ A′i−1| 6
2

α
|A| (6)

|A′i−1 + Ti−1 − Ti−1| 6
( 2

α

)1/ki−1

|A′i−1| (7)

|Ti| > exp(−Ck2i /ki−1 log2(2/α))|Ti−1| (8)

kiTi − kiTi ⊆ A+ A′i−1 − A− A′i−1 (9)

We apply Corollary 13 to the sets A′i−1, A,−(A + A′i−1) and Ti−1 in place of (A1, M , L,
S) with ε = 1/2 and the chosen ki to obtain a set Ti ⊆ Ti−1 where condition (8) holds
such that for every t ∈ kiTi − kiTi we have

|1A ∗ 1A′i−1
∗ 1−(A+A′i−1)

(t)− 1A ∗ 1A′i−1
∗ 1−(A+A′i−1)

(0)| 6 1

2
|A||A′i−1|.

Notice that 1A ∗ 1A′i−1
∗ 1−(A+A′i−1)

(0) = |A||A′i−1|, thus by the triangle inequality

1A ∗ 1A′i−1
∗ 1−(A+A′i−1)

(t) >
1

2
|A||A′i−1| > 0

and so (9) holds. We also have by (4), (5) and the choice of ν that

|A′i−1 + ki(Ti − Ti)| 6 |Bδ(1+kν) + ki(T0 − T0)| 6 |Bδ(1+kν) +B2kiδν)|

6 |Bδ(1+2kν)| 6
3

2
|Bδ| 6

2

α
|A′0| 6

2

α
|A′i−1|.

Here comes the insight by Konyagin. Since by ki times adding Ti − Ti we increase A′i−1
by the factor of at most 2

α
, there must be an 0 6 li < ki such that

|A′i−1 + li(Ti − Ti) + (Ti − Ti)| 6
( 2

α

)1/ki
|A′i−1| 6

( 2

α

)1/ki
|A′i−1 + li(Ti − Ti)|.

Define A′i := A′i−1 + li(Ti−Ti) so that (7) is satisfied. Moreover, the first part of (5) holds
trivially and the second part is true because

A′i = A′0 + l1(T1 − T1) + · · ·+ li(Ti − Ti) ⊆ A′0 + k(T0 − T0) ⊆ Bδ(1+kν).

Let us also notice that

|A+ A′i| 6 |B1+δ(1+kν)| 6 |B1+2δ| 6
3

2
|B| 6 2

α
|A|.

Therefore (6) holds and the inductive step is complete.
We now calculate the closed form of the recursive relation (9), making use of the fact

that we defined A′i so that

A′i = A′i−1 + li(Ti − Ti) ⊆ A′i−1 + ki(Ti − Ti) ⊆ 2A′i−1 + A− A− A′i−1.
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By simple induction we can show that A′i ⊆ 3iA − (3i − 1)A. That is certainly true for
i = 0 and if i > 0 then

A′i ⊆ 2A′i−1 + A− A− A′i−1
⊆ 2 · 3i−1A− 2 · (3i−1 − 1)A+ A− A− 3i−1A+ (3i−1 − 1)A

⊆ 3iA− (3i − 1)A.

Iterate the above inductive procedure m times to obtain the sets T1, T2, . . . , Tm. For
every i > 1 we have

k2i
ki−1

=

⌈
log1−2−i(2/α)

⌉2⌈
log1−2·2−i(2/α)

⌉ 6

(
log1−2−i(2/α) + 1

)2
log1−2·2−i(2/α)

= log(2/α) + 2 log2−i(2/α) + log2·2−i−1(2/α)

6 4 log(2/α).

In the last inequality we assume that log(2/α) > 1. This is true if α 6 1/2. We can
make that assumption because the theorem for larger values of alpha follows from the
case α 6 1/2 by a change of a constant.
We can thus give the lower bound

|Tm| > exp
(
(−k21 − k22/k1 − k23/k2 − · · · − k2m/km−1)(C log2(2/α))

)
|T0|

> exp
(
−Cm log3(2/α)

)
|T0|.

Let us apply Theorem 14 to sets A′m, A,−(A + A′m), Tm, Bδν in place of (A1,M,L, S,B)
and with ε = 1/2, making use of the properties (6) and (7). This way we find a Bohr set
B̃ such that for every t ∈ B̃ we have

|1A′m ∗ 1−(A+A′m) ∗ 1A(t)− |A′m||A|| 6 |A′m||A|/2.

Here we just considered the convolution from Theorem 14 at points t and 0. We deduce
that the value of the convolution above can never be 0 and so t ∈ A + A′m − (A + A′m).
The set B̃ thus satisfies the following properties.

B̃ ⊆ A+ A′m − (A+ A′m) ⊆ 2 · 3mA− 2 · 3mA,
dim B̃ = d+ d′ 6 d+ C log4(2/α)/km + C log(1/σ),

σ = |Tm|/|Bδν |
> exp(−Cm log3(2/α))|T0|/|Bδν |
> exp(−Cm log3(2/α)) · 0.9α.

We notice that since km � log1−2−m(2/α), by setting γ = 2−m we have

d′ � log3+γ(2/α) +m log3(2/α),

moreover

ρB̃ = ρδν
(α/2)1/2

2d2d′
> ρ

cα7/2

kd5d′
>

cα7/2

log(2/α)md5d′
,

which are the desired bounds.
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Notice that Theorem 15 works also when A is contained in a translate of a Bohr set
g +B, for some g ∈ G. To see that it is enough to consider A− g ⊆ B.
The corollary we prove next shows that a Bohr set can be found also in a translate of a
sumset t+ (4 · 3m)A as well as in 2 · 3mA− 2 · 3mA.
The strategy is simple and used frequently - for example a very similar argument is
presented in [15]. If A was symmetric the conclusion of Corollary 16 would be trivial as
2 · 3mA+ 2 · 3mA = 2 · 3mA− 2 · 3mA.
We search for a subset of A, which is symmetric around some point x. Because x is not
necessarily 0 there is a shift we have to take into account. We cannot quite maintain the
density of α in the subset, but α2/2 is shown to be possible with an averaging argument.
It is worth mentioning that if we wanted to deal with more general equations and not only
x1+x2+· · ·+xk−1 = (k−1)xk we could modify Corollary 16 to take into account coefficients
other than 1 and -1 by considering the intersection (x+a1 ·A)∩(x+a2 ·A)∩· · ·∩(x+ak ·A)
instead of A ∩ (A− x).

Corollary 16. Let A ⊆ B with |A| = α|B| where B is a regular Bohr set of rank d > 0
and width ρ contained in a finite abelian group G. Let m > 1 and w > 2 · 3m. There
exists a Bohr set B̃ ⊆ (2w)A−wx of rank d+ d′ and width ρB̃, where x ∈ B4. Moreover,
B̃ can be chosen so that

d′ 6 C log3+γ(2/α) + Cm log3(2/α),

where γ = 2−m and

ρB̃ > ρ
cα7

log(2/α)md6d′
.

Proof. Let us choose 1
Cd

< δ < 1, so that |B1+δ| 6 1.01|B|. By an averaging argument,
we find a translate of Bδ, in which A is dense. Specifically we write∑

t∈B1+δ

|A ∩ (t+Bδ)| > |A||Bδ|.

Thus for some t ∈ B1+δ we have

|A ∩ (t+Bδ)| >
|A|
|B1+δ|

|Bδ| >
|A|

1.01|B|
|Bδ| > 0.99α|Bδ|.

Denote A′ := A ∩ (t+Bδ), then A+ A′ ⊆ t+B1+δ and∑
x∈t+B1+δ

1A ∗ 1A′(x) =
∑

x∈A+A′
|A ∩ (x− A′)| = |A||A′|.

Thus we know that for some x ∈ t+B1+δ ⊆ B4 we have

|A ∩ (x− A′)| > |A||A′|/|B1+δ| >
1

2
α2|Bδ|.
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Define A∗ := A ∩ (x− A′), clearly A∗ ∈ x− t+Bδ, moreover

wA∗ − wA∗ ⊆ wA∗ + wA′ − wx.

By Theorem 15 applied to A∗ and x− t+Bδ we find a Bohr set

T ⊆ wA∗ − wA∗ ⊆ (2w)A− wx

of the desired width and rank. Notice that width changes by additional factor of d
comparing to Theorem 15 because of the factor δ and since relative density was α2, now
the term α7 appears. The rank changes only by a constant as the density is now 1

2
α2.

We now show how to use the Bohr set from Corollary 16 to obtain a density increment
for solution free sets. The strategy is very similar to the one suggested by Schoen and
Shkredov [15]: we observe that approximately half of the translates of the obtained Bohr
set cannot intersect A, as this would lead to a non-trivial solution. By an averaging
argument, A must have higher density in the remaining translates.

Lemma 17. Let m > 1, k > 4 · 3m + 2 and p be a prime. Let A ⊆ B ⊆ Z/pZ, where

|A| = α|B| and B is a Bohr set of rank d > 0 and width ρ with |B| > α−1
(
Cd2

α

)3d
.

Suppose that A does not contain any non-trivial solutions to the equation

x1 + x2 + · · ·+ xk−1 = (k − 1)xk.

Then, there is a Bohr set B̃ of rank d + d′ and radius ρB̃, such that for some y we have
|B̃ ∩ (A− y)| > 1.01α|B̃|. It is possible to choose it in such a way that

d′ 6 C log3+2−m(2/α)

and

ρB̃ > ρ
cα7

log(2/α)d6d′
.

Here the constants c and C depend on m.

Proof. Choose δ = 1
12·100·5k·d > 1

Cd
. Then by the definition of regularity, any regular Bohr

set B′ of rank at most d satisfies

|B′1+5kδ| 6 1.01|B′|.

We apply Lemma 10 to obtain a regular Bohr set B′ of rank d and radius ρ > cα
d
ρ and

sets D1, D2, D3 ⊆ A − t, such that (k − 1) ·D1, D2, D3 have densities at least 7
8
α inside

B′, B′, B′δ, or there is a density increment 1 + 1/48 on one of these sets. We would like
to have D1 ∪D2 disjoint from D3 so we adjust the sets slightly. Let us select arbitrarily
A3 ⊆ D3 so that the density of A3 in B′δ is between α

100
and α

200
. Now defining A1 := D1\A3

and A2 := D2 \A3 we have the desired property and moreover the densities of (k− 1) ·A1

and A2 are still at least 69
80
α inside B′. Because our equation is translation-invariant and
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A1, A2, A3 ⊆ A− t we have no solutions to our equation in the set A1 ∪A2 ∪A3. We can
require that |A3| > 1 because by our assumption on the size of B we have

|A3| >
1

200
α|Bδ| >

7

8
α
( α

Cd2

)3d
|B| > 1.

Set w =
⌊
k−2
2

⌋
. This way we have w > 2 · 3m. We initially assume that k is even and the

floor function is unnecessary, which gives 2w+ 1 = k− 1. By Corollary 16 we find a Bohr
set T of the required width and rank, such that T ⊆ (2w)A3 − wx and x ∈ B′5δ (notice
that we allow C to depend on m).

Suppose that b ∈ A1 and a ∈ A2. Then we must crucially have

(2w + 1)b− a /∈ T + wx

as otherwise we would have (2w + 1)b − a ∈ (2w)A3 and that would mean a non-trivial
solution to the equation

x1 + x2 + · · ·+ x2w+1 = (2w + 1)x2w+2,

where x1, x2 . . . , x2w ∈ A3;x2w+1 = a and x2w+2 = b. Because a, b /∈ A3 we such solution
is non-trivial.
Consider a larger Bohr set B∗ = B′1+2wδ, we have |B∗| 6 |B′1+2kδ| 6 1.01|B′|. Thus
(k − 1) · A1, A2 have densities at least 0.8α inside B∗ − wx as it contains B′.

At this point let us remark what happens if k is odd. Let z be an arbitrary element of
A∩B′δ. Then instead of (2w+1)b−a /∈ T +wx we assert that (2w+2)b−a /∈ T +wx+z,
thus adding one extra variable to our equation, which we set immediately to z. If we
choose B∗∗ = B′1+5wδ, we still have B′ ⊆ B∗∗ + (w + 1)x and the rest of the argument
remains the same (with B∗∗ instead of B∗).

By the above observation about non-inclusion we notice that for any y ∈ G either
(y−T1/2)∩A2 or (y+T1/2−wx)∩ ((k−1) ·A1) must be empty. Otherwise we have found
b ∈ A1, a ∈ A2 where

(2w + 1)b− a = (k − 1)b− a ∈ T + wx,

which is a contradiction. Summing over all y ∈ B∗ we have

1.6α|B∗||T1/2| 6
∑
y∈B∗
|(y − T1/2) ∩ A2|+ |(y + T1/2 + wx) ∩ ((k − 1) · A1)|,

because every element of A2 ∩ B′ and ((k − 1) · A1) ∩ B′ appears exactly |T1/2| times.
Indeed, because T ⊆ (2w)A3 + wx we have

y + T1/2 + wx ⊆ B′ + T + wx ⊆ B′ + (2w)A3 ⊆ B′1+2wδ ⊆ B∗

and for the other term

y − T1/2 ⊆ B′ +B′wδ ⊆ B′1+wδ ⊆ B∗.
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Because one element in the sum is always equal to 0 we must have some y ∈ B∗ for which

1.6α|T1/2| 6 |(y − T1/2) ∩ A2|

or
1.6α|T1/2| 6 |(y + T1/2 − wx) ∩ ((k − 1) · A1))|.

That is a density increment on a translate of T1/2. In the second case we have to multiply
the set of characters of T1/2 by k − 1 or −1 we obtain a density increment of 1.6 on the

resulting Bohr set B̃.

We are now in position to prove Theorem 1.

Proof. Let us pick a prime kN < p < 2kN . Let A(0) = A and B(0) = Bohr({1}, 2) =

Z/pZ. Define α := |A|
p

. We iterate Lemma 17 on these sets, obtaining (A(1), B(1)),

(A(2), B(2)), . . .. For each i > 1 we have A(i) = (A(i−1) + ti)∩B(i), where ti is some element
of Z/pZ. As a crucial consequence of Lemma 17 the density increases by at least a factor
of 1.01 with each step. We know that after, say, s steps it is no longer possible. That is
because the density of A(i) cannot exceed 1. Clearly

s 6 C log(2/α),

where the constant C depends on m. We easily calculate that

ds 6 C log4+γm(2/α),

ρs > (cα)Cs.

The only reason for density increment not possible is that |B(s)| < α−1
(
Cd2s
α

)3ds
. On

the other hand we can lower-bound the size of B(s) by Proposition 3. Comparing the
lower-bound and the upper-bound we have

(ρs/4)3dsp 6 α−1
(Cd2s
α

)3ds
,

which implies

log(p) 6 4ds log
(Cd2s
αρs

)
.

Substituting the bounds for ds and ρs that is equivalent (again up to a constant) to

log(p) 6 C log6+γm(2/α).

Rearranging we obtain

α 6 e−c log
1/(6+γm) p

and using the fact that kN < p < 2kN , where we treat 2k as a constant we have

|A| 6 e−c log
1/(6+γm)NN.
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5 Counting solutions to invariant equations

Our next result is Theorem 3 - a counting version of the Theorem of Schoen and Sisask [16].
In the proof of Theorem 3 we will follow a classical paradigm of finding density increments.
The main tool is the Croot-Sisask lemma, more precisely its version for Bohr sets proved by
means of the Chang-Sanders lemma. Similarly as in [16], we combine this powerful result
with the fact, that for Bohr sets, almost-periods of convolutions and density increments
are very closely related. That is depicted by the following lemma. In the applications β
will be typically some multiple of 1

α
, for example 3

5α
and B a Bohr set.

Lemma 18. Let ε > 0, f : G → R and let A ⊆ G. Suppose that B is a set symmetric
around 0, such that for every t ∈ B

||f ∗ 1A(·+ t)− f ∗ 1A||∞ 6 ε holds.

Further assume that ||f ||1 6 β where β > 0 and f ∗ 1A(0) > 1 − ε. Then there exists a
translate of A (say x+A), such that B ∩ (x+A) has density at least 1

β
(1− 2ε) inside B.

Proof. We notice that since B = −B, we have

||f ∗ 1A ∗ µB − f ∗ 1A||∞ =

∣∣∣∣∣∣∣∣ ∑
t∈−B

(
f ∗ 1A(· − t)

)
· µB(t)− f ∗ 1A

∣∣∣∣∣∣∣∣
∞

6
∑
t∈B

||f ∗ 1A(·+ t)− f ∗ 1A||∞ · µB(t)

6 ε

By the triangle inequality it follows that f ∗ 1A ∗ µB(0) > 1− 2ε. We now notice that

β||1A ∗ µB||∞ > ||f ||1||1A ∗ µB||∞ > f ∗ 1A ∗ µB(0) > 1− 2ε.

Therefore, for some x we have 1A ∗ µB(x) > 1
β
(1 − 2ε) and we have proved the result as

1A ∗ µB(x) = 1
|B| |(x+ A) ∩B|.

So far we have shown in Lemma 18, that a large Bohr set of almost periods lets us find
a density increment inside of this Bohr set (upon translating the original set). We also
know how to find such Bohr set using Theorem 14. It remains to show how to proceed
so that the assumptions of Theorem 14 are satisfied. This will require some non-trivial
manipulations on Bohr sets, Lemma 10 will be key to keeping our equation under control
with more variables. In the next lemma we prove a density increment on a Bohr set
with rank and width slightly smaller than the initial one. A new idea here is applying
Theorem 14 to the set of Popular sums, as suggested by Sanders and Prendiville [11].

Lemma 19. Let B ⊆ Z/pZ, with p prime, be a regular Bohr set of rank d > 0 and radius
ρ and let A ⊆ B be its subset of size α|B|. Suppose that non-zero numbers a1, a2, . . . , ak
are such that the sum of their absolute values is smaller that p. Let

a1x1 + a2x2 + · · ·+ akxk = 0
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be an invariant equation in k > 4 variables and suppose that the number of solutions to
the equation in A does not exceed

exp(−Cd(log(d/α)))|A|k−1.

Then we can find a regular Bohr set B∗ of rank d+ d′ and radius ρ2, such that for some
x we have B∗ ∩ (A− x) > (1 + 1/16k)α|B∗|. Moreover, B∗ can be chosen so that

d′ 6 C log4(2/α)

and
ρ2 > cρα3/2/(d5d′),

where the constants C and c depend on the equation.

Proof. We will set up the proof by using Lemma 10 with ai - the coefficients of the
equation. Let B′ be the Bohr set defined at the beginning of the proof of the Lemma,

explicitly B′ :=
(

Πjaj

)
Bε for ε := 1

16k
α(Πj|aj|)−1/24d. By Proposition 2 it is possible

to choose 1
Cd

6 δ 6 1 so that |B′1+(k−3)δ| 6 1.01|B′| and B′δ is regular. We are ready to
use Lemma 10, specifying δ1 = δ3 = 1 and δ2 = δ4 = δ5 = · · · = δk = δ. It gives us sets
A1, A2, . . . , Ak ⊆ A−x such that ai ·Ai ⊆ B′δi of appropriate density. The translate x does
not matter as if A is free from solutions then A− x is free from solutions as well. If the
second conclusion of the is true, that is for some i there is |(ai·Ai)∩B′δi | > (1+1/16k)α|B′δi|
we immediately finish the proof, as we have the desired density increment with B∗ = B′δi .
Otherwise we continue the proof, keeping the first conclusion. We now define a set of
Popular sums P . Consider the function

f(x) = 1a3·A3 ∗ 1a4·A4 ∗ · · · ∗ 1ak·Ak(x).

We see that

suppf = a3 · A3 + a4 · A4 + · · ·+ ak · Ak ⊆ B′ + (k − 3)B′δ ⊆ B′1+(k−3)δ.

We fix a threshold to be
Q :=

α

8
|A4||A5| · · · |Ak|

and finally define P ⊆ B′1+(k−3)δ as

P := {x ∈ B′1+(k−3)δ : f(x) > Q}.

Notice that in the definition of Q we do not have the |A3| term, because instead we wrote
α
8
, which is proportional to the density of A3 in B′1+(k−3)δ. We will consider two cases,

depending on the size of P .
Case 1 (|P | > |B′1+(k−3)δ|/2): We will apply Theorem 14 to the sets, M := a1 ·A1,

A := a2 ·A2 and L = P c = B′1+(k−3)δ \ P . We define S to be a2 ·B′δν where ν := 1/Cd, to
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get a regular Bohr set with radius at least ρ/Cd3, such that |B′δ(1+ν)| 6 2|B′δ|. We have
to verify the assumptions of Theorem 14, let us start by calculating

|a2 · A2 + S| 6 |B′δ(1+ν)| 6 2|B′δ| 6 2 · 8

7α
|A2| =

16

7α
|a2 · A2|,

and so K = 16
7α

is sufficient. To calculate η, let us see that

|L| 6 (1− 1/2)|B′1+(k−3)δ| 6 1.01 · |B′|/2 6 1.01 · 1

2
· 8

7α
|a1 · A1| 6

3

5α
|a1 · A1|,

so η > α.
Therefore from Theorem 14, we get a Bohr set B∗, such that for every t ∈ B∗ we have

||1a1·A1 ∗ 1a2·A2 ∗ 1L(·+ t)− 1a1·A1 ∗ 1a2·A2 ∗ 1L||∞ 6 ε|A1||A2|.

Later we will see that ε = 1
8

suffices therefore the rank and the radius of B∗ are appropri-
ate. We now show that Lemma 18 can be used with β = 3

5α
to obtain a density increment.

We easily see that

||1a2·A2 ∗ 1L||1 = |A2||L| 6
3

5α
|A1||A2|

and so we take our function to be 1a2·A2 ∗ 1L/|A1||A2|. To show that the remaining
assumption is satisfied we need

1a1·A1 ∗ 1a2·A2 ∗ 1L(0) > (1− ε)|A1||A2|.

Let us use what we know about the number of solutions in A. Since our equation is
invariant the number of solutions in A− x is the same. We notice that

1a1·A1 ∗ 1a2·A2 ∗ 1P (0) ·Q 6 exp(−Cd log(d/α))|A1||A2||A|k−3. (3)

By Proposition 3 we also see that

|Ai| >
7α

8
|B′δ| >

(
c
α

d2

)3d
|B|

for i > 2. Simplifying the constants we get

|Ai| > exp(−C ′d log(d2/α))|A| > exp(−Cd log(d/α))|A|.

Applying this inequality multiple times to lower bound Q and then rearranging (3) gives

1a1·A1 ∗ 1a2·A2 ∗ 1P (0) · α
8
|A|k−3 6 1a1·A1 ∗ 1a2·A2 ∗ 1P (0) ·Q · exp(C2d log(d/α))

6
α

64
|A1||A2||A|k−3,

where the last inequality follows from the restriction on the number of solutions, provided
the constant C has been chosen large enough. Thus we have

1a1·A1 ∗ 1a2·A2 ∗ 1P (0) 6
1

8
|A1||A2|.
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Because 1L = 1B′
1+(k−3)δ

− 1P we have

1a1·A1 ∗ 1a2·A2 ∗ 1L(0) >
(

1− 1

8

)
|A1||A2| >

(
1− 1

8

)
|A1||A2|.

Thus we can apply Lemma 18 with ε = 1
8

to finish the first case of the proof. Here the
density increment was 5

3
(1− 2

8
)α = 5

4
α.

Case 2 (|P | < |B′1+(k−3)δ|/2): We will proceed in a similar fashion, however this
time we will apply Theorem 14 to the sets a4 · A4, . . . , ak · Ak, M := a3 · A3 and L :=
−1 · P ⊆ Z/pZ. The Bohr set will be B∗ = B′1+(k−3δ) as previously. We use almost the
same S as in the previous case. We only swap a2 · A2 for a4 · A4, that is S := a4 · B′δν .
Arguing in exactly the same way we have

|a4 · A4 + S| 6 16

7α
|a4 · A4|.

This time we have |L| 6 |B′1+(k−3)δ|/2 6 3
5α
|a3 · A3|, again arguing in the same way, just

swapping a1 · A1 for a3 · A3. We apply Theorem 14 with ε = 1
6

and so the rank and the
radius of B∗ are as needed. We also estimate the || · ||1 norm, notice that

||1a4·A4 ∗ 1a5·A5 ∗ · · · ∗ 1ak·Ak ∗ 1−P ||1 = |A4||A5| · · · |Ak||L|

6
3

5α
|A3||A4||A5| · · · |Ak|.

So this time our function in the application of Lemma 18 (again with β = 3
5
) will be

1a4·A4 ∗ ·1a5·A5 ∗ · · · ∗ 1ak·Ak ∗ 1−P/|A4||A5| · · · |Ak|

and the set will be a3 · A3, sufficient ε will turn out to be 1/6. It remains to estimate
(using g defined above) g ∗ 1a3·A3(0). We see that

g ∗ 1a3·A3(0) =
∑
p∈P

1a3·A3 ∗ ·1a4·A4 ∗ · · · ∗ 1ak·Ak(p) = |A3||A4| · · · |Ak| −
∑
p/∈P

f(p),

however, by the definition of P , we have∑
p/∈P

f(p) 6
α

8
|B′1+(k−3)δ||A4||A5| · · · |Ak| 6

1

7
· 1.01 · |A3||A4| · · · |Ak|,

where we use the fact that density of a3 · A3 in B′ is at least 7
8
α. Combining the two

previous lines we obtain

g ∗ 1a3·A3(0) >
(

1− 1

6

)
|A3||A4| · · · |Ak|,

which finally lets us apply Lemma 18 with ε = 1
6
. Here the density increment of A3 on

(a3)
−1B′1+(k−3)δ is 5

3
(1− 2

6
)α = 10

9
α.

We actually considered 3 possible cases, one being the second conclusion of Lemma 10.
That one had by far the worst density increment, which we record in the current lemma.
This finishes the proof.
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We can finally prove Theorem 3.

Proof. As mentioned before, we pick

(|a1|+ |a2|+ · · ·+ |an|)N < p < 2(|a1|+ |a2|+ · · ·+ |an|)N.

Let α2 = |A|
p

.

By Proposition 6 and Lemma 9 there exists a number δ ∈ [1/240, 1] such that there for
some translate x ∈ Z/pZ we have B(0) := Bohr({1}, δ) regular and

(A− x) ∩B(0) > 0.9α2|B(0)|.

Let A(0) = (A−x)∩B(0). We iterate Lemma 19 on the sets A(0), B(0), obtaining (A(1), B(1)),
(A(2), B(2)), . . .. For each i > 0 we have A(i) = (A− ti) ∩ B(i), where ti is some translate.
We know that after, say, s steps it is no longer possible. That is because the density of
A(i) cannot exceed 1. Since Lemma 19 cannot be applied to A(s) and B(s) we know that
A(s) contains at least e−Cds log(ds/α2)|A(s)|k−1 solutions of a1x1 + a2x2 + · · · + akxk = 0,
where C depends on the equation. We easily calculate that

s 6 C log(1/α2),

ds 6 C log5(2/α2),

ρs > (cα2)
Cs.

Clearly α2 and α differ only by a constant depending on the equation, so do N and p.
Therefore by Proposition 8 we have

|A(s)| > α2|B(s)| > α2(ρs/2π)dsp > e−C log7(2/α)N.

We also note that log(ds/α) � log log5(2/α) � log(2/α). Putting all of these bounds
together with the estimate on the number of solutions in A(s) we have

e−Cds log(ds/α)|A(s)|k−1 > e−C log7(2/α)Nk−1.

So A contains at least e−C log7(2/α)Nk−1 solutions to a1x1 + a2x2 + · · · + akxk = 0, since
A(s) + ts ⊆ A and the equation is invariant.

6 Behrend-type construction for the lower-bound

In this section we prove Theorem 4, which gives an analogous lower bound to what we
have proved in the last section. We modify the argument of Tao ([18], Proposition 1.3)
to show a Behrend-type bound for convex equations.
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Proof. Let N = Md+d′ , where d′ > 0 is an arbitrary integer (to constuct infinitely many
N) and M , d will be chosen later. Define a map D : [N ]→ [M ]d to be the mapping that
sends a number to the vector of its last d digits in base M . To be precise, we define D as

D(n)i =
⌊ n

M i−1

⌋
mod M for 1 6 i 6 d.

To put it in yet another way, if n = akM
k + ak−1M

k−1 + · · · + a1M + a0 then D(N) =
(a0, a1, . . . , ak). Define T ⊆ [N ] by including all n such that for all i one has D(n)i <

M
k

.
Clearly |T | > N · k−d. Among the numbers 1, 2, . . . , dM2 choose r such that the sphere

||D(x)||22 = r, which we call A, has at least |T |
dM2 > 1

dkd
Md′+d−2 points inside T . Suppose

that x1, x2, . . . , xk ∈ A are such that x1 + · · · + xk−1 = (k − 1)xk. Since there is no
carry-over in base M for the last d digits when adding elements of A up to k times, we
have

D(x1) + · · ·+D(xk−1) = (k − 1)D(xk).

This however, can only be the case when D(x1) = · · · = D(xk−1) = D(xk) by convexity,
since all of the points belong to a sphere of radius r.
Let us now carefully count the total number of solutions. We pick x1 to be an arbitrary
element of A. As a consequence of the above observations x2, x3, . . . , xk−1 must have the
same last d digits as x1. That leaves out d′ digits to choose from for each of the k − 2
variables. Since xk is determined by the rest of the variables we conclude that there is at
most |A|Md′(k−2) solutions to the equation x1 + · · ·+ xk−1 = (k − 1)xk inside A. Now we
choose c = c(k) > 0 to be a small constant, c = 1

4+2 log k
suffices. We set d := bc log(2/α)c

and M := bα−cc, then we have

|A|/N >
Md′+d−2

Ndkd
=

1

dkdM2

>
1

c log(2/α)kc log(2/α)α−2c
> α.

The last inequality follows after simple rearranging. We also note that d > 1. That is
because we assumed α 6 exp(−1/c), thus we have log(2/α) > 1/c and so

d = bc log(2/α)c > 1.

Further, bounding the size of A by N we have

|A|Md′(k−2)

Nk−1 6
|A|

M (k−1)d+d′ 6Md′+d−(k−1)d−d′ = M−(k−2)d 6 e−c(k−2) log
2(2/α),

which is the desired maximal number of solutions as c(k−2) is a constant depending only
on k.

7 Applications

Theorem 2 of Bloom has been used in a number of papers employing the Fourier Trans-
ference Principle. Examples of such results are papers from Prendiville [11], Chow [7],
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Browning and Prendiville [6]. We think that substituting Theorem 2 by our Theorem 3
for equations of length 4 and more, could bring quantitative improvements. We briefly
recall the first of the results [11] and state how the bound improves.

Let S ∈ {1, 2, . . . , N} and suppose that the only solutions to the equation

x1 + y1 = x2 + y2

for x1, x2, y1, y2 ∈ S are trivial (by which we mean x1 = y1 and x2 = y2 or x1 = y2 and
x2 = y1). Then S is called a Sidon set and it is known that |S| 6 (1 + o(1))N1/2. The
problem of finding solutions to invariant equations in Sidon sets was considered by Conlon,
Fox, Sudakov and Zhao [8]. They give a weak upper bound of |S| 6 o(N1/2), providing
a comment about how to use their methods to obtain a stronger bound. Prendiville [11]
used the method of Fourier Transference Principle to get an improvement on the work of
Conlon, Fox, Sudakov and Zhao.

Theorem 20. (Prendiville) If N > 3 and S ⊆ {1, 2, . . . N} is a Sidon set lacking solutions
to an invariant equation a1x1 + a2x2 + · · ·+ akxk = 0 in k > 5 variables, we have

|S| 6 CN1/2(log logN)−1.

Prendiville already mentions that the result could be boosted by a counting version of
the theorem of Schoen and Sisask [16]. Indeed, after we have proved Theorem 3, we can
apply it in Prendiville’s proof intstead of Theorem 2. As a result, the following statement
is obtained.

Theorem 21. Let S ⊆ {1, 2, . . . , N} be a Sidon set, which contains no non-trivial solu-
tions to an invariant equation a1x1 + a2x2 + · · ·+ akxk = 0 in k > 5 variables. Then we
have

|S| 6 N1/2 exp(−C(log logN)1/7),

where the constant C depends on the equation.
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