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Abstract

We consider “surrounding” versions of the classic Cops and Robber game. The
game is played on a connected graph in which two players, one controlling several
cops and the other controlling a single robber, take alternating turns. In a turn, each
player may move each of their pieces. The robber always moves between adjacent
vertices. Regarding the moves of the cops, we distinguish four versions that differ
in whether the cops are on the vertices or the edges of the graph and whether the
robber may move on/through them. The goal of the cops is to surround the robber,
i.e., to occupy all neighbors (vertex version) or incident edges (edge version) of the
robber’s current vertex. In contrast, the robber tries to avoid being surrounded
indefinitely. Given a graph, the so-called cop number denotes the minimum number
of cops required to eventually surround the robber.

We relate the different cop numbers of these versions by showing that they are
always within a factor of two times the maximum degree of one another. Further-
more, we prove that none of them is bounded by a function of the classical cop
number and the maximum degree of the graph, thereby refuting a conjecture by
Crytser, Komarov and Mackey [Graphs and Combinatorics, 2020].

Mathematics Subject Classifications: 05C57,91A24,91A46

1 Introduction

Cops and Robber is a well-known combinatorial game played by two players on a graph
G = (V,E). The robber player controls a single robber, which we shall denote by r,
whereas the cop player controls k cops, denoted c1, . . . , ck, for some specified integer k > 1.
The players take alternating turns, and may perform one move with each of their pieces
(the single robber or the k cops) in each turn. In the classical game (and also many of its
variants), the vertices of G are the possible positions for the pieces, while the edges of G
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model the possible moves. Let us remark that no piece is forced to move, i.e., there is no
zugzwang. On each vertex there can be any number of pieces.

The game begins with the cop player choosing vertices as the starting positions for
the k cops c1, . . . , ck. Then, seeing the cops’ positions, the robber player places r on a
vertex of G as well. The cop player wins if the cops capture the robber, which in the
classical version means that at least one cop stands on the same vertex as the robber. On
the other hand, the robber player wins if the robber can avoid being captured indefinitely.

The cop number c(G) of a given connected1 graph G = (V,E) is the smallest k for
which k cops can capture the robber in a finite number of turns. Clearly, every graph
satisfies 1 6 c(G) 6 |V |.

We consider several versions of the Cops and Robber game. In some of these, the cops
are placed on the edges of G and allowed to move to an adjacent edge (i.e., an edge sharing
an endpoint) during their turn. In all our versions, the robber acts as in the original game
but loses the game if he is surrounded2 by the cops, meaning that they have to occupy all
adjacent vertices or incident edges. At all times, let us denote by vr the vertex currently
occupied by the robber. Specifically, we define the following versions of the game, each
specifying the possible positions for the cops and the exact surrounding condition:

Vertex Version Cops are positioned on vertices of G (like the robber). They surround
the robber if there is a cop on each neighbor of vr. Let cV (G) denote the smallest
number of cops needed to eventually surround the robber.

Edge Version Cops are positioned on edges of G. A cop on an edge e can move to any
edge e′ sharing an endpoint with e during its turn. The cops surround the robber
if there is a cop on each edge incident to vr. Let cE(G) denote the smallest number
of cops needed to eventually surround the robber.

In both versions above, the robber sits on the vertices of G and moves along the
edges of G. Due to the winning condition for the cops being a full surround, the robber
may come very close to, say, a single cop without being threatened. As this can feel
counterintuitive, let us additionally consider a restrictive version of each game. Here,
we constrain the possible moves for the robber when cops are close by. These restrictive
versions are given by the following rules:

Restrictive Vertex Version After the robber’s turn, there may not be any cop on vr.
In particular, the robber may not move onto a vertex occupied by a cop. Addi-
tionally, if a cop moves onto vr, then the robber must leave that vertex in his next
turn.

1Cops cannot move between different connected components, so the cop number of any graph is the
sum over all components. We thus consider connected graphs only.

2To distinguish between the classical and our versions, we use the term capture to express that a cop
occupies the same vertex as the robber. In contrast, a surround always means that all neighbors,
respectively incident edges, are occupied.
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Restrictive Edge Version. The robber may not move along an edge that is currently
occupied by a cop.

We denote the cop numbers of the restrictive versions by putting an additional “r” in
the subscript, i.e., the smallest number of cops needed to eventually surround the robber
in these versions is cV,r(G) and cE,r(G), respectively.

Clearly, the restrictive versions are favorable for the cops, as they only restrict the rob-
ber. Consequently, the corresponding cop numbers are always at most their nonrestrictive
counterparts. Thus, for every connected graph G we have

cV,r(G) 6 cV (G) and cE,r(G) 6 cE(G). (1)

A recent conjecture by Crytser, Komarov and Mackey [7] states that the cop number in
the restrictive edge version can be bounded from above by the classical cop number and
the maximum degree of the graph:

Conjecture 1 ([7]). For every connected graph G we have cE,r(G) 6 c(G) ·∆(G).

Pra lat [14] verified Conjecture 1 for the random graph G(n, p), i.e., the graph on n
vertices where each possible edge is chosen independently with probability p, for some
ranges of p. Let us note that Conjecture 1, if true, would strengthen a theorem by Crytser,
Komarov and Mackey [7] stating that cE,r(G) 6 γ(G) ·∆(G), where γ(G) denotes the size
of a smallest dominating set in G.

An extended abstract of this work was presented at the 49th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG 2023) [10].

1.1 Our Results

Our main contribution is to disprove Conjecture 1. In fact, we prove that there are
graphs G for which none of the surrounding cop numbers can be bounded by any function
of c(G) and ∆(G). This proves that the classical game of Cops and Robber is sometimes
fundamentally different from all its surrounding versions.

Theorem 2. There is an infinite family of connected graphs G with classical cop number
c(G) = 2 and ∆(G) = 3 while neither cV (G), cV,r(G), cE(G) nor cE,r(G) can be bounded
by any function of c(G) and the maximum degree ∆(G).

Additionally, we relate the different surrounding versions to each other. Equation (1)
already gives an upper bound for the cop numbers in the restrictive versions in terms
of their corresponding nonrestrictive cop numbers. To complete the picture, our second
contribution is to prove several lower and upper bounds for different combinations:

Theorem 3. Each of the following holds (assuming G to be connected):

1. ∀G : cV (G) 6 ∆(G) · cV,r(G) and ∃G : cV (G) > ∆(G) · cV,r(G)

2. ∀G : cE(G) 6 ∆(G) · cE,r(G) and ∃G : cE(G) > ∆(G)/4 · cE,r(G)
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3. ∀G : cV (G) 6 2 · cE(G) and ∃G : cV (G) > 2 · (cE(G)− 1)

4. ∀G : cV,r(G) 6 2 · cE,r(G) and ∃G : cV,r(G) > cE,r(G)

5. ∀G : cE(G) 6 ∆(G) · cV (G) and ∃G : cE(G) > ∆(G)/12 · cV (G)

6. ∀G : cE,r(G) 6 ∆(G) · cV,r(G) and ∃G : cE,r(G) > ∆(G)/48 · cV,r(G)

Note that all lower and upper bounds from Theorem 3 are tight up to a small additive
or multiplicative constant. We prove the upper bounds in Section 2. The main idea is
the same for all six inequalities: Given a winning strategy for a set of cops in one version,
we can simulate the strategy in any other version. Afterward, in Section 3, we consider
the lower bounds by constructing explicit families of graphs with the desired surrounding
cop numbers. While some lower bounds already follow from standard graph families (like
complete bipartite graphs), others need significantly more involved constructions. For
example, we construct a family of graphs from a set of k − 1 mutually orthogonal Latin
squares (see Section 3.4 for a definition).

Trivial Bounds. Clearly, if the robber is surrounded at a vertex vr, then there must
be at least deg(vr) cops around him in all considered versions. Therefore, the minimum
degree δ(G) of G is an obvious lower bound (stated explicitly for cV,r(G) in [6]). Moreover,
if the robber can start at a vertex of highest degree and never move, i.e., in all but the
restrictive vertex version, we get the maximum degree ∆(G) of G as a lower bound (stated
explicitly in [7] for cE,r(G)):

Observation 4. For every connected graph G = (V,E), we have

• cV,r(G) > δ(G) as well as

• cV (G) > ∆(G), cE(G) > ∆(G) and cE,r(G) > ∆(G).

1.2 Related Work

The game of Cops and Robber was introduced by Nowakowski and Winkler [13] as well as
Quilliot [15] almost forty years ago. Both consider the case where a single cop chases the
robber. The version with many cops and therefore also the notion of the cop number c(G)
was introduced shortly after by Aigner and Fromme [1], already proving that c(G) 6 3 for
all connected planar graphs G. Their version is nowadays considered the standard version
of the game, and we refer to it as the classical version throughout the paper. The most
important open question regarding c(G) is Meyniel’s conjecture, stating that a connected
n-vertex graph G has c(G) ∈ O(

√
n) [2, 8]. It is known to be EXPTIME-complete to

decide whether c(G) 6 k (for k being part of the input) [12].
By now, countless different versions of the game with their own cop numbers have

been considered, see for example these books on the topic [3, 4].
The restrictive vertex version was introduced by Burgess et al. [6]. They prove bounds

for cV,r(G) in terms of the clique number ω(G), the independence number α(G) and the
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treewidth tw(G), as well as considering several interesting graph families. They also show
that, for every fixed value of k, it can be decided in polynomial time whether cV,r(G) 6 k.
The complexity is unknown for k being part of the input. Bradshaw and Hosseini [5]
extend the study of cV,r(G) to graphs of bounded genus, proving (among other results)
that cV,r(G) 6 7 for every connected planar graph G. See the bachelor’s thesis of Schnei-
der [16] for several further results on cV,r(G) (including a version with zugzwang).

The restrictive edge version was introduced even more recently by Crytser, Komarov
and Mackey [7] (under the name containment variant). Besides stating Conjecture 1,
which is verified for some graphs by Pra lat [14], they give several bounds on cE,r(G) for
different families of graphs.

To the best of our knowledge, cV (G) and cE(G) were not considered before.
In light of the (restrictive) vertex and edge versions, one might also define a face

version for embedded planar graphs. Here, the cops occupy the faces, and they surround
the robber if they occupy all faces incident to vr. A restrictive face version could be
that the robber must not move along an edge with either one or both incident faces
being occupied by a cop. This version was introduced recently by Ha, Jungeblut and
Ueckerdt [9]. Despite their similar motivation, the face versions seem to behave differently
than the vertex or edge versions.

In each version, one might also add zugzwang, i.e., the obligation to actually move
during one’s turn. We are not aware of any results about this in the literature.

1.3 Outline of the Paper

Section 2 proves the upper bounds from Theorem 3. Then, in Section 3, we give construc-
tions implying the corresponding lower bounds. Finally, in Section 4, we prove Theorem 2,
thereby disproving Conjecture 1.

2 Relating the Different Versions

In this section, we prove the upper bounds from Theorem 3. The main idea is always
that a sufficiently large group of cops in one version can simulate a single cop in another
version. We denote by NG(v) and NG[v] the open and closed neighborhood of vertex v
in G, respectively.

Proof of Theorem 3 (Upper Bounds). Let G be an arbitrary but connected graph.

1. cV (G) 6 ∆(G) · cV,r(G): Let SV,r(G) be a winning strategy for k ∈ N restrictive
vertex cops c1, . . . , ck in G. For i ∈ {1, . . . , k}, replace ci by a group of ∆(G)

nonrestrictive vertex cops Ci := {c1
i , . . . , c

∆(G)
i }. Initially, all cops in Ci start at the

same vertex as ci and whenever ci moves to an adjacent vertex, all cops in Ci copy
its move.

If the restrictive cops c1, . . . , ck arrive in a position where they surround the robber,
then he is also surrounded by the groups of cops C1, . . . , Ck. It remains to consider
the case that the robber ends their turn on a vertex v, currently occupied by some
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group Ci (a move that would be forbidden in the restrictive version). Then the cops
in Ci can spread to the up to ∆(G) neighbors of v in G, thereby surrounding the
robber.

2. cE(G) 6 ∆(G) ·cE,r(G): Let SE,r(G) be a winning strategy for k ∈ N restrictive edge
cops c1, . . . , ck in G. We can replace each cop ci by a group of ∆(G) nonrestrictive

edge cops Ci := {c1
1, . . . , c

∆(G)
1 }. Just as above, the cops in Ci copy the moves of ci.

If the c1, . . . , ck surround the robber, so do the C1, . . . , Ck. Further, if the robber
moves along an edge occupied by Ci towards a vertex v then the cops in Ci can
move to the up to ∆(G) incident edges in G, thereby surrounding the robber.

3. cV (G) 6 2 · cE(G): Let SE(G) be a winning strategy for k ∈ N edge cops c1, . . . , ck
in G. Each edge cop ci occupying an edge uv can be simulated by two vertex cops c1

i

and c2
i occupying the endpoints u and v of e. If ci moves to an adjacent edge e′,

c1
i and c2

i can move to the endpoints of e′ in their next move. If the robber is
surrounded by some of c1, . . . , ck, then

⋃k
i=1{c1

i , c
2
i } ⊇ NG[v]. Thus, the robber is

surrounded.

4. cV,r(G) 6 2·cE,r(G): This works exactly as in the previous case. However, it remains
to verify that two restrictive vertex cops c1

i and c2
i on the two endpoints of an edge e

also simulate the restrictiveness of the edge cop ci. This is the case, as traversing e
would lead the robber onto a vertex currently occupied by a restrictive vertex cop,
which is forbidden.

5. cE(G) 6 ∆(G) · cV (G): Let SV (G) be a winning strategy for k ∈ N vertex cops
c1, . . . , ck. We replace each vertex cop ci by a group of ∆(G) edge cops Ci :=

{c1
i , . . . , c

∆(G)
i } that initially position themselves all on an arbitrary edge of G inci-

dent to the vertex occupied by ci. Now, if cop ci moves along an edge e, then the
cops in Ci all move to e in their next move.

When the vertex cops c1, . . . , ck surround the robber at a vertex v, then for each
neighbor u of v, there is an edge e incident to u occupied by a group Ci. However,
in general, the edge cops do not yet surround the robber. If the robber does not
move during its next turn, for each edge e incident to v, at least one edge cop
can move there from an edge e′ adjacent to e, thereby surrounding the robber.
Otherwise, if the robber moves to a neighbor u of v, then the ∆(G) edge cops on
some edge incident to u can spread to all edges incident to u in their next turn,
thereby surrounding the robber.

6. CE,r(G) 6 ∆(G) ·cV,r(G): Let SV,r be a winning strategy for k ∈ N restrictive vertex
cops. They can be simulated by k groups of ∆(G) restrictive edge cops each, just
as in the previous case. However, it remains to prove that the robber also loses if
he moves onto a vertex v that would be occupied by a simulated restrictive vertex
cop (a move that would be forbidden in SV,r). In this case, there is a group of ∆(G)
edge cops on some edge incident to v and they can spread to all edges incident to v
in their next turn, thereby surrounding the robber.
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Corollary 5. For every graph G, the surrounding cop numbers cV (G), cE(G), cV,r(G)
and cE,r(G) are always within a factor of 2∆(G) of each other.

Proof. In each of the six upper bounds stated in Theorem 3, the number of cops increases
by at most a factor of ∆(G). In all cases, this is obtained by simulating a winning strategy
of one surrounding variant by (groups of) cops in another variant. The only cases where
two such simulations need to be combined is when changing both, the cop type (vertex
cops/edge cops) and the restrictiveness. It is easy to check that in all but one combination
the number of cops increases by at most a factor of 2∆(G). The only exception is when
a winning strategy for restrictive vertex cops is simulated by nonrestrictive edge cops,
where the number of cops would increase by a factor of ∆(G)2. However, looking at the
proof of Theorem 3, we can see that both simulations replace a single cop by a group
of ∆(G) cops. In this particular case, it suffices to do this replacement just once.

We remark that all upper bounds in Theorem 3 result from simulating a winning
strategy of another surrounding version. In the next section we show that these bounds
are indeed (asymptotically) tight.

3 Explicit Graphs and Constructions

In this section, we shall mention or construct several families of graphs with some extremal
behavior for their corresponding classical and surrounding cop numbers. Together, these
graphs prove all lower bounds stated in Theorem 3.

3.1 Complete Bipartite Graphs

We start by considering complete bipartite graphs. By choosing the right parameters,
they already serve to prove two of the lower bounds from Theorem 3. Furthermore, they
appear again as a building block for slightly more complicated graphs in Section 3.2.

Proposition 6. For every complete bipartite graph G, we have c(G) = min{2, δ(G)},
cV,r(G) = δ(G) and cV (G) = cE,r(G) = cE(G) = ∆(G).

Proof. In the classical version, it is enough to place one cop in each bipartition class.
Wherever the robber is, the cop from the other bipartition class can capture him in his
next turn, proving c(G) 6 2. Further, if δ(G) = 1, then a single cop suffices: By starting
on the single vertex in one bipartition class, the robber is forced to position himself in
the other. There, he gets captured in the cops’ next turn. This proves c(G) 6 δ(G). On
the other hand, a single cop is not enough in case that δ(G) > 2: The robber can always
stay in the same bipartition class as the cop (but on a different vertex). We conclude
that c(G) > 2 in this case, and therefore c(G) = min{2, δ(G)}.

The lower bounds of δ(G) and ∆(G) for all surrounding versions follow from Obser-
vation 4. Therefore, it remains to show upper bounds below.
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A group of δ(G) restrictive vertex cops can initially occupy all vertices of the smaller
bipartition class. This forces the robber to position himself on a vertex in the larger
bipartition class, where he is surrounded immediately.

A winning strategy for ∆(G) nonrestrictive vertex cops is to initially occupy all vertices
from the larger bipartition class. If the robber positions himself in the smaller bipartition
class, he is surrounded immediately, so he has to position himself on one of the cops.
Then in the cops’ next turn, any subset of δ(G) cops can occupy the smaller bipartition
class, thereby surrounding the robber.

In the restrictive and nonrestrictive edge versions, we let ∆(G) cops position them-
selves such that, in both bipartition classes, each vertex has at least one incident edge
occupied by a cop. Then, no matter where the robber positions himself, he gets sur-
rounded by the cops within their next turn.

Let us consider two special cases of Proposition 6 for all ∆ ∈ N: First, the star K∆,1 has
cV,r(K∆,1) = 1 while cV (K∆,1) = ∆, thus proving the lower bound in Item 1 of Theorem 3.
Second, the complete bipartite graphK∆,∆ has cV,r(K∆,∆) = cE,r(K∆,∆) = ∆, thus proving
the lower bound in Item 4 of Theorem 3.

3.2 Regular Graphs with Leaves

Our first construction takes a connected k-regular graph H and attaches a set of ` new
degree-1-vertices (leaves) to each vertex. Depending on H, k, ` and the girth3 of H, we
can give several bounds on the surrounding cop numbers of the resulting graph.

Lemma 7. Let H = (VH , EH) be a k-regular connected graph and let G = (VG, EG) be
the graph obtained from H by attaching to each vertex v ∈ VH a set of ` new leaves for
some ` > 0. Then each of the following holds:

1. cV (G) >

{
k(k + `− 1) if girth(H) > 7

(k + 1)` always

2. cV,r(G) = max{cV,r(H), k + 1}

3. cE(G) >


k(k + `− 1) if girth(H) > 6

k` if girth(H) > 4
1
2
(k + 1)` always

4. cE,r(G) = max{cE,r(H), k + `}

Proof. Note that most claimed inequalities hold trivially for the case that ` = 0 (many
lower bounds become 0, while others follow from G = H in this case). Only the two cases
requiring girth(H) > 6, respectively girth(H) > 7, are not directly clear. However, their
proofs below hold for ` = 0 as well. In all other cases, we implicitly assume ` > 1 to avoid
having to handle additional corner cases.

3The girth of H is the length of a shortest cycle in H. If H contains no cycle, we define girth(H) =∞.
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1. To prove the lower bounds on cV (G), consider any configuration of cops on the
vertices of G. For a vertex v ∈ VH of G, let Av be the set consisting of v and all
leaves that are attached to it, i.e., Av = {v}∪ (NG[v]\VH). We call a vertex v ∈ VH
safe if there are fewer than ` cops on Av in G. Note that if the robber ends his turn
on a safe vertex, then the cops cannot surround him in their next turn. Let vr be
the current position of the robber. If the total number of cops is less than (k+ 1)`,
then at least one of the k+1 vertices in the closed neighborhood NH [vr] of vr is safe,
as no cop can be in Av and Aw for v 6= w. Thus, the robber always has a safe vertex
to move to (or to remain on), giving him a strategy to avoid being surrounded. It
follows that cV (G) > (k + 1)`.

Now, if girth(H) > 7 and the robber is on vr ∈ VH , then we consider for each
neighbor v of vr in VH additionally the set Bv = NG[NG(v)\{vr}], i.e., all vertices w
with dist(w, v) 6 2 except from NG[vr]\{v}. Since girth(H) > 7, we have that Bv∩
Bw = ∅ for distinct v, w ∈ NH(vr). Similar to above, we call v ∈ NH(vr) safe if Bv

contains fewer than k + ` − 1 cops. Again, if the robber ends his turn on a safe
vertex, the cops cannot surround him in their next turn. If the total number of
cops is less than k(k + ` − 1), then at least one of the k neighbors of vr in H is
safe. This would give the robber a strategy to avoid being surrounded. It follows
that cV (G) > k(k + `− 1) in the case that girth(H) > 7.

2. To prove that cV,r(G) > max{cV,r(H), k + 1}, first note that cV,r(G) > cV,r(H)
because the leaves do not help the cops. Further, cV,r(G) > k + 1 holds because
the robber versus k cops can easily always stay on the subgraph H of G where it is
impossible to surround him (in G) with k cops only (note that G has at least k + 1
vertices).

For the upper bound cV,r(G) 6 max{cV,r(H), k+1}, we describe a two-phase winning
strategy for the cops. In the first phase, let cV,r(H) cops execute an optimal strategy
for surrounding the robber on the subgraph H of G. If during that phase the robber
leaves H, i.e., steps on a leaf attached to some v ∈ VH , act as if the robber stays
on v. Hence, after finitely many rounds, the robber is on a vertex in the set Nv =
{v}∪(NG(v)−VH) for some v ∈ VH , and k of the cV,r(H) cops occupy all k neighbors
of v in VH . As we are in the restrictive variant, the robber may not leave Nv. Now,
in the second phase, let one of the remaining max{cV,r(H), k+1}−k > 1 cops go to
vertex v. This forces the robber to go to an attached leaf and be surrounded there.

3. To prove the three lower bounds on cE(G), consider any configuration of cops on
the edges of G. For a vertex v ∈ VH of G, let Ev be the set of all edges in G
incident to v. We call vertex v ∈ VH safe if there are fewer than ` cops in total
on Ev in G. Note that if the robber ends his turn on a safe vertex, then the cops
can not surround him in their next turn. Let the robber be at vertex vr ∈ VH . If all
vertices v ∈ NH [vr] were unsafe, then each such v has at least ` cops in Ev. Further,
each cop is on an edge incident to at most two vertices in NH [vr]. Thus, at least
1
2
(k+ 1)` cops are required to make all vertices in NH [vr] unsafe, i.e., for fewer than
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1
2
(k + 1)` cops there is always a safe vertex for the robber to move onto.

If we further assume girth(H) > 4, then no two vertices in NH(vr) are connected
by an edge, so the k vertices in NH(vr) each require their own ` cops on incident
edges to be unsafe. In other words, fewer than k` cops always guarantee the robber
a safe vertex to move onto.

Now we even assume that girth(G) > 6. Similar to the vertex version, we define for
each v ∈ NH(vr) a set Bv containing all edges incident to a vertex in NG[v] that do
not have vr as an endpoint. We say that v is safe if there are at most k+ `− 1 cops
in Bv. From girth(H) > 6 it follows that Bv ∩ Bw = ∅ for distinct neighbors v, w
of vr. Thus, for all v ∈ NH(vr) to be unsafe, we would need at least k(k + ` − 1)
cops.

4. To prove that cE,r(G) > max{cE,r(H), k + `}, first note that cE,r(G) > cE,r(H)
because the leaves do not help the cops. Further, cE,r(G) > k + ` = ∆(G) holds by
Observation 4.

Finally, the upper bound cE,r(G) 6 max{cE,r(H), k + `} for the restrictive edge
version follows mostly along the lines of the restrictive vertex version above. In a
first phase, we use cE,r(H) cops to force the robber onto a vertex v or a leaf attached
at v, while each of the k incident edges at v in EH is occupied by a cop. In the
second phase, let ` of the remaining max{cE,r(H), k + `} − k > ` cops go to occupy
the remaining ` incident edges at v (the ones that are not in EH). This surrounds
the robber, either on v or an attached leaf.

Applied to different host graphs H, Lemma 7 yields several interesting bounds, sum-
marized in the following corollaries: Corollary 8 proves the lower bound in Item 2 for
even ∆, and Corollary 9 proves the lower bound in Item 3.

Corollary 8. For every ∆ > 2 there is a connected graph G with ∆(G) = ∆ such that
cV,r(G) =

⌊
∆
2

⌋
+ 1, cV (G) =

(⌊
∆
2

⌋
+ 1
)⌈

∆
2

⌉
, cE,r(G) = ∆(G) and cE(G) =

⌊
∆
2

⌋⌈
∆
2

⌉
.

Proof. Let k =
⌊

∆
2

⌋
, let H = Kk,k be the k-regular complete bipartite graph and choose

` =
⌈

∆
2

⌉
. We consider the graph G obtained from H by attaching ` new leaves to each

vertex. Note that G has maximum degree ∆(G) = k + ` = ∆.

• Lemma 7 yields that cV,r(G) = max{cV,r(H), k+ 1}. From Proposition 6, we further
get that cV,r(H) = k, so actually cV,r(G) = k + 1 =

⌊
∆
2

⌋
+ 1.

• Lemma 7 gives cV (G) > (k + 1)`. It remains to show that (k + 1)` nonrestrictive
vertex cops can always surround the robber, i.e., that cV (G) 6 (k + 1)`. We give
a winning strategy for (k + 1)` cops. Let A and B be the two bipartition classes
of H. Initially, we place ` cops on each of the k vertices in A and the remaining `
cops such that each b ∈ B is occupied by at least one cop (this is always possible
as ` > k). Now, if the robber starts at a leaf, he is surrounded immediately. If
he starts at a ∈ A, then the ` cops on a spread across all adjacent leaves, thereby
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surrounding the robber. Thus, the robber has to start at b ∈ B. If he stays on b
or an adjacent leaf, he can be surrounded by the ` cops currently on B in a finite
number of turns. Thus, he has to move to a ∈ A at some point. Then ` of the cops
on a move to the adjacent leaves and all other cops currently on some vertices in A
move to B in a way such that all vertices of B are occupied. (If k > 2, the ` cops on
some a′ ∈ A\{a} can already occupy all b ∈ B. Otherwise, if k = 1, then the ` cops
not on leaves adjacent to a can always reach the unique b ∈ B.) Then the robber is
surrounded.

• By Lemma 7, we get that cE,r(G) = max{cE,r(H), k+ `}, and it follows from Propo-
sition 6 that cE,r(H) = k + `. Thus, cE,r(G) = k + ` = ∆ holds.

• Considering cE(G), we apply Lemma 7 and get cE(G) > k` =
⌊

∆
2

⌋⌈
∆
2

⌉
(using that

girth(H) > 4, as H is a bipartite graph). It remains to show that k` nonrestrictive
edge cops suffice. To this end, let k2 cops initially occupy all edges of H, one cop per
edge. For odd ∆, let M be a perfect matching in H and let each of the k remaining
cops occupy a single edge from M . Now if the robber starts on a leaf w adjacent to
a vertex v of H, he gets surrounded by one cop moving from an edge of H incident
to v onto the edge incident to w. Otherwise, if the robber starts on some vertex v
of H, the k edges of H incident to v contain ` cops, which can spread across the `
leaves incident to v. If k = 1, there is one remaining cop which can move to the
only edge of H, thereby surrounding the robber. In the remaining cases that k > 2,
each of the k neighbors of v in H is incident to at least one other edge of H with
a cop on. This cop can move onto the edge incident to v, thereby surrounding the
robber.

Corollary 9. For every ∆ > 2, there is a connected graph G with ∆(G) = ∆ such
that cV (G) = 2(∆− 1) and cE(G) = ∆.

Proof. Let H = K2 be a single edge uv, so k = 1, and choose ` = ∆ − 1. Then it holds
that ∆(G) = ∆.

• It follows from Lemma 7 that cV (G) > (k + 1)` = 2(∆ − 1). On the other hand,
it is easy to see that 2(∆ − 1) vertex cops suffice: Initially, ∆ − 1 cops position
themselves at u and v each. If the robber positions himself on a leaf, he is surrounded
immediately. If he starts on v (the case for u is symmetric), then the cops at v move
to the ∆− 1 leaves, thereby surrounding the robber (together with the cops at u).

• To prove that cE(G) = ∆, first observe that cE(G) > ∆ by Observation 4 (Lemma 7
gives a worse lower bound in this case). A winning strategy for ∆ edge cops goes as
follows: All cops start on edge uv. If the robber starts on v (or symmetrically u),
then one of the cops stays on uv, while the other ∆ − 1 occupy the edges incident
to the leaves adjacent to v. If the robber starts on a leaf w, a single cop can move
onto the edge incident to w.
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3.3 Line Graphs of Complete Graphs

The line graph L(G) of a given graph G = (V,E) is the graph whose vertex set consists
of the edges E of G, and two vertices of L(G) are adjacent if their corresponding edges
in G share an endpoint. For n > 3, let Kn denote the complete graph on the set [n] =
{1, . . . , n}. For distinct x, y ∈ [n], we denote by {x, y} the vertex of L(Kn) corresponding
to the edge between x and y in Kn. Burgess et al. [6] showed that cV,r(L(Kn)) = 2(n−2) =
δ(L(Kn)). This is obtained by placing the cops on all vertices {1, x} for x ∈ {2, . . . n}
and {2, y} for y ∈ {3, . . . , n− 1}. The cops can surround the robber in their first move.

Lemma 10. For every n > 3 we have cV (L(Kn)) = 2(n − 2), cE(L(Kn)) > n(n − 2)/3,
and cE,r(L(Kn)) > (n2 − 4)/12.

Proof. As 2(n − 2) = ∆(L(Kn)) 6 cV (L(Kn)) (Observation 4), it is enough to observe
that the strategy for the vertex cops provided by Burgess et al. [6] also works for vertex
cops in the nonrestrictive version. In their strategy, the cops start at the vertices {1, x}
for x ∈ {2, . . . , n} and {2, y} for y ∈ {3, . . . , n− 1} of L(Kn). They prove that these cops
can surround the robber immediately after he chose his start vertex, in particular, before
the robber first moves along an edge. Therefore, the only remaining cases to check for
the nonrestrictive version are what happens if the robber starts on a cop (which would
be forbidden in the restrictive setting):

• If the robber starts on vertex {1, 2}, then he is surrounded as soon as the cop
from {1, 2} moves to {2, n}.

• If the robber starts on a vertex {1, x}, we first consider the case that x ∈ {3, . . . , n−
1}. The robber gets surrounded by the cop at {1, x} moving to {x, n}, and each
cop from {2, y} for y ∈ {3, n − 1} \ {x} moving to {x, y}. In the case that x = n,
then the cop on {1, 2} moves to {n, 2}, and each cop on {2, y} for y ∈ {3, . . . , n−1}
moves to {n, y}.

• Lastly, if the robber starts on a vertex {2, y} for y ∈ {3, . . . , n − 1}, then the cop
on {2, y} moves to {1, y}, and each cop on {1, x} for x ∈ {3, . . . , n} moves to {y, x}.

We now consider the lower bounds on cE(L(Kn)) and cE,r(L(Kn)), and describe an
evasion strategy for the robber, provided that the number k of edge cops is sufficiently
small (an exact bound will be determined later for both versions). To this end, recall
that each edge cop occupies an edge of L(Kn) that corresponds to a copy of P3 (the path
on two edges) in Kn. Each such P3 has a midpoint and two leaves, each being a vertex
of Kn. An edge cop moving one step from e1 to e2 in L(Kn) corresponds to P 1

3 and P 2
3

in Kn. Here P 1
3 shares an edge with P 2

3 , and thus, the midpoint of P 2
3 is contained (as a

midpoint or leaf) in P 1
3 . At the moment that the robber gets surrounded on a vertex {u, v}

of L(Kn), the edge cops occupy all n−2 edges of L(Kn) corresponding to P3’s in Kn with
midpoint u and leaf v, as well as all n − 2 edges of L(Kn) corresponding to P3’s in Kn

with midpoint v and leaf u. Thus, in the step immediately preceding the surround, each
of u and v was contained in the P3 of at least n− 2 edge cops.
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With this in mind, for any vertex v of Kn and point in time t ∈ N, let pt(v) be the
number of edge cops whose corresponding P3 contains v before the t-th turn of the robber.
Similarly, let qt(v) be the number of edge cops whose corresponding P3 contains v as a
midpoint. For all v ∈ [n] and t > 2, it holds that

qt(v) 6 pt−1(v). (2)

Further, recall that each cop has exactly one corresponding P3, so we have∑
v∈[n]

pt(v) = 3k (3)

for all t ∈ N. The robber cannot be surrounded on a vertex {u, v} of L(Kn) (with u, v ∈
[n], u 6= v) if min{pt(u), pt(v)} < n− 2. Therefore, we call a vertex w ∈ [n] of Kn safe (at
time t) if pt(w) < n− 2.

• We start with the nonrestrictive edge version, and choose k < n(n − 2)/3. Then,
Equation (3) implies that

#
{
w ∈ [n] | pt(w) > n− 2

}
6

3k

n− 2
<

3n(n− 2)

3(n− 2)
= n

for every t ∈ N. In particular, there is always a safe vertex w ∈ [n]. For t = 1,
i.e., in his first turn, the robber can go to {v, w} with an arbitrary v ∈ [n] \ {w}.
For t > 1, let {u, v} be the robber’s current position. Then, as Kn is a complete
graph, the robber can move to {v, w} in a single step. In both cases, the robber
avoids being surrounded because pt(v, w) 6 pt(w) < n− 2.

• We now consider the restrictive edge version. We prove that the robber can avoid
being surrounded by ending his t-th turn (for t ∈ N) on a vertex {u, v} of L(Kn)
with pt(u, v) < (n− 2)/2. It follows from n > 3 that (n− 2)/2 < n− 2, so at least
one of u or v is safe at time t.

Let k < (n2 − 4)/12. For t = 1, i.e., the robber’s first move, it suffices to identify a
single u ∈ [n] with p1(u) < (n− 2)/2. Then, the robber can start at {u, v} with an
arbitrary v ∈ [n] \ {u}. Such a u always exists because

#

{
w ∈ [n] | p1(w) >

n− 2

2

}
6

3k

(n− 2)/2
=

6k

n− 2
<
n+ 2

2
< n. (4)

Here, the first inequality follows from Equation (3), the second from the choice of k,
and the third from n > 3.

For t > 1, let {u, v} be the current robber position, chosen in turn t − 1 with
pt−1(u, v) < (n−2)/2. We assume without loss of generality that pt−1(u) < (n−2)/2,
and therefore qt(u) < (n− 2)/2 (see Equation (2)). Then, less than (n− 2)/2 cops
correspond to P3’s in Kn with midpoint u. This means that less than (n− 2)/2 of
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the n− 2 edges of the form
{
{u, v}, {u,w}

}
(with w ∈ [n] \ {u, v}) are blocked by

a cop. In particular, more than (n− 2)/2 of these edges can be taken by the robber
to move to a vertex {u,w} of L(Kn).

It remains to prove that at least one of these w ∈ [n] is safe, i.e., has pt(w) <
(n− 2)/2. This is the case because, by Equation (4), there are more than n− (n+
2)/2 = (n−2)/2 vertices w ∈ [n] with pt(w) < (n−2)/2. If u or v are among these,
i.e., min{pt(u), pt(v)} < (n − 2)/2, then the robber stays at his current position.
Otherwise, more than half of the w ∈ [n] \ {u, v} are safe. At the same time, more
than half of the edges

{
{u, v}, {u,w}

}
are free for the robber. We conclude, that

there is at least one w∗ with pt(w∗) < (n − 2)/2 such that the robber can move
to {u,w∗}.

The bounds from Lemma 10 are stated in terms of the number of vertices n. Stating
them in terms of their maximum degree ∆ := ∆(L(Kn)) = 2(n−2), we obtain the claimed
lower bounds in Items 5 and 6 of Theorem 3.

cV (L(Kn)) = ∆ cE(L(Kn)) >
∆2 + 4∆

12

cV,r(L(Kn)) = ∆ cE,r(L(Kn)) >
∆2 + 8∆

48

With these, all lower bounds from Theorem 3 are proven.

3.4 Graphs from Mutually Orthogonal Latin Squares

Burgess et al. [6] notice that, for graphs G of many families with a “large” value of cV,r(G),
the classical cop number c(G) was “low” (often even constant). In fact, they only provide
a single family of graphs (constructed from finite projective planes) where c(G) ≈ cV,r(G).
They ask (Question 7 in [6]) whether graphs with large cV,r(G) inherently possess some
property that implies that c(G) is low. In this section we construct graphs Gk with
c(Gk), cV,r(Gk) ∈ {k, k+ 1}. We interpret this as evidence that there is no such property.

A Latin square of order k > 1 is a (k× k)-array filled with numbers from [k] = {1, . . . , k}
such that each row and each column contains each number from [k] exactly once. Formally,
a Latin square L is a partition L(1)∪· · ·∪L(k) of A = [k]×[k] such that row i (with i ∈ [k])
is A[i, ·] = {(i, j) ∈ A | j ∈ [k]}, and for every number n ∈ [k] we have |A[i, ·]∩L(n)| = 1,
and symmetrically for the columns. See the left of Figure 1 for two different Latin squares.

Let L1 and L2 be two Latin squares of order k. Their juxtaposition L1⊗L2 is the Latin
square of order k that contains in each cell the ordered pair of the entries of L1 and L2 in
that cell. We say that L1 and L2 are orthogonal if each ordered pair appears exactly once
in L1 ⊗ L2, i.e., if for every two distinct n1, n2 ∈ [k] we have |L1(n1) ∩ L2(n2)| = 1. It is
well known that k− 1 mutually orthogonal Latin squares (MOLS) L1, . . . , Lk−1 (meaning
that Ls and Lt are orthogonal whenever s 6= t) exist if and only if k is a prime power [11].
The two Latin squares in Figure 1 (left) are indeed orthogonal, as can be seen by their
juxtaposition below.
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...
...

R A = [k]× [k]

...

...

...

...

...

...

L1(1)

L1(k)

Lk−1(1)

Lk−1(k)

...

...

...

L

...

...

...

1 4 2 3
1

1
1

2
2

2

3
3

3

4
4

4

1
1

1
1

2
2

2
2

3
3

3
3

4
4

4
4

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(4, 4)

(4, 3) (3, 4)

(2, 4)

(4, 1)

(4, 2)

(2, 2) (3, 3)

(2, 1)

(3, 1)

(3, 2) (2, 3)

Figure 1: Left: Two Latin squares and their juxtaposition, proving that they are or-
thogonal. Right: The graph Gk created from k − 1 MOLS of order k. The vertices in R
correspond to the rows of A, the middle vertices correspond to the cells of A (ordered row
by row in the drawing) and the vertices in L correspond to the parts of the MOLS.

Let k be a prime power and L1, . . . , Lk−1 a set of k − 1 mutually orthogonal Latin
squares of order k. We construct a graph Gk. Let A = [k] × [k] denote the set of all
positions, R = {A[i, ·] | i ∈ [k]} denote the set of all rows in A, and L = {Ls(n) | s ∈
[k − 1] ∧ n ∈ [k]} denote the set of all parts of the Latin squares L1, . . . , Lk−1. Then,
Gk = (V,E) is the graph with

V = A ∪R ∪ L and E = {pS | p ∈ A, S ∈ R ∪ L, p ∈ S}.

We observe that Gk is a k-regular bipartite graph with |A|+|R∪L| = k2 +(k+k(k−1)) =
2k2 vertices. It has an edge between position p ∈ A and a set S ∈ R ∪ L if and only if p
is in set S. See also the right of Figure 1 for a schematic drawing.

For the next lemma, recall that girth(G) is the length of a shortest cycle in G.

Lemma 11. For a prime power k, graph Gk has girth(Gk) > 6.

Proof. It suffices to show that Gk has no 4-cycle, since Gk is bipartite (and therefore
has no odd cycles). First note that every 4-cycle must be of the form (p1, S1, p2, S2), in
particular, it must contain two vertices p1 and p2 from A. However, there is neither a
4-cycle

• with S1, S2 ∈ R, since every position is in at most one row,

• nor with S1 ∈ R and S2 ∈ L, since every part Ls(n) of a Latin square contains only
one position of each row,

• nor with S1, S2 ∈ L being parts of the same Latin square Ls, since every position is
in only one part of Ls,

• nor with S1, S2 ∈ L being parts of different Latin squares Ls and Lt, since Ls and Lt

are orthogonal (and hence no two distinct positions are in the same parts in Ls and
in Lt).
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Lemma 12. For a prime power k, graph Gk has c(Gk) = k and cV,r(Gk) 6 k + 1.

Proof. • To prove c(Gk) > k, we use a theorem from Aigner and Fromme [1] stating
that any graph with girth at least 5 has c(G) > δ(G). As Gk is k-regular and has
girth(Gk) > 6 (Lemma 11), we get c(Gk) > k.

On the other hand, k cops suffice: Initially, the cops occupy the k vertices in R, so
the robber has to position himself in A or L. If he starts at a vertex v ∈ A, then
this vertex must be in some row and the cop on the corresponding vertex in R can
capture him in his next move. Otherwise, if the robber starts on some Li(n) ∈ L
(for i ∈ [k − 1] and n ∈ [k]), then Li(n) has exactly k neighbors in A, one per row.
The cops can move to NGk

(Li(n)), thereby surrounding the robber (and thereby
capturing him in their next move).

• To show that k+1 restrictive vertex cops suffice to surround the robber, we start by
placing one cop on each of the k vertices in R. Thus, the robber may not enter R.
Now, if the robber ends his turn on a vertex in L corresponding to the part Ls(n) of
the Latin square Ls for some n ∈ [k], then the k cops on R can move to the vertices
in A corresponding to the positions in Ls(n), and thus surround the robber. This
works because the elements in Ls(n) are from all k different rows (because Ls is a
Latin square) and there is one cop responsible for every row. Thus, we may assume
that the robber starts on a vertex in A and never moves. But then, it is enough
to use the (k + 1)-th cop to go to the robber vertex and force him to move (recall
that we are in the restrictive version). The only possible move is to a vertex from L
where he gets surrounded in the next move of the cops as seen above.

Remark. We can easily see that cE(Gk) > k(k − 1) for the graph Gk in Lemma 12. In
fact, Gk is k-regular and has girth(G) > 6 by Lemma 11. Attaching ` = 0 leaves to each
vertex, Lemma 7 yields cE(G) > k(k + `− 1) = k(k − 1).

4 When Capturing is not Surrounding

This section is devoted to the proof of Theorem 2, i.e., that none of the four surround-
ing cop numbers can be bounded by any function of the classical cop number and the
maximum degree of the graph. In particular, we shall construct, for infinitely many in-
tegers k > 1, a graph Gk with c(Gk) = 2 and ∆(Gk) = 3, but cV,r(Gk) > k. Theorem 3
then implies that cV (Gk), cE(Gk) and cE,r(Gk) are unbounded as well for growing k.

The construction of Gk is quite intricate. We divide it into several steps.

The Graph H[s]. Let s > 1 be an integer and let k = 2s−1. We start with a
graph H[s], which we call the base graph, that has the following properties:

• H[s] is 2k-regular, i.e., every vertex of H[s] has degree 2k.

• H[s] has girth at least 5.
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Hr−1

H3 Hr

H2

H2

Figure 2: Iterating C6 = H2 to obtain r-regular (bipartite) graphs Hr with girth(Hr) > 5.

There are many ways to construct such graphs H[s], one being our graphs in Section 3.4
constructed from 2s − 1 mutually orthogonal Latin squares. An alternative construction
(not relying on non-trivial tools) is an iteration of the 6-cycle, as illustrated in Figure 2.
We additionally endow H[s] with an orientation such that each vertex has exactly k = 2s−1

outgoing and exactly k = 2s−1 incoming edges. (For example, orient the edges according
to an Eulerian tour in H[s].)

The Graph H[s, `]. Let ` > 1 be another integer4. We define a graph H[s, `] based
on H[s] and its orientation. See Figure 3 for an illustration with s = 3 and ` = 4. For each
vertex a in H[s], take a complete balanced binary tree T (a) of height s = log2(k) + 1 with
root r(a) and 2s = 2k leaves. Let rin(a) and rout(a) denote the two children of r(a) in T (a),
and let T in(a) and T out(a) denote the subtrees rooted at rin(a) and rout(a), respectively.
We associate each of the k = 2s−1 leaves in T in(a) with one of the k incoming edges at a
in H[s], and each of the k leaves in T out(a) with one of the k outgoing edges at a in H[s].
Finally, for each edge ab in H[s] oriented from a to b, connect the associated leaf in T out(a)
with the associated leaf in T in(b) by a path P (ab) of length 2` + 1, i.e., on 2` new inner
vertices. This completes the construction of H[s, `].

Establishing some notation and properties of H[s, `], observe that the following holds for
any edge ab of the base graph H[s]:

distH[s,`](r(a), r(b)) = 2s+ 2`+ 1 (5)

Let R = {r(a) | a ∈ V (H[s])}, and call the elements of R the roots in H[s, `]. For any
root r ∈ R let us define the ball around r by

B(r) = {v ∈ V (H[s, `]) | distH[s,`](v, r) 6 s+ `},

i.e., B(r) consists of all vertices in H[s, `] that are closer to r than to any other root in R.
Note that every vertex of H[s, `] lies in the ball around exactly one root. Further, for
distinct a, b ∈ V (H[s]) with ab /∈ E(H[s]), let v ∈ B(r(a)) and w ∈ B(r(b)). Then, we
have

distH[s,`](v, w) > 2`. (6)

For each edge ab in H[s], let e(ab) denote the unique middle edge of P (ab) in H[s, `]. Then,
e(ab) connects a vertex in B(r(a)), which we denote by v(a, b), with a vertex in B(r(b)),
which we denote by v(b, a). See also Figure 3.

4We shall choose `� s later. So you may think of s as “short” and of ` as “long”.
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r(a)

rout(a)

T out(a)

a b

r(b)

rin(b)

v(b, a)v(a, b)

T in(b)

H[s]

H[s, `]

B(r(b))B(r(a))

P (ab)

e(ab)

Figure 3: Construction of H[s, `] based on H[s]. A directed edge ab in H[s] and the
corresponding trees T out(a), T in(b), and path P (ab) with middle edge e(ab) in H[s, `].

H1

H2

e(ab)

C

r1(a)

r2(a)

r1(b)

q(a)

q(b)

`
s

S(b)

m

S(a)

2s

F2(a)
r2(b)

rin2 (b)

F2(b)

Figure 4: Construction of H[s, `,m] based on two copies of H[s, `]. A directed edge ab
in H[s] and the corresponding sets S(a), S(b), F2(a), etc. and edge e(ab) in H[s, `,m].

The Graph H[s, `,m]. Let m > 1 be yet another integer5. We start with two
vertex-disjoint copies H1 and H2 of H[s, `], and transfer our notation (such as R, r(a),
v(a, b), etc.) for H[s, `] to Hi for i ∈ {1, 2} by adding the subscript i, e.g., R1, r2(a),
or v1(a, b). We connect H1 and H2 as follows: For each edge ab in H[s], we identify the
edge e1(ab) in H1 with the edge e2(ab) in H2 such that v1(a, b) = v2(a, b) and v1(b, a) =
v2(b, a). Next, for each vertex a of H[s], use the vertex r1(a) in H1 as an endpoint for a
new path Q(a) of length m, and denote the other endpoint of Q(a) by q(a). Note that
we do this only for the roots in H1.

Finally, we connect the vertices {q(a) | a ∈ V (H[s])} by a cycle C of length |V (H[s])|.
This completes the construction of H[s, `,m]. See Figure 4 for an illustration. Note that
H[s, `,m] has maximum degree 3 and degeneracy 2.

5We shall choose `� m� s later. So you may think of m as “medium”.
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Establishing more notation for H[s, `,m], for each vertex a in H[s], let us define

S(a) = B(r1(a)) ∪B(r2(a)) ∪Q(a),

see again Figure 4 for an illustration. Let H− denote the graph H[s, `,m]−E(C) obtained
from H[s, `,m] by removing all edges of the cycle C. This completes the construction.

Lemma 13. For every s,m > 1 and ` > |V (H[s])|+m+s, it holds that c(H[s, `,m]) 6 2.

Before starting with the formal proof, let us already give a vague idea of the winning
strategy for two cops. Two cops could easily capture the robber on the cycle C (including
the attached paths Q(a) for a ∈ V (H[s])). Thus, they force him to “flee” to H1 at some
point. In a second phase, they can even force him to flee to H2. Loosely speaking, cop c1

stays on C to prevent the robber from getting back on C, while cop c2 always moves
towards the robber in H1. Whenever the robber traverses one of the long paths P1(ab) for
some ab ∈ E(H[s]), say from T1(a) towards T1(b), then c1 can go in |V (C)|+m+s < ` steps
along C to q(b) and alongQ(b) and through T1(b) to arrive at the other end of P1(ab) before
the robber. However, to escape c2, the robber must traverse a path P1(ab) eventually,
with his only way to escape being to turn into H2 at the middle edge e(ab). At some
point, we enforce the situation that the robber occupies some vertex v of H2 and one of
the cops, say c1, occupies the corresponding copy of v in H1. Now, in a third phase, the
robber moves in H2 while c1 always copies his moves in H1. This prohibits the robber to
ever walk along a middle edge e(ab) for some ab ∈ E(H[s]). But without these edges, H2

is a forest, and thus cop c2 can capture the robber in the tree component in which the
robber is located.

Proof of Lemma 13. We describe a strategy for two cops, the first cop c1 and the second
cop c2, to capture the robber in the classical game played on H[s, `,m]. They both start
(anywhere) on the cycle C. There are three phases, each eventually ensuring a particular
configuration of the game after the cops’ turn.

We start with a convenient definition and observation: A cop guards the robber on C
if, for some vertex a in H[s], the robber occupies some vertex w ∈ Q(a) ∪ T1(a) ∪ T2(a)
and the cop occupies the corresponding vertex q(a) on C. Observe that if a cop already
guards the robber on C, then the cop can maintain guarding the robber on C by always
moving along C towards the vertex q(b) for which the robber occupies some vertex in S(b).
In fact, by Equation (6), we have distH−(v, w) > 2` if v ∈ S(a) and w ∈ S(b) with a 6= b
and ab /∈ E(H[s]). Also, if ab is an edge in H[s], then the distance in H− between
T1(a) ∪ T2(a) and T1(b) ∪ T2(b) is equal to the length of Pi(ab), which is 2`+ 1 > 2`. On
the other hand, distC(q(a), q(b)) 6 |V (C)| = |V (H[s])| 6 `, and hence the cop is fast
enough on C in both cases.

First Phase. The target configuration of the first phase is that both cops guard the
robber on C. The cops can achieve this as follows: After both starting at the same vertex q
on C, cop c1 moves along C to decrease its distance to the robber (while staying on C).
The second cop c2 stays at q, which forces the robber to eventually leave the cycle C.
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After finitely many steps, c1 guards the robber on C and continues to maintain this
property. This prevents the robber from ever coming back to C without being captured.
Then, cop c2 can move along C towards the first cop to eventually reach the target
configuration.

Second Phase. The target configuration of the second phase is that the robber
occupies some vertex w2 in H2, and one cop occupies the corresponding copy w1 of w2

in H1. To this end, c1 starts by maintaining the guarding property, whereas c2 leaves C
and always goes towards the robber along a shortest path in H−. Whenever the robber
does not move or goes back and forth along an edge (i.e., is at the same vertex as two
moves ago), then c2 reduces its distance to the robber. As this may happen only a
bounded number of times without the robber being captured by c2, we may assume
that the robber always “moves forward”, i.e., never moves along the same edge in two
consecutive turns, and thus eventually occupies one of the two vertices of the middle edge
e1(ab) = e2(ab) corresponding to some edge ab in H[s]. Moreover, the robber continues
along P1(ab) or P2(ab) towards one of T1(a), T2(a), T1(b) or T2(b); say towards Ti(b) for
some i ∈ {1, 2}.

At this point, cop c1 goes along C to q(b), then along Q(b) to r1(b), and along T1(b) to
the leaf w1 of T1(b) that is the endpoint of P1(ab). This takes c1 at most |V (C)|+m+s < `
steps. On the other hand, the robber needs at least ` steps to reach T1(b) ∪ T2(b). This
way, the robber (always moving forward) is either captured by c1 on w1, reaches the
copy w2 of w1 in H2, or the copy in H2 of the vertex occupied by c2 in H1, which is the
desired target configuration.

Third Phase. Finally, we shall capture the robber. Without loss of generality,
let c1 be the cop in H1 that copies the robber’s moves in H2. Cop c2 continues to go
towards the robber along a shortest path in H−, forcing him to keep moving forward. As
H2 − {e2(ab) | ab ∈ E(H[s])} is a forest, the robber must eventually occupy an endpoint
of e2(ab) for some ab ∈ E(H[s]), where he is captured by c1.

In contrast to the bounded classical cup number, the surrounding cop numbers are
unbounded:

Lemma 14. For every s > 1, m > 2s+ 1, and ` > 3s+ 1, it holds that cV,r(H[s, `,m]) >
k = 2s−1.

Again, we start by giving a vague idea how the robber can avoid being surrounded
by k − 1 vertex cops: The robber stays solely in H2, and he moves between roots r2(x)
for x ∈ V (H[s]), always from a root r2(a) to the next root r2(b) for which the edge ab
in H[s] is directed from a to b. In H[s], vertex a has k outgoing neighbors, and we show
that at least one such neighbor b is always “safe” for the robber to escape to. However,
it is quite tricky to identify this safe neighbor. Indeed, the robber has to start moving in
the “right” direction down the tree T2(a) always observing the cops’ response, before he
can be absolutely sure which outgoing neighbor b of a is safe. With suitable choices of s,
` and m, the robber is fast enough at r2(b) to then choose his next destination from there.
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The crucial point is that the cops can “join” the robber when he traverses the middle
edge e(ab), but they can never be one step ahead of the robber on P2(ab); and thus never
surround him.

Proof of Lemma 14. We provide a strategy for the robber to avoid getting surrounded
indefinitely against any strategy for k − 1 cops on H[s, `,m]. Our strategy ensures that
the robber always moves onto a vertex that is not occupied by a cop, and thus works for
the restrictive vertex version of the game. For this strategy, the robber shall exclusively
stay on H2 in H[s, `,m]. Recall that for any vertex a of H[s], there is a corresponding
binary tree T2(a) with root r2(a), and two subtrees T in

2 (a) and T out
2 (a) rooted at rin

2 (a)
and rout

2 (a), respectively. The leaves of T out
2 (a) and T in

2 (a) correspond to the outgoing,
respectively incoming, edges at a in H[s], and for every directed edge from a to b in H[s]
there is a path P2(ab) of length 2`+ 1 from a leaf in T out

2 (a) to a leaf in T in
2 (b).

For our strategy, we call a configuration of the game after the robber’s turn a good
situation if there is a vertex a in H[s] such that

• the robber occupies r2(a) in H[s, `,m] and

• each cop has distance at least 2s to r2(a) in graph H[s, `,m] −
{
{r2(a), rin

2 (a)}
}

,
obtained by removing only the edge between r2(a) and rin

2 (a).

For convenience, let us denote by Fi(a) (with i ∈ {1, 2}) the set of all vertices
in H[s, `,m] at distance less than 2s to ri(a) in H[s, `,m] −

{
{ri(a), rin

i (a)}
}

. Thus, we
have a good situation with the robber at r2(a) if no cop occupies a vertex of F2(a). Since
` > s, we have F1(a), F2(a) ⊂ S(a) for any a ∈ V (H[s]). Together with |V (H[s])| > 2k,
this implies that the robber can start the game in a good situation, i.e., on a vertex r2(a)
with no cop in F2(a) (as there are only k − 1 cops).

Observe that the robber is not surrounded in a good situation because there is no
cop on the neighbor rout

2 (a) of r2(a). Recall that H[s] is endowed with an orientation
with outdegree and indegree exactly k at each vertex a. Let N+

H[s](a) denote the set

of all outgoing neighbors of a in H[s]. It is then enough to show that, starting in a
good situation at vertex r2(a), the robber can directly move from r2(a) to r2(b) for some
b ∈ N+

H[s](a) in 2s + 2` + 1 steps (along T out
2 (a), then P2(ab), then T in

2 (b), cf. (5)) to be

again in a good situation at vertex r2(b) and without being surrounded at any time. In
fact, it will be enough to ensure that no cop reaches F2(b) before the robber reaches r2(b).
(Recall that from a good situation, the cops go first.)

Claim 15. Let a be a vertex in H[s] and b, b′ ∈ N+
H[s](a) be two distinct outgoing neighbors

of a in H[s]. Then, there is no vertex w in H[s, `,m] − S(a) that has distance at most
2`+ 2s+ 1 to F2(b) and distance at most 2`+ 2s+ 1 to F2(b′).

Proof of Claim. Let w be any fixed vertex in H[s, `,m]− S(a). We have to show that w
has distance greater than 2`+ 2s+ 1 to F2(b) or F2(b′), or both.

First, observe that a shortest path from F2(b) to the cycle C uses `− s edges of P2(bc)
for some c ∈ NH[s](b), ` edges of P1(bc), s edges of T1(b), and m edges of Q(b), for a total
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of (`− s) + `+ s+m = 2`+m > 2`+ 2s+ 1 edges. Thus, we are done in case w ∈ V (C).
Furthermore, if a shortest path from w to F2(b) (respectively F2(b′)) contains a vertex in
C, then w has distance greater than 2`+ 2s+ 1 to F2(b) (respectively F2(b′)), and we are
done for such w as well.

As H[s] has girth at least 5, we know that b and b′ are not adjacent in H[s]. Further-
more, we have NH[s](b) ∩ NH[s](b

′) = {a}, i.e., a is the only common neighbor of b and
b′ in H[s]. As w ∈ S(c) for some vertex c 6= a in H[s], we can assume without loss of
generality that c 6= b and c is not adjacent to b in H[s]. Now consider a shortest path
P from w to F2(b) in H[s, `,m]. We already know that P contains no vertex in C. As
c and b are not adjacent in H[s], the path P starts in S(c), ends in S(b), and traverses
S(d) for some vertex d ∈ NH[s](b). But then P contains at least 2` vertices that are in
S(d) in order to traverse S(d). Together with the at least `− s vertices in S(b) (to reach
F2(b)) we see that w has distance at least 3`− s > 2`+ 2s+ 1 to F2(b). This proves the
claim. x

Recall that we are in a good situation with the robber at r2(a), and thus no cop
occupies a vertex in F2(a). We seek to move the robber directly towards r2(b) for some b ∈
N+

H[s](a). Guided by the above claim, we say that a cop occupying vertex w in H[s, `,m]

blocks vertex b ∈ N+
H[s](a) if w has distance at most 2` + 2s + 1 to F2(b) and w /∈ F1(a).

Note that with this definition, the above claim implies that each cop blocks at most
one b ∈ N+

H[s](a). Let X ⊂ N+
H[s](a) be the (possibly empty) subset of all outgoing

neighbors of a that are blocked by some cop.
There are k−1 cops in total, hence |X| 6 k−1, while at the same time |N+

H[s](a)| = k.

Thus, we have N+
H[s](a)−X 6= ∅. However, we shall make a definite decision for a vertex

b ∈ N+
H[s](a)−X only after the first s steps. This is due to the cops in F1(a) with distance

at most 2`+ 2s+ 1 to some vertex in N+
H[s](a)−X. We choose each move for the robber

inside T2(a) according to the locations of the cops in F1(a) at that moment. As the first
step (after the cops have moved), the robber moves to rout

2 (a), the root of T out
2 (a).

Now consider the situation after step j of the robber, j ∈ {1, . . . , s}. Let the robber
occupy the non-leaf vertex v2 in T out

2 (a) at distance j − 1 from the root rout
2 (a). Consider

the copy v1 of v2 in T out
1 (a), and the subtree T of T out

1 (a) below v1 with exactly 2s−j leaves.
We call a vertex b ∈ N+

H[s](a) available if b is not blocked (b /∈ X) and P1(ab) starts at
a leaf of T , and denote by Y the set of all available vertices. We maintain the invariant
that after step j of the robber, strictly less than |Y | cops occupy a vertex in

U = {v2} ∪ V (T ) ∪
⋃
b∈Y

P1(ab),

meaning that there are more available vertices than cops below v1. Observe that a cop
blocking some b ∈ X starts at distance at least s to T and cannot occupy a vertex in U
after j steps. In particular, this implies that the invariant holds for j = 1, as there are
less than k cops in total, and thus less than k − |X| = 2s−j − |X| = |Y | cops in U .

After the next move of the cops, we shall choose the next step of the robber. Consider
the two subtrees T ′ and T ′′ below v1, let x′ and x′′ be their respective number of leaves
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corresponding to blocked vertices, and let y′ and y′′ be their respective number of leaves
corresponding to available vertices. By our invariant, there are now (after the cops’ move)
less than y′+y′′ = 2s−j−(x′+x′′) cops in U−{v2}. Thus, there are less than y′ = 2s−j−1−x′
cops in the direction of T ′, or less than y′′ = 2s−j−1 − x′′ cops in the direction of T ′′ (or
both). In particular, there is a move for the robber in T out

2 (a) to maintain our invariant.
After s moves, the robber occupies some leaf v2 of T out

2 (a). By our invariant, v2 is the
first vertex of the path P2(ab) for some vertex b /∈ X and there is no cop (“less than 1”)
in the set U = P1(ab). Thus, the robber can move along P2(ab) in 2`+ 1 + s further steps
to reach r2(b) before any of the cops can. Finally, if the cops could surround the robber
on the way, then at least one cop could also arrive at r2(b) before the robber, which we
just excluded. Hence, we can guarantee a good situation at r2(b), which concludes the
proof.

Finally, Lemmas 13 and 14 and theorem 3 immediately give the following corollary,
which proves Theorem 2.

Corollary 16. For any s > 1, k = 2s−1, m > 2s + 1, and ` > |V (H[s])| + m + s, the
graph Gk = H[s, `,m] has ∆(Gk) = 3 and

c(Gk) 6 2, cV (Gk) > k, cV,r(Gk) > k, cE,r(Gk) >
k

2
and cE(Gk) >

k

2
.

5 Conclusion

We considered the cop numbers of four different surrounding versions of the well-known
Cops and Robber game on a graph G, namely cV (G), cV,r(G), cE(G) and cE,r(G). Here,
index “V ” denotes the vertex versions, while index “E” denotes the edge versions, i.e.,
whether the cops occupy the vertices or the edges of the graph (recall that the robber
always occupies a vertex). An additional index “r” stands for the corresponding restrictive
version, meaning that the robber must not end his turn on a cop or move along an edge
occupied by a cop.

Only the two restrictive cop numbers have recently been considered in the literature,
the vertex version cV,r(G) in [5, 6] (denoted by σ(G) and s(G)) and the edge version cE,r(G)
in [7, 14] (denoted by ξ(G)).

In this paper, we related the four different versions to each other, showing that all
of them lie within a factor of (at most) 2∆(G) to each other. We proved that this is
tight (up to small additive or multiplicative constants) for all combinations by presenting
explicit graph families. It is an interesting open question to identify the exact constant
factors for the lower and upper bounds in Theorem 3. We conjecture that all six presented
upper bounds are tight (up to small additive constants). This would mean that optimal
strategies for the cops in one surrounding version can indeed be obtained by simulating
optimal strategies from different surrounding versions.

As our second main result, we disproved a conjecture by Crytser, Komarov and
Mackey [7] by constructing a family of graphs with maximum degree 3 in which the
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classical cop number is bounded whereas the cop number in all four surrounding versions
is unbounded. It remains open to find other parameters that can be used to bound the
surrounding cop numbers from above in combination with the classical cop number and
the maximum degree.
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