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Abstract

We prove a lower bound on the length of the longest j-tight cycle in a k-uniform
binomial random hypergraph for any 2 6 j 6 k − 1. We first prove the existence of
a j-tight path of the required length. The standard “sprinkling” argument is not
enough to show that this path can be closed to a j-tight cycle – we therefore show
that the path has many extensions, which is sufficient to allow the sprinkling to
close the cycle.
Mathematics Subject Classifications: 05C80, 05C65, 05C38

1 Introduction

1.1 Paths and cycles in random graphs

Over the years there has been a considerable amount of research into the length of the
longest paths and cycles in random graphs. This goes back to the work of Ajtai, Komlós
and Szemerédi [1], who showed that in the Erdős-Rényi binomial random graph G(n, p), the
threshold p = 1/n for the existence of a giant component is also the threshold for a path of
linear length. In the supercritical regime, a simple first moment argument shows that whp1

there are no pairs of sets of linear size with no edges between them, which implies that the
lengths of the longest path and the longest cycle are asymptotically the same, and therefore
whp G(n, p) also contains a cycle of linear length. This has been strengthened by various
researchers, including Łuczak [14], and Kemkes and Wormald [13], in particular to the
weakly supercritical regime when p = (1 + ε)/n for some 0 6 ε = ε(n) n→∞−−−→ 0 which does
not tend to zero too quickly. In this regime the crude first moment argument mentioned
above is no longer sufficient, but a still standard sprinkling argument nevertheless shows
that the longest path and longest cycle have asymptotically the same length.

We note, however, that in this regime the asymptotic length of the longest cycle is still
not known precisely: The best known lower and upper bounds are approximately 4ε2n/3
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1with high probability, meaning with probability tending to 1 as n tends to infinity.
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(see [14]) and 1.7395ε2n (see [13]) respectively. Very recently, Anastos [2] announced an
improvement on the lower bound to 1.581ε2n, but this still falls short of the upper bound.
On the other hand, Anastos and Frieze [3] determined the asymptotic length of the longest
cycle precisely when p = d/n for any sufficiently large constant d.

A similar problem, although one requiring very different techniques, is to determine
the length of the longest induced cycle, which was achieved recently by Draganić, Glock
and Krivelevich [9] in the regime when p > d/n for some sufficiently large constant d.

1.2 Paths and cycles in random hypergraphs

Given an integer k > 2, a k-uniform hypergraph consists of a set V of vertices and a set
E ⊂

(
V
k

)
of edges. (A 2-uniform hypergraph is simply a graph.) Among the many possible

definitions of paths and cycles in hypergraphs, perhaps the most natural and well-studied
is that of j-tight paths and cycles, which is in fact a family of definitions for 1 6 j 6 k− 1.

Definition 1. Given integers 1 6 j 6 k−1 and a natural number `, a j-tight path of length
` in a k-uniform hypergraph consists of a sequence of distinct vertices x1, . . . , xj+(k−j)` and
a sequence of edges e1, . . . , e` such that ei = {x(k−j)(i−1)+1, . . . , x(k−j)(i−1)+k} for 1 6 i 6 `.

A j-tight cycle of length ` is defined identically except that xi = x(k−j)`+i for 1 6 i 6 j
(and otherwise all vertices are distinct), see Figure 1.

Figure 1: A 2-tight path of length 3 and a 2-tight cycle of length 6 in a 5-uniform
hypergraph.

In the literature, 1-tight paths/cycles are often called loose paths/cycles, while (k − 1)-
tight is often abbreviated simply to tight.

Let Hk(n, p) denote the k-uniform binomial random hypergraph, in which each k-set
of vertices forms an edge with probability p independently. The analogue of the result
of Ajtai, Komlós and Szemerédi showing a threshold for the existence of a j-tight path
of linear length in Hk(n, p) was proved by the author together with Garbe, Hng, Kang,
Sanhueza-Matamala and Zalla [4] for all k and j. Interestingly, in contrast to the graph
case, in general the threshold is not the same as the threshold for a giant j-tuple component
(which was determined in [7]).
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At the other end of the scale, one can ask when a j-tight cycle of the longest possible
length appears, namely a j-tight Hamilton cycle. Dudek and Frieze determined an
asymptotic threshold for loose [10] and the sharp threshold (when k > 4) for tight [11]
Hamilton cycles (i.e. the cases j = 1 and j = k−1), along with some further related results.
Recently, Narayanan and Schacht [15] extended this by proving the sharp threshold for all
2 6 j 6 k − 1 (i.e. all non-loose Hamilton cycles). We are not aware of any previous work
looking at lengths of j-tight paths or cycles in random hypergraphs between very small
linear length and Hamiltonian.

Let a be the unique integer satisfying 1 6 a 6 k − j and a ≡ k mod k − j, and let
p0 = p0(n, k, j) := 1

(k−ja )( n
k−j)

. The results of [4] show that p0 is a threshold for the existence
of a j-tight path of linear length in Hk(n, p). This can be heuristically justified by using a
branching process to approximate a natural search process to discover j-tight paths and
observing that p0 is exactly the edge probability at which this branching process is critical.
While conceptually similar to the analogous heuristic for graphs, the argument for general
j and k is slightly more involved – see Section 2.3 for details. Furthermore, in the case
when p = (1 + ε)p0 for some constant ε > 0, upper and lower bounds on the length of the
longest j-tight path were proved in [4]. In the case when j > 2, these bounds are Θ(εn)
and differ by a factor of 8. In the case when j = 1, the lower bound was Θ(ε2n) while the
upper bound was Θ(εn).

This upper bound in the case when j = 1 was subsequently improved by the author,
Kang and Zalla [8] and shown to be Θ(ε2n) in the range when p = (1 + ε)p0 (although the
results of that paper also cover the range p = d/n for any constant d > 1). The strategy
used was to prove an upper bound on the length of the longest loose cycle which transfers
to loose paths using a standard sprinkling argument, just as has often been observed for
graphs.

The standard argument for graphs which shows that the longest path and longest cycle
have approximately the same length proceeds roughly as follows. We reveal the edges of the
random graph in two independent rounds, first with edge probability just a little smaller
than p, after which we can find a path of asymptotically the desired length. Subsequently,
we expose the remaining edges, now with much smaller edge probability (informally, we
sprinkle a few more random edges onto the graph), and seek an edge between vertices near
the start and near the end of the path obtained in the first round, which will close the
path into a cycle of almost the same length. If we select the parameters carefully, such
an edge is very likely to exist. (A cruder argument, but which is still sufficient in many
cases, is simply to reveal all of the random edges in one round and to observe, via a union
bound, that with high probability there are no pairs of large sets with no edges between
them. In particular, if there is a long path then whp there is also an edge from near the
start to near the end of the path.)

The natural hypergraph analogue of this argument for loose paths and cycles was used
in [8], and can also be used to extend the lower bound on loose paths from [4] to an
asymptotically identical lower bound for loose cycles.
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1.3 Sprinkling in hypergraphs

This raises an obvious question: can we also use the sprinkling technique for j > 2, and
obtain a j-tight cycle from a j-tight path without significantly decreasing the length?
Unfortunately, the naive approach does not work.

To see why, let us outline the obvious generalisation of the standard argument, first
in the case j 6 k/2 when we have p = Θ

(
n−(k−j)

)
and a path of length Θ(n). Now for

some ω →∞ arbitrarily slowly, sprinkle additional edges with probability of p/ω. We can
identify n/ω many j-sets of vertices from the start and from the end of the path with
which we attempt to close to a cycle of almost the same length as the path2, and we need
a further k − 2j vertices from outside the cycle to complete an edge. Thus the number of
potential edges which would close the cycle is Θ

(
(n/ω)2nk−2j

)
, and the expected number

of suitable edges we find is

p

ω
·Θ

(
nk−2j+2

ω2

)
= Θ

(
n2−j

ω3

)
.

This will clearly be enough if j = 1 and if ω tends to infinity sufficiently slowly, but for
j > 2 the argument fails. Indeed, for j > k/2, the situation becomes even worse: Here we
even need more than one edge in order to be able to close the path to a cycle.

The essential reason why this standard version of the argument no longer works stems
from the interplay between the j-sets and the vertices: A j-tight path “lives” on vertices,
but is extended (or closed to a cycle) via j-sets. The number of j-sets within the path
is naturally bounded by Θ(n), but this is tiny compared to the number of j-sets in the
world (namely

(
n
j

)
).

1.4 Main result

The main contribution of this paper is to provide a variant of the sprinkling argument
which does work for j > 2 by strengthening the conclusions drawn in the first round of
exposure. In particular, we provide a search algorithm which whp will construct a long
j-tight cycle in Hk(n, p). We thus provide a lower bound on the length of the longest
j-tight cycle.

Let LC = LC(n, p, k, j) be the random variable denoting the length of the longest
j-tight cycle in Hk(n, p).

Theorem 2. Let k, j ∈ N satisfy 2 6 j 6 k − 1 and let a be the unique integer satisfying
1 6 a 6 k − j and a ≡ k mod k − j. Let p0 = p0(n, k, j) := 1

(k−ja )( n
k−j)

.
For any δ > 0, for any constant d > 1 and for any sequence (dn)n∈N satisfying dn → d

the following is true. Suppose that p = dnp0. Then whp

LC > (1− δ) · 1− d−1/(k−j)

k − j
· n.

2These j-sets are chosen from among those j-sets at which a subpath can end. From the structure of
paths, it is not hard to verify that a path of length ` admits Θ(`) such potential ends – the factor of ω
ensures that we only consider those subpaths which contain almost all of the edges of the original path.
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Note that it is trivially true that LP > LC −O(1), where LP denotes the length of the
longest j-tight path in Hk(n, p). Therefore an immediate corollary of this result is a lower
bound on LP which generalises the one in [4] so that it is applicable for a larger range of
p.3 Having said that, the proof of Theorem 2 first requires us to prove such a lower bound
on LP (see Lemma 6 later).

We note further that while for d close to 1 the bound matches the lower bound for paths
provided by [4], for larger d this is far weaker than already known results. Specifically, the
aforementioned result of Narayanan and Schacht [15] states that for d > ek−j, whp the
hypergraph contains a Hamilton cycle. We discuss this result, and other open problems,
in more detail in Section 7.

2 Preliminaries

2.1 Notation and terminology

In this section we introduce some notation and terminology, and fix various parameters
for the rest of the paper.

Throughout the paper, let k, j be fixed natural numbers satisfying 2 6 j 6 k − 1. In
particular, for the rest of the paper we will usually simply refer to paths and cycles rather
than j-tight paths and j-tight cycles, since j is understood.

All asymptotics in the paper are as n→∞, and in particular we will use the standard
Landau notation o(·), O(·),Θ(·) with respect to these asymptotics. We consider k, j to
be constants, so for example a bound of O(n) may have a constant that is implicitly
dependent on k and j. Since our main result is asymptotic in n, we will always assume
that n is sufficiently large. In particular we frequently make approximations which are
only valid for large n.

Let us further define the following parameters. As in Theorem 2, let a = a(k, j) be the
unique integer satisfying 1 6 a 6 k − j and

a ≡ k mod k − j.

The motivation for this parameter will become clear in Section 2.3. Given a natural
number `, let v` = v`(k, j) := j+ `(k− j) denote the number of vertices in a path of length
`. When ` = Θ(n), observe that v` = (1 + O(1/n))`(k − j), and therefore we will often
use the approximation `(k − j) in place of v`.

Let
p0 = p0(n, k, j) := 1(

k−j
a

)(
n
k−j

)
denote the threshold for a long tight path. Given p = p(n) = dnp0 for some sequence dn of

3Note, however, that in [4] the range considered is p = (1 + ε)p0, where ε may be constant but is also
allowed to tend to zero sufficiently slowly, which is not allowed in Theorem 2 since we assume d > 1.
Therefore Theorem 2 is not strictly stronger.
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positive real numbers which tend to d > 1, let

L1 = L1(p) := 1− d−1/(k−j)

k − j
· n. (1)

To interpret this notation, observe that the parameters n, d, k, j are implicit in p and will
be clear from the context. Further, let LC = LC(n, p, k, j) denote the length of the longest
j-tight cycle in Hk(n, p).

Throughout the paper we use the notation a� b to mean that there exists some large
constant C such that a 6 b/C, and b� a is defined identically. The constant C must be
chosen sufficiently large for subsequent approximations to be valid, but in general we do
not calculate the required dependencies explicitly.
Remark 3. Let us observe that Theorem 2 becomes stronger for smaller δ, and therefore
we may (and for technical convenience frequently do) assume that δ � 1. Indeed, we
may even assume that δ is sufficiently small as a function of d – more precisely, given any
function f : (1,∞)→ (0,∞), we may assume that δ 6 f(d).

For an integer m, we denote [m] := {1, . . . ,m} and [m]0 := [m] ∪ {0}. We omit floors
and ceilings when this does not significantly affect calculations.

2.2 Chernoff bound

We will frequently use the following version of the Chernoff bound (see e.g. [12, Corollary
2.3]).

Lemma 4. Let N ∈ N, let q ∈ [0, 1] and let α > 0 be a real number. Suppose that
X ∼ Bin(N, q). Then

P (|X −Nq| > αNq) 6 2 exp
(
−α2Nq

3

)
.

In particular, if Nq →∞ and α = Θ(1), then P (|X −Nq| > αNq) = o(1).

2.3 The structure of paths

In graphs, there are only two paths with the same edge set (the second is obtained by
reversing orientation), but depending on the values of k and j, there may be many ways of
reordering the vertices of a j-tight path which give a different path with precisely the same
edges. For example, in Figure 2, we may re-order x1, x2, x3 arbitrarily. Even in the middle
of the path, we may switch the order of x8 and x9 to give a new path. Nevertheless, we
will identify paths which have the same set of edges, and indeed often identify a path with
its edge set. We similarly identify cycles with their edge sets. Note that this is equivalent
to identifying paths obtained by permuting sets of vertices which lie within precisely the
same set of edges (such as {x8, x9} in Figure 2), as well as potentially reversing the order
of the edges, while for the identification of cycles we additionally allow an arbitrary choice
of starting edge, which then determines the starting vertex within that edge. In both
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cases, since the edge set and the order of edges remains the same (up to the choice of
starting point and direction), the overlap structure is not affected.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Figure 2: A 4-tight path of length 4 in a 7-uniform hypergraph.

A further important point to note when constructing a path is which j-sets we can
continue from: For example, in Figure 2, it seems natural to continue from the 4-set
{x13, . . . , x16}, but since the vertices x11, x12, x13 may be rearranged arbitrarily, we could
just as well replace x13 by either of x11, x12 in this 4-set.

To account for this, we will borrow the following terminology from [4]. Recall that a is
defined to be the unique integer satisfying 1 6 a 6 k − j and a ≡ k mod k − j.

Definition 5. An extendable partition of a j-set J is an ordered partition (C0, C1, . . . , Cr)
of J , where r = d j

k−j e-1, with |C0| = a and |Ci| = k − j for all i ∈ [r].

In the example in Figure 2, the 4-set {x10, . . . , x13} would have extendable partition
(C0, C1), where C0 = {x10} and C1 = {x11, x12, x13}. In a search process, the final edge
{x10, . . . , x16} added to this path would give rise to three new 4-sets from which we can
continue, namely Ji := {xi, x14, x15, x16}, where i = 11, 12, 13. The extendable partition of
Ji would be (C(i)

0 , C
(i)
1 ), where C(i)

0 = {xi} and C(i)
1 = {x14, x15, x16}.

For general k and j, when we discover an edge K from a j-set J with extendable
partition (C0, . . . , Cr), the new j-sets from which we can continue will — in the case when
j > k − j, so we have r > 1 — be those consisting of a vertices from C1, all vertices of
C2, . . . , Cr and all vertices of K \J . In the case when j 6 k− j, the new j-sets from which
we can continue are those consisting of a vertices of K \J (which would be equivalent to the
previous case if, with slight abuse of notation, we were to interpret K \ J as the otherwise
non-existent C1). Furthermore, the intersections of the new j-set with C1, C2, . . . , Cr, K \J
(in this order) will naturally form an extendable partition C̃0, C̃1, . . . , C̃r of the new j-set,
so there is a shift of indices. Note in particular that the number of new j-sets we can
continue from is

(
|C1|
a

)
=
(
k−j
a

)
, which is the reason this term appears in the threshold p0

for a long path.
We will refer to the j-sets {x1, . . . , xj} and {x(k−j)`+1, . . . , x(k−j)`+j} as the ends of the

path. With this definition, a path has precisely two ends, but recall that we often identify
a path with its edge set, in which case there may be many potential ends (depending on
the chosen order of vertices).

We refer the reader to [4] for a more detailed discussion of the structure of paths.
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3 Proof outline

The initial, naive proof idea for Theorem 2 is to construct a long path using a search
process, and then apply a sprinkling argument to close this path into a cycle. However, in
its most basic form this argument fails for the reasons outlined in the introduction: We
have too few potential attachment j-sets and too many required edges for the sprinkling
to work.

Nevertheless, this will still be our overarching strategy; it just needs to be modified
slightly. More precisely, we will aim to construct a family of long paths, all of which are
identical along most of their length, but which diverge towards the two ends. This will give
us many more potential attachment j-sets, and allow us to push the sprinkling argument
through.

As such, we have two main lemmas in the proof. Let LP denote the length of the
longest path in Hk(n, p). Recall the definition of L1(p) from (1).

Lemma 6. Under the conditions of Theorem 2, whp LP >
(
1− δ

2

)
L1(p).

The proof of this lemma is essentially the same as the proof for the special case of
p = (1+ε)p0 in [4]. We first define an appropriate depth-first search process for constructing
j-tight paths. Heuristically, this DFS is supercritical for as long as the path constructed
has length significantly smaller than L1. However, the algorithm will avoid re-using j-sets
that have already been tried, if they led to dead-ends; to justify the heuristic, we need to
know that this will not slow down the growth too much. For this, we need a bounded degree
lemma which shows that, in an appropriate sense, these j-sets are evenly distributed in the
hypergraph, rather than clustered together. The proof of Lemma 6 is given in Section 4.

The main original contribution of this work is the second lemma, which guarantees the
existence of a family of j-tight paths with many different endpoints. The DFS algorithm
is well-suited to creating long paths quickly, but in order to fan out towards the ends, we
will switch to a breadth-first search algorithm. The result of this algorithm will be the
structure described in Lemma 8, for which we first need the following definition.

Definition 7. Given an integer `, two j-sets J, J ′ and a path P with end J , we say that a
path P ′ path-(J ′, `)-augments the pair (P, J) if P ′ has length at most ` and has ends J, J ′,
and furthermore P ∪P ′ is again a path with end J ′. When J ′ is clear from the context, we
will simply say that P ′ path-`-augments the pair (P, J). We call P ′ the augmenting path.

In other words, P ′ extends the path P by length at most (but not necessarily exactly) `
to end at J ′ instead of J . Theorem 2 can be proved, with a bit of work, from the following
lemma.

Lemma 8. Under the conditions of Theorem 2, and in particular given δ > 0, there exists
some constant ε ∈ (0, 1) such that the following holds. Whp Hk(n, p) contains a j-tight
path P0 of length (1− δ)L1(p) with ends Js, Je, collections A,B of j-sets and collections
of paths PA = {PA,Js : A ∈ A} and PB = {PB,Je : B ∈ B} such that:

(i) |A|, |B| = ε2nj;
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(ii) Every path PA,Js ∈PA path-(A, δn/3)-augments (P0, Js);

(iii) Every path PB,Je ∈PB path-(B, δn/3)-augments (P0, Je);

(iv) For at least (1− ε)ε4n2j pairs (A,B) ∈ A×B, the augmenting paths PA,Js , PB,Je are
vertex-disjoint.

We will show how to prove Lemma 8 from Lemma 6 in Sections 5 and 6. Before
continuing with the proofs of these two lemmas, we first show how Lemma 8 implies our
main theorem.

Proof of Theorem 2. Let ω be some function of n tending to infinity arbitrarily slowly,
and let p′ := (1− 1/ω)p. We apply Lemma 8 with p′ in place of p. Let us observe that
p′ = d′np0, where d′n := (1− 1/ω)dn → d, and therefore we have L1(p′) = L1(p). It follows
that the path P0 provided by Lemma 8 has length at least (1− δ)L1(p).

Now for each pair (A,B) ∈ A× B satisfying condition (iv) of Lemma 8, concatenating
the paths PA,Js , P0, PB,Je gives a path PA,B with ends A and B and containing P0. Thus
PA,B certainly has length at least (1− δ)L1(P ) (the length of P0), but by (ii) and (iii) also
has length at most (1− δ)L1(p) + 2δn/3 6 (1− δ/3)n. In other words, PA,B leaves a set
UA,B of at least δn/3 = Θ(n) vertices uncovered.

Let us now sprinkle an additional probability of p′′ := p−p′ = p/ω onto the hypergraph.
Formally, if our first random hypergraph was H′ ∼ Hk(n, p′), we construct a second,
independent random hypergraph H′′ ∼ Hk(n, p′′) and let H := H′ ∪ H′′. Note that
H ∼ Hk(n, p′′′), where p′′′ := p′ + p′′ − p′p′′ 6 p. Since the existence of a cycle of a certain
length is a monotonically increasing property, it suffices to prove this existence whp within
H.

We will assume for simplicity that PA,B induces total orders of the vertices within A
and within B (in fact, it only induces partial orders related to the extendable partitions,
but total orders are clearly more restrictive). In order to close PA,B to a cycle, we need to
choose a set R of b = k − j − a vertices from UA,B and the s = d j

k−j e appropriate edges
within A ∪B ∪R must be present, see Figure 3.

Note that since each extending edge from B contains k− j vertices not in the previous
edge, s is the minimum number of edges required for the final j-set to be disjoint from B,
which must be the case if this j-set is to be A; furthermore b intermediate vertices are
required to hit A precisely modulo k− j. Note also that, due to our total order assumption
on the vertices in A and in B, the s edges required to close the cycle are determined by
the choice of the triple (A,B,R), where (A,B) ∈ A× B and R ⊂ UA,B has size b.

Given a choice of (A,B,R), define EA,B,R to be the set of s many k-sets which are
required to be edges; the probability that these edges all exist is simply (p′′)s. Further,
for fixed (A,B) but for different choices of R, the sets EA,B,R are all disjoint (since all
edges of EA,B,R certainly contain R, but no other vertices of UA,B). However, given
two choices (A1, B1, R1) and (A2, B2, R2) for (A,B,R), it is possible that EA1,B2,R1 and
EA2,B2,R2 contain a common k-set, and thus we no longer have independence. We therefore
claim that there are sufficiently many choices for which the sets are disjoint.
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R
A B

Figure 3: Closing a 3-tight path in a 5-uniform hypergraph to a cycle. The two dashed
5-sets would close the cycle if they both form edges.

To see this, observe that by conditions (i) and (iv) of Lemma 8 there are Θ
(
ε4n2j+b

)
choices for the triple (A,B,R), and thus also for the sets EA,B,R. Furthermore, any
particular k-set lies in at most O

(
n2j+b−k

)
of the EA,B,R, because a triple spans 2j + b

vertices, of which k have already been fixed by the k-set. Since for any triple we have
|EA,B,R| = s = O(1), any one of these sets EA,B,R shares a k-set with at most O

(
n2j+b−k

)
other sets, and we may greedily choose Θ

(
ε4n2j+b−(2j+b−k)

)
= Θ

(
ε4nk

)
triples (A,B,R)

such that the corresponding sets EA,B,R are disjoint.
By choosing this many triples, we observe that the probability that none of the

corresponding EA,B,R do indeed form edges (and therefore close a cycle) is

(1− (p′′)s)Θ(ε4nk) 6 exp
(
−Θ

(
ε4nk

ωsns(k−j)

))
.

Now recall that s = d j
k−j e 6

k−1
k−j . Thus the probability that none of the choices of A,B,R

admits the edges necessary to close a cycle is at most

exp
(
−Θ

(
ε4n

ω(k−1)/(k−j)

))
= o(1),

where the last estimate follows since ω tends to infinity arbitrarily slowly, so in particular
we have ω(k−1)/(k−j) = o(n).

4 Depth-first search: Proof of Lemma 6

The proof of Lemma 6 is essentially the same as that of the special case when p = (1 + ε)p0
from [4]. Nevertheless we provide the proof here partly to make this paper self-contained
and partly because some of the ideas will reappear in the more complicated proof of
Lemma 8 in Section 6.

In order to prove the existence of a long path, we borrow the Pathfinder algorithm
from [4]. This is in essence a depth-first search algorithm; however, there are a few
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complications in comparison to the graph case. We note that while [4] introduced the
Pathfinder algorithm for general k and j, it includes a detailed description of the special
case when k = 3 and j = 2 (see Section 4.1 of that paper) which the interested reader
may find helpful to gain an intuition for how the algorithm proceeds. We will describe
only the general case here.

Recall from Section 2.3 that, depending on the values of k and j, when we add an edge
to the current path, we may have multiple (in fact precisely

(
k−j
a

)
) new j-sets from which

we could extend the path. For this reason, each time we increase the length of the path,
we produce a batch of j-sets with which the path could potentially end. In the example in
Figure 2, the batch would consist of the three 4-sets containing the three new vertices and
one of the three preceding vertices; more generally, a batch will contain any j-set from
which the path can be extended if we discover a further edge containing that j-set (and
no other vertices from the current path).

During the algorithm, at each time step t we will query a k-set to determine whether it
forms an edge or not. This may be thought of as revealing the outcome of a Bernoulli(p)
random variable corresponding to this k-set (with these variables being mutually indepen-
dent).

We will describe j-sets as being neutral, active or explored; initially all j-sets are
neutral; a j-set J becomes active if we have discovered a path which can end in J (in
which case a whole batch becomes active at the same time as J); J becomes explored once
we have queried all possible k-sets from J .

Of course, in order to produce a path we will not query any k-sets from J that contain
any further vertices (apart from J) of the current path. But more than this, in order
to allow analysis of the algorithm, we place an additional restriction: We do not query
any k-set that contains any other active or explored j-set. This ensures that we never
query the same k-set twice from different j-sets, and therefore the outcome of each query
is independent of all other queries.

We store the active j-sets in an ordered stack. Whenever a new j-set becomes active,
it is added to the top of the current stack, and it is removed when it becomes explored,
corresponding to backtracking along the path. Since we are considering a depth-first search,
we will always query k-sets from the top active j-set in the stack. Whenever the stack of
active j-sets is empty (so also the current path is empty), we choose a new neutral j-set
uniformly at random from which to continue, and this j-set becomes active. In particular,
this happens immediately at the very start of the algorithm. We will choose an extendable
partition of this j-set arbitrarily, and subsequently each j-set which becomes active will
inherit an extendable partition induced by the extendable partition of its parent (i.e. the
j-set it was discovered from).

Given an edge K with which a path P can be extended to a longer path, we denote
this new path P +K. Given a set X and an element x, we denote X + x := X ∪ {x} and
X − x := X \ {x}. If X is ordered, then we interpret X + x as meaning that x is added
to the end of X. A formal description of the Pathfinder algorithm can be found below.
We emphasise that the algorithm is essentially identical to the version in [4], with only
minor simplifications and some slight adaptations in the notation to be consistent with
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this paper.
Recall that during the algorithm, whenever we find an edge,

(
k−j
a

)
new j-sets become

active. Heuristically, towards the start of the process we will query approximately
(
n−v`
k−j

)
many k-sets from a j-set, where ` is the current length of the path (and recall that
v` = j + `(k − j) denotes the number of vertices in a path of length `). This gives a clear
intuition for why we should find a path of length approximately L1(p): The expected
number of j-sets that become active from any current j-set is approximately(

k − j
a

)(
n− v`
k − j

)
p = (1 + o(1))

(
1− `(k − j)

n

)k−j
d.

When ` = L1 = 1−d−1/(k−j)

k−j · n, up to the 1 + o(1) error term this gives precisely 1; in
other words, L1 is asymptotically the length at which this process changes from being
supercritical to subcritical.

The main difficulty in the proof comes in the approximation of the number of k-sets
that we query from each j-set, which above we estimated by

(
n−v`
k−j

)
. In fact, this is an

obvious upper bound, whereas we need a lower bound. The upper bound takes account of
k-sets which may not be queried because they contain a vertex from the current path, but
k-sets may also be forbidden because they contain another active or explored j-set (apart
from the one we are currently querying from).

We call a j-set discovered if it is either active or explored. The sets of j-sets which
are active and explored at time t will be denoted by Zt and Et respectively. The set
Gdisc = Gdisc(t) := Zt ∪ Et of discovered j-sets at time t may be thought of as the edge set
of a j-uniform hypergraph. It is intuitive that at the start of the search process (i.e. for
small t), this hypergraph is sparse, but we need to quantify this more precisely. Given
0 6 i 6 j − 1, let ∆i(t) = ∆i(Gdisc(t)) denote the maximum i-degree of Gdisc(t), i.e. the
maximum over all i-sets I of the number of j-sets of Gdisc(t) that contain I. Note in
particular that, since a 0-set is simply ∅, we have ∆0(t) = |Gdisc(t)|. The purpose of this
parameter is highlighted in the following proposition.
Proposition 9. Suppose that a j-set J becomes active when the length of the path is `J
and that n− v`J = Θ(n). Then the number of k-sets that are eligible to be queried from J
at time t is at least 1−

j−1∑
i=0

O

(
∆i(t)
nj−i

)(n− v`J
k − j

)
.

Proof. Let us consider how many k-sets may not be queried from a j-set J because they
contain a second, already discovered j-set J ′. We will make a case distinction based on
the possible intersection size i = |J ∩ J ′| ∈ [j − 1]0, and note that for each i ∈ [j − 1]0, the
number of discovered j-sets J ′ which intersect J in i vertices is at most

(
j
i

)
∆i(t), and the

number of k-sets that are forbidden because they contain both J and J ′ is (crudely) at
most nk−2j+i. Therefore the number of forbidden k-sets in total is certainly at most

j−1∑
i=0

(
j

i

)
∆i(t)nk−2j+i =

j−1∑
i=0

O

(
∆i(t)
nj−i

)(
n− v`J
k − j

)
,
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Algorithm: Pathfinder
Input: Integers k, j such that 2 6 j 6 k − 1
Input: H, a k-uniform hypergraph on vertex set [n]

1 Let a ∈ [k − j] be such that a ≡ k mod (k − j)
2 Let r = d j

k−j e − 1
3 For i ∈ {j, k}, let σi be a permutation of the i-sets of [n], chosen uniformly at random
4 N ←

([n]
j

)
// neutral j-sets

5 Z, E ← ∅ // active, explored j-sets
6 P ← ∅ // current j-tight path
7 `← 0 // index tracking the current length of P
8 t← 0 // “time”, number of queries made so far
9 while N 6= ∅ do

10 Let J be the smallest j-set in N , according to σj // “new start”
11 Choose an arbitrary extendable partition PJ of J
12 B0 = {J} // Starting batch of j-sets
13 Z ← {J}
14 while Z 6= ∅ do
15 Let J be the last j-set in Z
16 Let K be the set of k-sets K ⊂ V (H) such that K ⊃ J , K was not queried from J before,

K \ J is vertex-disjoint from P , and K does not contain any J ′ ∈ E
17 if K 6= ∅ then
18 Let K be the first k-set in K according to σk

19 t← t+ 1 // a new query is made
20 if K ∈ H then // “query K”
21 e` ← K
22 P ← P + e` // P is extended by adding K = e`

23 `← `+ 1 // length of P increases by one
24 Let (C0, C1, . . . , Cr) = PJ be the extendable partition of J
25 for each Z ∈

(
C1
a

)
do

26 JZ ← Z ∪ C2 ∪ · · · ∪ Cr ∪ (K \ J) // j-set to be added
27 PJZ

← (Z,C2, . . . , Cr,K \ J) // extendable partition
28 Z ← Z + JZ // j-set becomes active

29 B` ← {JZ : Z ∈
(

C1
a

)
} // j-sets added to new batch

30 (Zt, Et, Pt)← (Z, E , P ) // update “snapshot” at time t

31 else if K = ∅ then // all extensions from J were queried
32 Z ← Z − J // J becomes explored
33 E ← E + J
34 if B` ⊂ E then // the current batch is fully explored
35 B` ← ∅ // empty this batch
36 P ← P − e` // last edge of P is removed
37 `← `− 1 // length of P decreases by one

Output: (Zt, Et, Pt)t∈N0
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where the approximation follows because
(
n−v`J
k−j

)
= Θ

(
nk−j

)
.

It follows from this proposition that if ∆i(t)� nj−i for each i, the number of forbidden
k-sets is insignificant compared to the number of k-sets that may be queried, and the
heuristic calculation above will go through with the addition of some smaller order error
terms.

We will therefore run the Pathfinder algorithm until one of the following three
stopping conditions is satisfied. Let us fix a constant 0 < ε� δ2 and further constants
c0, c1, . . . , cj−1 satisfying 1� c0

dk+2 � c1
d2(k+2) � . . .� cj−1

dj(k+2) � 1/
√
ε. 4

Stopping conditions:

(DFS1) ` = (1− δ/2)L1;

(DFS2) t = t0 := ε2nk;

(DFS3) ∆i(t) > εcin
j−i for some 0 6 i 6 j − 1.

Now our goal is simply to show that whp the algorithm terminates when (DFS1) is
invoked. As such, we have two main auxiliary results.
Proposition 10. Whp (DFS2) is not invoked.
Lemma 11. Whp (DFS3) is not invoked.

We note that Lemma 11 is a form of bounded degree lemma similar to the one first
proved in [7] and subsequently used in one form or another in [4, 6], among others. A far
stronger form also appeared in [5]. In its original form, the bounded degree lemma roughly
states that no i-degree is larger than the average i-degree by more than a bounded factor.
The stronger form in [5] even provides a lower bound, showing that whp all i-degrees are
approximately equal, a phenomenon we call smoothness.

For our purposes we need only the upper bound, and allow a multiplicative deviation
of Θ(ci/ε) from the average. This could certainly be improved, and it seems likely that
even smoothness is satisfied, but since we do not require an especially strong statement for
the arguments in this paper, for simplicity we make no effort to optimise the parameters.

We first prove Proposition 10, which states that whp the algorithm does not run for
too long before terminating.

Proof of Proposition 10. Let us suppose (for a contradiction) that at time t0 = ε2nk,
neither (DFS1) nor (DFS3) has been invoked. These conditions imply that for all i ∈ [j−1]0
and for all t 6 t0 we have ` = `(t) 6 (1 − δ/2)L1 and ∆i = ∆i(t) 6 ∆i(t0) 6 εcin

j−i 6√
εnj−i. Therefore by Proposition 9, from each explored j-set we certainly made at least(

1−O
(√

ε
))(n− v(1−δ/2)L1

k − j

)
>
(
1 + δ2

)(n− vL1

k − j

)
(2)

4Note that this is possible since by Remark 3 we may assume that δ 6 d−j(k+2), and therefore if ε� δ2

we also have dj(k+2) 6 1/δ � 1/
√
ε.
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queries. We also observe that at time t0 the number of edges we have discovered is
distributed as Bin(t0, p), which has expectation t0p = Θ(ε2nj) → ∞. By the Chernoff
bound (Lemma 4), whp we have discovered at least (1− δ3)t0p edges, and therefore at least
(1− δ3)t0p

(
k−j
a

)
many j-sets have become active. At any time, the number of currently

active j-sets, which all lie within edges of the current path, is O(L1) = O(n), and therefore
the number of fully explored j-sets is at least

(
1− δ3

)
t0p

(
k − j
a

)
−O(n) >

(
1− δ2/2

)
t0p

(
k − j
a

)
, (3)

since t0p = Θ (ε2nj)� n (recall that j > 2).
Combining (2) and (3), the total number of queries made by time t0 is at least

(
1− δ2/2

)
t0p

(
k − j
a

)(
1 + δ2

)(n− vL1

k − j

)
>
(
1 + δ2/3

)
t0,

which is a contradiction since by definition we have made precisely t0 queries.

We now go on to prove Lemma 11; we note that an essentially identical argument
was used to prove [4, Lemma 34], but we repeat the argument here to make this paper
self-contained.

Proof of Lemma 11. First consider the case i = 0, when the desired bound follows from
the fact that, by a Chernoff bound (Lemma 4) whp we have found at most 2pt0 = O(ε2nj)
edges, each of which leads to O(1) many j-sets becoming active. Some further j-sets may
also become active without finding an edge each time the stack of active j-sets is empty
and we pick a new j-set from which to start. It is easy to bound the number of times this
happens by O(t0nj−k) = Θ(ε2nj) (see the argument for “new starts” below).

Now given i ∈ [j − 1] and an i-set I, there are three ways in which the degree of i in
Gdisc could increase.

• A new start at I occurs when the current path is fully explored and we pick a new
(ordered) j-set from which to continue the exploration process. If this j-set contains
I, then the degree of I increases by 1.

• A jump to I occurs when a k-set containing I is queried from a j-set not containing
I and this k-set is indeed an edge. Then the degree of I increases by at most

(
k−j
a

)
.

• A pivot at I occurs when an edge is discovered from a j-set already containing I.
Then the degree of I increases by at most

(
k−j
a

)
.

We bound the contributions to the degree of I made by these three possibilities
separately.

the electronic journal of combinatorics 32(3) (2025), #P3.29 15



New starts

We can crudely bound the number of new starts by observing that for each starting j-set,
by condition (DFS3) and Proposition 9, we must certainly have made at least1−

j−1∑
i=1

O

(
εcin

j−i

nj−i

)(n− j
k − j

)
>

1
2

(
n− j
k − j

)

queries to fully explore it, where we used the fact that c0, . . . , cj−1 � 1/
√
ε. Therefore

at time t 6 t0 = ε2nk we can have made at most N := 2t0
(
n−j
k−j

)−1
many new starts in

total. We assume for an upper bound that this many new starts are indeed made. Since
we chose the j-set for a new start uniformly at random, the probability that such a new
start contains I is at most (

n−i
j−i

)
(
n
j

)
− |Gdisc(t)|

6
2 · j!
ni

=: q,

where we used the fact that |Gdisc(t)| = ∆0(t) = O(εc0n
j) �

(
n
j

)
by conditions (DFS2)

and (DFS3) and the fact that c0 � 1/
√
ε. Therefore the number of new starts containing

I can be bounded above (formally, upper-coupled) by a random variable X ∼ Bin(N, q).
Note that X has expectation Nq = Θ(t0nj−k−i) = Θ(ε2nj−i)�

√
n. The Chernoff bound

(Lemma 4) tells us that the probability that the number of new starts at I by time t0 is
larger than 11

10Nq is at most

P
(
|X −Nq| > Nq

10

)
6 2 exp

(−Nq
300

)
6 exp

(
−
√
n
)
.

Assuming this low probability event does not occur, the total contribution to the degree
of I made by new starts is at most

11
10Nq = 11

10 ·
2t0(
n−j
k−j

) · 2j!
ni

6 5t0
j!(k − j)!
nk−j+i

= 5j!(k − j)!ε2nj−i 6
ciε

6(4d)k+1n
j−i,

where we used the fact that ε� 1� ci
dk+1 , so in particular 5j!(k − j)!ε 6 ci

6(4d)k+1 .
We note that the rather artificial-looking denominator has been chosen with foresight

of the calculations for the last contribution, made by pivots, which will depend on this
term.

Jumps

We further subclassify jumps according to the size z of the intersection I ∩ J between I
and the j-set J from which the jump to I occurs. Observe that since for a jump we cannot
have I ⊂ J , we must have 0 6 z 6 i− 1. The number of j-sets of Gdisc(t) with intersection
of size z with I is at most

(
i
z

)
∆z(t) 6

(
i
z

)
εczn

j−z, where we used condition (DFS3) with z
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in place of i. For each such j-set J , the number of k-sets which contain both J and I, and
which could therefore result in a jump to I, is at most

(
n

k−j−i+z

)
6 nk−j−i+z.

Thus the total number of queries made which could result in jumps to I is at most
i−1∑
z=0

(
i

z

)
εczn

j−z · nk−j−i+z 6 2iεci−1n
k−i =: N,

where we used the fact that ci−1 = maxi−1
z=0 cz. Each such query gives a jump with

probability p = Θ(nk−j), and so we can bound from above the number of jumps to I
by a random variable X ∼ Bin(N, p). The Chernoff bound (Lemma 4) implies that the
probability that the number of jumps is larger than 2Np = Θ(εci−1n

j−i)�
√
n is at most

P (|X −Np| > Np) 6 2 exp
(
−Np3

)
6 exp

(
−
√
n
)
.

Assuming this low probability event does not occur, since each jump contributes at most(
k−j
a

)
to the degree of I, the total contribution made by jumps is at most(

k − j
a

)
2Np 6

(
k − j
a

)
2i+1εci−1n

k−i · 2d(
k−j
a

)(
n
k−j

) 6
εci

6(4d)k+1n
j−i,

where we used the fact that ci
dk+2 � ci−1, so in particular 2i+2d · 2(k − j)! · ci−1 6

ci
6(4d)k+1 .

Pivots

We observe that from any j-set containing I, the expected number of pivots at I is at most(
n
k−j

)
p 6 2d

(k−ja ) , and each pivot gives rise to at most
(
k−j
a

)
new j-sets. Furthermore since

we are studying a DFS process creating a path, the number of consecutive pivots at I can
be at most k−i

k−j 6 k before the path has left I. Since the number of new starts and jumps
to I is at most εci

3(4d)k+1n
j−i, it follows that the expected number of pivots at I is at most
(

k∑
z=1

(2d)z
)

εci
3(4d)k+1n

j−i 6
εci

3 · 2k+1n
j−i,

and by Lemma 4 with α = 2, with probability at least 1 − exp (−Θ (εcinj−i)) > 1 −
exp (−

√
n), the number of pivots at I is at most εci

3·2kn
j−i. Since each pivot contributes at

most
(
k−j
a

)
6 2k to the degree of I, if this high probability event holds, the contribution

to the degree of I made by pivots is at most εci
3 n

j−i.

Now we have bounded the contribution to the degree of I made by each of the three
possibilities as certainly at most εci

3 n
j−i, and summing these three terms gives the desired

result for I. It remains to observe that the failure probabilities are small enough that,
applying a union bound over all choices of I, we still have only o(1) failure probability:
This follows because the failure probabilities are all at most exp(−

√
n), while there are at

most ni choices for I.
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5 The buffer zone

Lemma 6 guarantees the existence of a long path whp. We would like to go on to extend
this long path using a BFS process to find many potential ends of long paths as required
in Lemma 8. However, we first need to handle the fact that, by running the Pathfinder
algorithm, we have already revealed information about the random hypergraph which
could influence its distribution, and therefore the behaviour of the BFS process. To ensure
that this does not happen, we need to ensure that every k-set queried in the BFS process
has not been queried before.

To achieve this, in this section we will show how we can make a few extra queries
to create a “buffer zone” between the DFS and BFS processes. We will first set aside a
relatively small number of vertices as a “reservoir”, and run the DFS algorithm on the
remaining vertices. Since almost all vertices are still available, whp we discover a long
path. We then extend this long path into the reservoir. We then have the property that
from any of the new ends, no queries have been made which do not contain vertices of the
long path or of the reservoir, and it is from these new ends that we will begin the BFS
process.

Ultimately, these considerations allow us to prove the following lemma. In the statement
of the lemma, the sets U and D are used to restrict which queries have already been made,
which will later allow us to make further queries while maintaining independence.

Lemma 12. We can run a search algorithm in H = Hk(n, p) that outputs

• a vertex set U ,

• a path P0 with ends Ĵ1, Ĵ2,

• collections J1,J2,D of j-sets and

• paths PJ for each J ∈ J1 ∪ J2

which have the following properties whp:

(A1) |U | = (1− δ/2)(k − j)L1;

(A2) `(P0) = (1− δ)L1;

(A3) |J1|, |J2| = (log n)2;

(A4) for each s ∈ {1, 2} and for each J ∈ Js the path PJ lies in H[U ] and path-
(J, (2 log n)4)-augments (P0, Ĵs);

(A5) For each i ∈ [j − 1]0 we have ∆i(D) 6 εcin
j−i;

and furthermore

(B1) For any pair (J1, J2) ∈ J1 × J2, we have that PJ1 ∪ PJ2 is a path with ends J1, J2;
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(B2) For any J ∈ J1 ∪ J2, all k-sets containing J which have been queried contain at
least one further vertex of U ;

(B3) Only k-sets containing a j-set of D have been queried.

Proof. Let n2 := n
log logn and n1 := n − n2. We begin by setting R := [n] \ [n1], which

is a reservoir of n2 vertices which we set aside for later. We then run the Pathfinder
algorithm in Hk(n1, p), which has vertex set [n1] = [n] \R. It is easy to check that, even
with the change from n to n1, Lemma 6 still implies that whp the algorithm will discover
a path P ∗0 of length L∗ := (1− δ)L1 + 2(log n)4 6 (1− δ/2)L1. We set U∗ := V (P ∗0 ) ∪R,
and observe that

|U∗| = vL∗ + n2 = (1− δ) (k − j)L1 + 2(log n)2(k − j) + j + n

log log n

6

(
1− δ

2

)
(k − j)L1.

To obtain U of the precise size required by (A1), we artificially add the appropriate number
of further vertices to U∗.

Now let P0 be the path obtained from P ∗0 by removing (log n)4 edges from each end,
so `(P0) = (1− δ)L1, as required by (A2). Furthermore let J ∗1 ,J ∗2 be the collections of
j-sets contained in the intersection of two such removed edges, split into two classes in
the natural way. Clearly for any J∗ ∈ J ∗1 ∪ J ∗2 we have a path PJ∗ ending in J∗ which
contains P0 and is contained in P ∗0 . We choose PJ∗ to be the minimal such path, so in
particular if J ∈ J ∗1 the corresponding path contains no j-sets of J ∗2 and vice versa.

We next split R into two disjoint sets R1, R2 each of size n2/2, and query any k-set
consisting of a j-set of J ∗1 and k − j vertices of R1. For each edge K we discover from
J∗1 ∈ J ∗1 in this way, we can extend PJ∗1 by adding K and we find at least one j-set with
which the path PJ∗1 +K could end. The number of queries we make in this step is

|J ∗1 |
(
|R1|
k − j

)
= (log n)4

(
n2/2
k − j

)
= Θ

(log n)4
(

n

2 log log n

)k−j
> (log n)3nk−j.

It follows by the Chernoff bound (Lemma 4) that whp the number of edges we discover
from J ∗1 is at least 1

2p(log n)3nk−j > (log n)2.
We would like to deduce that whp we find a large set of potential ends in this way.

However, we need to be careful to ensure that we do not discover the same end from many
different j-sets of J ∗1 . To exclude this possibility, we distinguish two cases.

Case 1: j 6 k/2

In this case, given a j-set J ⊂ R1 and a j-set J∗1 ∈ J ∗1 , there are at most nk−2j many
k-sets K ⊃ J ∪ J∗1 (crudely ignoring the restriction that the remaining vertices must come
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from R1), and so the probability that a particular j-set J ⊂ R1 is discovered from two
distinct j-sets of J ∗1 is at most

(
|J ∗1 |nk−2jp

)2
= O

(
(log n)8n2k−4jn−2(k−j)

)
= O

(
(log n)8

n2j

)
.

Thus the expected number of j-sets discovered twice in this way is at most(
n2/2
j

)
·O

(
(log n)8

n2j

)
= O

(
(log n)8

nj(log log n)j

)
= o(1).

Case 2: j > k/2

We first observe that we have at most |J ∗1 |n
k−j
2 ·O(1) ways of choosing the newly discovered

j-set (at most O(1) for each k-set queried). Second, observe that since such a j-set can
only contain k − j vertices of R1, it must still contain vertices of P0. In particular, there
are certainly only O(1) many j-sets of J ∗1 from which a fixed j-set J can be discovered.
We can therefore estimate the expected number of j-sets discovered twice in this way by

|J ∗1 |n
k−j
2 O(1)p2 = O

(
(log n)4

(n log log n)k−j

)
= o(1).

In both cases, the expected number of j-sets discovered twice is o(1), so by Markov’s
inequality, whp we do not discover any j-set twice. Therefore the arguments above show
that whp we discover a set of at least (log n)2 new ends, each of which contains k − j
vertices in R1. We set J1 to be an arbitrary subset of precisely (log n)2 of these ends,
and for each J1 ∈ J1 which is discovered from some J∗1 ∈ J ∗1 via an edge K, we set
PJ1 := PJ∗1 +K. By construction, `(PJ1 \ P0) = `(PJ∗1 \ P0) + 1 6 (log n)4 + 1 6 2(log n)4.

Analogously, we also query any k-set consisting of a j-set of J ∗2 and k − j vertices of
R2; an identical argument shows that whp we discover a set of (log n)2 ends, which we
call J2, and we define PJ2 for each J2 ∈ J2 analogously. We have just proved that J1,J2
satisfy property (A3) whp, and the paths PJ for J ∈ J1 ∪ J2 satisfy (A4) by construction.

We further observe that for any J1 ∈ J1 and J2 ∈ J2, since we discovered these sets
by extending a path with ends J∗1 ∈ J ∗1 and J∗2 ∈ J ∗2 , and since the sets R1, R2 used for
these extensions are disjoint, we have a path between J1 and J2, as required for (B1).

We also observe that the only queries we made containing a j-set J ∈ J1 ∪ J2 were
those seeking extensions, i.e. those made from a j-set in J ∗1 ∪ J ∗2 , which therefore contain
at least one vertex of V (J ∗1 ∪ J ∗2 ) \ J ⊂ U \ J , as required in (B2).

It remains to prove that, for the appropriate choice of D, we also have (A5) and (B3).
Recall that P ∗0 was constructed using a depth-first search, which we may terminate as soon
as it has found a path of the appropriate size. Let t∗0 be the time at which this process is
terminated, and recall that Gdisc(t∗0) denotes the set of j-sets which are discovered up to
time t∗0. We set D := Gdisc(t∗0) and claim that it has the required properties whp.

First observe that (B3) certainly holds by construction: during the DFS process we
only queried k-sets from active j-sets, which must be in Gdisc(t) ⊂ Gdisc(t∗0) if the query is
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made at time t; on the other hand, the only k-sets queried outside of the DFS process
contain j-sets of J ∗1 ∪ J ∗2 ⊂ Gdisc(t∗0).

Finally, note that Lemma 11 precisely guarantees that (A5) holds whp.

6 Breadth-first search: Proof of Lemma 8

In this section we show how we can use the configuration guaranteed whp by Lemma 12
and extend this to obtain a family of paths with many ends (far more than the 2(log n)2

we have so far), as required by Lemma 8.

6.1 The BFS algorithm: Pathbranch

6.1.1 Motivation and setup

We will use Lemma 12 as a black box. We therefore assume the high probability event
and fix U, P0,J1,J2,D, {PJ : J ∈ J1,J2} as defined in Lemma 12. In a slight abuse of
notation, we will sometimes talk of “the path P0” when we mean one of the paths running
between some J1 ∈ J1 and J2 ∈ J2, which contain P0 but are longer and not all identical
(although they are all very similar).

Our aim is to run two breadth-first processes starting at J1,J2 to extend P0, and to
show that these processes quickly grow large. Figure 4 shows a simplified visualisation of
the inputs and outputs of the Pathbranch algorithm.

P0

U

J1 J2

A B

Figure 4: The configuration constructed by our two applications of the Pathbranch
algorithm. Note that the vertices in this figure represent j-sets, and the j-sets belonging
to A and B need not be disjoint. Note also that in general J1,J2 do not lie in a single
common path, but already branch out.

Simply proving that the processes grow large would be relatively easy by adapting
the proof strategy from Section 4, since the size of U is such that the processes are (just)
supercritical, and intuitively we only need a logarithmic number of steps to grow to
polynomial size. More delicate, however, is to show that the search process produces path
ends that are compatible with each other, in the sense that there are many choices of pairs
of ends between which we have a path (as required for Property (iv) of Lemma 8). In order
to construct compatible sets of ends, having run the algorithm once to find augmenting
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paths at one end, we will have a set F1 of forbidden vertices; roughly speaking, these are
vertices which lie in too many of the augmenting paths from the first application of the
algorithm, and therefore we would like to avoid them when constructing augmenting paths
at the other end.

6.1.2 Informal description

Let us first describe the algorithm informally. We will start with a set of vertices U , a
path P0 with V (P0) ⊂ U and a set of ends J (which will be either J1 or J2). These ends
come with the natural extendable partition induced by P0. We will also have sets F1 of
forbidden vertices and Fj of forbidden j-sets. As in the DFS algorithm, we will label
j-sets as neutral, active or explored. Initially the j-sets of J are active, the j-sets of Fj
are explored, and all others are neutral.

At each time t we will query a k-set K from an active j-set J ⊂ K to determine
whether K is an edge. If it is, then

(
k−j
a

)
new j-sets are potential ends with which we can

extend the path from J , and these become active, also inheriting an appropriate extendable
partition. In order to ensure that we are always creating a path, we will forbid queries
of k-sets which contain vertices of the path ending in J (except the vertices of J itself).
We will also forbid k-sets with vertices from U or from the forbidden set F1. Finally, to
ensure independence of the queries we will forbid k-sets which contain some explored j-set
– since we initially set Fj to be explored, our choice of Fj will also guarantee independence
from previous exploration processes. (Note that since we are using a breadth-first search,
we do not need to forbid k-sets which contain another active j-set J ′, because J ′ will be
dealt with later once J is explored, and such k-sets will be forbidden from J ′ because they
contain J .)

We will proceed in a standard BFS manner, i.e. from the first active j-set in the queue
we will query all permissible k-sets, and any new j-sets we discover are added to the end
of the queue.

We note that during the BFS process, the j-sets which become explored, including
those in J1 ∪ J2, are certainly ends of a path containing P0, and therefore candidates in
our later sprinkling step.

6.1.3 Formal description

Given a path PJ ending in a j-set J , we denote by P[PJ ] the extendable partition of J
which is naturally induced by PJ (which end of PJ we mean will be clear from both the
notation and the context).

The formal description of the Pathbranch algorithm appears below.
We will run this algorithm twice, once with J = J1 and once with J = J2. To

guarantee independence of the two processes, we will make use of the ability to forbid a
set Fj of j-sets from being queried – in particular, during the second application of the
algorithm, Fj will include the discovered j-sets from the first application. More generally,
Fj will also include discovered j-sets from the previous DFS process. Forbidding this set
ensures that no k-set will ever be queried twice.
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Algorithm: Pathbranch
Input: Integers k, j such that 2 6 j 6 k − 1
Input: H, a k-uniform hypergraph on vertex set [n]
Input: Vertex set U ⊂ V (H)
Input: Path P0 ⊂ H[U ]
Input: Collection of j-sets J ∈

(
U
j

)
Input: Collection of paths {PJ : J ∈ J } such that P0 ⊂ PJ ⊂ H[U ] and PJ ends in J
Input: F1, a set of forbidden vertices
Input: Fj , a set of forbidden j-sets

1 Let a ∈ [k − j] be such that a ≡ k mod (k − j)
2 Let r = d j

k−j e − 1
3 Z ← J ordered lexicographically // active j-sets
4 E ← Fj // explored j-sets
5 forall J ∈ J do
6 `J ← |PJ | // length of PJ

7 PJ ← PJ [PJ ] // extendable partition of J

8 t← 0 // “time”, number of queries made so far
9 while Z 6= ∅ do

10 Let J be the first j-set in Z
11 Let K be the set of k-sets K ⊃ J , such that K \ J ∈ [n] \ (U ∪F1), and such that K does not

contain any J ′ ∈ E // Available queries from J
12 while K 6= ∅ do
13 Let K be the first k-set in K according to the lexicographic order
14 t← t+ 1 // a new query is made
15 if K ∈ H then // “query K”
16 Let (C0, C1, . . . , Cr) = PJ be the extendable partition of J
17 for each Z ∈

(
C1
a

)
do

18 JZ ← Z ∪ C2 ∪ · · · ∪ Cr ∪ (K \ J) // j-set to be added
19 PJZ

← PJ +K // Path ending at JZ

20 PJZ
← (Z,C2, . . . , Cr,K \ J) // extendable partition of JZ

21 `JZ
← `J + 1

22 Z ← Z + JZ // j-set becomes active

23 (Zt, Et, )← (Z, E) // update “snapshot” at time t
24 K ← K−K // update K
25 E ← E + J // J becomes explored
26 Z ← Z − J // J is no longer active

Output: (Zt, Et)t∈N0
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6.2 Analysing the algorithm

When we apply the Pathbranch algorithm, the inputs will satisfy various helpful properties.
For convenience, we collect all of these properties together.
BFS Setup:

(C1) H = Hk(n, p);

(C2) |U | = (1− δ/2)(k − j)L1;

(C3) `(P0) = (1− δ)L1;

(C4) |J | = (log n)2;

(C5) `(PJ \ P0) 6 2(log n)4 for all J ∈ J ;

(C6) |F1| 6 δ2n;

(C7) ∆i(Fj) 6 2εcinj−i for each i ∈ [j − 1]0;

(C8) Any k-set of H previously queried contains a j-set of Fj.

For the remainder of this section, in which we analyse the likely behaviour of this algorithm,
we will assume that all of these properties are indeed satisfied. In particular, (C8) ensures
that we have no prior information about any queries that we make during the Pathbranch
algorithm, which we will make use of extensively without explicitly mentioning (C8) again.
Not all of these properties will be used for each result we prove, but for simplicity we will
always assume them all. When applying the results of this section, we will need to check
these assumptions.

Note that in the algorithm, Zt and Et are the sets of active and explored j-sets
respectively at time t. In particular, if J ∈ Zt, then J is the end of a path PJ of length
`J . Let us define `t := maxJ∈Zt `J . Since each path PJ contains the path P0 of length
(1− δ)L1, let us also define `∗t := `t − (1− δ)L1, which is an upper bound on `(PJ \ P0)
for all j-sets J which are active at time t, so using (C2) and (C6) we have

|U ∪ F1 ∪ V (PJ)| 6
(

1− δ

2

)
(k − j)L1 + δ2n+ (k − j)`∗t . (4)

Recall from Section 4 that we have constants satisfying 0 < ε� δ2 � 1 and 1� c0 �
c1 � . . .� cj−1 � 1/

√
ε. As in the DFS algorithm, let Gdisc(t) := Zt ∪ Et, and we denote

∆i(t) := ∆i(Gdisc(t)) for any 0 6 i 6 j − 1 and t ∈ N. We will run the Pathbranch
algorithm until time Tstop, the first time at which one of the following stopping conditions
is satisfied.
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Stopping conditions:

(S1) The algorithm has terminated;

(S2) `t = (1− δ)L1 + 3(log n)4 =: L0;

(S3) ∆i(t) > εcin
j−i for some i;

(S4) |Gdisc(t)| = ε2nj.

Let us note that (S2) is equivalent to `∗t = 3(log n)4. Our principal aim is to show that
whp it is (S4) that is invoked. The following proposition will be critical.

Proposition 13. Assuming that the properties of BFS Setup hold, for any t 6 Tstop,
the number of k-sets which are eligible to be queried from an active j-set is at least(
n−v(1−δ/3)L1

k−j

)
= (1 + Θ(δ))

(
n−vL1
k−j

)
.

Proof. We first observe that an essentially identical proof to that of Proposition 9 shows
the analogous result in this case: Here we have that `J 6 L0 because the stopping
condition (S2) has not been invoked. As a consequence, we also have

|U ∪ F1 ∪ V (PJ)|
(4)
6

(
1− δ

2

)
(k − j)L1 + δ2n+ (k − j)3(log n)4

=
(

1− δ

2 +O(δ2) + o(1)
)

(k − j)L1

6

(
1− 2δ

5

)
(k − j)L1,

where the second estimate holds since L1 = Θ(n), and the third holds since δ � 1 is
constant. Combining (C7) and (S3), we also have

∆i(Fj ∪ Et) 6 ∆i(Fj) + ∆i(Et) 6 3εcinj−i 6
√
εnj−i.

Therefore the number eligible k-sets is at least

(
1−O

(√
ε
))(n− |U ∪ F1 ∪ V (PJ)|

k − j

)
>

(
n−

(
1− δ

3

)
(k − j)L1

k − j

)
,

where the last estimate holds since L1 = Θ(n) and since ε � δ � 1. Recalling that by
definition v` = (k − j)`+ j > (k − j)`, the claim follows.

Claim 14. Assuming that the properties of BFS Setup hold, whp (S1) is not invoked.

Proof. In order for (S1) to be invoked, all j-sets which became active would need to be
fully explored at time Tstop. Let m := |Gdisc(Tstop)| = |ETstop| denote the number of j-sets
which became active (or were active initially).
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By Proposition 13, the algorithm has made at least M := m · (1 + cδ)
(
n−vL1
k−j

)
queries

for some constant c, from which we certainly discovered at most m′ := m
(
k−j
a

)−1
edges

(since each edge gives rise to
(
k−j
a

)
new active j-sets). Thus we have

M/m′ = (1 + cδ)
(
n− vL1

k − j

)(
k − j
a

)
>

1
(1− δ2)p,

or in other words m′ 6 (1− δ2)pM . Thus we have made at least M queries during which
we discovered at most m′ 6 (1− δ2)pM edges. The Chernoff bound will show that this is
very unlikely provided pM is large enough.

More precisely, note that since the j-sets of J were initially active, we certainly
have m > |J | > (log n)2 by (C4), and therefore M = Ω

(
(log n)2nk−j

)
. For any t =

Ω
(
(log n)2nk−j

)
, by Lemma 4 the probability that in the first t queries we find at most

(1− δ2)pt edges is at most exp(−Θ(pt)) 6 exp(−Θ((log n)2)) = o(n−k). Therefore we may
take a union bound over all times t between 0 and nk (which is a trivial upper bound on
the total number of queries that can be made) and deduce that whp (S1) was not invoked
during this time.

Proposition 15. Assuming that the properties of BFS Setup hold, whp (S2) is not invoked.

Proof. We consider the generations of the BFS process, where the j-sets of J form
generation 0 and a j-set lies in generation i if it was discovered from a j-set in generation i−1.
Observe that since for each J ∈ J by (C3) and (C5) we have

`J 6 (1− δ)L1 + 2(log n)4,

(S2) can only be invoked if we have reached generation at least (log n)4.
Let us define Xi to be the number of j-sets in generation i, so in particular X0 = |J | =

(log n)2 deterministically. By Proposition 13, we make at least Xi(1 + Θ(δ))(
(
k−j
a

)
p)−1

queries to obtain generation i + 1 from generation i, and therefore E(Xi+1|Xi = xi) >
(1 + Θ(δ))xi. Therefore by Lemma 4,

P
(
Xi+1 6 (1 + δ2)xi|Xi = xi

)
6 2 exp

(
−Θ(δ2xi)

)
.

Inductively applying a union bound, we deduce that with probability at least 1 −
2i exp (−Θ(δ2X0)) we have Xi′ > (1 + δ2)i′X0 > X0 for all 0 6 i′ 6 i until time Tstop (after
which Proposition 13 no longer applies).

In order to reach generation (log n)4 (and therefore potentially invoke (S2)), this would
involve discovering a generation of size at least (1 + δ2)(logn)4

X0 > nj, which is clearly
impossible since this is larger than the total number of j-sets available (and indeed (S4)
would already have been applied long before this point). Meanwhile, the error probability
is at most 2(log n)4 exp (−Θ (δ2(log n)2)) = o(1).

Lemma 16. Assuming that the properties of BFS Setup hold, whp (S3) is not invoked.
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Proof. The proof is broadly similar to the proof of Lemma 11. The case when i = 0 is
trivial, since ∆0(t) = |Gdisc(t)| 6 ε2nj because of (S4). Let us therefore suppose that
1 6 i 6 j − 1 and I is an i-set. We observe that there are three ways in which the degree
of I can increase in Gdisc.

• A new start at I consists of a j-set of J which contains I. This contributes one to
the degree of I.

• A jump to I occurs when an edge containing I is discovered from a j-set not
containing I. Then the degree of I increases by at most

(
k−j
a

)
.

• A pivot at I occurs when an edge is discovered from a j-set already containing I.
Then the degree of I increases by at most

(
k−j
a

)
.

We bound the contributions made by new starts, jumps and pivots separately.

New starts

Note that in contrast to the DFS algorithm, new starts are already determined by the
input, since we start only once with active j-sets J and terminate the algorithm if we
have no more active j-sets. It is also clear that the degree of I in J is trivially at most
|J | = (log n)2 by (C4).

Jumps

The number of j-sets of Gdisc which intersect I in z 6 i−1 vertices is at most
(
i
z

)
∆z(Gdisc) 6(

i
z

)
εczn

j−z, where we have used (S3) with z in place of i.
Furthermore, each such j-set gives rise to at most

(
n

k−j−i+z

)
queries which would result

in a jump to I if the corresponding k-set is an edge, and thus the total number of queries
which would result in a jump to I is at most

i−1∑
z=0

(
i

z

)
εczn

j−z
(

n

k − j − i+ z

)
6 2iεci−1n

k−i,

where we used the fact that ci−1 = maxi−1
z=0 cz. Each such query gives a jump with

probability p 6 2d(k−j)!
(k−ja )nk−j , and so the expected number of jumps is at most

2i+1d(k − j)!(
k−j
a

) εci−1n
j−i �

√
n.

The Chernoff bound (Lemma 4) implies that with probability at least 1 − exp(−
√
n)

the number of jumps is at most twice its expectation, in which case, since each jump
contributes at most

(
k−j
a

)
to the degree of I in Gdisc, the total contribution is at most

2i+2d(k − j)!εci−1n
j−i.
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Pivots

For each j-set J arising from either a new start at I or a jump to I, we start a new pivot
process consisting of J and all those descendants of J which contain I. It is important to
note that, while we now have a BFS rather than a DFS process, we are still constructing
paths (albeit many simultaneously) and therefore the number of consecutive pivots at I is
at most k−i

k−j 6 k. In other words, each pivot process runs for at most k generations.
Furthermore, the number of queries made from each j set in the pivot process is at

most
(
n
k−j

)
, and therefore the expected number of pivots discovered from each j-set is

at most p
(
n
k−j

)
6 2d

(k−ja ) . Since each pivot gives rise to at most
(
k−j
a

)
many j-sets, the

expected growth factor from one generation to the next is at most 2d, and so the expected
total size of each pivot process is at most ∑k

i=0(2d)i 6 (2d)k+1.
Now since we start at most (log n)2+2i+2d(k−j)!εci−1n

j−i 6 εci
(2d)k+2n

j−i pivot processes
(the sum of the contributions from new starts and jumps), the expected total size of all
these pivot processes is at most εci

2d n
j−i �

√
n. Once again, the Chernoff bound (Lemma 4)

shows that with probability at least 1 − exp(−
√
n), the total size is at most twice this

(upper bound on the) expectation, or εci
d
nj−i.

Now the total degree is in fact precisely the total size of all the pivot processes (the new
starts and jumps simply tell us how many of these pivot processes there are), so assuming
all the high probability events above hold, the degree of I is at most εci

d
nj−i 6 εcin

j−i, as
required.

It remains to observe that the error probability was always at most exp(−
√
n), and

taking a union bound over all
(
n
i

)
= o(exp(

√
n)) choices for I completes the argument.

Now combining Claim 14, Proposition 15 and Lemma 16 immediately gives the following
corollary.

Corollary 17. Assuming that the properties of BFS Setup hold, whp stopping condi-
tion (S4) is invoked first.

6.3 Proof of Lemma 8

We can now use this corollary to prove Lemma 8.
As described above, let U, P0,J1,J2,D, {PJ : J ∈ J1,J2} be the outputs of Lemma 12.

We will assume that the high probability event of that lemma is satisfied, so we have
properties (A1)-(A5) and (B1)-(B3).

We first run the Pathbranch algorithm with input k, j,H = Hk(n, p), P0,J = J1, {PJ :
J ∈ J1} and with forbidden vertex set F1 = ∅ and forbidden j-sets Fj = D. Then (C1)
and (C6) are trivially satisfied, while Property (B3) and our choice of Fj = D ensures
that (C8) is satisfied. The remaining conditions of BFS Setup follow from our assumption
that the high probability event of Lemma 12 is satisfied.

Let A be the resulting outcome of Gdisc(t) = Zt ∪ Et at the stopping time t = Tstop.
We now aim to run the algorithm again, with J2 in place of J1. However, it is in

theory possible that all of the augmenting paths ending in a j-set of A share some common
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vertex x, and that the same happens when we construct augmenting paths at the other
end, meaning that all pairs of paths will be incompatible. Of course, intuitively this is
very unlikely. To formalise this intuition, we will make use of our ability to forbid a set F1
of vertices, which we did not need to do in the first iteration.

Let us define a heavy vertex to be a vertex which does not lie in P0, but which lies in
at least ε2(log n)5nj−1 many augmenting paths PJ , where J ∈ A (i.e. which lies in at least
a (log n)5/n proportion of the augmenting paths).

Claim 18. Whp there are at most δ2n heavy vertices.

Proof. Let q be the number of pairs (v, P ) consisting of a heavy vertex v and an augmenting
path P containing v. We will estimate q in two different ways.

By (S4), there are at most ε2nj choices for P , each of which contains at most j +
3(log n)4(k−j) 6 3k(log n)4 vertices due to (S2), and therefore certainly at most 3k(log n)4

heavy vertices v, which implies that q 6 ε2nj · 3k(log n)4.
On the other hand, letting h denote the number of heavy vertices, we have q >

h · ε2(log n)5nj−1 by the definition of a heavy vertex.
Combining these two estimates, we deduce that h 6 3kn/(log n) 6 δ2n, as required.

We now run the algorithm again, this time with input J = J2 and with F1 being
precisely the set of heavy vertices, with Fj = D ∪A and with all other inputs as before.
Note that our choice of Fj ensures that we never query a k-set which was already queried
in a previous search process (either DFS or BFS).

Most of the properties (C1)-(C7) are true for the same reason as before – we now also
need to observe that (C6) holds whp because of Claim 18, while (C7) follows from (B3)
and (S3) because ∆i(Fj) 6 ∆i(D) + ∆i(A).

Let B be the resulting outcome of Gdisc(t) = Zt ∪ Et at the stopping time. We claim
that whp P0, A and B satisfy the conditions of Lemma 8.

First, recall that P0 has length (1− δ)L1 since it was provided by Lemma 12. Next,
observe that by Corollary 17 we have |A|, |B| = ε2nj whp.

Recall that Ĵ1, Ĵ2 are the two end j-sets of P0, and we set Js := Ĵ1 and Je := Ĵ2. Recall
also that for each A ∈ A we have a path PA ending in A which was constructed during the
first application of the Pathbranch algorithm. Let us define PA,Js to be the path PA \ P0
(where for the purposes of this notation, the paths are equated with their edge sets). We
define PB,Je similarly for each B ∈ B.

Note that because of the stopping condition (S2), PA,Js has length at most 3(log n)4 6
δn/3, and therefore it is also clearly true by construction that PA,Js path-(A, δn/3)-
augments (P0, Js). Similarly, for every j-set B ∈ B the path PB,Je path-(B, δn/3)-augments
(P0, Je).

Finally, we show the trickiest of the properties, that for most pairs (A,B) ∈ A × B
the augmenting paths are disjoint. Recall that PA = {PA,Js : A ∈ A} and PB = {PB,Je :
B ∈ B} denote the sets of these augmenting paths. Recall that for each B ∈ B the
augmenting path PB,Je has length at most 3(log n)4, and therefore contains O ((log n)4)
vertices. Since we excluded heavy vertices when constructing B, any vertex in PB,Je lies in
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at most ε2(log n)5nj−1 of the paths PA, and therefore each path of PB intersects with
at most O (ε2(log n)9nj−1) = O

(
(logn)9

n
|A|

)
of the paths in PA. Therefore the number of

pairs (A,B) ∈ A× B such that the paths PA,Js , PB,Je are vertex-disjoint is at least

|B|
(

1−O
(

(log n)9

n

))
|A| > (1− ε)ε4n2j,

as required.

7 Concluding remarks

7.1 Upper bounds

In this paper we proved a lower bound (whp) on the length LC of the longest cycle in
Hk(n, p). One can obtain an upper bound (whp) on LC by applying a first moment
method. When p = dp0 for some 1 < d < ek−j, some careful but elementary calculation
gives that LC 6 (1 + o(1)) xn

k−j , where x is the unique positive solution to the equation
d

x
k−j e−x(1− x)x−1 = 1. By contrast, our lower bound is approximately 1−d−1/(k−j)

k−j · n, and
the constant factor can be seen to be strictly smaller than x

k−j for any constant d > 1.
Indeed for d very close to 1, the upper bound is approximately twice the lower bound,
and while this multiplicative gap decreases to 1− 1/e as d approaches ek−j, it does not
disappear entirely. It would be interesting to close the gap and thus determine LC precisely.

We note that when d = ek−j the unique positive solution is x = 1, corresponding to a
Hamilton cycle, and indeed this was proved to be the threshold for a Hamilton cycle by
Narayanan and Schacht [15], strengthening earlier results of Dudek and Frieze [11]. This
provides some evidence that perhaps the upper bound is the correct one. However, the
length L1, where the search process becomes subcritical, represents a natural barrier to
the constructive approach presented here, and it seems that new ideas would be required
to go beyond it.

7.2 Critical window

As observed in the introduction, the lower bound for paths proved in [4] allowed for
p = (1 +ε)p0, where ε > 0 may tend to zero sufficiently slowly. Our sprinkling argument to
close the path to a cycle would also allow this. However certain aspects of the proof were
non-optimal, meaning we are unlikely to get the best possible conditions on ε, therefore for
simplicity we did not attempt this. Nevertheless, a more careful version of the argument
might indeed provide the best possible conditions on ε, which would describe the width of
the critical window.

7.3 Further structures

It is natural to ask whether the approach used in this paper could also be applied to find
further large structures in random hypergraphs. The search process for j-tight paths is
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relatively simple because of their regular periodic nature, meaning that the algorithm
behaves identically at every step, so what other structures might also be tractable?

One structure with a similar nature is the natural analogue of the (m − k + 1)-th
power of a tight cycle of length ` in a k-uniform hypergraph, in which for some integer
m > k, every set of k vertices within an interval of length m around a cyclic ordering of `
vertices forms an edge. (The case m = k is simply a tight cycle.) Let L∗C = L∗C(n,m, k, p)
denote the length of the longest (m − k + 1)-th power of a cycle in Hk(n, p). It seems
likely that the techniques of this paper could be adapted to prove the following analogue
of Theorem 2.

Conjecture 19. Let k,m ∈ N satisfy 3 6 k 6 m− 1 and let p0 = p0(n, k,m) := n
− 1

(m−1
k−1 ) .

For any δ > 0, for any constant d > 1 and for any sequence (dn)n∈N satisfying dn → d
the following is true. Suppose that p = dnp0. Then whp

L∗C > (1− δ) ·
(

1− d−(m−1
k−1)

)
· n.

One might also consider, for example, cycles in which the size of the intersection of two
consecutive edges alternates between two different values, or any obvious generalisation
of this idea. Both for this structure and for Conjecture 19 we suspect that the main
difficulties in adapting the proof of Theorem 2 would be purely technical, but we have not
attempted this.

More generally, the idea of branching out to search many possible ways of closing a
cycle-like structure would likely be helpful whenever we are looking for a subgraph which
is both non-tree-like in the sense that some long cyclic structure exists, and non-linear in
the sense that edges intersect in more than one vertex.
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