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Abstract

This paper studies strong blocking sets in the N -dimensional finite projective
space PG(N, q). We first show that certain unions of blocking sets cannot form
strong blocking sets, which leads to a new lower bound on the size of a strong
blocking set in PG(N, q). Our second main result shows that, for q > 2

ln(2)(N + 1),

there exists a subset of 2N − 2 lines of a Desarguesian line spread in PG(N, q), N
odd, in higgledy-piggledy arrangement; thus giving rise to a strong blocking set of
size (2N − 2)(q + 1).

Mathematics Subject Classifications: 05B25,94B05,51E20,51E21

1 Introduction

1.1 Strong blocking sets and linear codes

We start by introducing the necessary definitions for blocking sets and linear codes. A
t-fold blocking set in a projective space PG(N, q), q = ph, p prime, is a set of points B
such that every hyperplane contains at least t points of B. A 1-fold blocking set is simply
called a blocking set. Throughout, we consider blocking sets with respect to hyperplanes
only. A blocking set B is called minimal if, for every point P ∈ B, the set B \ {P} is
not a blocking set; that is, every point of B lies on at least one tangent hyperplane to
the set B. A blocking set in PG(N, q) is called strong if it meets every hyperplane in a
set of points, spanning that hyperplane. Depending on the context, strong blocking sets
have also been called cutting blocking sets [11] or generator sets [14] in the literature. It
follows from the definition that a strong blocking set in PG(N, q) is an N -fold blocking
set; but the converse is not necessarily true (unless N = 2).

The study of 1-fold blocking sets forms a classical problem within finite geometry,
and the connection with problems from coding theory (e.g. the study of codewords of
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small weight in the code of points and lines of a projective plane) has formed an extra
motivation for their study. For a survey about 1-fold blocking sets, see [10]. We will now
see that strong blocking sets too are connected to coding theory.

A linear code C over Fq of length n and dimension k is a k-dimensional vector subspace
of Fnq . The vectors of C are called codewords. A code is called minimal if the support of
any codeword v never properly contains the support of a linearly independent codeword.
The support of a codeword is the set of positions where the codeword has non-zero entries.

Strong blocking sets were first introduced in [12] in relation to covering codes and
saturating sets. A ρ-covering code C 6 Fnq is a code with the property that every vector
in Fnq has distance at most ρ from a codeword of C, and ρ is the least integer with this
property. The integer ρ is the covering radius of C. A ρ-saturating set in PG(N, q) is a
set S of points such that every point P of PG(N, q) lies on a subspace spanned by at most
ρ + 1 points of S. This notion relates to classical problems in algebraic geometry about
secant varieties: a ρ-saturating set S can be defined as a set such that the ρ-th secant
variety of any variety meeting PG(N, q) in S contains each point of PG(N, q).

A strong blocking set in PG(N, q) forms, by embedding PG(N, q) in PG(N, qN), an
(N − 1)-saturating set of PG(N, qN), see [12, Theorem 3.2]. Therefore, an upper bound
on the minimum size of a strong blocking set yields a bound on the minimum size of a
saturating set.

In this area, typical problems are to find small upper bounds for the minimum size of
a covering code of given covering radius and dimension and to find families of codes with
good asymptotic covering density. Strong blocking sets can be used to deal with these
problems, see for example [13, 12].

More recently, strong blocking sets gained further interest for the coding theory com-
munity as they were proven to be in one-to-one correspondence with minimal codes,
[1, 3, 18]; it has been shown that a minimal code of length n and dimension k corresponds
to a strong blocking set containing n points in PG(k − 1, q). Hence, a lower bound on
the size of a strong blocking set in PG(k − 1, q) leads to a lower bound on the length of
a minimal [n, k]-code. We will use this equivalence to translate Theorem 9 into the the
language of coding theory (see Corollary 10).

1.2 Strong blocking sets and higgledy-piggledy sets

One way of constructing strong blocking sets is to take the union of subspaces in higgledy-
piggledy arrangement; where the definition of a set S of subspaces in higgledy-piggledy
arrangement is precisely that the points contained in at least one of the elements of S
form a strong blocking set.

The following results are known for higgledy-piggledy line sets in PG(N, q), N odd.

Result 1. (i) [15] A higgledy-piggledy set of lines in PG(N, q) contains at least N +
bN

2
c − bN−1

q
c elements.

(ii) [14] There exists a higgledy-piggledy set of 2N − 1 lines in PG(N, q), N odd, q >
2N − 1.
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We will show in Theorem 13 that for q large enough, it is possible to give a construction
with one line fewer than in Result 1 (ii). More precisely, we show that if q > 2

ln(2)
(N + 1)

there exists a higgledy-piggledy set of lines in PG(N, q), N odd, of size 2N − 2.
It is a natural idea to try to construct higgledy-piggledy sets of subspaces whose

elements are contained in a spread. A spread of PG(N, q) is a set of subspaces partitioning
its point set and an elementary construction via field reduction gives rise to Desarguesian
spreads. We refer to [16] for more information on field reduction. We see that when a
higgledy-piggledy set L is contained in a Desarguesian spread, it is the image of some point
set P under field reduction. The property that L is a higgledy-piggledy set translates into
a property regarding Fq-linear sets containing P . More precisely, it was observed in [13]
that a set S of points in PG(N−1

2
, q2) which is not contained in any linear set of rank at

most N − 1 is a higgledy-piggledy of PG(N, q) under field reduction. In [7], the authors
find a set of 7 lines contained in a Desarguesian spread of PG(5, q) by essentially making
use of this point of view; that is, they found a suitable point set of size 7 in PG(2, q2).
The higgledy-piggledy set found in this paper will be constructed using the elements of a
Desarguesian line spread in PG(2n − 1, q) rather than a point set in PG(n − 1, q2). We
will use the well-known fact that the elementwise stabiliser of a Desarguesian line spread
acts transitively on the points of each spread element (see e.g. [16]). A corollary of this
property is the following:

Result 2. Let S be a subset of a Desarguesian line spread D in PG(N, q), N odd, and
let P1 and P2 be points lying on the same line L of D. Let si denote the number of
t-dimensional subspaces π through Pi such that π meets all elements of S. Then s1 = s2.

Remark 3. A related result was recently derived in [2, 9], where the authors show that for
N sufficiently large, there exists a strong blocking set in PG(N, q) of size 2N+2

logq( q4

q3−q+1
)
(q+1)

by using a union of a set of lines through the origin that forms a blocking set with respect
to co-dimension 2-spaces in an affine space. Note this strong blocking set arises from a
line set in an affine space which is then projected onto the projective space and hence
does not arise from a higgledy-piggledy set of lines.

2 Strong blocking sets arising from the union of blocking sets

We have seen in the introduction that every strong blocking set in PG(N, q) is an N -fold
blocking set. It is easy to see that a line and a Baer subplane are both blocking sets
in PG(N, q). Furthermore, it is well-known that if a blocking set in PG(N, q) does not
contain a line, it has size at least that of a Baer subplane [8]. For the motivation of
this section, consider the case PG(3, q): in that case, every strong blocking set is a triple
blocking set but, as mentioned before, the union of three disjoint blocking sets does not
necessarily give rise to a strong blocking set. We also know from Theorem 1 that it is not
possible for the union of 3 lines (which are blocking sets) to form a strong blocking set in
PG(3, q).

The following result from [7], which is valid in PG(3, q) where q is a third power, is
noteworthy in this context.
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Result 4. There exists three subgeometries PG(3, q1/3) in PG(3, q), q = q3
0, whose union

forms a strong blocking set of size 3(q + q2/3 + q1/3 + 1).

This shows that it is possible to construct a strong blocking set as the union of three
blocking sets; but not from three lines. This motivated the question on which unions of
blocking sets in PG(3, q), and more generally, PG(N, q), can give rise to strong blocking
sets. A result of Barát and Storme [5] (Result 8) shows that a N -fold blocking set in
PG(N, q) of small size necessarily contains the union of N disjoint lines and/or Baer
subplanes. So if a strong blocking set is small, it necessarily contains the union of lines
and Baer subplanes, which explains why we investigate such unions.

Result 1(i) shows that a set of lines of PG(N, q), q > N , forming a strong blocking
set contains at least N + bN/2c lines. We first derive a similar result for lines and Baer
subplanes in Corollary 6.

Lemma 5. Let q > N2, N > 3. Let S =
⋃k
i=1Bi be a strong blocking set of PG(N, q),

given by the union of k disjoint minimal blocking sets Bi that are either lines or Baer
subplanes. Then no hyperplane contains all but at most N − 1 of the sets Bi.

Proof. Let H be a hyperplane containing all but at most (n−1) of the sets Bi, and relabel
the sets Bi that are not contained in H as B1, . . . , Bs, where s 6 n − 1. Since each Bi

is a blocking set, we find (at least) one point, say Pi contained in Bi ∩ H, i = 1, . . . , s.
The s points P1, P2, . . . , Ps, span at most an (n− 2)-dimensional space of H so they are
contained in some n − 2-dimensional space H ′ which is a hyperplane of H. There are
q + 1 hyperplanes of PG(N, q) through H ′, one of which is H and contains Bs+1, . . . , Bk.
Of the other q hyperplanes, at most (N − 1)(

√
q + 1) contain further points of S: there

are at most N − 1 blocking sets Bi not contained in H, and the point Pi lies on at most√
q+ 1 lines in Bi containing further points of Bi. Since q > N2, we have N 6

√
q, hence

(N − 1)(
√
q + 1) 6 q − 1 < q. It follows that at least one hyperplane π through H ′ does

not contain any points of S outside of H ′. Since π meets S in a set that does not span π,
S is not a strong blocking set.

We obtain the following corollary.

Corollary 6. Let q > N2. The union of i lines and k Baer subplanes in PG(N, q), with
i 6 bN

2
c and k 6 N − 1 is not a strong blocking set.

Proof. Let B1, . . . , Bi be the i lines and Bi+1, . . . , Bi+k be the k Baer subplanes. Since i
lines span at most a 2i−1-dimensional space, there is a hyperplane containing B1, . . . , Bi.
Since k 6 N − 1, the result follows from Lemma 5.

In the case that we only have k = N sets Bi making up the set S, it is trivially true
(when N > 3) that all but N − 1 of those N are contained in a hyperplane of PG(N, q).

Corollary 7. Let q > N2. The union of N lines and/or subplanes does not form a strong
blocking set in PG(N, q).
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In [5], Barát and Storme showed the following.

Result 8. Let B be a minimal s-fold blocking set in PG(N, q), q = ph, p prime, N > 3,
q > 661, with

|B| < sq + cpq
2/3 − (s− 1)(s− 2)/2,

where s < min(cpq
1/6, q1/4/2), c2 = c3 = 2−1/3 and cp = 1 for p > 3. Then B contains the

disjoint union of s disjoint lines and/or Baer subplanes.

Combining the results by Barat and Storme on s-fold blocking sets with the previous
lemma we have the following non-existence result.

Theorem 9. The size of a strong blocking set in PG(N, q), N > 3, q = ph, p prime,
q > max{661, apN

6, 16N4}, where ap = 4 for p = 2, 3 and ap = 1 for p > 3, is at least

Nq + cpq
2/3 − (N − 1)(N − 2)/2.

Proof. Assume to the contrary that S is a strong blocking set of size S < Nq + cpq
2/3 −

(N −1)(N −2)/2. Then S is an N -fold blocking set. Let B be a minimal N -fold blocking
set contained in S. By Result 8, B contains a set B′ which is the disjoint union of N lines
and/or Baer subplanes. From Corollary 7, we know that there is a hyperplane H meeting
B′ in points spanning at most an (N − 2)-space. Let π be that (N − 2)-space. There are
at most Nq + cpq

2/3 − (N − 1)(N − 2)/2−N(q + 1) < q + 1 points in S \ B′. Hence, at
least one hyperplane through π contains no further points of S, a contradiction since S
is a strong blocking set.

Using the correspondence between minimal codes and strong blocking sets introduced
in Subsection 1.1, we obtain the following corollary.

Corollary 10. A minimal code of dimension k over Fq, q = ph, p prime,
q > max{661, (k − 1)2}, has length at least

(k − 1)q + cpq
2/3 − (k − 2)(k − 3)/2.

Note that for q large with respect to k (it is sufficient to take q > Ck3, for some
constant C), this bound improves the bound (q+ 1)(k− 1) provided in [3, Theorem 2.14].
The best known lower bound on the length of a minimal code for fixed q and k arbitrarily
large, the complementary regime to the one considered in this paper, can be found in
[9, 17], and constructions of higgledy-piggledy sets of lines of small cardinality for large k
can be found in [2, 3, 4, 6].

Remark 11. Going through the details of the paper [5], we see that for the case N = 3,
the bound q > 661 can be improved to q > 9. Hence, for this particular case, we have
showed that the size of a strong blocking set in PG(3, q), q > 9, is at least 3q+ cpq

2/3− 1;
and that a minimal code of dimension 4 over Fq, q > 9, has length at least 3q+ cpq

2/3−1.
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3 Construction of a higgledy-piggledy set of lines of size 2N −2
arising from a spread

In this section, we derive our second main theorem. For ease of notation, since N is odd,
we will use N = 2n − 1 throughout this section. We will show that if q 6 4n

ln(2)
, there

exists a higgledy-piggledy line set of size 4n − 4 contained in a Desarguesian spread of
PG(2n− 1, q). We construct this higgledy-piggledy set in two parts: in the next lemma,
we will find a suitable set of 2n− 1 lines, which we will extend in the main theorem to a
higgledy-piggledy set of size 4n− 4.

Lemma 12. Let q > 4n, n > 2. There exists a set of 2n − 1 lines L of a Desarguesian
spread D in PG(2n− 1, q) such that the number of (2n− 3)-spaces meeting all lines of L
is at most 2n(q + 1)2n−3.

Proof. We will use induction on n to show that there exist:

• a set of 2n − 2 lines L of a Desarguesian spread D in PG(2n − 1, q) such that the
number of (2n− 3)-spaces meeting all lines of L is at most (n− 1)(q + 1)2n−2;

• a line M of D such that

– the number of (2n − 3)-spaces meeting M in exactly a point and meeting all
lines of L is at most 2(n− 1)(q + 1)2n−3, and

– the number of (2n − 3)-spaces containing M and meeting all lines of L is at
most 2(n− 1)(q + 1)2n−4.

Consider the base case n = 2. Let L be any two distinct lines of a Desarguesian
spread in PG(3, q). It is clear that the number of lines meeting both lines of L is precisely
(q + 1)2. Furthermore, let M be any line of the Desarguesian spread, not in L. Then the
lines meeting the three lines of L ∪ {M} are precisely the q + 1 6 2(q + 1) lines of the
opposite regulus determined by L and there is no line containing M and meeting the two
lines of L.

So now assume that there is a set L of 2n − 4 lines of a Desarguesian spread DΣ in
Σ = PG(2n − 3, q) such that the number of (2n − 5)-spaces meeting all lines of L is at
most (n− 2)(q + 1)2n−4, and a line M , not in L such that the number of (2n− 5)-spaces
meeting all lines of L meeting M in a point is at most 2(n−2)(q+1)2n−5 and the number
of (2n−5)−spaces containing M and meeting all lines of L is at most 2(n−2)(q+ 1)2n−6.

Now embded Σ in PG(2n − 1, q) and extend the Desarguesian spread DΣ in Σ to a
Desarguesian spread D in PG(2n− 1, q). Let M0 and M1 be two lines of D, not in Σ such
that the 3-space µ = 〈M0,M1〉 meets Σ precisely in the line M . We will first show that
the number of (2n− 3)-spaces meeting L ∪ {M0,M1} is at most (n− 1)(q + 1)2n−2.

Any (2n− 3)-space S meeting all lines of L ∪ {M0,M1} meets Σ in either a (2n− 4)-
dimensional or a (2n− 5)-dimensional space.

First consider the (2n − 3)-spaces meeting Σ in a hyperplane of Σ. Note that in the
case that S meets Σ in a hyperplane of Σ, it is impossible that S contains µ, since M0 is
contained in µ and disjoint from Σ.
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Each of the q2n−3 + q2n−4 hyperplanes H of Σ meeting M in exactly a point give rise
to exactly one (2n − 3)-space meeting all lines of L ∪ {M0,M1}, namely the (2n − 3)-
space spanned by H and the unique transversal line to M0,M1 through H ∩M . Each of
the q2n−4−1

q−1
hyperplanes of Σ through M gives rise to q + 1 (2n − 3)-spaces meeting all

lines of L ∪ {M0,M1}, namely one for each of the q + 1 planes of µ through M . This

gives us q2n−3 + q2n−4 + q2n−4−1
q−1

(q + 1) subspaces meeting all lines of L ∩ {M0,M1} and

meeting Σ in a hyperplane. This number is less than 2q2n−3 if q > 3. Now consider
spaces meeting all lines of L ∪ {M0,M1} and meeting Σ in a (2n − 5)−space. We will
make a distinction depending on their intersection size with the line M . First consider
such spaces S containing the line M . Each of the (2n− 5)-spaces τ meeting all lines of L
and containing M lies on at most (q + 1)(q2 + q + 1) (2n− 3)-spaces meeting all lines of
L∪{M0,M1} since each of the q+ 1 planes through M in µ gives rise to a (2n− 4)-space
meeting all lines of L ∪ {M0,M1}, and each of those (2n − 4)-spaces lies on q2 + q + 1
(2n − 3)-spaces. There are at most 2(n − 2)(q + 1)2n−6 such (2n − 5)-spaces τ . Each of
the (2n − 5)-spaces τ meeting all lines of L and meeting M in a point lies on at most
(q2 + q + 1) (2n− 3)-spaces meeting all lines of L∪ {M0,M1} namely one for each of the
(q2 + q + 1) (2n− 3)-spaces through the unique (2n− 4)-space spanned by the (2n− 5)-
space τ and the unique transversal line through the point τ ∩ µ to the regulus defined by
M0,M1,M . There are at most 2(n−2)(q+ 1)2n−5 such (2n−5)-spaces τ . Finally, each of
the (2n−5)-spaces τ meeting all lines of L but not intersecting M lie on (q+ 1)2− (q+ 1)
(2n− 3)-spaces intersecting all lines of L ∪ {M0,M1}, namely those spanned by τ and a
line meeting both M0 and M1, but not M (if the subspace S would meet M , then S would
meet Σ in (2n− 4)-space). There are at most (n− 2)(q + 1)2n−4 such (2n− 5)-spaces τ .

We find that the total number of (2n− 3)-spaces S meeting all lines of L∪ {M0,M1}
is at most

2q2n−3 + 2(n− 2)(q + 1)2n−6(q + 1)(q2 + q + 1) + 2(n− 2)(q + 1)2n−5(q2 + q + 1)

+(n− 2)(q + 1)2n−4(q + 1)2 6 (n− 1)(q + 1)2n−2,

since q > 4n.
We will now show that there is a line N such that the number of (2n − 3)-spaces

meeting N in a point and meeting the lines L∪ {M0,M1} is at most 2(n− 1)(q + 1)2n−3,
while the number of (2n−3)-spaces containing N and meeting the lines L∪{M0,M1} is at
most 2(n−1)(q+1)2n−4. We already know that there is a set S of at most (n−1)(q+1)2n−2

(2n − 3)-spaces S meeting the lines L ∪ {M0,M1}. Each of those spaces covers q2n−2−1
q−1

points. Since there are q2n−1
q−1
− (2n − 2)(q + 1) points not on the lines L, it follows that

there exists a point P , not on a line of L ∪ {M0,M1} such that the number of spaces of
S through it is at most

(n− 1)(q + 1)2n−2 q2n−2−1
q−1

q2n−1
q−1
− (2n− 2)(q + 1)

6 2(n− 1)(q + 1)2n−4.

Let N be the spread element of D through P and let SP be the subset of spaces of S
containing P . Let x be the number of spaces of SP containing N , and y is the number
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of spaces of SP not containing N ; we have just seen that x + y 6 2(n − 1)(q + 1)2n−4

Since the lines of L ∪ {M0,M1}, as well as N are elements of D, we find that the the
number of (2n − 3)-spaces meeting all lines of S is given by x + (q + 1)y. The number
of (2n − 3)-spaces meeting all lines of L ∪ {M0,M1} and meeting N exactly in a point
is (q + 1)y 6 (q + 1)(x + y) 6 2(n − 1)(q + 1)2n−4(q + 1) = 2(n − 1)(q + 1)2n−3. Finally,
observe that, since q > 4n

ln(2)
, 2n(q + 1)2n−3 > 2(n − 1)(q + 1)2n−3 + 2(n − 1)(q + 1)2n−4.

The statement now follows by induction.

Theorem 13. Let Σ be the space PG(2n − 1, q), with n > 2 and q > 4n/ ln(2). There
exists a higgledy-piggledy set of size at most 2(2n− 1)− 2, that is, a strong blocking set S
in Σ which is the union of at most 4n− 4 lines `1, . . . , `4n−4.

Proof. Let D denote the Desarguesian line spread of Σ, and let L = {`1, . . . , `2n−1} be a set
of lines as obtained in Lemma 12. We will show that we can add lines `2n, `2n+1, . . . , `4n−4

to L such that there is no subspace of dimension (2n− 3) meeting all lines `1, . . . , `4n−4.
Since it is possible that `i = `j for some i, j, we will eventually obtain a set of at most
4n−4 lines which is a higgledy-piggledy set S: if K is a hyperplane, it meets S in at least
2n− 1 points arising from the intersections of K with the lines of L, and by construction
it is impossible that all points of S ∩K are contained in a hyperplane of K.

We double count the number of pairs

(H,Q)

such that Q ∈ H and H is an (2n − 3)-space with H ∩ ` 6= ∅ for any ` ∈ L. By Lemma
12, this number is at most

2n(q + 1)2n−3θ2n−3;

where θ2n−3 = (q2n−2 − 1)/(q − 1) is the number of points of H.
On the other hand, the number of such pairs is also

θ2n−1M1;

where M1 is the average number of (2n − 3)-dimensional spaces H meeting each of the
lines `i, i = 1, . . . , 2n−1 in at least a point and through a point Q ∈ Σ. As a consequence

M1 6
2n(q + 1)2n−3θ2n−3

θ2n−1

.

In particular, there exists a point Q with the property that the number of (2n−3)-spaces
through Q meeting each of the lines `i, i = 1, . . . , 2n − 1 in at least a point is at most
M1. By Result 2, the unique line `2n of the spread D passing through Q has the property
that there are at most (q + 1)M1 (2n − 3)-spaces meeting `2n and each of the lines `i,
i = 1, . . . , 2n− 1 in at least a point. Note that Q might be a point of one of the lines `i,
namely in such a case `2n ∈ L. The number of pairs

(H,Q)
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such that H ∩ `i 6= ∅ for any i = 1, . . . , 2n and Q belongs to H, is now at most

(q + 1)M1θ2n−3.

On the other hand, this number is also

θ2n−1M2;

where M2 is the average number of (2n− 3)-dimensional spaces H through a fixed point
Q and meeting each of the lines `i, i = 1, . . . , 2n in at least a point. As a consequence

M2 6
(q + 1)M1θ2n−3

θ2n−1

.

We can iterate the reasoning, taking each time a new line `2n−1+i contained in at most
Mi (n− 2)-dimensional spaces H meeting each of the previous lines, and double counting
the pairs (H,Q) such that H ∩ Si 6= ∅ and Q belongs to H. We obtain

Mi <
(q + 1)Mi−1θ2n−3

θ2n−1

.

Combining with M1 <
2n(q+1)2n−3θ2n−3

θ2n−1
, we obtain

Mi <
2n(q + 1)2n−3+i−1θi2n−3

θi2n−1

.

In particular,

M2n−3 <
2n(q + 1)4n−7θ2n−3

2n−3

θ2n−3
2n−1

= 2n(q+1)4n−7

(
q2n−2 − 1

q2n − 1

)2n−3

< 2n(q+1)4n−7

(
1

q2

)2n−3

.

Observe that
(q + 1)4n−7 < q4n−7 + (4n− 6)q4n−8,

holds for any q such that

q >
1

eln(2)/(4n−7) − 1
.

Indeed, (q + 1)4n−7 < q4n−7 + (4n − 6)q4n−8 is equivalent to (1 + 1/q)4n−7 < 1 + 4n−6
q

.
Assuming q > 4n− 6, the right hand side of this inequality is at most 2. Isolating q, we
obtain the claim. Therefore,

M2n−3 < 2n

(
1

q
+

4n− 6

q2

)
.

Finally, 2n
(

1
q

+ 4n−6
q2

)
< 1 is equivalent to q2−2nq−4n+6 > 0, which is always true under

our hypothesis. It can be checked that if q > 4n/ ln(2) and n > 2, then q > 1
eln(2)/(4n−7)−1

as well. Since M2n−3 < 1, there must be a point not contained in any (2n− 3)-subspace
meeting all the lines `i, i = 1, . . . , 4n − 5. Again using Result 2, we see that the unique
line `4n−4 through that point is such that there is no (2n − 3)-subspace meeting all the
lines `i, i = 1, . . . , 4n− 4.
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