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Abstract

Let rk be the unique positive root of x
k−(x+1)k−1 = 0. We prove the best known

bounds on the number ng,d of d-dimensional generalized numerical semigroups of
genus g, in particular that

ng,d > Cg(d−1)/d

d rg
2d

for some constant Cd > 0, which can be made explicit. To do this, we extend the
notion of multiplicity and depth to generalized numerical semigroups and show our
lower bound is sharp for semigroups of depth 2. We also show other bounds on
special classes of semigroups by introducing partition labelings, which extend the
notion of Kunz words to the general setting.

Mathematics Subject Classifications: 05A16, 20M14, 11P81

1 Introduction

Let N0 denote the nonnegative integers. A numerical semigroup Λ is a subset of N0 that
has finite complement, contains 0, and is closed under addition. In other words, Λ is a
cofinite submonoid of N0. Given a numerical semigroup Λ, one can define a number of
invariants of Λ: its genus g(Λ) := #(N0 \ Λ); its multiplicity m(Λ) := min{Λ \ {0}}; its
Frobenius number f(Λ) := max{N0 \ Λ}; and its depth q(Λ) := d(1 + f(Λ))/m(Λ)e, the
last of which was recently introduced by Eliahou and Fromentin [10]. We drop the Λ
when writing down these invariants if it is clear to which semigroup we are referring.

A great deal of research has been done regarding the enumeration of numerical semi-
groups after ordering by a specific invariant. Perhaps the most significant result is due to
Zhai [23], who in 2011 showed that the number of numerical semigroups with genus g is

asymptotic to C
(

1+
√

5
2

)g
for some constant C, resolving a conjecture of Bras-Amorós [5].

The asymptotic number of numerical semigroups with fixed Frobenius number [3], mul-
tiplicity [13], and recently depth with respect to genus [25] and multiplicity [17] are also
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known. A key ingredient in many of these proofs is that, after ordering, almost all numer-
ical semigroups have small depth. For instance, Zhai showed that almost all numerical
semigroups of genus g have depth 2 or 3, verifying a conjecture of Zhao [24, Conj. 2].

Naturally, one can ask similar questions about the analogous objects in Nd
0. A gener-

alized numerical semigroup (or GNS ) Λd of dimension d is a cofinite submonoid of Nd
0. In

2016, Failla, Peterson, and Utano [11] initiated the formal study on the number ng,d of
generalized numerical semigroups with genus g and dimension d, showing that for fixed d
and large g we have

ng,d &

(
g + d− 1

d− 1

)
Cd

(
1 +
√

5

2

)g

by estimating the number of generalized numerical semigroups that contain every point
with positive integer coordinates. Their bound implies that n

1/g
g,d &

1+
√

5
2

for fixed d.
To our knowledge, the above bound is the best known bound on ng,d. Currently, the
asymptotics of ng,d are wide open; even for d = 2, we do not have a Bras-Amorós-like
conjecture for the growth rate [14]. However, Cisto, Delgado, and Garćıa-Sánchez [7] have
developed algorithms to compute ng,d for small values.

In this paper, we constructively show the following main result, which significantly
improves the lower bound on ng,d.

Theorem 1. Let rk be the unique positive root of xk − (x + 1)k−1 = 0. Then for each d,
there is a constant Cd > 0 for which

ng,d > Cg(d−1)/d

d rg
2d

for all g > 0.

In particular, we have that n
1/g
g,d & r2d for fixed d. Hence, Theorem 1 is stronger than

the lower bound from Failla, Peterson, and Utano for d > 2. This also implies that

limg→∞(ng,1)2/ng,2 = 0, since
(

1+
√

5
2

)2

< r4, negatively answering a question of Cisto,

Delgado, and Garćıa-Sánchez [7, §8, pg. 16]. We furthermore establish the following
superexponential upper bound on ng,d.

Theorem 2. For each d, we have n
1/g
g,d < (2e+ o(1))(ln g)d−1.

Analyzing ng,d is difficult in part because numerical semigroup invariants are not easy
to lift to the general case. For instance, Failla, Peterson, and Utano define the multiplicity
and Frobenius gap of a generalized numerical semigroup, but they are not canonical;
they depend on a choice of relaxed monomial order on Nd

0 [11, Def. 3.5]. To this end,
Cisto, Failla, Peterson, and Utano define the Frobenius allowable gaps [8], which Lin and
Singhal [21] showed to be the set of maximal elements of Nd

0 \Λd under the natural partial
order and used them to count semigroups with a unique Frobenius allowable gap.

In light of this, a key ingredient of our paper is our extension of multiplicity and
depth to the general setting. We define the multset to be the set of nonzero minimal
elements of Λd under the natural partial order. Then, we generalize the notion of depth
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to generalized numerical semigroups and show that Theorem 1 is sharp for generalized
numerical semigroups of depth 2. An advantage of our more flexible definition is that it
does not rely on a choice of relaxed monomial order on Nd

0.
An important tool used in the study of numerical semigroups is the Kunz word, which

is a word with integer entries satisfying certain linear inequalities that encodes a numerical
semigroup. This correspondence allows us to turn the problem of enumerating numerical
semigroups into a problem in polyhedral geometry [13, 15] and additive combinatorics [17,
25].

We lift the notion of Kunz words to generalized numerical semigroups by introducing
partition labelings, which are diagrams labeled with multi-dimensional partitions that
satisfy certain additive inequalities that encode the data of a GNS. We use partition
labelings to bound the number of semigroups with a fixed multset and the number of
semigroups with a multset of minimal size, the latter of which we call rectangular GNSs.

1.1 Outline

In Section 2, we establish conventions and review the relevant technical facts about d-
dimensional partitions and the constants rk for our paper. Next, in Section 3, we define
the multset, depth, and depth-k regions of a GNS, which generalize numerical semigroup
invariants. In Section 4, we prove Theorem 1 and Theorem 2. Then in Section 5, we
define partition labelings and use them to bound the size of special classes of semigroups.
Finally, we discuss open questions and future lines of work in Section 6.

2 Preliminaries

In this section, we go over some background material on the structure of Nd
0 and d-

dimensional partitions, then discuss the constants rk which appear throughout the paper.

2.1 Points in Nd
0

We denote points in Nd
0 by bolded lowercase letters and their coordinates by unbolded

letters with subscripts, e.g., x = (x1, . . . , xd). The points in Nd
0 have a natural partial

order 6. Namely, we let a 6 b if ai 6 bi for i = 1, . . . , d, with equality if and only if
ai = bi for all i. Hence, the unique minimal element of Nd

0 is the origin 0 := (0, . . . , 0).
Also, let ed

i be the point in Nd
0 with (edi )j = 0 when i 6= j and (edi )j = 1 when i = j,

so ed
1 , . . . , e

d
d generate Nd

0 as an additive monoid.

2.2 d-dimensional partitions

A d-dimensional partition of n is a partition π into nonnegative integer parts πx, indexed
by x ∈ Nd

0, for which

n =
∑
x∈Nd

0

πx and πa > πb if a 6 b.
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For d = 0, these consist of a single number; for d = 1, these are the typical partitions of n.
The cases d = 2 and d = 3 are known as plane partitions and solid partitions, respectively.

One can visually represent a d-dimensional partition in (d + 1)-dimensional space by
stacking πx hypercubes of dimension d + 1 atop the axis-aligned unit d-cell whose least
vertex (under the partial order) is at x. This is known as the Young diagram of π in the
one-dimensional case.

Throughout the paper, we let pd(n) denote the number of d-dimensional partitions
of n and let Pd(x) :=

∑∞
n=0 pd(n)xn be the d-dimensional partition generating function.

Recall that

P0(x) :=
∑
n>0

xn =
1

1− x
,

P1(x) :=
∑
n>0

p1(n)xn =
∞∏
k=1

1

1− xk
.

It is also a classic result of MacMahon [19] that

P2(n) :=
∑
n>0

p2(n)xn =
∞∏
k=1

1

(1− xk)k
.

From these expressions, one can calculate the following asymptotic expressions for p1(n)
and p2(n), first calculated in the 1900’s by Hardy-Ramanujan [12] and Wright [22], re-
spectively:

p1(n) ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
,

p2(n) ∼ ζ(3)7/36

√
12π

(n
2

)−25/36

exp

(
3ζ(3)1/3

(n
2

)2/3

+ ζ ′(−1)

)
,

where ζ denotes the Riemann zeta function.
Unfortunately, a closed-form expression for Pd(n) for d > 3 and the precise asymptotics

of pd(n) are unknown. However, of use to us is the following asymptotic result on pd(n)
due to Arora, Bhatia, and Prasad [4].

Theorem 3 (Arora-Bhatia-Prasad, [4, eq. 6]). For each d, there exist k−d , k
+
d > 0 for

which

k−d <
ln pd(n)

nd/(d+1)
< k+

d .

More information on multi-dimensional partitions can be found in [1]. A possible
point of confusion is the discrepancy between the dimension of a generalized numerical
semigroup and the dimension of a multi-dimensional partition; when working with a d-
dimensional GNS, we usually opt to work with (d−1)-dimensional partitions. To make this
distinction clear, especially with indices, we use the convention a,b, ed

i ,m,x,y, z ∈ Nd
0

and ed−1
i ,u,v,w ∈ Nd−1

0 .
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2.3 Min-sums

In this paper, we introduce the following operation on d-dimensional partitions.

Definition 4. For two d-dimensional partitions π and π′, the min-sum π � π′ is the
d-dimensional partition τ with entries τx = min

a+b=x
{πa + π′b}.

One can check that � is commutative and associative. To our knowledge, this opera-
tion on multi-dimensional partitions, even in the one-dimensional case, is new.

Example 5. Let π = [4, 2, 1] and π′ = [3, 2, 2, 1] be one-dimensional partitions. Then we
have

(π � π′)0 = 4 + 3 = 7

(π � π′)1 = min(4 + 2, 2 + 3) = 5

(π � π′)2 = min(4 + 2, 2 + 2, 1 + 3) = 4

...

Overall, we get π � π′ = [7, 5, 4, 3, 2, 2, 1].

We will use the min-sum operator � to help us define the multset and depth of a GNS.

Remark 6. There is a connection between� and tropical geometry. Specifically, let a⊕b :=
min(a, b) and a�b := a+b denote tropical addition and multiplication, respectively. Then
working in Z[x1, . . . , xd], we have that⊕

a∈Nd
0

(πa � xa)

�
⊕

a∈Nd
0

(π′a � xa)

 =
⊕
a∈Nd

0

(π � π′)a � xa,

where xa = xa11 · · ·x
ad
d .

We can also interpret the min-sum operator in terms of multiplication of monomial
ideals. If we work in the ring Z[x1, . . . , xd, y] then we have that∑

a∈Nd
0

(xayπa)

 ·
∑

a∈Nd
0

(xayπ
′
a)

 =
∑
a∈Nd

0

(xay(π�π′)a),

where we are summing principal ideals.

2.4 The constants rk

It will be helpful to define the following family of constants.
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Definition 7. For positive integers k, let the constant rk be the root of largest magnitude
of xk − (x+ 1)k−1 = 0. The values of these constants begin as follows:

r1 = 1

r2 =
1 +
√

5

2
= 1.6180 . . .

r3 = 2.1479 . . .

r4 = 2.6297 . . .

...

We verify that rk is well-defined with the following lemma.

Lemma 8. The polynomial xk− (x+1)k−1 has a unique root of largest magnitude rk, and
it is real with rk > 1.

Proof. Let f(x) = xk − (x + 1)k−1. We prove the following facts, which suffice to prove
the claim:

(1) We have that rk is real and a simple root.

(2) The polynomial f has a unique positive root r+k , and r+k > 1.

(3) We must have rk > 0.

To prove (1), note that any root r of f satisfies |r|k = |r + 1|k−1 6 (|r| + 1)k−1 with
equality only if r is a positive real. So if r is non-real, then |r|k < (|r| + 1)k−1 and so
|r| is less than the largest real root of f . Hence, we must have that the root of largest
magnitude rk is real. Moreover, one can check that f(x) and f ′(x) share no common
roots, so rk is a simple root.

To show (2), note that f(1) 6 0 and the leading coefficient of f is positive, so f has
a positive root r+k > 1. By Descartes’ rule of signs, f has a unique positive root. Thus, if
rk > 0 then rk = r+k .

Finishing with (3), suppose for the sake of contradiction that rk < 0. Then we must
have that rk 6 −|r+k | 6 −1 since rk is the root of largest magnitude. But note that for
x < −1, we have f(x) > 0 when k is even and f(x) < 0 when k is odd. In particular, we
have f(rk) 6= 0, a contradiction.

While not strictly necessary for the rest of the paper, it is still natural to consider the
size of rk as k goes to infinity. By writing the equation as xk/(k−1) = x+ 1, it is clear that
rk is increasing in k and goes to infinity as k goes to infinity.

Proposition 9. We have rk ∼ k/(ln k).

Proof. Rewrite the given equation to the form x = (1 + 1/x)k−1, which in turn implies

rrkk =

((
1 +

1

rk

)rk
)k−1

= ek(1−o(1)),
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since as k goes to infinity, so does rk. The solution to the equation xx = ea is x = eW (a),
where W is the Lambert W -function. It is known (see, e.g. [9, eq. 4.18]) that W (x) =
lnx− ln lnx+ o(1), so we have

rk = eln k−ln ln k+o(1) = (1 + o(1))

(
k

ln k

)
,

as desired.

3 Invariants of generalized numerical semigroups

In this section, we define a number of invariants that will help us count generalized
numerical semigroups.

3.1 Multiplicity and depth

First, we define analogues of multiplicity and depth for generalized numerical semigroups.
Recall that the multiplicity m(Λ) of a numerical semigroup Λ is the least nonzero

integer contained in Λ. In higher dimensions, a GNS may not have a unique least nonzero
point. Nevertheless, we generalize the notion of multiplicity to GNSs as follows.

Definition 10. Let Λd be a GNS. The multset M(Λd) is the set of minimal, nonzero
points in Λd. In other words, M(Λd) := {m ∈ Λd : m 6> x for all x ∈ Λd \ {0}}.

As a reminder, we drop the Λd when it is clear to which GNS we are referring. We
use the calligraphic M to remind the reader that the multset is a set, not an integer
like in the one-dimensional case. However, note for numerical semigroups Λ, we have
M(Λ) = {m(Λ)}. We have the following characterization of possible multsets.

Proposition 11. A finite set M⊂ Nd
0 \ {0} is a possible multset if and only if:

• it is an antichain of Nd
0 under 6; and

• it contains some multiple of ed
i for i = 1, . . . , d.

Proof. We first show the forward direction. IfM(Λd) contained two comparable elements
x > y, then this contradicts the definition of a multset, since y ∈ Λd \ {0}. On the other
hand, if M did not contain an element on the i-th coordinate axis, then Λd does not
contain any point on the axis and is thus not cofinite.

In the reverse direction, supposeM is an antichain that contains the elements mi · ed
i

for indices i = 1, . . . , d. Let

Λd = {0} t {x ∈ Nd
0 : x >m for some m ∈M}.

Then Λd is closed upwards, so it is closed under addition. It is cofinite, since it includes
all elements with xi > mi for each i and thus excludes at most

∏d
i=1mi elements. Finally,

it has multset M by construction. Hence, M is a valid multset.
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Figure 1: A two-dimensional GNS and multset, along with its depth-k regions.

We also generalize the notion of depth to GNSs. For sets A,B ⊆ Nd
0, define

A+B := {a + b : a ∈ A, b ∈ B},
kA := A+ · · ·+ A︸ ︷︷ ︸

k times

.

In particular, kA 6= {ka : a ∈ A}. One may recognize these as Minkowski sum operators.

Definition 12. The depth q(Λd) of the GNS Λd is the least integer q for which

{x ∈ Nd
0 : x > a for some a ∈ qM} ⊆ Λd.

Example 13. Let

Λ2 = N2
0 \ {(0, 1), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (3, 1), (3, 3), (4, 1)}.

Then Λ2 is a GNS with genus g = 9, multsetM = {(0, 2), (2, 1), (3, 0)}, and depth q = 3.
See the left side of Figure 1, where cells correspond to their bottom left corner (gray if
included, white if excluded) and the stars indicate the multset.

3.2 Depth-k regions

Fixing the multset of a GNS is a strong condition that imposes restrictions on what
other elements must be included. In the one-dimensional case, we characterize numerical
semigroups of multiplicity m by partitioning

N0 = {0, 1, . . . ,m− 1} t {m, . . . , 2m− 1} t {2m, . . . 3m− 1} t · · ·

into sets of size m. Then the depth is the least q for which {qm, . . . , (q + 1)m− 1} ⊆ Λ,
since then every integer above qm is contained in Λ. We somewhat generalize this concept
to GNSs as follows.
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Definition 14. Let M be a multset. For positive integers k, define the region

R6k(M) := {x ∈ Nd
0 : x 6> a for all a ∈ kM}.

The depth-k region Rk(M) is the set R6k(M) \ R6k−1(M). The size of the depth-k
region is sk(M) := #Rk(M). By convention, we let R60(M) be empty.

Note that depth-k regions are defined in terms of multsets, not GNSs, though we
still drop the M when the argument is clear. These regions serve as a “blueprint” for a
possible GNS of a given multset, where we first let Λd have multset M, then choose to
exclude certain elements from finitely many regions Rk(M).

Lemma 15. If x ∈ Rk and y ∈ R`, then x + y 6∈ R6k+`−2.

Proof. There are elements a ∈ (k − 1)M and b ∈ (`− 1)M for which x > a and y > b.
Then x + y > a + b ∈ (k + `− 2)M, so x + y cannot be in the region R6k+`−2.

Corollary 16. The depth of Λd is the least integer q for which Rq+1(M(Λd)) ⊂ Λd.

Proof. If q is the depth of Λd, then by definition Rq+1 ⊂ Λd, so we show the reverse
direction. Assume Λd 6= Nd

0, so q > 1. It suffices to show that if Rk ⊂ Λd, then
Rk+1 ⊂ Λd, since then every element bounded below by an element of qM is in Λd.

Suppose that x ∈ Rk+1, so there exists an a ∈ kM for which x > a. Then there
exists an element m ∈ M ⊆ R2 for which a −m ∈ (k − 1)M. Now consider the point
x −m. It cannot be in R6k−1, since x −m > a −m ∈ (k − 1)M, and it cannot be in
Rk+1, since then by Lemma 15 we would have m + (x −m) 6∈ R6k+1. Hence, we have
that x−m ∈ Rk is an element of Λd, so x is, too.

Now, we relate the regionsR6k(M) with (d−1)-dimensional partitions in the following
way. For v ∈ Nd−1

0 , let (πk)v(M) be the least integer t for which (v1, . . . , vd−1, t) 6∈
R6k(M).

Lemma 17. Let u and v be in Nd−1
0 . If u 6 v, then (πk)u > (πk)v.

Proof. Suppose not. Then (u1, . . . , ud−1, (π
k)u) is at most (v1, . . . , vd−1, (π

k)v − 1) in the
partial order, but is not included in R6k(M). This contradicts the fact that R6k is closed
downward.

Hence, for fixed k andM, the integers (πk)v(M) form a (d−1)-dimensional partition
πk(M) of s1(M) + · · ·+ sk(M).

Example 18. On the right side of Figure 1, we have M = {(0, 2), (2, 1), (3, 0)} and the
regions R1,R2,R3 are colored in different shades. We have

π1(M) = [2, 2, 1],

π2(M) = [4, 4, 3, 2, 2, 1],

π3(M) = [6, 6, 5, 4, 4, 3, 2, 2, 1],

so (s1, s2, s3) = (5, 11, 17). Also depicted are the sets M (denoted by F), 2M (denoted
by •), 3M (denoted by 4), and 4M (denoted by �).
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In fact, we can define the partitions inductively with the min-sum operation (cf. §2).

Proposition 19. We have πk(M) = π1(M)� · · ·� π1(M)︸ ︷︷ ︸
k times

.

Proof. Let τ := π1 � · · ·� π1 be π1 min-summed k times, and define

M′ = {(v1, . . . , vd−1, (π
1)v) : v ∈ Nd−1

0 }.

Note thatM⊆M′. Consider the set of points that are not greater than or equal to any
element of kM. This is the same as the set of points that are not greater than or equal
to any element of kM′. Moreover, the minimal elements of kM′ with respect to 6 are
precisely the minimal elements of {(v1, . . . , vd−1, τv) : v ∈ Nd−1

0 }. Hence, (πk)v = τv and
so πk ' τ .

Thus, the partition π1(M) can be used to compute the other partitions πk(M), which
characterize R6k(M) and the depth-k regions.

Definition 20. The shape of Λd is the (d− 1)-dimensional partition π1(M(Λd)), whose
total is the shape size s(Λd) := s1(M(Λd)).

Note that for d = 1, the shape size s(Λ) is exactly the multiplicity m(Λ).

4 Improved asymptotic bounds on ng,d

Let ng,d denote the number of d-dimensional GNSs with genus g. In this section, we
compute some bounds on ng,d.

4.1 Lower bound

In this subsection, we show Theorem 1. Specifically, we construct a family of GNSs of
depth 2 whose size has the desired growth rate. To this end, let ng,d,q denote the number of
generalized numerical semigroups with genus g, dimension d, and depth q. The following
result implies Theorem 1. Surprisingly, the growth factor r2d is sharp for depth 2 GNSs
in the following sense.

Theorem 21. For fixed d, there are constants C−d , C
+
d > 0 for which

(C−d )g
(d−1)/d

rg
2d
< ng,d,2 < (C+

d )g
(d−1)/d

rg
2d

for all g > 0.

First, we give an exact formula for ng,d,2 as a sum over the possible multsets M.

Proposition 22. We have

ng,d,2 =
∑
M

(
s2(M)−#M
g + 1− s1(M)

)
,

where the sum is over all multsets M for which s1(M) 6 g.
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Proof. Say Λd has depth 2 and multset M, so Rk ⊂ Λd for k > 3. The inclusion of
each element of R1 is predetermined; 0 is included and all other elements are excluded.
Moreover, every element of M⊂ R2 is included in Λd by definition.

Thus, it remains to choose g + 1 − s1 elements from R2 \ M. We also must have
s1 6 g, otherwise Λd has depth 1. We claim that any such subset yields a valid Λd.
Indeed, by Lemma 15 we have that if x,y ∈ R2, then x + y 6∈ R62, so in fact R2 is sum-
free. Hence, we have that Λd is always closed under addition, and we have the desired
claim.

It turns out we can bound s2 linearly in terms of s1, which in turns gives us an
exponential upper bound in terms of r2d . To bound the error term, we use the following
formulation of the Loomis-Whitney inequality, proved in 1949, which allows us to bound
the sum of the entries of a (d−1)-dimensional partition along the coordinate hyperplanes.

Theorem 23 (Loomis-Whitney [18, Thm. 2]). For any set of points S in d-space, let Si
be the set of points obtained by projecting S onto the i-th coordinate hyperplane. Then

(#S)d−1 6
d∏
i=1

(#Si).

Lemma 24. For any multset M and d > 2, we have s2(M) 6 (2d − 1)s1(M) −
2d−2s1(M)(d−1)/d.

Proof. We work with the (d − 1)-dimensional partitions π1(M) and π2(M) of s1 and
s1 + s2, respectively. For each point v ∈ Nd−1

0 and subset S ⊆ [d − 1], let fS(v) :=
(fS,1(v1), . . . , fS,d−1(vd−1)), where

fS,i(v) =

{
dv/2e if i ∈ S,
bv/2c if i 6∈ S.

By definition, we have fS(v) + f[d−1]\S(v) = v. Moreover, Proposition 19 tells us π2 =
π1 � π1, and so

(π2)v = min
u+u′=v

(
(π1)u + (π1)u′

)
6 min

S⊆[d−1]

(
(π1)fS(v) + (π1)f[d−1]\S(v)

)
6

1

2d−1

∑
S⊆[d−1]

(
(π1)fS(v) + (π1)f[d−1]\S(v)

)
=

1

2d−2

∑
S⊆[d−1]

(π1)fS(v);

s1 + s2 =
∑

v∈Nd−1
0

(π2)v
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6
∑

v∈Nd−1
0

1

2d−2

∑
S⊆[d−1]

(π1)fS(v).

For each i, the i-th entry of fS(v) is determined by the choice of vi and whether or not
i is in S. If we fix the i-th entry to be wi, there are exactly 3 such choices that make
wi = 0 and 4 choices if wi > 1. Hence, for each w there are 4d−1 choices of (v, S) for
which fS,i(v) = w if w > (1, 1, . . . , 1) (i.e., if all entries are nonzero) and at most 3 · 4d−2

otherwise. In particular,

s1 + s2 6
1

2d−2

4d−1
∑

w∈Nd−1
0

(π1)w − 4d−2
∑

w∈Nd−1
0

w 6>(1,1,...,1)

(π1)w


= 2ds1 − 2d−2 ·

∑
w∈Nd−1

0
w 6>(1,1,...,1)

(π1)w.

The summation is equal to the number of points in R1 that are on the i-th coordinate
hyperplane for some i < d. Pick the i which maximizes the summation. We then have
that ∑

w∈Nd−1
0

w 6>(1,1,...,1)

(π1)w >

(
d∏
i=1

(#(R1)i)

)1/d

> s
(d−1)/d
1 ,

so s1 + s2 is at most 2ds1 − 2d−2s
(d−1)/d
1 , as desired.

Remark 25. The choice ofM in the proof of Lemma 33 shows that (2d−1)s1−O
(
s

(d−1)/d
1

)
is the best possible bound. This multset is provably best for d = 2; this is the third prob-
lem of the Team Selection Test for the 2023 United States International Math Olympiad
team, posed by the author.

Corollary 26. For each d, there is a constant C+
d > 0 for which ng,d,2 < (C+

d )g
(d−1)/d

rg
2d

for all g > 0.

Proof. Since π1 is a (d− 1)-dimensional partition, there are exactly pd−1(s) multsets M
with s1(M) = s. Using Lemma 24, we have

ng,d,2 =

g∑
s=1

∑
M multset
s1(M)=s

(
s2(M)−#M
g + 1− s

)

6
g∑
s=1

∑
M multset
s1(M)=s

(
(2d − 1)s

g + 1− s

)

6 pd−1(g + 1) ·
g∑
s=1

(
(2d − 1)s

g + 1− s

)
.
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By Theorem 3, there is a constant K for which pd−1(g + 1) < Kg(d−1)/d
. On the other

hand, we can verify by expansion that the summation is the coefficient of xg+1 in the
generating function

∞∑
s=0

xs(x+ 1)(2d−1)s =
1

1− x(x+ 1)2d−1
.

The coefficients of the generating function follow a linear recurrence with characteristic
polynomial x2d − (x+ 1)2d−1, and thus have growth O(rg

2d
). The result follows.

It turns out that the constant 2d−1 in Lemma 24 is sharp, which suggests that we can
choose a specificM to give a sufficient lower bound on ng,d,2. The proof gives us intuition
for the near-equality cases: we should have π1

u + π1
v be roughly constant for fixed u + v.

We use a specific near-equality case to show the lower bound.
First, we need the following analytic lemmas.

Definition 27. For a positive integer k, define the rational function

Fk(x) :=
kk(1− x)xk

((k + 1)x− 1)k+1

and let ck be the largest positive root of Fk(x)− 1 = 0.

Lemma 28. The root ck is the unique real root of Fk(x) − 1 larger than 1/(k + 1), and
ck < 1.

Proof. The claim is easily seen to be true for k = 1 since the only positive root is c1 = 1,
so assume k > 2. Let f(x) = kk(1−x)xk and g(x) = ((k+1)x−1)k+1. The graph of f has
critical points at x = 0, k/(k + 1), and is strictly increasing on the interval (0, k/(k + 1))
and decreasing on the interval (k/(k+ 1),∞). It is concave down for x > (k− 1)/(k+ 1).

Meanwhile, the graph of g has a single critical point at x = 1/(k + 1), and strictly
increases thereafter; moreover, it is concave up.

First, check that f(1/(k + 1)) > 0 = g(1/(k + 1)) and

g

(
k

k + 1

)
= (k − 1)k+1 >

k2k

(k + 1)k+1
= f

(
k

k + 1

)
.

Since f and g are both increasing on the interval (1/(k + 1), k/(k + 1)), one concave up
and the other concave down, the unique value of x for which f(x) = g(x) on this interval
is ck. Moreover, g > f on [k/(k + 1),∞), since f is decreasing on that interval. We thus
have the desired claim.

Definition 29. For positive integers g, k, and x 6 g, define Gk(x, g) :=
(

kx
g+1−x

)
. For

fixed g, let x = rk(g) be the value of x which maximizes Gk(x, g).

Lemma 30. We have Gk(rk(g), g) > K/g · rgk+1 for some constant K > 0.
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Proof. By a standard characteristic polynomial argument as in Corollary 26, we have that

g∑
s=1

Gk(s, g) = Ω(rgk+1).

But the left-hand side is at most g ·Gk(rk(g), g), which yields the desired bound.

Lemma 31. Let s(1), s(2), . . . be a sequence of integers with s(g) 6 g. As g goes to
infinity,

Gk(s(g) + 1, g)

Gk(s(g), g)
∼ Fk(s(g)/g).

Proof. Abbreviate s := s(g). Rewrite

Gk(s+ 1, g)

Gk(s, g)
=

(g + 1− s)
∏k

i=1(ks+ i)∏k
i=0((k + 1)s− g + i)

=
(1− s/g + 1/g)

∏k
i=1(ks/g + i/g)∏k

i=0((k + 1)s/g − 1 + i/g)
.

Then the right-hand side tends to Fk(s/g), as desired.

Corollary 32. As g approaches infinity, the ratio rk(g)/g approaches ck.

Proof. Abbreviate r := rk(g). Our choices of r dictate that

Gk(r + 1, g)

Gk(r, g)
< 1 and

Gk(r, g)

Gk(r − 1, g)
> 1.

For large g, the two quantities both approach Fk(r/g). Hence, by the squeeze theorem,
we have that Fk(r/g) approaches 1, so r/g approaches some root of Fk(x)− 1. We must
have kr > g − r or r/g > 1/(k + 1), so the only possibility is for r/g to approach ck, as
desired.

Lemma 33. For each positive integer d, there exists a constant C−d > 0 for which ng,d,2 >

(C−d )g
(d−1)/d

rg
2d

.

Proof. Let Mk denote the lattice points on the plane x1 + · · ·+ xd = k. Then Mk is an
antichain with points on the axes and is thus a valid multset, with

R1(Mk) = {(x1, . . . , xd) : x1 + · · ·+ xd < k},
R2(Mk) \Mk = {(x1, . . . , xd) : k < x1 + · · ·+ xd < 2k},

whose cardinalities are

s1,k,d :=

(
k + d− 1

d

)
=

1

d!
kd +O(kd−1),

s2,k,d :=

(
2k + d− 1

d

)
−
(
k + d

d

)
=

1

d!
(2d − 1)kd +O(kd−1).
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Thus, there are tkg,d :=
(

s2,k,d
g+1−s1,k,d

)
GNSs with depth 2, genus g, and multset Mk. It

suffices to show we can pick a k = k(g) for which tkg,d exceeds the desired bound.
Let r := r2d−1(g). Since s1,k,d is a polynomial of degree d in k, there is a constant

A = A(g) > 0 for which we can always select k such that 0 < s1,k,d − r < A · kd−1. The
idea is that we can approximate tkg,d closely by G2d−1(s1,k,d, g), which in turn is close to
G2d−1(r, g), the last of which is large.

Let ε > 0 be a threshold which we later send to 0. We first compare the quantities
tkg,d and G2d−1(s1,k,d, g). Let D = (2d − 1)s1,k,d − s2,k,d. Since D is a polynomial of degree

d − 1 in k with positive leading coefficient, we know 0 < D < B · kd−1 for some B > 0.
Note that

tkg,d
G2d−1(s1,k,d, g)

=
D∏
j=1

2ds1,k,d − g − j
(2d − 1)s1,k,d + 1− j

=
D∏
j=1

2ds1,k,d/g − 1− j/g
(2d − 1)s1,k,d/g + 1/g − j/g

.

Since s1,k,d− r < A · kd−1 � g, we have that s1,k,d/g ∼ r/g which tends to c2d−1 by Corol-
lary 32. Hence, the right-hand side is bounded below by(

2dc2d−1 − 1

(2d − 1)c2d−1

− ε
)D

>

(
2dc2d−1 − 1

(2d − 1)c2d−1

− ε
)B·kd−1

for sufficiently large g.
Now, we compare G2d−1(s1,k,d, g) and G2d−1(r, g). Note that

G2d−1(s1,k,d, g)

G2d−1(r, g)
=

s1,k,d−1∏
x=r

G2d−1(x+ 1, g)

G2d−1(x, g)
.

Every factor in the product converges uniformly to 1 by Lemma 31, so in particular the
right-hand side is at least (1− ε)s1,k,d−r > (1− ε)A·kd−1

for sufficiently large g.
In summary, we have

tkg,d >

(
2dc2d−1 − 1

(2d − 1)c2d−1

− ε
)B·kd−1

(1− ε)A·kd−1

G2d−1(r, g).

But we have G2d−1(r, g) > K/g · rg
2d−1

by Lemma 30, and moreover k = O(g1/d) since
r = O(g) by Corollary 32. The result follows.

Note that the proof can be modified slightly to produce an explicit value of Cd, but we
do not do that here. Corollary 26 and Lemma 33 collectively imply Theorem 21, which
in turn implies Theorem 1.

4.2 Upper bound

In this section, we provide the first upper bound on ng,d by proving Theorem 2. In 2007,
Bras-Amorós and de Mier [6] gave the first upper bound on the number ng of numerical
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semigroups Λ with genus g. They noted that if n 6∈ Λ, then at least one of (k, n − k)
must also be excluded from Λ for each k, and thus g > (n + 1)/2. In particular, f 6∈ Λ,
so f 6 2g − 1.

We use similar logic to develop an upper bound.

Definition 34. For each g, let Ag := {(x1, . . . , xd) ∈ Nd
0 :
∏d

i=1(xi + 1) 6 2g}.

Proposition 35. If Λd is a GNS with dimension d and genus g, then Nd
0 \ Λd ⊆ Ag.

Proof. Suppose x 6∈ Λd. Then for each a 6 x, one of (a,x − a) must be also excluded
from Λd. In particular, we must exclude at least half of the elements in the prism of
points bounded by x, which contains

∏d
i=1(xi + 1) elements. Hence, g > 1

2

∏d
i=1(xi + 1),

as desired.

We now establish our upper bound. Recall the harmonic sum Hn :=
∑n

k=1 1/k.

Proof of Theorem 2. Note that we have

#Ag 6
∑

06x1,...,xd−1<2g

⌊
2g∏d−1

i=1 (xi + 1)

⌋
6

∑
06x1,...,xd−1<2g

2g∏d−1
i=1 (xi + 1)

= 2gHd−1
2g .

Hence, if Λd has genus g, we choose to exclude g elements from Ag, and thus

ng,d 6

(
2gHd−1

2g

g

)
6

1

g!
(2gHd−1

2g )g.

Stirling’s approximation tells us g! > ((1/e− o(1))g)g for sufficiently large g, while we
have the bound H2g 6 ln(2g) + 1 on the harmonic sum. The result follows.

5 Partition labelings

In this section, we define partition labelings that somewhat generalize the notion of Kunz
words to generalized numerical semigroups.

Given a numerical semigroup Λ with multiplicity m, recall the Kunz word K(Λ) is the
word w1 · · ·wm−1, where m ·wi + i is the least element in Λ congruent to i (mod m). One
can easily recover Λ from K(Λ), and we can read off many invariants of Λ, such as its
genus and depth, from its Kunz word.

We say a word w1 · · ·wm−1 is a valid Kunz word if it is the Kunz word of some numerical
semigroup. In 1987, Kunz showed the valid Kunz words are exactly those which follow
certain additive inequalities known as the Kunz conditions :

Proposition 36 (Kunz [16, 20, §2]). A word w1 · · ·wm−1 is a valid Kunz word if and
only if:

• wi + wj > wi+j for all i, j with i+ j < m;
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• wi + wj + 1 > wi+j−m for all i, j with i+ j > m+ 1.

These properties make Kunz words a powerful tool to study numerical semigroups.
For more on Kunz words, see [17, 25].

In the setting of generalized numerical semigroups, we generalize Kunz words to an
object that we call a partition labeling, formed by labeling elements within a prism with
certain (d− 1)-dimensional partitions. To begin, we make the following definition.

Definition 37. For a multsetM and index i = 1, . . . , d, let mi(M) be the integer mi for
which mi · ed

i ∈M. The volume V (M) of a multset is the quantity
∏d

i=1mi.

Recall from Proposition 11 that such an mi exists and is unique, so our definition is
sound.

Definition 38. Given a GNS Λd, the partition labeling L (Λd) of Λd is composed of the
points x 6 (m1 − 1, . . . ,md − 1), each labeled with a partition Lx as follows:

• if x ∈ Λd, then x is labeled with the empty (zero) partition;

• if x 6∈ Λd, then x is labeled with the partition Lx, where

(Lx)v = min{` : x + (m1v1, . . . ,md−1vd−1,md`) ∈ Λd}.

We elucidate the above definition with an example.

Example 39. As in Example 13, let

Λ2 = N2
0 \ {(0, 1), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (3, 1), (3, 3), (4, 1)}.

Then we have m1 = 3 and m2 = 2.
We first compute the entries of L(0,1). To compute

(
L(0,1)

)
0
, we wish to find the least

` for which
(0, 1) + (3 · 0, 2 · `) ∈ Λ2.

This is false for ` = 0, 1, but true for ` = 2. Hence,
(
L(0,1)

)
0

= 2.

Similarly, to compute
(
L(0,1)

)
1
, we wish to find the least ` for which

(0, 1) + (3 · 1, 2 · `) ∈ Λ2.

Once again, this is false for ` = 0, 1 but true for ` = 2. Thus,
(
L(0,1)

)
1

= 2 as well.

Continuing in this fashion, we get that L (Λd) is as follows:

L(0,1) = [2, 2], L(1,1) = [1, 1], L(2,1) = [ ]

L(0,0) = [ ], L(1,0) = [ 2 ], L(2,0) = [ 1 ].

This is depicted (perhaps more intuitively) with Young diagrams in Figure 2. For instance,
to recover L(0,1), we look at the top left corner of each of the bolded 3 × 2 boxes on the
left-hand side of Figure 2 and see which elements are omitted from Λ2.
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Figure 2: Partition labeling of Λ2.

We first check that the Lx are indeed partitions.

Proposition 40. If u 6 v, then (Lx)u > (Lx)v.

Proof. Suppose (Lx)u < (Lx)v. Then a := x + (m1u1, . . . ,md−1ud−1,md((L
x)v − 1)) is

in Λd, but b := x + (m1v1, . . . ,md−1vd−1,md((L
x)v − 1)) is not. However, since mie

d
i is

in Λd, we have that a + (m1(v1 − u1), . . . ,md−1(vd−1 − ud−1), 0) = b is in Λd, which is a
contradiction.

Note we can easily recover Λd from L (Λd), so L is an injective map from GNSs to
valid partition labelings. Thus, we naturally investigate which partition labelings give
rise to valid GNSs. We first offer the following operation on partitions, which will help us
extend the one-dimensional Kunz condition wx + wy + 1 > wx+y−m to the general case.

Definition 41. Given a (d− 1)-dimensional partition π and a subset X ⊆ [d], let shX(π)
be the partition shX given by

(shX)v =

{
πv(X) if d 6∈ X,
max

(
πv(X) − 1, 0

)
if d ∈ X,

where v(X) := v +
∑

i∈X∩[d−1] e
d−1
i .

One can think of shX as a geometric operation on multi-dimensional Young diagrams
that “shaves off” the blocks along the hyperplanes indexed by X.

Example 42. The one-dimensional partition π = [4, 3, 2, 2, 1, 1] has

sh{1}(π) = [3, 2, 2, 1, 1],

sh{2}(π) = [3, 2, 1, 1],

sh{1,2}(π) = [2, 1, 1].

Figure 3 shows the Young diagrams of these partitions in relation to each other.
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Figure 3: The partitions shX(π) for π = [4, 3, 2, 2, 1, 1].

For two (d − 1)-dimensional partitions π and π′, we say π > π′ if πv > π′v for all
v ∈ Nd−1

0 .

Theorem 43. A partition labeling L = {Lx : x 6 (m1 − 1, . . . ,md − 1)} corresponds to
a valid GNS if and only if

• L0 = ∅; and

• for all x, y 6 (m1 − 1, . . . ,md − 1) we have Lx � Ly > shX(Lz), where X consists
of the indices j for which xj + yj > mj, and moreover zi := (xi + yi) mod mi.

Proof. Let L be a partition labeling and define Λd = {x + (m1v1, . . . ,md−1vd−1,md`) :
x 6 (m1 − 1, . . . ,md − 1), v ∈ Nd−1

0 , ` 6 (Lx)v}. Then we wish to determine when Λd is
a GNS.

The set of points Λd corresponding to L form a valid GNS if and only if the set is closed
under addition. Any nonzero point in Λd is expressible as x + (m1v1, . . . ,md−1vd−1,md`)
where x 6 (m1 − 1, . . . ,md − 1) and ` > (Lx)v.

Now, select x + (m1v1, . . . ,md−1vd−1,md`) and y + (m1w1, . . . ,md−1wd−1,mdk) from
Λd. These must satisfy ` > (Lx)v and k > (Ly)w. We require that their sum

x + y + (m1(v1 + w1), . . . ,md−1(vd−1 + wd−1),md(`+ k))

= z +

(∑
i∈X

mie
d
i

)
+ (m1(v1 + w1), . . . ,md−1(vd−1 + wd−1),md(`+ k))

is in Λd, too. Let a := (v1, . . . , vd−1, `) + (w1, . . . , wd−1, k) +
∑

i∈X ed
i . The above is true

if and only if ad > (Lz)(a1,...,ad−1), or

• `+ k > (Lz)(a1,...,ad−1) if d 6∈ X, and

• `+ k > (Lz)(a1,...,ad−1) − 1 if d ∈ X.
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Note the right-hand side is exactly (shX(Lz))v+w.
So essentially, the condition that Λd is closed under addition is equivalent to the

following: if ` > (Lx)v and k > (Ly)w, then ` + k > (shX(Lz))v+w. Fixing u := v + w,
we thus have that

min
u=v+w

((Lx)v + (Ly)w) > (shX(Lz))u .

The left-hand side is precisely (Lx � Ly)u, so the desired claim follows.

Evidently, the sum of the entries over all partitions Lx ∈ L (Λd) is the genus g(Λd).

5.1 GNSs with fixed multset

In this section, we study the number of GNSs of fixed multset, and thus fixed shape. The
following result is immediate.

Proposition 44. The number of GNSs with multset {ed
1 , . . . , e

d
i−1, 2·ed

i , e
d
i+1, . . . , e

d
d} and

genus g is pd−1(g).

Proof. Suppose Λd has genus g and the given multset. Then the partition labeling L (Λd)
has L0 = ∅ and Ledi being some partition of g. There are exactly pd−1(g) choices of Ledi ,
all of which give rise to valid GNSs, so the result follows.

Corollary 45. The number of d-dimensional GNSs with shape size 2 is d · pd−1(g).

Proof. If s(Λd) = 2, then M(Λd) has d elements and consists of 2ed
i for some i, and ed

j

for j 6= i. Then apply Proposition 44 for each i.

However, it is significantly more difficult to count the number of GNSs with shape size
at least 3. For instance, in the case of d = 2, the possible shapes of size 3 are:

• [3], which corresponds to M = {(0, 3), (1, 0)};

• [2, 1], which corresponds to M = {(0, 2), (1, 1), (2, 0)}; and

• [1, 1, 1], which corresponds to M = {(0, 1), (3, 0)}.

One can check that

• the number n
[3]
g,2 of GNSs with shape [3] is equal to the number of pairs of partitions

π, π′, whose total is g, such that π � π > π′ and π′ � π′ > sh{2}(π);

• the number n
[2,1]
g,2 of GNSs with shape [2, 1] is equal to the number of pairs of parti-

tions π, π′, whose total is g, such that π > sh{1}(π
′) and π′ > sh{2}(π); and

• we have n
[1,1,1]
g,2 = n

[3]
g,2.

We have computed n
[3]
g,2 and n

[2,1]
g,2 for g 6 50, shown in Table 1. These sequences do

not yet appear on the OEIS and do not appear to have a well-behaved closed form.
Nevertheless, we can write down the following coarse asymptotic bound on the number

of GNSs with fixed multset.
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g n
[3]
g,2 n

[2,1]
g,2 g n

[3]
g,2 n

[2,1]
g,2 g n

[3]
g,2 n

[2,1]
g,2 g n

[3]
g,2 n

[2,1]
g,2

1 0 0 14 1028 1675 27 92415 105990 40 3546174 2908311
2 1 1 15 1526 2422 28 125261 139819 41 4587402 3671626
3 4 4 16 2241 3462 29 168974 183648 42 5918389 4623480
4 8 10 17 3251 4900 30 227020 240224 43 7615125 5807744
5 14 22 18 4691 6874 31 303674 312984 44 9773454 7277974
6 27 43 19 6697 9560 32 404646 406255 45 12512191 9099348
7 45 76 20 9503 13198 33 537092 525424 46 15980127 11351083
8 73 129 21 13387 18092 34 710360 677201 47 20361285 14129340
9 118 210 22 18747 24636 35 936150 869940 48 25885096 17550599

10 189 331 23 26074 33344 36 1229632 1113989 49 32834413 21755722
11 293 510 24 36073 44873 37 1609732 1422136 50 41560508 26914894
12 454 771 25 49595 60058 38 2100858 1810194
13 684 1144 26 67874 79977 39 2733427 2297616

Table 1: Values of n
[3]
g,2 and n

[2,1]
g,2 for g 6 50.

Proposition 46. For each d, there is a constant Kd > 0 for which the number of GNSs
with genus g and multset M is at most(

V (M) + g − 1

g

)
·Kg(d−1)/dV (M)1/d

d

for all g > 0 and multsets M.

Proof. By Theorem 3, there is a constant k+ > 0 for which pd−1(n) < exp(k+n(d−1)/d)
for all n. A partition labeling L (Λd) consists of at most V (M) nonzero partition labels
whose sum is equal to g. Namely, if we require that Lx is a partition of size nx, then there
are at most

∏
x6(m1−1,...,md−1)

pd−1(nx) 6 exp

k+
∑

x6(m1−1,...,md−1)

(nx)(d−1)/d


choices of L (Λd). Since g =

∑
nx and f(x) = x(d−1)/d is concave, by Jensen’s inequality

on concave functions we have that the right-hand side is at most

exp
(
k+(g/V (M))(d−1)/dV (M)

)
.

There are at most
(
V (M)+g−1

g

)
choices of nx, so the result follows.

5.2 Rectangular GNSs

We say that a GNS Λd is rectangular if M(Λd) has size d. In particular, this means
that M(Λd) = {m1e

d
1 , . . . ,mde

d
d}. We denote this by using the square symbol � in the

exponent. The partition labeling of a rectangular GNS Λd,� naturally encodes the depth
q in the following way.
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Proposition 47. The depth of a rectangular GNS Λd,� is exactly

max
Lx∈L (Λd,�)

max
v∈Nd

0
(Lx)v>0

(v1 + · · ·+ vd−1 + (Lx)v).

Proof. If M = {m1e
d
1 , . . . ,mde

d
d}, then we have that

kM = {(a1m1, . . . , admd) : a1 + · · ·+ ad = k}.

Thus, for each x 6 (m1 − 1, . . . ,md − 1), the point x + (m1v1, . . . ,md−1vd−1,md`) 6∈ Λd

is part of Rk if and only if v1 + · · · + vd−1 + ` = k − 1. The maximal value of the left-
hand sum over all choices of (v, `) is exactly the expression given in the theorem. But
by Corollary 16, the depth q is the greatest integer k for which Rk 6⊆ Λd,�, from which
the result follows after letting x vary.

Recall that Pd(x) :=
∑

n>0 pd(n)xn is the multi-dimensional partition generating func-
tion.

Theorem 48. Let r′d be the unique positive root of Pd−1(1/x) = 2. Then we have

rd 6 lim sup
g→∞

(
n�g,d
)1/g
6 r′d.

Proof. We show the lower and upper bounds separately. Let nMg,d be the number of d-
dimensional GNSs with genus g and multset M. In each case, we estimate nMg,d for fixed
M of size d, then we sum over all M.

Suppose Λd has multset M = {m1e
d
1 , . . . ,mde

d
d}.

Lower bound. We construct a family of valid partition labelings L (Λd) that match
the lower bound. Let τ denote the (d − 1)-dimensional partition given by τ0 = 1 and
τv = 0 for v > 0. If every partition in L (other than L0) is nonzero and less than or
equal to τ � τ , then evidently L is a valid partition labeling.

There are exactly 2d nonempty partitions less than or equal to τ � τ , of which
(
d
s−1

)
have sum s > 1. Hence, we have that

∞∑
g=1

nMg,dx
g >

(
x(x+ 1)d

)V (M)−1

for any x > 0. By summing over all M, we can show that

∞∑
g=1

n�g,dx
g =

∑
M multset
|M|=d

∞∑
g=1

nMg,dx
g >

∑
M multset
|M|=d

(
x(x+ 1)d

)V (M)−1
>

∞∑
V=0

(
x(x+ 1)d

)V
.

By the root test, the right-hand side converges if x(x+ 1)d 6 1 or x < 1/rd. But then the

left-hand side converges when x <
(

lim supg→∞
(
n�g,d
)1/g
)−1

, so the radius of convergence

for the left-hand side is at least 1/rd.
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(In the language of depth-2 regions, cf. §4, we are counting the number of depth-2
rectangular GNSs. However, we choose to work with partition labelings here to mirror
the proof of the upper bound below.)

Upper bound. If Λd has multset M = {m1e
d
1 , . . . ,mde

d
d}, then L (Λd) consists of a

m1×· · ·×md prism whose nonzero entries are all labeled with nonzero (d−1)-dimensional
partitions. In particular, we have that

∞∑
g=1

nMg,dx
g 6

(
∞∑
k=1

pd−1(k)xk

)V (M)−1

= (Pd−1(x)− 1)V (M)−1

for any x > 0. By summing over all M, we get that

∞∑
g=1

n�g,dx
g =

∑
M multset
|M|=d

∞∑
g=1

nMg,dx
g

6
∑

M multset
|M|=d

(Pd−1(x)− 1)V (M)−1

6
∞∑
V=1

σ0(V )d (Pd−1(x)− 1)V−1 ,

since there are at most σ0(V )d choices of m1,m2, . . . ,md which multiply to V . (Here,
σ0(V ) denotes the number of divisors of V .) By the root test, the right-hand side converges
only if

lim sup
V→∞

(
σ0(V )d (Pd−1(x)− 1)V

)1/V

= lim sup
V→∞

(Pd−1(x)− 1) 6 1,

which is not true if Pd−1(x) > 2. Then we finish in a similar fashion to the lower bound.

6 Future directions

In this section, we discuss possible lines of future work by sharpening bounds on ng,d and
better understanding partition labelings.

6.1 Sharpening asymptotics

In Section 4, we show an exponential lower bound and a superexponential upper bound
on ng,d with respect to g. It is natural to ask whether we can reconcile these bounds,
since it is somewhat unclear whether ng,d grows exponentially or superexponentially.

Question 49. Is the quantity n
1/g
g,d bounded?

Part of the difficulty of this question is the disparity between the sizes of s1(M) and
V (M); the excluded elements of a generalized numerical semigroup can be “skinny” along
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each of the coordinate axes, which yields a small shape size but a large volume for d > 2.
For instance, this behavior is exhibited in the set Ag of possible points excluded from a
genus g GNS (cf. §4.2), which has shape size O(g(ln g)d−1) but volume O(gd). If ng,d does
grow exponentially, it is also natural to ask whether our lower bound of r2d is sharp, and

if so, whether the subexponential factor is Cg(d−1)/d

d .

Question 50. Does the limit limg→∞ r−g
1/d

2d
ng
−(d−1)/d

g,d exist?

A key ingredient of Zhai’s proof is the conjecture of Zhao that almost all numerical
semigroups have small depth after ordering by genus [23, Conj. 2]. This is no longer true
for the general case, at least in terms of exponential growth and for our definition of depth.
Take the following example, which also exhibits the aforementioned “axial skinniness.”

Example 51. We will construct a large family of GNSs with depth q as follows.
Let Mk, s1,k,d, and s2,k,d be defined as in the proof of Lemma 33. Suppose Λd has

genus g and satisfies the following properties:

• we have t · ed
1 6∈ Λ2 for every positive integer t 6 (q − 1)k + 1 and k - t;

• but it contains every other point in a depth-k region for k > 3.

One can check that Λd must be a GNS as follows. Suppose a,b ∈ Λd are nonzero.

• Case 1 : Both a and b are multiples of ed
1 . Note that S = N0 \ {t ∈ N0 : t 6

(q − 1)k + 1, k - t} is a numerical semigroup. Moreover, we have s · ed
1 ∈ Λd if and

only if s ∈ S. Hence, since a1, b1 ∈ S, we have a1 + b1 ∈ S, ergo a + b ∈ Λd.

• Case 2 : Either a or b are not multiples of ed
1 . Then a + b is in a region of at least

3 by Lemma 15 and also is not a multiple of ed
1 . This guarantees a + b ∈ Λd by

construction.

Then there are g− s1,k,d− (q− 2)(k− 1) more points to exclude from R2(Mk), which

has s2,k,d − k + 1 remaining elements. Hence, there are
(

s2,k,d−k+1

g−s1,k,d−(q−2)(k−1)

)
GNSs that

satisfy the given requirements. By holding q constant and letting g, k grow, this quantity
has exponential growth factor r2d . However, all of these GNSs have depth q. For an
example of a GNS with k = 3 and q = 5, see Figure 4.

However, the data from small cases suggests that most GNSs are depth 2 or 3, akin
to the one-dimensional case. A natural guess for d > 2 would be that all ng,d,q have

exponential growth rate r2d , but the subexponential growth factor r−g
1/d

2d
ng
−(d−1)/d

g,d,q is largest
for q = 3. In this paper, we describe a large class of depth 2 GNSs; it would be interesting
to examine large classes of depth 3 GNSs, analogous to the resuls of Zhao for d = 1 [24].

Question 52. Do d-dimensional GNSs almost all have depth 3 for d > 2?
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Figure 4: A GNS with multset M3 and depth 5, with R2(M3) outlined.

g ng,2,1 ng,2,2 ng,2,3 ng,2,4 ng,2,5
1 2 0 0 0 0
2 3 4 0 0 0
3 5 14 4 0 0
4 7 48 12 4 0
5 11 143 44 8 4
6 15 412 163 36 8
7 22 1176 550 106 28
8 30 3332 1751 333 86
9 42 9287 5514 1009 254
10 56 25630 17080 3065 737
11 77 70574 52028 9128 2133
12 101 194290 156358 26985 6053
13 135 534127 465726 78983 16992
14 176 1465245 1377185 228727 47225

Table 2: Values of ng,2,q for g 6 14 and q 6 5.
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g ng,2,2 g ng,2,2 g ng,2,2

0 0 30 12459909670309 60 80985430675574711412980916
1 0 31 33519288444409 61 215509768877495232586787465
2 4 32 90136456224494 62 573383202769145098057975309
3 14 33 242283690207403 63 1525226173996843571825323845
4 48 34 650936600796631 64 4056291288735430727151164447
5 143 35 1747891377256538 65 10785145844024419432004114254
6 412 36 4690642296534889 66 28669745119349640035022238173
7 1176 37 12580211126984860 67 76194552501074658365836459077
8 3332 38 33720107313956188 68 202455550832885616509159776241
9 9287 39 90333780254836434 69 537831233961624997213173542362

10 25630 40 241874514915972126 70 1428495078136679841557819365161
11 70574 41 647335685418582083 71 3793447898643022179662596244366
12 194290 42 1731773886602728051 72 10072060467737818893614010324770
13 534127 43 4631250509157734047 73 26738498106822231994902593485746
14 1465245 44 12381460478034483318 74 70973288195363677225963531535048
15 4011126 45 33092335174560159808 75 188363010271347363103428460974784
16 10961060 46 88424351052896671941 76 499851837500292856875731277058977
17 29903045 47 236212572399447537141 77 1326272602033306568840724593782556
18 81429566 48 630827866930313644489 78 3518599430142665518024919482166660
19 221325445 49 1684152607151129735036 79 9333642921927341197807452053383505
20 600659520 50 4494703368297811355435 80 24755693987767914166837735101399289
21 1628709545 51 11991135688827147388952 81 65650741449233606049989435056291703
22 4414300344 52 31978416951800296071831 82 174077611139574752854463708279935997
23 11958683448 53 85250406896754816152086 83 461512525629540684214148624663888012
24 32372736224 54 227191018857947112334513 84 1223377600065175892800725928261667064
25 87541376014 55 605282191834901220600054 85 3242455319972149681281785135048236895
26 236440731005 56 1612185156193460856587117 86 8592605228187134388298469836076911868
27 637862590414 57 4293176639427000769790008 87 22767484181294798508811998075481662904
28 1719101643609 58 11430408760122793960003154
29 4629525846179 59 30427812808611490639896278

Table 3: Values of ng,2,2 for g 6 87.

We have explicitly calculated ng,2,q for the small cases of g 6 14 and q 6 5, shown
in Table 2, whose numerics support our conjecture. It is not difficult to show that ng,d,1 =
pd(g + 1) and ng,d,g = d2 for g > 2. However, the columns of the table are not yet on
the OEIS, so it would be interesting to see if these sequences have other combinatorial
significance.

Theorem 21 implies that the quantity r−g
1/d

2d
ng
−(d−1)/d

g,d,2 for depth 2 GNSs is bounded.
By implementing Proposition 22, we have calculated the values of ng,2,2 for n 6 87, shown

in Table 3. The values of r
−√g
4 n

1/
√
g

g,2,2 are graphed against 1/g in Figure 5, which suggests
that this quantity converges to a constant near 1.2.

6.2 Partition labelings

In Section 5, we generalize the notion of Kunz words to partition labelings. In the one-
dimensional setting, Kunz words allow us to reinterpret the enumeration of numerical
semigroups as a polytopal [15] and additive-combinatorial [2] problem, which allow us
to use tools such as Ehrhart theory [13] and graph homomorphisms [17, 25] to count
semigroups.

Thus, it is natural to ask whether these methods can be extended to partition labelings.

Question 53. Can we view partition labelings in a polytopal or additive-combinatorial
setting?
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