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Abstract

Let G be an edge-colored graph on n vertices. For a vertex v, the color degree
of v in G, denoted by dc(v), is the number of colors appearing on the edges incident
with v. Denote by δc(G) = min{dc(v) : v ∈ V (G)}. By a theorem of H. Li, an
n-vertex edge-colored graph G contains a rainbow triangle if δc(G) > n+1

2 . Inspired
by this result, we consider two related questions concerning edge-colored books
and friendship subgraphs of edge-colored graphs. Let k > 2 be a positive integer.
We prove that if δc(G) > n+k−1

2 where n > 3k − 2, then G contains k rainbow

triangles sharing one common edge; and if δc(G) > n+2k−3
2 where n > 2k + 9, then

G contains k rainbow triangles sharing one common vertex. The special case k = 2
of both results improves H. Li’s theorem. The primary novelty in our proof of the
first result lies in the integration of the recent technique for identifying rainbow
cycles, which was developed by Czygrinow, Molla, Nagle, and Oursler, with certain
counting methods from Li, Ning, Shi, and Zhang [J. Graph Theory, 107(4), 2024].
The proof of the second result is facilitated by the implicit use of the machinery
underlying the work on Turán numbers for matchings, as established by Erdős and
Gallai.

Mathematics Subject Classifications: 05C15, 05C38

1 Introduction

In 1907, Mantel [25] proved that every triangle-free graph on n vertices has size at most
bn2

4
c. Rademacher (see [11, pp.91]) showed that there is not just one triangle, but indeed at

least bn
2
c triangles in a graph G on n vertices and at least n2

4
+1 edges. The k-fan (usually

called friendship graph), denoted by Fk, is a graph which consists of k triangles sharing a
common vertex. The book Bk is a graph which consists of k triangles sharing a common
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edge. Erdős [10] extended Mantel’s theorem and conjectured that there is a Bdn
6
e in G if

e(G) > n2

4
, which was later confirmed by Edwards in an unpublished manuscript [8], and

independently by Khadžiivanov and Nikiforov [20]. Erdős, Füredi, Gould, and Gunderson
[11] also studied Turán numbers of Fk, and proved that ex(n, Fk) = bn2

4
c+ k2 − k if k is

odd; and ex(n, Fk) = bn2

4
c+ k2− 3k

2
if k is even, for n > 50k2. These results immediately

imply the fact that every graph on n vertices with minimum degree at least n+1
2

contains
a Bk for n > 6k and also a Fk for n > 50k2. In this paper, we consider edge-colored
versions of these extremal problems.

A subgraph of an edge-colored graph is properly colored (rainbow) if every two adja-
cent edges (all edges) have pairwise different colors. The rainbow and properly-colored
subgraphs have been shown closely related to many graph properties and other topics,
such as classical stability results on Turán functions [27], Bermond-Thomassen Conjecture
[13], and Caccetta-Häggkvist Conjecture [1], etc. For more rainbow and properly-colored
subgraphs under Dirac-type color degree conditions, we refer to [14, 15, 9, 5, 7].

The study of rainbow triangles has a rich history, and there are many classical open
problems on them. In some classical problems, the host graph is complete. One conjecture
due to Erdős and Sós [12] asserts that the maximum number of rainbow triangles in a 3-
edge-coloring of the complete graph Kn, denoted by F (n), satisfies F (n) = F (a) +F (b) +
F (c)+F (d)+abc+abd+acd+bcd, where a+b+c+d = n and a, b, c, d are as equal as possible.
By using flag algebras, Balogh, Hu, Lidický, Pfender, Volec, and Young [2] confirmed this
conjecture for n sufficiently large and n = 4k for any k > 1. Another example is a recent
conjecture by Aharoni (see [1]), which would imply Caccetta-Häggkvist Conjecture [4],
a fundamental open problem in the theory of digraphs. Aharoni’s conjecture says that
given any positive integer r, if G is an n-vertex edge-colored graph with n color classes
and each of size at least n/r, then G contains a rainbow cycle of length at most r. For
more recent developments on Aharoni’s conjecture, we refer to the work [6, 17, 18] and
more references therein. A special case of Aharoni’s conjecture is about rainbow triangles.
The relationship between directed triangles and rainbow triangles has been extensively
used before (see [24, 21, 22]).

To illustrate this connection, we introduce a construction by Li [21]. Suppose that
D is an n-vertex digraph such that the out-degree of every vertex is at least n/3. Let
V (D) = {v1, v2, . . . , vn}. We construct an edge-colored graph G such that: V (G) = V (D);
for each arc−−→vivj ∈ A(D), we color the edge vivj with the color j. In this way, the number of
colors appearing on edges incident with vi different from i equals to d+

D(vi). Thus, finding
a directed triangle in D is equivalent to finding a rainbow triangle in such a corresponding
edge-colored graph. More importantly, the idea of constructing an auxiliary digraph will
also play a crucial role in the proofs presented in this paper.

Our theme of this paper is closely related to the color degree conditions for rainbow
triangles. Let G be an edge-colored graph. For every vertex v ∈ V (G), the color degree
of v, denoted by dcG(v) (or in short, dc(v)), is the number of distinct colors appearing on
the edges which are incident to v. The minimum color degree of G, denoted by δc(G)
(or in short, δc), equals to min{dc(v) : v ∈ V (G)}. It is an easy observation that every
graph on n vertices contains a triangle if the minimum degree is at least n+1

2
. H. Li and
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Wang [24] considered a rainbow version and conjectured that the minimum color degree
condition δc(G) > n+1

2
ensures the existence of a rainbow triangle in G. This conjecture

was confirmed by H. Li [21] and also independently by B. Li-Ning-Xu-Zhang in [22].

Theorem 1 (H. Li [21], B. Li-Ning-Xu-Zhang [22]). Let G be an edge-colored graph on n
vertices. If δc(G) > n+1

2
then G contains a rainbow triangle.

Indeed, B. Li, Ning, Xu and Zhang [22] proved a weaker condition
∑

v∈V (G) d
c(v) >

n(n+1)
2

suffices for the existence of rainbow triangles, and moreover, characterized the ex-
ceptional graphs under the condition δc(G) > n

2
. Very recently, X. Li, Ning, Shi, and

Zhang [23] established a counting version of Theorem 1. Specifically, they demonstrated
that in any edge-colored graph G, there exist at least 1

6
δc(G)(2δc(G) − n)n rainbow tri-

angles, where this bound is best possible.
Hu, Li and Yang [19] proposed the following conjecture: Let G be an edge-colored

graph on n > 3k vertices. If δc(G) > n+k
2

then G contains k vertex-disjoint rainbow
triangles. Besides the work on Turán numbers of books and k-fans mentioned before,
our other motivation is to study the converse of Hu-Li-Yang’s conjecture, i.e., rainbow
triangles sharing vertices or edges. We shall study the existence of rainbow triangles
sharing one common vertex or an edge under color degree conditions.

Our original result is the following one which improves Theorem 1. In fact, we can go
farther.

Theorem 2. Let G be an edge-colored graph on n vertices with δc(G) > n+1
2

.
(i) If n > 4 then G contains two rainbow triangles sharing one common edge.
(ii) If n > 13 then G contains two rainbow triangles sharing one common vertex.

Our main results are given as follows.

Theorem 3. Let k > 2 be a positive integer and G be an edge-colored graph on n > 3k−2
vertices. If δc(G) > n+k−1

2
then G contains k rainbow triangles sharing one edge.

Theorem 4. Let k > 2 be a positive integer and G be an edge-colored connected graph on
n > 2k + 9 vertices. If δc(G) > n+2k−3

2
then G contains k rainbow triangles only sharing

one common vertex.

Setting δc(G) = n+k−1
2

in Theorem 3, the following example shows that the bound
“n > 3k−2” is sharp. Furthermore, it follows from Example 1 that the tight color degree
should be at least δc > n+k

2
when n 6 3k − 3.

Example 1. Let G be a properly-colored balanced complete 3-partite graph G[V1, V2, V3]
with |V (G)| = 3k − 3 and |V1| = |V2| = |V3| = k − 1, where k > 1 is a positive integer.
Then for each vertex v ∈ V (G), dc(v) = d(v) = 2k − 2 = n+k−1

2
while G contains no Bk

and Fk (see Figure 1).
The main novelty of our proof of Theorem 3 is a combination of the recent new

technique for finding rainbow cycles due to Czygrinow, Molla, Nagle, and Oursler [5] and
some recent counting technique from [23]. In particular, Czygrinow et al. [5] extended
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Figure 1: An extremal graph for Theorem 3

Theorem 1 by proving that for every integer `, every edge-colored graph G on n > 432`
many vertices satisfying δc(G) > n+1

2
admits a rainbow `-cycle C`. One novel concept

introduced in [5] is the notion of a restriction color, which will be utilized in our proof.
Meantime, both Theorem 3 and Theorem 4 improve Theorem 1 as they imply Theorem

2 by setting k = 2. On the other hand, Theorem 4 slightly improves Theorem 9 in [23]
by a different method.

This paper is organized as follows. In Section 2, we introduce some necessary notations
and terminology. In Section 3, we prove some lemmas and general versions of Theorem
2, i.e., Theorems 3 and 4. We conclude this paper with some more discussions on the
sharpness of our results, together some propositions on Fk and Bk on uncolored graphs.

2 Notations

In this paper, all graphs considered are simple and connected graphs. Let G be an edge-
colored graph. Let C(G) be the set of colors appearing on E(G). For two disjoint subsets
V1, V2 ⊆ V (G), the set of colors appearing on the edges between V1 and V2 in G is denoted
by C(V1, V2). Some of our notations come from [5, 23]. For a vertex v ∈ V (G), let C(v)
be the set of colors appearing on the edges incident with v. For a color α ∈ C(G) and a
vertex v ∈ V (G), define the α-neighborhood of v as

Nα(v) = {u ∈ N(v) | c(uv) = α},

and α-neighborhood in X of v as

Nα(v,X) = {u ∈ N(v) ∩X | c(uv) = α},

where X ⊆ V (G), and N(v) is the neighborhood of v in G. Define

N!(v) =
⋃

α∈C(G)

{Nα(v) | |Nα(v)| = 1}.
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For the sake of simplicity, let dα(v) = |Nα(v)| and dα(v,X) = |Nα(v,X)|. Moreover, let
N [v] be the closed neighborhood of v in G, that is, N [v] = N(v)∪{v}. The monochromatic
degree of v, denoted by dmon(v), is the maximum number of edges incident to v colored
with a same color (i.e., dmon(v) = max{dα(v) | α ∈ C(G)}.) For a graph G, we denote the
monochromatic degree of G by ∆mon(G) = max{dmon(v) | v ∈ V (G)}.

The following concept of restriction was first introduced in [5, Section 3].

Definition 5 (Restriction color [5]). Let G be an edge-colored graph. Fix v ∈ V (G) and
X ⊆ N(v). For y ∈ V (G)\{v} and α ∈ C(E), we say (v,X) restricts color α for y if there
is some x ∈ N(y)∩X such that α = c(xy) 6= c(vx) and α /∈ C({y}, N(y) \X). Denote by
σv,X(y) the number of colors α ∈ C(E) restricted for y by (v,X).

Denote by rt(v) the number of rainbow triangles containing v; by rt(v, x) the number
of rainbow triangles containing both v and x (i.e., containing the edge vx); and rt(v,X) =∑

x∈X rt(v, x).

3 Edge-colored books and friendship graphs

According to the definition of restriction color, we have the following proposition.

Proposition 6. Let v be a vertex of G, x ∈ N(v), X = Nc(vx)(v), and Y = N(v) \ X.
Then rt(v, x) > σv,Y (x) and rt(v,X) >

∑
x∈X σv,Y (x).

Proof of Proposition 6. For y ∈ Y ∩ N(x), we have c(vx) 6= c(vy). If (v, Y ) restricts
c(xy) for x, then c(xy) 6= c(vy) and c(xy) /∈ C({x}, N(x) \ Y ), which also implies that
c(xy) 6= c(vx). Thus, vxyv is a rainbow triangle. It follows rt(v, x) > σv,Y (x) and
rt(v,X) >

∑
x∈Nc(vx)(v) σv,Y (x).

Remark 7. We say that an edge-colored graph G is edge-minimal if δc(G − e) < δc(G)
for every e ∈ E(G). In the proofs of Theorem 3 and Theorem 4, it is assumed that G is
a counterexample with e(G) as small as possible with respect to n and δc, which implies
that G − e must be a graph with δc(G − e) < δc for every e ∈ E(G), otherwise G − e is
a counterexample with a smaller size respect to n and δc than G. Moreover,such edge-
minimal graphs G do not contain monochromatic paths of length 3 or monochromatic
triangles.

The form of the following lemma is motivated by [23], but its proof is a mixture of
techniques from [5, 23].

Lemma 8. Let G be an edge-colored graph which is edge-minimal. Then for any v ∈ V (G)
and α ∈ C(v), we have,

rt(v,Nα(v)) >
∑

x∈Nα(v)

(
dc(x) + dc(v)− n

)
+ dα(v)

∑
β∈C(v)

(
dβ(v)− 1

)
− dα(v)

(
dα(v)− 1

)
−
∑

y∈N!(v)

dc(vy)(y,Nα(v)).
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Proof of Lemma 8. Fix a vertex v ∈ V (G) and α ∈ C(v). For convenience, let X = Nα(v),
Y = N(v) \X. Define a directed graph D on V (D) = X ∪ Y as follows: the arc −→yx exists
if and only if c(xy) = c(vy) for x ∈ X and y ∈ Y . Since G is edge-minimal, the
existence of ←−xy gives dc(vy)(v) = 1 and then y ∈ N!(v). (Indeed, since the arc ←−xy exists,
we have c(xy) = c(vy). If dc(vy)(v) > 2, there exists a monochromatic path of length 3, a
contradiction!) Evidently, d+

D(y) = dc(vy)(y,X). Thus,∑
x∈X

d−D(x) =
∑
y∈Y

d+
D(y) =

∑
y∈N!(v)

d+
D(y) =

∑
y∈N!(v)

dc(vy)(y,X). (1)

In addition, as for x ∈ X, there are σv,Y (x) colors that are restricted by (v, Y ) for x.
Hence, there are at most d−D(x) + σv,Y (x) colors that appear on edges from x to Y but
no edges from x to N(x) \ Y . Then there are at least dc(x)− d−D(x)− σv,Y (x) vertices in
V (G) \ (Y ∪ {x}). Therefore,

n− |Y | − 1 > dc(x)− d−D(x)− σv,Y (x)

⇒ σv,Y (x) > dc(x) + |Y |+ 1− d−D(x)− n (2)

Note that |Y | = d(v)− dα(v) =
∑

β∈C(v) dβ(v)− dα(v) = dc(v) +
∑

β∈C(v)(dβ(v)− 1)−
dα(v). According to Proposition 6 and combining Ineqs (1) and (2), we can get that

rt(v,X)

>
∑
x∈X

σv,Y (x)

>
∑
x∈X

(
dc(x) + |Y |+ 1− n

)
−

∑
y∈N!(v)

dc(vy)(y,X)

=
∑
x∈X

(
dc(x) + dc(v) +

∑
β∈C(v)

(dβ(v)− 1)− dα(v) + 1− n
)
−

∑
y∈N!(v)

dc(vy)(y,X)

>
∑
x∈X

(
dc(x) + dc(v)− n

)
+ dα(v)

( ∑
β∈C(v)

(dβ(v)− 1)
)
− dα(v)

(
dα(v)− 1

)
−

∑
y∈N!(v)

dc(vy)(y,X).

The proof is complete.

Since rt(v) = 1
2

∑
α∈C(v) rt(v,Nα(v)), we have the following corollary.

Corollary 9. Let G be an edge-colored graph which is edge-minimal. Then we have,

rt(v) >
1

2

( ∑
x∈N(v)

(
dc(x) + dc(v)− n

)
+ d(v)

( ∑
α∈C(v)

(dα(v)− 1)
)
−
∑
α∈C(v)

dα(v)(dα(v)− 1)−
∑

y∈N!(v)

dc(vy)(y,N(v))
)
.
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For each vertex v ∈ V (G) and α ∈ C(v), let

Bα(v) = dα(v)
( ∑
β∈C(v)

(
dβ(v)− 1

))
− dα(v)

(
dα(v)− 1

)
−
∑

y∈N!(v)

dc(vy)(y,Nα(v)). (3)

Then by Lemma 8,

rt(v,Nα(v)) >
∑

x∈Nα(v)

(
dc(x) + dc(v)− n

)
+Bα(v). (4)

Moveover, let α0 be the color such that dα0(v) = dmon(v). Set

B(v)

=
∑

α∈C(v)

Bα(v)

= d(v)
( ∑
α∈C(v)

(
dα(v)− 1

))
−
∑

α∈C(v)

dα(v)
(
dα(v)− 1

)
−

∑
y∈N!(v)

dc(vy)(y,N(v)).

=
(
d(v)− dmon(v)

)(
dmon(v)− 1

)
−

∑
y∈N!(v)

dc(vy)(y,N(v))

︸ ︷︷ ︸
1○

+
∑

α∈C(v)\{α0}

(
d(v)− dα(v)

)(
dα(v)− 1

)
︸ ︷︷ ︸

2○

.

(5)

Then by Corollary 9,

rt(v) >
1

2

( ∑
x∈N(v)

(
dc(x) + dc(v)− n

)
+B(v)

)
. (6)

We say an edge xy ∈ E(G) is a rainbow triangle edge of v if vxyv is a rainbow triangle.
Denote by Φ(v) the edge set of rainbow triangle edges of v.

First we prove a result on a vertex with maximum monochromatic degree, i.e., a vertex
v ∈ V (G) with dmon(v) = ∆mon(G).

Lemma 10. Let G be an edge-colored graph which is edge-minimal. Then for a vertex
v ∈ V (G) with dmon(v) = ∆mon(G) we have B(v) > 0. Let α0 be the color such that
dα0(v) = dmon(v). If ∆mon(G) > 2 and B(v) = 0 then there hold:

(a) N!(v) = N(v) \Nα0(v) and dα(v) = 1 for α ∈ C(v) \ {α0};
(b) dc(vy)(y) = dmon(y) = ∆mon(G) for all y ∈ N!(v); and
(c) if Bα0(v) = 0, then E[Nα0(v), N!(v)] ⊆ Φ(v).

Proof of Lemma 10. If ∆mon(G) = 1, then obviously B(v) = 0. Suppose that ∆mon(G) >
2. Since dc(vy)(y,N(v)) 6 ∆mon(G)− 1 = dmon(v)− 1 for all y ∈ N!(v), we have part 1○
in Eq (5) is more than or equal to 0. It guarantees that B(v) > 0.

Moreover suppose B(v) = 0 and ∆mon(G) > 2. Then the following two equalities hold.(
d(v)− dmon(v)

)(
dmon(v)− 1

)
−
∑

y∈N!(v)

dc(vy)(y,N(v)) = 0, (7)
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∑
α∈C(v)\{α0}

(
d(v)− dα(v)

)(
dα(v)− 1

)
= 0. (8)

If there exists a vertex y ∈ N!(v) such that dc(vy)(y,N(v)) < dmon(v)− 1, then
(
d(v)−

dmon(v)
)(
dmon(v)− 1

)
>
∑

y∈N!(v) dc(vy)(y,N(v)), a contradiction to Eq (7). Hence for all

y ∈ N!(v) we have dc(vy)(y,N(v)) = dmon(v)− 1, which implies that (b) holds. Then

0 = B(v) >
(
d(v)−dmon(v)−|N!(v)|

)(
dmon(v)−1

)
+

∑
α∈C(v)\{α0}

(
d(v)−dα(v)

)(
dα(v)−1

)
> 0.

Since ∆mon(G) = dmon(v) > 2, we have d(v) − dmon(v) − |N!(v)| = 0 and dα(v) = 1 for
α ∈ C(v) \ {α0}. Therefore, (a) holds.

We prove (c) in the following. Since d(v) − dc(v) = dmon(v) − 1 and dα(v) − 1 = 0
for α ∈ C(v) \ {α0} by (a), we have Bα0(v) = −

∑
y∈N!(v) dc(vy)(y,Nα0(v)) by Eq (3).

Suppose that Bα0(v) = 0. Then dc(vy)(y,Nα0(v)) = 0 for all y ∈ N!(v). Since G is edge-
minimal and dmon(v) > 2, we have α0 /∈ C(Nα0(v), N!(v)); indeed, if α0 ∈ C(Nα0(v), N!(v)),
then there exists a monochromatic path of length 3. Furthermore, for any edge xy ∈
E[Nα0(v), N!(v)], c(xy) /∈ {c(vx), c(vy)}. Thus xy is a rainbow triangle edge of v. Hence
E[Nα0(v), N!(v)] ⊆ Φ(v). This proves (c). The proof is complete.

3.1 Edge-colored books

We first give a lemma on Bk in an uncolored graph G with restriction on the standard
minimum degree δ(G).

Lemma 11. Let k > 2 be a positive integer and G be a graph on n > 3k − 2 vertices. If
δ(G) > n+k−1

2
then G contains a Bk.

Proof of Lemma 11. Suppose to the contrary that there is no Bk in G. If there exists a
vertex v ∈ V (G) with d(v) > n+k

2
, then |N(v) ∩N(u)| > dn+k

2
e+ dn+k−1

2
e − n > k where

u ∈ N(v). In this case, there is a Bk. Suppose d(v) = n+k−1
2

for all v ∈ V (G). (If n+k−1
2

is not an integer, δ(G) > n+k−1
2

guarantees that δ(G) > n+k
2

.)
Claim.

Proof. As there is no Bk in G, we have |N(v) ∩N(u)| 6 k − 1. Thus,

k − 1 > |N(v) ∩N(u)| > d(v) + d(u)− |N(v) ∪N(u)|

>
n+ k − 1

2
+
n+ k − 1

2
− n

> k − 1.

Hence |N(v)∩N(u)| = k−1 > 1 and N(u)∪N(v) = n. It follows that V (G)\N(v) ⊆ N(u)
and V (G) \N(u) ⊆ N(v).
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Let uv ∈ E(G) and w ∈ N(v) ∩ N(u). According to Claim, we have V (G) \ N(v) ⊆
N(w). Hence, V (G)\N(v) ⊆ N(u)∩N(w). Since each vertex in V (G) is of degree n+k−1

2
,

we have |V (G) \ N(v)| = n−k+1
2

. Then |N(u) ∩ N(w)| > dn−k+1
2
e > k, a contradiction.

This proves Lemma 11.

Now we are ready to prove Theorem 3.

Proof of Theorem 3. We prove the theorem by contradiction. Let G be a counterexample
such that e(G) is as small as possible respect to n and δc. By Lemma 11, we can assume
∆mon(G) > 2. By Remark 1, G is edge-minimal.

Claim 1. For any vertex v ∈ V (G) with dmon(v) = ∆mon(G), let α0 be the color such
that dα0(v) = dmon(v). Then B(v) = Bα(v) = 0 for α ∈ C(v) and rt(v, x) = k − 1 for
x ∈ N(v).

Proof. We use dα instead of dα(v) in the following. If there exists a color α ∈ C(v)
such that rt(v,Nα(v)) > (k − 1)dα + 1, then there exists a vertex x0 ∈ Nα(v) satisfying
rt(v, x0) > k, a contradiction. Thus, for all α ∈ C(v), we have

rt(v,Nα(v)) 6 (k − 1)dα 6
∑

x∈Nα(v)

(dc(x) + dc(v)− n),

where the second inequality holds as the condition that dc(x) + dc(v) > n + k − 1 due
to our assumption on δc(G) in the theorem statement. It follows that Bα(v) 6 0 for all
α ∈ C(v) by Ineq (4). Then by Lemma 10, 0 6 B(v) =

∑
α∈C(v) Bα(v) 6 0. That is,

B(v) = Bα(v) = 0 for α ∈ C(v). Then we have rt(v,Nα(v)) = (k − 1)dα for all α ∈ C(v)
and dα = 1 for α ∈ C(v) \ {α0} by (a) of Lemma 9. Since G contains no k rainbow
triangles sharing one common edge, rt(v, x) = k − 1 for all x ∈ N(v).

Let v be a vertex with dmon(v) = ∆mon(G) and Γ be the subgraph of G induced by
N [v]. Then we have the following claim.

Claim 2. dcΓ(x) 6 k for x ∈ N!(v).

Proof. For any x ∈ N!(v), since B(v) = 0, dc(vx)(x) = ∆mon(G) by b) of Lemma 10.
Thus, B(x) = Bc(vx)(x) = 0 by Claim 1 and N(x) = N!(x) ∪ Nc(vx)(x) by (a) of Lemma
9. For any vertex u ∈ N(v), if u ∈ N!(v) then uv ∈ Φ(x) as v ∈ Nc(vx)(x). Thus uvxu
is a rainbow triangle, which means that xu ∈ Φ(v). Hence for any u ∈ N(v) ∩ N(x),
u ∈ Nc(vx)(x) or xu ∈ Φ(v). Therefore,

dcΓ(x) 6 rt(v, x) + 1 = k.
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Then, we infer for x ∈ N!(v),

n+ k − 1

2
6 dc(x) 6 dcΓ(x) + |G− Γ|

6 dcΓ(x) + n−
(
∆mon(G) + dc(v)

)
6 k + n−∆mon(G)− dc(v)

6
n+ k + 1

2
−∆mon(G),

that is, ∆mon(G) = 1, a contradiction.

3.2 Edge-colored friendship graphs

The aim of this subsection is to prove Theorem 4.
A covering of a graph G is a subset K of V (G) such that every edge of G has at least

one end vertex in K. A covering K∗ is a minimum covering if G has no covering K with
|K| < |K∗|. The number of vertices in a minimum covering of G is called the covering
number of G, and is denoted by τ(G).

Lemma 12. For a graph G on n vertices, we have τ(G) 6 n − 1. Furthermore, G is
complete if and only if τ(G) = n− 1.

Proof of Lemma 12. The sufficiency of condition is clear. Now we establish its necessity.
Suppose that G is not complete. Then there exist two vertices u, v ∈ V (G) such that
uv /∈ E(G). Hence V (G) \ {u, v} is a covering of G. Thus, τ(G) 6 n− 2.

A matching in a graph is a set of pairwise disjoint edges. The matching number of a
graph G is the maximum number of pairwise disjoint edges in G, denoted by ν(G). The
Tutte-Berge Formula [26, 3] is very useful when we study the problem related to matching
number. A partition of G is a family of pairwise disjoint subsets V1, V2, . . . , Vp of V (G)
satisfying

⋃
16i6p Vi = V (G).

Definition 13. (A0-partition) Let A0 be a subset of V (G). We say (A0, A1, . . . , Ap) is a
A0-partition of G if (A0, A1, . . . , Ap) is a partition of G such that G[Ai] is a component of
G− A0 for 1 6 i 6 p.

Theorem 14 (Tutte-Berge Formula). A graph G satisfies ν(G) = s if and only if G
contains a A0-partition (A0, A1, . . . , Ap) with |Ai| odd for 1 6 i 6 p, and

s = |A0|+
p∑
i=1

|Ai| − 1

2
.

Now we will get a useful lemma which shows the relationship between the covering
number and the matching number of a graph.
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Lemma 15. Let G be a connected graph on n > 2ν(G) + 2 vertices. Then G contains a
A0-partition (A0, A1, . . . , Ap) with |Ai| odd for 1 6 i 6 p, A0 6= ∅, and

τ(G) 6 2ν(G)− |A0| 6 2ν(G)− 1.

Furthermore, if τ(G) = 2ν(G)− 1, then
(1) G[Ai] is complete for 1 6 i 6 p;
(2) τ(G) = n− p and there exists a minimum covering K of G satisfying A0 ⊆ K and

|K ∩ Ai| = |Ai| − 1 for all 1 6 i 6 p.

Proof of Lemma 15. By Tutte-Berge Formula, G contains a A0-partition (A0, A1, . . . , Ap)
with |Ai| odd for 1 6 i 6 p. By Lemma 12, we have τ(G[Ai]) 6 |Ai| − 1 for 1 6 i 6 p.

Let K be a subset of V (G) consisting of A0 and |Ai|−1 vertices in Ai for all 1 6 i 6 p.
Apparently, K is a covering of G and |K| = |A0| +

∑
16i6p(|Ai| − 1) = n − p. Since G

is a connected graph and G[Ai] is a component of G − A0, we have E[A0, Ai] 6= ∅ for
1 6 i 6 p. Then,

τ(G) 6 |K| = |A0|+
∑

16i6p

τ(G[Ai]) 6 |A0|+
∑

16i6p

(|Ai| − 1) = n− p = 2ν(G)− |A0|, (9)

where the last equality holds by Theorem 14.
If A0 = ∅, then ν(G) = n−1

2
as G is connected by Theorem 14. Then n = 2ν(G) + 1,

a contradiction. Thus A0 6= ∅. Since |A0| > 1, if τ(G) = 2ν(G)− 1, then all inequalities
become equalities in Ineq (9). Hence τ(G[Ai]) = |Ai| − 1 for all 1 6 i 6 p. From Lemma
12, G[Ai] is complete. Since τ(G) = |K| = |A0| +

∑
16i6p(|Ai| − 1), K is a minimum

covering of G.

Now we are ready to prove Theorem 4.

Proof of Theorem 4. We prove the theorem by contradiction. Let G be a counterexample
with e(G) is as small as possible respect to n and δc. Choose v ∈ V (G) such that
dmon(v) = ∆mon(G). Recall Φ(v) is the edge set of rainbow triangle edges of v. Let Γ
denote the subgraph induced by the edge set Φ(v). Then ν(Γ) 6 k − 1. By Lemma 10,
B(v) > 0 as dmon(v) = ∆mon(G). Since d(v) > 2k + 3 from the facts n > 2k + 9 and
δc > n+2k−3

2
, we have rt(v) > 1

2

∑
x∈N(v)(d

c(v) + dc(x) − n) > 4k2−9
2

by Eq (6). Thus,

e(Γ) = rt(v) >
(

2k−1
2

)
, which gives that |V (Γ)| > 2k > 2ν(Γ) + 2 and Γ is not complete.

Then by Lemma 15
τ(Γ) 6 2ν(Γ)− 1 6 2k − 3. (10)

Let ς be a color satisfying dmon(v) = dς(v). Let Y = Nς(v) if ∆mon(G) > 2, otherwise
Y = ∅.
Claim 1. For any minimum covering K of Γ, let X be a maximum rainbow neighborhood
of v in N(v) \ (K ∪ Y ), i.e., all vertices in X have a unique color to v. Set U = X ∪ Y
and T = K ∪ U . Then we have

(1) τ(Γ) = 2k − 3;
(2) For all u ∈ U , K is a rainbow neighbor set of u and c(vu) /∈ C(u,K); and
(3) dc(vu)(u) = dmon(u) = ∆mon(G) for u ∈ X and E[X, Y ] = ∅.
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Proof. We have |X| > dc(v)− τ(Γ)− 1, and

|T | > dmon(v) + dc(v)− 1. (11)

For u ∈ U , define an index q(u) which refers to the number of colors which appear on
the edges between u and K other than appear on the edges between u and U ∪{v}. That
is, q(u) := |C(u,K) \ C(u, U ∪ {v})|.

For all u ∈ U , we have

dc(u) 6 dcT∪{v}(u) + n−
∣∣T ∣∣− 1

6 dcT∪{v}(u) + n− dc(v)−∆mon(G).
(12)

Since each rainbow triangle edge of v is incident to at least one vertex in K, and X
is a rainbow neighbor set of v, for u1, u2 ∈ X or u1 ∈ X and u2 ∈ Y , if u1u2 ∈ E(G) we
have

c(u1u2) ∈ {c(vu1), c(vu2)}. (13)

Now we distinguish two cases to show that (1)-(3) hold respectively.

Case 1. ∆mon(G) = 1.
In this case, G is properly-colored and Y = ∅. By (13), G[U ] consists of isolated

vertices. Thus for u ∈ U , we have dcT∪{v}(u) = |c(uv) ∪ C({u}, K)| 6 1 + q(u). Hence by

Ineq (12), we have
dc(u) 6 1 + q(u) + n− dc(v)− 1

6 q(u) + n− dc(v).

Thus, 2k − 3 6 dc(u) + dc(v) − n 6 q(u) 6 |K| 6 2k − 3 by Ineq (10) (following from
our bound on δc(G)), which gives that q(u) =

∣∣K∣∣ = 2k − 3 for all u ∈ U . Therefore, (1)
holds in this case. According to the definition of q(u), (2) also holds in this case. Since
G[U ] consists of isolated vertices, (3) is implied straightly.

Case 2. ∆mon(G) > 2.
We can obtain an oriented graph D[X] on X as follows: orient each edge x1x2 in G[X]

by −−→x1x2 if c(x1x2) = c(vx2). Then for x ∈ X, all out-arcs from x are assigned pairwise
distinct colors which are different from c(vx), we have

|C(x,X) \ {c(vx)}| = d+
D[X](x).

Since all in-arcs for x are assigned the color c(vx), we have

dnon
G[X](x) =


d−D[X](x) if d−D[X](x) > 1

1 if d−D[X](x) = 0 and d+
D[X](x) > 1

0 otherwise

It guarantees that d−D[X](x) 6 ∆mon(G)− 1 for any x ∈ X.

Moreover for x ∈ X and y ∈ Y , c(xy) = c(vx) if xy ∈ E(G) by (13) (otherwise, there is
a monochromatic P3 as ∆mon(G) > 2, a contradiction to the fact that G is edge-minimal).
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Thus for x ∈ X, we have

dcT∪{v}(x) = |C(x,X) \ {c(vx)}|+ |C(x,K) \ C(x,X ∪ {v})|+ 1

6 d+
D[X](x) + 1 + q(x).

By Ineq (12), we have dc(x) 6 d+
D[X](x) + 1 + q(x) + n− dc(v)−∆mon(G). Hence

q(x) > dc(x) + dc(v)− n− d+
D[X](x) + ∆mon(G)− 1

> 2k − 3− d+
D[X](x) + ∆mon(G)− 1.

Since q(x) 6 |K| 6 2k − 3, we have d+
D[X](x) > ∆mon(G)− 1 for x ∈ X. It is clear that

d+
D[X](x) = d−D[X](x) = ∆mon(G)− 1,

as d−D[X](x) 6 ∆mon(G)− 1 for x ∈ X. Then q(x) = 2k − 3 for all x ∈ X.

By Ineq (12), for y ∈ Y ,

n+ 2k − 3

2
6 dc(y) 6 |Y | − 1 + |C(y,K) \ C(y, U ∪ {v})|+ 1 + n−∆mon(G)− dc(v)

6 ∆mon(G) + q(y) + n−∆mon(G)− dc(v)

6
n− 2k + 3

2
+ q(y).

(14)
Then q(y) = 2k − 3 for all y ∈ Y .

To sum up, q(u) =
∣∣K∣∣ = 2k − 3 for all u ∈ U . Note that |K| = τ(G) as seen in

Lemma 15. Therefore, (1) holds in this case.
According to the definition of q(u), K is a rainbow neighbor set of u and c(vu) /∈

C(u,K) for all u ∈ U . Then (2) holds for u ∈ U in this case.
Meanwhile d−D[X](x) = ∆mon(G) − 1 implies that dc(vx)(x) = dmon(x) = ∆mon(G) and

E[X, Y ] = ∅ as c(xy) = c(vx) if xy ∈ E(G). Hence (3) holds for this case.

Claim 2. Γ contains a A0-partition (A0, A1, . . . , Ap) with ν(Γ) = k − 1, |A0| = 1 and
p > 3.

Proof. Since V (Γ) > 2ν(Γ)+2, A0 is not empty by Lemma 15. Since 2k−3 = 2(k−1)−1 =
τ(Γ) 6 2ν(Γ)−|A0| by (1) of Claim 1 and Lemma 15, we have ν(Γ) = k−1 and |A0| = 1.
Thus τ(Γ) = 2ν(Γ) − 1, which gives that τ(Γ) = |V (Γ)| − p by (2) of Lemma 15. Then
we have p > 3.

W.l.o.g., we assume that K0 is a minimum covering satisfying (2) of Lemma 15. Let
X be a maximum rainbow neighborhood of v in N(v) \ (K0 ∪ Y ). Set U = X ∪ Y and
T = K0 ∪ U . Now we distinguish two cases.

Case 1. K0 \ A0 6= ∅. That is K0 ∩ Ai 6= ∅ for some i ∈ [p].
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For such w ∈ K0 ∩ Ai, there exists at most one vertex u′ ∈ Ai \K0, such that wu′ ∈
E(Γ) = Φ(v) as |Ai \K0| = 1. Since |X| > dc(v)−|K0|−1 > n+2|K0|−3

2
− (2k−3)−1 > 3,

there must exist one vertex u ∈ X\Ai such that c(vu) 6= c(vw). If w, v ∈ V (Γ), since w and
v are in different components of Γ−B0, we have wu /∈ E(Γ). Then c(wu) ∈ {c(vw), c(vu)}.
By (2) of Claim 1, c(wu) = c(vw). Thus, c(vw) /∈ C(v, U) as G is edge-minimal. Thus
dmon(w) > dc(vw)(w) > |U ∪ {v}| − |{u′}|. Since |U | = |T | − |K0| > dc(v) + ∆mon(G) −
1− (2k − 3) by (1) of Claim 1, we have the following inequality:

dmon(w) >
n+ 2k − 3

2
+ ∆mon(G)− (2k − 3)− 1

> ∆mon(G) + 1

as n > 2k + 1. This is a contradiction.

Case 2. K0 = A0.
Since |A0| = |{w}| = 1 and |K0| = 2k − 3 by (1) of Claim 1, we have k = 2. By

Claim 2, p > 3 implies that there exist at least three vertices u1, u2 and u3 such that
wui ∈ Φ(v) for 1 6 i 6 3. If ui ∈ X, then ui is also a vertex with dmon(u) = ∆mon(G)
by (3) of Claim 1, we have |Φ(ui)| > 2. Since vwuiv are rainbow triangles for i = 1, 2, 3.
If there exists a rainbow triangle containing vui or wui, there exist 2 rainbow triangles
sharing one common edge. Therefore there exist two rainbow triangles with exactly one
common vertex ui, a contradiction. Thus, ui ∈ Y for 1 6 i 6 3. Since E[X, Y ] = ∅ and
|X| > dc(v)−2 > n−3

2
, Y is properly colored as δc(G) > n+1

2
. Thus, u1u2u3u1 is a rainbow

triangle. Therefore there exist two rainbow triangles with exactly one common vertex ui,
a contradiction.

4 Concluding remarks

One may wonder the sharpness of Theorems 3 and 4. For Theorem 3, by Example 1, we
know when k > n

3
+ 1 (in this case, the subgraph Bk is with order Θ(n)), the color degree

guaranteeing a properly colored Bk should be larger than n+k−1
2

.
For uncolored friendship subgraphs, we first prove the following result.

Proposition 16. Let k > 2 be a positive integer and G be a graph on n > 3k−1 vertices.
If δ(G) > n+k−1

2
then G contains a Fk.

Proof of Proposition 16. We proceed the proof by induction on k. The basic case k = 2 is
easily derived from Theorem 4. Let k > 3 and suppose the result holds for k−1. Suppose
to the contrary that there is no Fk in G. Let v be the center of a Fk−1 and S = V (Fk−v).
Since δ(G) > n+k−1

2
, each edge is contained in at least k − 1 triangles. As n > 3k − 1,

there exist k vertices in N(v) \ S. According to pigeonhole principle, there exists a Fk in
N [v].

As we have already mentioned in the introduction, as corollaries of the result of Erdős
et al. [11] on k-fans and Erdős’ conjecture on books (see [10, 8, 20]), respectively, the
following results hold.
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Proposition 17. Let k > 2 be a positive integer and G be a graph on n > 50k2 vertices.
If δ(G) > n+1

2
then G contains a Fk.

Proposition 18. Let k > 2 be a positive integer and G be a graph on n > 6k vertices. If
δ(G) > n+1

2
then G contains a Bk.

So by reasoning the above results, Theorems 3 and 4 should be at least asymptotically
tight when k = o(n).

For Theorem 4, the corresponding color degree condition may be acceptable when one
considers a nearly spanning Fk. One evidence is that, if we consider the color degree
condition for the spanning Fk (that is, k = n−1

2
), then the sufficient condition is that

δc > n− 1 which equals to n+2k
2

+O(1) (see the following).

Fact 19. Let G be an edge-colored graph on n vertices where n is odd. If δc(G) > n− 1
then G contains a properly-colored Fn−1

2
.
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