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Abstract

Since the introduction of binomial edge ideals by Herzog et al. and independently
Ohtani, there has been significant interest in relating algebraic invariants of the
binomial edge ideal with combinatorial invariants of the underlying graph. Here,
we take up a question considered by Herzog and Rinaldo regarding Castelnuovo–
Mumford regularity of block graphs. To this end, we introduce a new invariant
ν(G) associated to any simple graph G, defined as the maximal total length of a
certain collection of induced paths within G subject to conditions on the induced
subgraph. We prove that for any graph G, ν(G) 6 reg(JG) − 1, and that the
length of a longest induced path of G is less than or equal to ν(G); this refines
an inequality of Matsuda and Murai. We then investigate the question: when is
ν(G) = reg(JG)−1? We prove that equality holds for closed graphs, and for bipartite
graphs G such that JG is Cohen-Macaulay. For block graphs, we prove that ν(G)
admits a combinatorial characterization independent of any auxiliary choices, and
we prove that ν(G) = reg(JG)−1. This gives reg(JG) a combinatorial interpretation
for block graphs, and thus answers the question of Herzog and Rinaldo.

Mathematics Subject Classifications: 13C70, 05E40, 13F65

1 Introduction

Castelnuovo–Mumford regularity, introduced by David Mumford in the 1960s [MB66],
is a fundamental invariant in commutative algebra and algebraic geometry that roughly
measures how complicated a module or sheaf is. It is an interesting and difficult question to
provide a combinatorial interpretation of the Castelnuovo–Mumford regularity for families
of ideals possessing an underlying combinatorial structure. One such family of ideals,
studied extensively over the past decade, is the class of binomial edge ideals JG associated
to a graphG. These were introduced by Herzog et al. [HHH+10] and independently Ohtani
[Oht11]; see Section 2 for precise definitions. There are elegant combinatorial upper
bounds for reg(JG), the Castelnuovo–Mumford regularity of the binomial edge ideal, in
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terms of: maximum number of clique disjoint edges of the graph [MMK21] and number of
vertices of the graph [KSM16]. On the other hand, Matsuda and Murai proved that the
length of a longest induced path of G gives a lower bound for reg(JG)−1 [MM13, Corollary
2.3]. More recently, [ASS24] and [JVS24] have investigated the question of giving a lower
bound on reg(JG)− 1 via the v-domination number of binomial edge ideals. Inspired by
Matsuda and Murai’s lower bound, we ask the question:

Question 1. When is it the case that
∑`

i=1|E(Pi)| 6 reg(JG) − 1 for vertex-disjoint
induced paths P1, . . . , P` of G?

Notice that the case of ` = 1 is the Matsuda–Murai lower bound. In general, an arbi-
trary choice of vertex-disjoint induced paths does not realize a lower bound for reg(JG)−1.
For instance, the complete graph on n > 2 vertices has reg(JG) = 2 yet bn

2
c vertex-disjoint

induced edges. Our observations are that (1) it is possible to label the vertices of G so
that each path Pi corresponds to a monomial in the generating set of inlex(JG) via Herzog
et al’s characterization of inlex(JG); and (2) that with restrictions on the edges appear-
ing between the Pi’s the corresponding monomials realize a regular sequence whose free
resolution is a subcomplex of the free resolution of inlex(JG). Thus, this provides a lower
bound on reg(inlex(JG)) in terms of the total number of edges appearing in the Pi. From
this lower bound on the Castelnuovo–Mumford regularity of the initial ideal, we obtain a
lower bound on the Castelnuovo–Mumford regularity for JG via Conca–Varbaro’s theorem
on the preservation of extremal Betti numbers for ideals with squarefree initial ideal. In
Section 3, we define the invariant ν(G) along these lines, and we prove the inequality

ν(G) 6 reg(JG)− 1,

(Theorem 30).
In the remainder of this paper, we take up the question of equality of ν(G) and

reg(JG)− 1. Various authors have considered the question of describing reg(JG), a purely
algebraic invariant, in terms of combinatorial properties of G. Ene and Zarojanu showed
that reg(JG) − 1 agrees with the length of the longest induced path of the graph when
G is a closed graph [EZ15]. Jayanthan and Kumar gave a combinatorial interpretation
of reg(JG) when G is bipartite and JG is Cohen–Macaulay [JK19]. The graphs having
reg(JG) 6 3 have been classified by Kiani and Saeedi Madani in [SMK12] and [SMK18].
For the computation of reg(JG) in further cases, see the survey article [MD22]. In Section
4, we show that ν(G) agrees with reg(JG) − 1 when G is a closed graph (Corollary 33),
and when G is bipartite and JG is Cohen-Macaulay (Corollary 37).

In Sections 5, 6, and 7, we take up the question of understanding reg(JG) in the case
when G is a block graph. Previously, various authors have considered the case when G is
a tree (a special case of a block graph); see, for instance, Jayanthan et al. [JNR19] and the
references therein. In [HR18], Herzog and Rinaldo studied the extremal Betti numbers of
JG when G is a block graph and obtained a combinatorial characterization for reg(JG) for
a subclass of all block graphs. The question of providing a combinatorial description of
reg(JG) when G is a block graph has remained open and was singled out by Herzog and
Rinaldo as an important open question in the theory of binomial edge ideals [HR18].
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In Section 7, we prove the main result of this paper:

Theorem 2. For a block graph G,

1. ν(G) admits a combinatorial characterization solely in terms of vertex-disjoint in-
duced paths of G that do not admit certain induced subgraphs (Theorem 51),

2. ν(G) = reg(JG)− 1 (Theorem 64).

Theorem 51 does not depend on any choice of labeling of the induced paths nor on
a choice of labeling of the block graph G. We prove Theorem 64 by adapting the theory
of Malayeri–Saeedi Madani–Kiani developed in [MMK21], where they provide a method
to check whether a function is an upper bound for reg(JG) − 1 for every graph G. This
answers the question of Herzog and Rinaldo. Moreover, this work shows that ν(G) gives
a uniform computation for reg(JG) − 1 across many of the families of graphs considered
thus far in the literature.

2 Background

2.1 Graphs

A (multi)graph G is a pair (V,E) where V is a set and the elements are called vertices and
E is a multiset of pairs of vertices {a, b}, where we possibly allow repetition of the vertices
appearing in an edge. When we wish to emphasize the vertex set (respectively edge set)
of G, we write V (G) (respectively E(G)). An element appearing in E multiple times is
called a multi-edge, and an element of E of the form {v, v} for some v ∈ V is called a
loop. A graph having no loops nor multi-edges is called a simple graph, whereas a graph
potentially having loops or multi-edges is called a multigraph. In this paper, when we
write ‘graph’ without the adjective ‘simple’ or ‘multigraph,’ we implicitly mean a simple
graph. When we wish to consider a multigraph, we explicitly state that the graph is a
multigraph. By a labeling of a set of vertices W ⊆ V , we mean a choice of an injective
map φ : W → S where S is a set of labels. When the vertices of G have been labeled by
a set possessing a total order, we utilize the notation v < w for vertices v and w to mean
that φ(v) < φ(w), where φ is the choice of labeling. By [n], we denote the set of integers
from 1 to n inclusive. By a graph G on [n], we mean that |V (G)| = n, and there is a
labeling of the vertices of G by [n].

For a vertex v ∈ V (G), we define the neighbors of v in G as the set:

NG(v) := {w | {v, w} ∈ E(G)},

and we define the degree of v in G by

degG(v) := |NG(v)|.

We recall the following graph-theoretic constructions. For further information on
the terminology introduced here, we refer the reader to [Wes96]. For a graph G and
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W ⊆ V (G), we define the induced subgraph of G on W , which we denote by IndG(W ),
as follows:

V (IndG(W )) := W

E(IndG(W )) := {{a, b} | {a, b} ∈ E(G), a ∈ W, b ∈ W}.

Given a subgraph H of G, we say that H is an induced subgraph of G if IndG(H) = H.
For a graph G and W ⊆ V (G), we define the graph GrW as follows:

V (GrW ) := V (G) rW

E(GrW ) := {{a, b} ∈ E(G) | a /∈ W, b /∈ W}.

For a connected graph G and v ∈ V (G), we say that v is a cut vertex of G if G r {v}
has strictly more connected components than G.

We recall the well-known result that being an induced subgraph is transitive.

Lemma 3. Let K be an induced subgraph of H, and H be an induced subgraph of G.
Then, K is an induced subgraph of G.

For a graph G, we define a path of G to be either: (i) a singleton vertex v having
no edges, or (ii) a sequence of vertices and edges v1, e1, v2, e2, . . . , vn−1, en−1, vn for some
n > 1 satisfying:

1. vi ∈ V (G),

2. ei ∈ E(G),

3. vi 6= vj for all i 6= j, and

4. ej = {vj, vj+1} for all 1 6 j 6 n− 1.

We denote such a path by [v1, . . . , vn]. For a path P of G and v ∈ V (P ), we say that v is
a terminal vertex of P if degP (v) = 1. We say that a vertex v ∈ V (P ) is an internal
vertex if degP (v) = 2. We denote by ∂P the set of terminal vertices of P , and we denote
by P ◦ the set of internal vertices of P .

Definition 4. Let Pi be an induced path of G for 1 6 i 6 `, and suppose that V (Pi) ∩
V (Pj) = ∅ for all 1 6 i < j 6 `. We call an edge e = {a, b} ∈ E(G) an induced edge
with respect to P1, . . . , P` if a ∈ Pi and b ∈ Pj for some 1 6 i 6= j 6 `. We denote by

PInd the induced subgraph of G on the vertices
⋃`
i=1 V (Pi). We call a vertex v ∈ V (PInd)

an internal vertex (respectively, terminal vertex) of PInd whenever v in an internal
vertex (respectively, terminal vertex) of Pi for some 1 6 i 6 `.

We recall the definition of a directed graph and a key lemma about directed acyclic
graphs.
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Definition 5. A directed graph G consists of a set of vertices V and a set of directed
edges (or arcs) A. We denote a directed edge of a graph G from the vertex v to the
vertex w (with v 6= w) by (v, w). Given a directed edge (v, w), we say that v and w
are the initial vertex and terminal vertex, respectively. We use the notation A(G) to
emphasize the set of arcs associated to G.

We write directed multigraph to indicate that repetitions of directed edges are
allowed and that directed edges having the same initial and terminal vertex are allowed.
We explicitly state when an object is a directed multigraph; otherwise, by directed graph,
we always assume that there are no loops or repetitions of directed edges.

We say that a directed (multi)graph G is directed acyclic if G does not contain
any directed cycle or any loop. A topological ordering or topological sorting of a
directed (multi)graph G is an integer labeling of the vertices of G such that whenever
(i, j) is a directed edge of G, then j < i.

Lemma 6 ([TS92, Theorem 5.13, p.118]). Let G be a directed graph. G is directed acyclic
if and only if G admits a topological sorting.

2.2 Binomial Edge Ideals

The main object of study in this paper are binomial edge ideals, introduced by Herzog et
al. [HHH+10] and Ohtani [Oht11], which associate to any simple graph a binomial ideal as
follows. For a survey of binomial edge ideals, the reader is referred to [SM16] or [MD22].

Definition 7 ([HHH+10]). Let G = (V,E) be a finite simple graph with vertex set
V labeled by {1, . . . , n} and edge set E. Fix a field K. Consider the polynomial ring
S := K[x1, . . . , xn, y1, . . . , yn], and for each edge {i, j} ∈ E with i < j define fij :=
xiyj − xjyi ∈ S. Define the binomial edge ideal of G, denoted JG, to be the ideal

JG := ({fij | {i, j} ∈ E}). (1)

In [HHH+10], the authors provided a combinatorial description for a Gröbner basis
of JG with respect to the lexicographic term order on S induced by x1 > x2 > · · · > xn >
y1 > y2 > · · · > yn. Throughout this paper, we only consider this term order on S. We
recall their result below.

Definition 8 ([HHH+10, p.6]). Let G be a simple graph on [n], and let i and j be two
vertices of G with i < j. A path on the vertices i0, i1, . . . , ir of G with i = i0 and ir = j
is called admissible if:

1. ik 6= il, for all 1 6 k 6= l 6 r,

2. for each k = 1, . . . , r − 1 one has either ik < i or ik > j,

3. for any proper subset {j1, . . . , js} of {i1, . . . , ir−1} the sequence i, j1, . . . , js, j is not
a path.
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Given such an admissible path, we define the monomial

uπ =

(∏
ik>j

xik

)(∏
il<i

yil

)
,

and we denote by mπ the monomial xiyjuπ.

Remark 9. Item 1 and Item 3 of Definition 8 establish that π is an induced path of G.

Theorem 10 ([HHH+10, Theorem 2.1]). Let G be a simple graph on [n]. Let < be the
lexicographic order on S = K[x1, . . . , xn, y1, . . . , yn] induced by x1 > x2 > · · · > xn > y1 >
y2 > · · · > yn. Then, the set of binomials

G :=
⋃
i<j

{uπfij | π is an addmissible path from i to j}

is a reduced Gröbner basis of JG.

Consequently, JG is a radical ideal [HHH+10, Corollary 2.2].

2.3 Castelnuovo–Mumford Regularity

We recall the definition of Castelnuovo–Mumford regularity of a finitely generated graded
R-module, where R is a polynomial ring. Let R := K[z1, . . . , zm] be standard graded.
Given a finitely generated graded R-module M , let

F• : 0→ Fn → Fn−1 → · · · → F1 → F0 → 0

be a minimal graded free R-resolution of M where Fi =
⊕

j∈ZR(−j)bij . The bij are the
graded Betti numbers of M , non-negative integers, and for each i, only finitely many
of the bij are non-zero. The Castelnuovo–Mumford regularity of M is defined as
follows:

reg(M) := max{j − i | bij 6= 0}. (2)

The reader is referred to [Pee11] or [BCV21] for further information regarding Castelnuovo-
Mumford regularity.

The next result of Conca and Varbaro [CV20] shows that under the assumption that
a homogeneous ideal has a squarefree initial ideal (with respect to some term order), then
the extremal Betti numbers of the ideal and of its initial ideal coincide; in particular, their
regularities coincide.

Theorem 11 ([CV20, Corollary 2.7]). Let I ⊆ R := K[z1, . . . , zm] be a homogeneous ideal
such that in(I) is square-free with respect to some term order (not necessarily lexicographic
order). Then, the extremal Betti numbers of R/I and those of R/ in(I) coincide (positions
and values). In particular, reg(R/I) = reg(R/ in(I)).
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3 The Invariant ν(G)

3.1 Definition and Motivation

It is a result of Matsuda and Murai that:

Theorem 12 ([MM13, Corollary 2.2]). If H is an induced subgraph of G, then

reg(S/JH) 6 reg(S/JG).

Theorem 12 is most often used in the form of the following corollary.

Corollary 13 ([MM13, Corollary 2.3]). Let G be a graph, then

`(G) 6 reg(S/JG)

where `(G) is the length of a longest induced path within G.

However, Theorem 12 also implies the slightly stronger result that if P1, . . . , P` are
vertex-disjoint induced paths of G having no induced edges (Definition 4), then

∑̀
i=1

|E(Pi)| 6 reg(S/JG).

It is perhaps natural to ask:

Question 14. What induced edges can we allow between vertex-disjoint induced paths
P1, . . . , P` of G while retaining the lower bound

∑̀
i=1

|E(Pi)| 6 reg(S/JG)? (3)

For example, it can be checked with Macaulay 2 [GS] that the graph G in Figure 1,
consisting of the induced paths [4, 6, 5] and [1, 3, 2] together with the induced edge {3, 4},
satisfies reg(S/JG) = 4.

3.2 Directed Oriented Induced Paths

We introduce the following definition, which provides a sufficient condition for vertex-
disjoint induced paths to satisfy equation (3).

Definition 15. Let P be an induced path of a graph G. We say that P together with
a surjection φP : {1, 2} → ∂P is an oriented induced path. We say that φP is an
orientation.

Remark 16. When an oriented path P has exactly one vertex, φP (1) = φP (2). Otherwise,
φP is a bijection. In the latter case, we think of φ as specifying a start and an end
vertex for Pi. This distinction between the terminal vertices of Pi is necessary due to the
asymmetry between the terminal vertices of admissible paths in Definition 8.
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Figure 1: DOIP Paths

Definition 17. Let P := P1, . . . , P` be vertex-disjoint induced paths of G. Let PInd

denote the induced subgraph of G on
⋃`
i=1 V (Pi). For a choice of

1. σ a permutation on the set {1, . . . , `}, and

2. orientations φi : {1, 2} → ∂Pi for 1 6 i 6 `,

we say that (P , σ, φi) are directed oriented induced paths (DOIP) if whenever σ(i) 6
σ(j) and Q is an induced path of PInd having terminal vertices φσ(i)(1) and φσ(j)(2), then
Q contains Pk as subgraph for some 1 6 k 6 `. We say that P is DOIP if there exists a
choice of σ and orientations φi such that (P , σ, φi) is DOIP.

Example 18. In Figure 1, we define the paths P1 = [1, 3, 2] and P2 = [4, 6, 5]. Then, P1

and P2 are DOIP. Indeed, we let σ = id{1,2}, and φ1(1) = 1, φ1(2) = 2, φ2(1) = 4, and
φ2(2) = 5. It is now clear that any induced path of PInd from vertex 1 to either vertex
2 or vertex 4 contains either P1 or P2. Likewise, for any induced path from vertex 4 to
vertex 5.

Remark 19. If in Example 18, we were to change σ from the identity permutation to the
transposition (2 1) while keeping P1, P2, φ1, and φ2 as in Example 18, then [4, 3, 2] is an
induced path of PInd from φσ(1)(1) to φσ(2)(2) which does not contain P1 or P2.

If in Example 18, we were to keep P1, P2, and φ1 unchanged, and we were to change
σ from the identity permutation to the transposition (2 1) and φ2 to φ2(1) = 5 and
φ2(2) = 4, then P1 and P2 are DOIP with respect to these choices.

In the next example, we demonstrate vertex-disjoint induced paths which are not
DOIP.

Example 20. We consider Figure 2. Consider the induced paths P1 = [1, 3, 2] and
P2 = [4, 6, 5] in each of the three graphs depicted in this figure. Then, P1 and P2 are
not DOIP. For each of these graphs, any pair of terminal vertices from P1 and P2 can be
connected by an induced path not containing P1 or P2. The existence of such paths is an
obstruction to the paths P1 and P2 being DOIP.

Furthermore, for the center and rightmost graphs, there is an induced path connecting
the terminal vertices of P1, which does not contain P1 nor P2. The existence of such a
path is also an obstruction to the DOIP property.

the electronic journal of combinatorics 32(3) (2025), #P3.31 8



5

6

4

2

3

1

5

6

4

2

3

1

5

6

4

2

3

1

Figure 2: Non-DOIP paths

We observe that we can find subpaths in these graphs which are DOIP; the paths
P1 = [4, 6] and P2 = [1, 3, 2] are DOIP for all of these graphs.

The notion of P1, . . . , P` being DOIP captures the idea that any induced path Q of
PInd with ∂Q ⊆

⋃`
i=1 ∂Pi, such that Q does not contain some Pk, travels from top to

bottom and from left to right. We make this idea precise using the notion of directed
acyclic graphs.

Definition 21. Let P := P1, . . . , P` be vertex-disjoint induced paths of G, let PInd be
the induced subgraph of G on

⋃`
i=1 V (Pi), and let φi : {1, 2} → ∂Pi be orientations for

1 6 i 6 `. Then, we define KPInd
to be the directed multigraph with vertex set [`], and

with a multiarc (i, j) for each induced path Q from φi(1) to φj(2) whenever 1 6 i, j 6 `
and Q does not contain Pk for every 1 6 k 6 `.

Remark 22. Up to isomorphism of multigraphs, KPInd
does not depend on the choice of

labeling σ of the paths P1, . . . , P`. However, as Example 23 illustrates, KPInd
does depend

on the choice of orientations φi.

Example 23. In Figure 3, let P1 = [1, 2] and P2 = [3, 5, 4]. Let φ1(1) = 1, φ1(2) = 2,
φ2(1) = 3, and φ2(2) = 4. Then, KPInd

is the directed multigraph on the vertex set {1, 2}
with multiarcs: (2, 1) corresponding to the induced path [3, 5, 2].

Now, let us suppose that φ1(1) = 2, φ1(2) = 1, φ2(1) = 3, and φ2(2) = 4. Then, KPInd

is the directed multigraph on the vertex set {1, 2} with multiarcs: (2, 1) corresponding to
the induced path [3, 1], and (1, 2) corresponding to the induced path [2, 5, 4].

Theorem 24. Let P := P1, . . . , P` be vertex-disjoint induced paths of G. Then, P is
DOIP if and only if there exist orientations φi : {1, 2} → ∂Pi for 1 6 i 6 ` such that the
multigraph KPInd

corresponding to these orientations is directed acyclic.

Proof. ( =⇒ ) Immediate consequence of Definition 17.
( ⇐= ) By Lemma 6, there exists an ordering of the vertices of KPInd

under which
KPInd

admits a topological sorting. Let σ be the bijection which realizes this ordering of
the vertices of KPInd

.

Corollary 25. An induced path P1 of G is DOIP.

Proof. Follows immediately from Theorem 24, since KPInd
is a singleton vertex possessing

no multiarcs.
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Figure 3: Dependence of KPInd
on Orientations

3.3 DOIP and Regularity

In this subsection, we establish that paths which are DOIP satisfy equation (3).

Definition 26. Let m ∈ S be a monomial. We define the support of m to be the
subset of variables of S which divide m. We denote by Supp(m) the support of m. For a
monomial ideal I ⊆ S and W ⊆ S any set of monomials, we define

IW := ({m ∈ I | m is a monomial and Supp(m) ⊆ W}).

Lemma 27. Let P := P1, . . . , P` be vertex-disjoint induced paths of a graph G which are
DOIP. Then, there exists a labeling of the vertices of G such that Pi with respect to this
labeling is an admissible path in the sense of Definition 8 for 1 6 i 6 `, and that

(in(JG))W = (m1, . . . ,m`). (4)

Where we denote the monomial associated to Pi in Definition 8 by mi, and we define
W :=

⋃`
i=1 Supp(mi).

Proof. We may suppose that the paths P1, . . . , P` are labeled such that (P , id[`], φi) is
DOIP. For 1 6 i 6 `, label vertex φi(1) by the integer 2i−1, and label vertex φi(2) by the
integer 2i. Label the remaining vertices of G by distinct consecutive integers larger than
2`. With respect to this labeling, the Pi are admissible for each 1 6 i 6 `. Moreover, by
Theorem 10, we have that

yj ∈ W :=
⋃̀
i=1

Supp(mi)

if and only if j = 2i for 1 6 i 6 `.
We next establish equation (4). As the reverse inclusion is clear, it suffices to prove

the forward inclusion. Let m ∈ in(JG) be a monomial such that Supp(m) ⊆ W . Then,
there exist monomials u ∈ S and m

′ ∈ in(JG), a minimal generator, such that m = u ·m′ .
As Theorem 10 gives a reduced Gröbner basis of JG, we have that m

′
= mQ for some

admissible path Q of G. As V (Q) ⊆ W , it follows, in particular, that Q is an induced
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path of PInd. In order for Supp(mQ) ⊆ W , it is necessary that one of the terminal vertices
of Q is φi(2) for some 1 6 i 6 `. In order for Q to be admissible, it is necessary that the
other terminal vertex of Q is φj(1) for some 1 6 j 6 i (because all the other vertices of
G are labeled by integers larger than 2i). Now, as P is DOIP, Definition 17 implies that
Pk is a subgraph of Q for some 1 6 k 6 `. We observe that:

1. Q does not contain Pr as a subgraph for 1 6 r < j. Otherwise, y2r−1 | mQ, but
y2r−1 /∈ W (because x2r−1 ∈ W ).

2. Q does not contain Pr as a subgraph for j < r < i. Otherwise, Q contains the
vertex 2r − 1. But 2r − 1 is strictly between the terminal vertices of Q, which are
2j − 1 and 2i, contradicting Q being admissible.

3. Q does not contain Pr as a subgraph for i < r 6 `. Otherwise, x2r | mQ, but
x2r /∈ W (because y2r ∈ W ).

It follows from these observations that j = k = i. In order for Q to:

1. contain Pk as a subgraph,

2. be admissible, and

3. have terminal vertices 2j − 1 and 2i,

it must be the case that Q = Pk. Consequently, m ∈ (m1, . . . ,m`), which completes the
proof.

Example 28. We illustrate Lemma 27 in the context of the graph in Figure 1.
Let P1 = [1, 3, 2], and P2 = [4, 6, 5]. We observe that m1 = x1x3y2 and that m2 =

x4x6y5. Hence, W = {x1, x3, x4, x6, y2, y5}. It can be checked that

in(JG) = (x5y6, x4y6, x4x6y5, x3y4, x2y3, x1y3, x1x3y2).

We see that

in(JG)W = (x4x6y5, x1x3y2).

Definition 29. Let G be a graph, we define the invariant

ν(G) := max

{∑̀
i=1

|E(Pi)| | P is DOIP

}
.

Theorem 30. Let G be a graph, then

ν(G) 6 reg(S/JG).
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Proof. It suffices to show that if P1, . . . , P` is DOIP, then

∑̀
i=1

|E(Pi)| 6 reg(S/JG).

Label the vertices of G as in Lemma 27. Since in(JG) is a squarefree monomial ideal, we
have by Theorem 11 that

reg(S/ in(JG)) = reg(S/JG).

It is well known that

reg(S/ in(JG)W ) 6 reg(S/ in(JG)).

(See, for example, [Pee11].) Lemma 27 implies that in(JG)W = (m1, . . . ,m`) is a complete
intersection. Hence,

reg(S/(m1, . . . ,m`)) =
∑̀
i=1

(deg(mi)− 1)

=
∑̀
i=1

|E(Pi)|,

which completes the proof.

We recover Matsuda and Murai’s lower bound for Castelnuovo–Mumford regularity as
a corollary.

Corollary 31 ([MM13, Corollary 2.2]). For a graph G,

`(G) 6 ν(G) 6 reg(S/JG).

Proof. Follows immediately from Corollary 25 and Theorem 30.

4 Equality of ν(G) and reg(S/JG)

In this section, we recall two families of graphs for which a combinatorial description of
the Castelnuovo–Mumford regularity of the binomial edge ideal is known. We show that
for these two families, their Castelnuovo–Mumford regularity coincide with the invariant
ν(G).
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4.1 Closed Graphs

In [HHH+10], closed graphs were introduced. A graph G is said to be closed if there
exists a labeling of the vertices such that the set

{xiyj − xjyi | {i, j} ∈ E(G)}

is a quadratic Gröbner basis of JG ([HHH+10, Theorem 1.1]). Crupi and Rinaldo showed
that closed graphs are interval graphs [CR14, Theorem 2.4]. In [EZ15], Ene and Zarojanu
computed the Castelnuovo–Mumford regularity for closed graphs.

Theorem 32 ([EZ15, Theorem 2.2]). Let G be a closed graph, then

`(G) = reg(S/JG).

Corollary 33. Let G be a closed graph, then

`(G) = ν(G) = reg(S/JG).

Proof. Corollary 25 and Theorem 30 imply that

`(G) 6 ν(G) 6 reg(R/JG).

Equality throughout now follows from Theorem 32.

4.2 Cohen–Macaulay Bipartite Graphs

In [BMS18], the authors study when the binomial edge ideal of a bipartite graph is
unmixed, and they give a combinatorial characterization of when the binomial edge ideal
of a bipartite graph is Cohen–Macaulay. Using this characterization of Cohen–Macaulay
binomial edge ideals of bipartite graphs, Jayanthan and Kumar computed the regularity
for this family of graphs [JK19, Theorem 4.7]. We now recall this characterization of
Cohen–Macaulay binomial edge ideals of bipartite graphs (we use the notation from both
[BMS18] and [JK19]).

Definition 34 ([BMS18, p.2]). For every m > 1, let Fm be the graph on the vertex set
[2m] and with edge set

E(Fm) := {(2i, 2j − 1)} | i = 1, . . . ,m, j = i, . . . ,m}.

The operation ∗: For i = 1, 2, let Gi be a graph having at least one vertex fi of degree
one. We define (G1, f1) ∗ (G2, f2) to be the graph obtained by identifying the vertices f1
and f2.

The operation ◦: For i = 1, 2, let Gi be a graph with at least one vertex fi of degree
one, and let vi be its neighbor, and we assume that degGi

(vi) > 3. We define (G1, f1) ◦
(G2, f2) to be the graph obtained from G1 and G2 by deleting the vertices f1, f2 and
identifying the vertices v1 and v2.
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Figure 4: Fm, m 6 4

Figure 4 depicts Fi for 1 6 i 6 4. Example 38 and Figure 5 includes a concrete
description and illustration of these operations ∗ and ◦ for a particular bipartite graph G.

Theorem 35 ([BMS18, Theorem 6.1]). Let G be a connected bipartite graph. The fol-
lowing properties are equivalent:

1. JG is Cohen–Macaulay,

2. There exists s > 1 such that G = G1 ∗ · · · ∗Gs, where Gi = Fni
or

Gi = Fmi,1
◦ · · · ◦ Fmi,ti

, for some ni > 1 and mi,j > 3 for each j = 1, . . . , ti.

With the decomposition of G as in Theorem 35, define the following:

A = {i ∈ [s] | Gi = Fni
, ni > 2},

B = {i ∈ [s] | Gi = Fni
, ni = 1}, and

C = {i ∈ [s] | Gi = Fmi,1
◦ · · ·Fmi,ti

, ti > 2}.

For each i ∈ C, let

Ci = {j ∈ {2, . . . , ti − 1} | mi,j > 4} ∪ {1, ti}, and

C
′

i = {j ∈ {2, . . . , ti − 1} | mi,j = 3}.

Set α = |A|+
∑

i∈C |Ci| and β = |B|+
∑

i∈C |C
′
i |.

Theorem 36 ([JK19, Theorem 4.7]). Let G = G1∗· · ·∗Gs be a Cohen–Macaulay connected
bipartite graph. Let α and β be defined as above, then reg(S/JG) = 3α + β.

Corollary 37. Let G = G1 ∗ · · · ∗ Gs be a Cohen–Macaulay connected bipartite graph.
Then, ν(G) = reg(S/JG).

Proof. For convenience of the proof we assume that the vertices of each Gi are labeled by
the integers 1 through |V (Gi)|. For 1 6 i 6 s, we construct a path Pi inside Gi as follows:

1. If i ∈ A, let Pi be the path [1, 2, 3, 4] on Gi,

2. If i ∈ B, let Pi be the path [1, 2] on Gi,
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3. Suppose i ∈ C and that Gi = Fmi,1
◦ · · ·Fmi,ti

, ti > 2. For 1 6 j 6 mi,ti construct a
path Pi,j inside Fmi,j

as follows:

(a) If j = 1, let Pi,j be the path [1, 2, 3, 4] on Fmi,1
.

(b) If j = ti, let Pi,j be the path [2 ·mi,ti − 3, 2 ·mi,ti − 2, 2 ·mi,ti − 1, 2 ·mi,ti ] on
Fmi,ti

.

(c) If j ∈ Ci r {1, ti}, let Pi,j be the path [3, 4, 5, 6] on Fmi,j
.

(d) If j ∈ C ′i , let Pi,j be the path [3, 4] on Fmi,j
.

Put Pi =
⋃mi,ti
j=1 Pi,j.

We define P as
⋃s
i=1 Pi and PInd as the induced subgraph of G on V (P ). The construction

of the Pi yields that for 1 6 i 6 s−1, either Pi and Pi+1 share a terminal vertex or there is
no induced edge between Pi and Pi+1. The construction of G via Definition 34 implies that
there are no edges between V (Gi) and V (Gj) whenever |i− j| > 1. Hence, in particular,
Pi and Pj have no induced edge whenever |i − j| > 1. It follows that PInd is a disjoint
union of induced paths. Hence, in particular, P is DOIP. Thus,

3α + β =
s∑
i=1

|E(Pi)| (by construction of the Pi)

6 ν(G) (P is DOIP)

6 reg(S/JG) (Theorem 30)

= 3α + β. (Theorem 36)

Example 38. We consider the Cohen–Macaulay bipartite graph G = G1 ∗G2 ∗G3 where
G1 = (F3 ◦ F4 ◦ F3 ◦ F4), G2 = F1, and G3 = F4. We illustrate the construction of P in
the proof of Corollary 37 via Figure 5. The graph G1 is constructed by identifying:

1. vertex 5 of subfigure 5a with vertex 2 of subfigure 5b,

2. vertex 7 of subfigure 5b with vertex 2 of subfigure 5c,

3. vertex 5 of subfigure 5c with vertex 2 of subfigure 5d.

The graph G is constructed from G1, G2, and G3 by identifying:

1. vertex 8 of subfigure 5d with vertex 1 of Figure 5e,

2. vertex 2 of Figure 5e with vertex 1 of Figure 5f.

The proof of Corollary 37 yields that:

1. for G1, we have that P1,1 = [1, 2, 3, 4], P1,2 = [3, 4, 5, 6], P1,3 = [3, 4], and P1,4 =
[5, 6, 7, 8]. Then, P1 is the disjoint union of these paths in G1.

2. for G2, we have that P2 = [1, 2], and
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Figure 5: Construction of G from G1, G2, and G3

3. for G3, we have that P3 = [1, 2, 3, 4].

It follows that P :=
⋃`
i=1 Pi consists of four vertex-disjoint induced paths. (In the gluing

step, terminal vertices of P1,4, P2, and P3 coincide. These paths concatenate in the
construction of G.) As mentioned in the proof, all four of these vertex-disjoint induced
paths contain no induced edges between themselves.

5 Preliminaries on Block Graphs

In this section, we recall the definition and some elementary properties of block graphs.
All of the results in this section are well-known to experts. However, lacking a reference
for these results, we present their proofs for completeness.

Recall the definition of a block graph.

Definition 39 (Block Graph). A graph G is biconnected if G is connected and Gr v
is connected for every v ∈ V (G). G is a clique or a complete graph if for every pair of
distinct vertices v and w in V (G), {v, w} ∈ E(G). A subgraph B of G is a block of G
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if B is a maximal biconnected component of G with respect to inclusion. A graph G is a
block graph if every block of G is a complete graph. Block graphs are also referred to
in the literature as a tree of cliques.

We recall the following well-known properties of block graphs.

Lemma 40. Let G be a block graph. If H is an induced subgraph of G, then H is a block
graph.

Lemma 41. Let G be a connected block graph. Let v and w be distinct vertices of G.
There is a unique shortest path in G connecting v and w, and this shortest path is an
induced path in G.

Lemma 42. Let G be a block graph. Let Q be an induced path in G. Then, every cycle
of G contains no more than one edge of Q.

Proof. Suppose by contradiction that there exists a cycle, C of G, which contains two or
more edges of Q. Since G is a block graph, C induces a complete subgraph of G which
would contradict Q being induced.

Lemma 43. Let Q = [v1, . . . , vr] and R = [w1, . . . , ws] be induced paths of a block graph
which intersect non-trivially. Then, Q ∩ R is connected. Moreover, there is a unique
decomposition Q = Q1 ∗ γ ∗Q2 and R = R1 ∗ γ ∗R2 where Qi (respectively Ri) is possibly
a singleton vertex of Q (respectively R) for i = 1, 2, and γ = Q ∩R.

Proof. Let v and w be vertices of Q ∩ R. Let [v, w] |Q and [v, w] |R be the subpaths of
Q and R from v to w. These are induced subpaths of Q and R, respectively, and hence
are induced paths of G, by Lemma 3. Lemma 41 implies that these are the same path.
Thus, Q ∩R is connected.

Lemma 44. Let R1 = [w1, . . . , ws] and R2 = [w
′
1, . . . , w

′
t] be disjoint induced paths of

a block graph, and Q = [v1, . . . , vr] be an induced path of a block graph. Suppose that
v1 = w1 and vr = w

′
t. Then, there is a unique decomposition of Q as Q1 ∗ γ ∗ Q2 where

Qi is a subpath of Ri for i = 1, 2, and γ ∩Ri is a vertex for i = 1, 2.

Proof. Apply Lemma 43 to R1 and Q. Because R1 ∩ Q contains v1, Q = γ
′ ∗ Q′2, where

γ
′
:= R1∩Q and Q

′
2 intersects R1 at a vertex. Because R1 and R2 are disjoint, Q

′
2 contains

w
′
t. Apply Lemma 43 to R2 and Q

′
2. Then, Q

′
2 = Q

′′
1 ∗ γ

′′
where γ

′′
:= R2 ∩ Q

′
2 and Q

′′
1

intersects R2 at a vertex. Put Q1 := γ
′
, γ := Q

′′
1 , and Q2 := γ

′′
. Then, Q = Q1∗γ∗Q2.

6 Combinatorial Characterization of DOIP Paths
in Block Graphs

In this section, we give several equivalent combinatorial formulations for vertex-disjoint
paths of a block graph G to be DOIP, which are in terms of forbidden subgraphs of PInd.
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6.1 Forbidden Subgraphs

Let G be a block graph, and let P := P1, . . . , P` be vertex-disjoint induced oriented paths
of G.

Definition 45. Let Q be an oriented induced path of PInd with orientation φQ. We denote
by Q0 := φQ(1) and Qr := φQ(2). We say that Q is a strand of PInd from Pi to Pj, with
i 6= j, if:

1. Q0 6= φi(2),

2. Qr 6= φj(1),

3. V (Q) ∩ V (Pi) = {Q0},

4. V (Q) ∩ V (Pj) = {Qr},

5. Q does not contain Pk for any 1 6 k 6 `,

We say that Q is an internal strand if Q is a strand from Pi to Pj and, in addition,
Q0 ∈ P ◦i and Qr ∈ P ◦j .

In Definition 45, conditions (1) and (2) are automatically satisfied whenever H is an
internal strand. The motivation for Definition 45 is to relate strands and arcs of KPInd

.

Definition 46. Let i and j be distinct integers belonging to [`], a a vertex belonging to
V (Pi) r {φi(2)}, and b and c distinct vertices belonging to V (Pj). Let Q be an oriented
induced path with orientation φQ satisfying:

1. φQ(1) = a,

2. V (Q) ∩ V (Pi) = {a},

3. V (Q) ∩ V (Pj) = ∅,

4. φQ(2) is adjacent to b and c in PInd,

5. Q does not contain Pk for any 1 6 k 6 `.

We define the subgraph H of PInd as follows:

V (H) := V (Q) ∪ {b, c}
E(H) := E(Q) ∪ {{φQ(2), b}, {φQ(2), c}}.

We say that H is a fork of PInd from Pi to Pj. We say that H is an internal fork of
PInd from Pi to Pj if, in addition, a ∈ P ◦i .

For a vertex v ∈ H, we say that v is a terminal vertex of H if v ∈ {a, b, c}; otherwise,
we say that v is an internal vertex.
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In Definition 46, the requirement that a ∈ V (Pi) r {φi(2)} is automatically satisfied
whenever H is an internal fork. Furthermore, in this setting, Lemma 42 implies that
{b, c} ∈ E(PInd).

Definition 47. Let i and j be distinct integers belonging to [`], a and b distinct vertices
of V (Pi), and c and d distinct vertices belonging to V (Pj). Let Q be an oriented induced
path with orientation φQ satisfying:

1. φQ(1) is adjacent to a and b in PInd,

2. φQ(2) is adjacent to c and d in PInd,

3. V (Q) ∩ V (Pi) = ∅,

4. V (Q) ∩ V (Pj) = ∅,

5. Q does not contain Pk for any 1 6 k 6 `.

We define the subgraph H of PInd as follows:

V (H) := V (Q) ∪ {a, b, c, d}
E(H) := E(Q) ∪ {{φQ(1), a}, {φQ(1), b}, {φQ(2), c}, {φQ(2), d}}.

We say that H is a double fork of PInd from Pi to Pj.
For a vertex v ∈ H, we say that v is a terminal vertex of H if v ∈ {a, b, c, d};

otherwise, we say that v is an internal vertex.

Definition 48. Let i and j be distinct integers belonging to [`], a and b distinct vertices
of V (Pi), and c and d distinct vertices belonging to V (Pj). Let H denote the induced
subgraph on {a, b, c, d}. We say that H is a complete ladder if H is a complete graph.

Remark 49. We observe that in Definition 48, a complete ladder is K4, the complete graph
on 4 vertices. However, not every K4 in PInd is a complete ladder. For example, a K4

whose vertices are terminal vertices of distinct Pi would not be a complete ladder, nor
would it realize an internal strand, an internal fork, or a double fork.

Example 50. Let G be the graph in Figure 6. We observe that G is a block graph. We
consider the vertex-disjoint induced paths

P1 := [1, 2, 3] P2 := [4, 5, 6] P3 := [7, 8]

P4 := [9, 10, 11] P5 := [12, 13] P6 := [14, 15, 16] P7 := [17, 18]

P8 := [19, 20] P9 := [21, 22, 23] P10 := [24, 25, 26] P11 := [27, 28, 29].

For 1 6 i 6 11, we define the orientation φi such that φi(1) < φi(2). We present some
subgraphs of G that illustrate Definitions 45, 46, 47, and 48.

1. (Internal) Strand:
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(a) Q = [2, 5] is an (internal) strand from P1 to P2, φQ(1) = 2, and φQ(2) = 5,

(b) [5, 10, 11, 13, 15] is an (internal) strand from P2 to P6.

(c) [5, 2] is a strand from P2 to P1,

(d) [17, 20] is a strand from P7 to P8,

(e) [2, 5, 10, 11, 13, 15, 18, 19, 21, 25, 28] is an internal strand from P1 to P11.

2. (Internal) Fork: (we just list the vertices of the fork)

(a) {7, 8, 9} is a fork from P4 to P3, Q = [9] is the singleton path,

(b) {7, 8, 9, 10, 5} is an internal fork from P2 to P3, Q = [5, 10, 9], φQ(1) = 5,
φQ(2) = 9,

(c) {17, 18, 19, 21} is a fork from P9 to P7,

(d) {22, 25, 27, 28} is an internal fork from P9 to P11.

3. Double Fork: (we just list the vertices of the double fork)

(a) {21, 22, 25, 27, 28} is a double fork, Q = [25] is a singleton path,

(b) {17, 18, 19, 21, 25, 27, 28} is a double fork, Q = [19, 21, 25], φQ(1) = 19, φQ(2) =
25.

4. Complete Ladder: (we just list the vertices of the double fork)

(a) {17, 18, 19, 20} is a complete ladder.

We next present examples of subgraphs of G that do not satisfy the requirements of
Definitions 45, 46, 47, and 48.

1. Not strands:

(a) [8, 9, 10, 5] is not a strand from P3 to P2 because φQ(1) = 8 = φ3(2),

(b) [7, 9] is not a strand from P3 to P4 because φQ(2) = 9 = φ4(1),

(c) [8, 9] is not a strand from P3 to P4 (same reason), but it is a strand from P4 to
P3,

(d) [1, 2, 5] is not a strand from P1 to P2 because Q violates condition (3) of Defi-
nition 45,

(e) [7, 9, 10, 11, 13] is not a strand from P3 to P5 because Q contains P4.

2. Not forks: (we just list the vertices under consideration)

(a) {12, 13, 15, 18} is not a fork because φQ(1) = 18 = φ7(2),

(b) {2, 3, 5, 4} is not a fork because it violates condition (2) of Definition 46,

(c) {7, 8, 9, 10, 11, 13, 15} is not a fork from P6 to P3 because Q contains P4.
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Figure 6: Block Graph

3. Not double forks: (we just list the vertices under consideration)

(a) {7, 8, 9, 10, 11, 13, 15, 18, 19, 20} is not a double fork because
Q = [9, 10, 11, 13, 14, 18] contains P4.

6.2 DOIP Property for Paths and Forbidden Subgraphs

The main result of this subsection is the following theorem, which gives a combinatorial
characterization when P = P1, . . . , P`, vertex-disjoint induced paths of a block graph,
are DOIP. This characterization does not refer to the labeling of the paths, σ, or to the
orientations of the paths Pi. In the subsequent section, we leverage this theorem to prove
the equality of ν(G) and reg(S/JG) for block graphs.

Theorem 51. Let G be a block graph, and let P := P1, . . . , P` be vertex-disjoint induced
paths of G. The following statements are equivalent:

1. P is DOIP for any choice of orientations φi, 1 6 i 6 `,

2. PInd does not contain an internal strand, an internal fork, a double fork, or a com-
plete ladder as subgraphs.

The idea for the proof of Theorem 51 is as follows: For (1) implies (2), we show that
if PInd contains an internal strand, an internal fork, a double fork, or a complete ladder
as a subgraph, then KPInd

contains a directed two cycle. For (2) implies (1), it suffices
to show that KPInd

is directed acyclic. We would like to say that if KPInd
has a directed

cycle, then the paths realizing this directed cycle of KPInd
would realize a large cycle in

G. This would lead to complications, since the induced subgraph on the vertices of any
cycle in a block graph is a complete graph. The difficulty is that the paths realizing the
directed cycle of KPInd

may a priori intersect each other, thwarting this hope. However,
our observation is that if these paths intersect, then they introduce an internal strand, an
internal fork, a double fork, or a complete ladder as a subgraph in G.

We begin by showing that KPInd
is a simple multigraph for any block graph.
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Proposition 52. Let P := P1, . . . , P` be vertex-disjoint induced oriented paths of a block
graph G. Then, KPInd

has no loops or multiarcs, i.e., KPInd
is a (simple) directed graph.

Proof. Suppose by contradiction that KPInd
has a loop or a multiarc. If KPInd

has a loop,
then there is an oriented induced path Q of G such that φQ(1) = φi(1) and φQ(2) = φi(2)
for some 1 6 i 6 `. If KPInd

has a multiarc, then there are oriented induced paths Q1 and
Q2 of G such that φQ1(j) = φQ2(j) for j = 1, 2. Lemma 43 implies that the intersection
of any two induced paths of a block graph consists of exactly one connected component.
The only way that two induced paths can have the same terminal vertices is if they are
the same path. Thus, Q = Pi and Q1 = Q2, a contradiction.

The following proposition connects arcs of KPInd
to strands of PInd.

Proposition 53. KPInd
contains the arc (i, j) if and only if PInd contains a strand from

Pi to Pj.

Proof. ( =⇒ ) There exists an induced path Q from φi(1) to φj(2) realizing the arc (i, j)
of KPInd

. Lemma 44 applied to Q, Pi, and Pj implies that Q = Q1 ∗ γ ∗Q2. Then, γ is a
strand from Pi to Pj.

( ⇐= ) Let Q be a strand from Pi to Pj. Let Ri (respectively, Rj) be the subpath of
Pi (respectively, from Pj) from φi(1) to φQ(1) (respectively, φQ(2) to φj(2)). Let T be
the induced path from φi(1) to φj(2). In order to show that T realizes the arc (i, j) of
KPInd

, it suffices to show that T does not contain Pk for 1 6 k 6 `. We observe that since
Ri ∗Q ∗Rj is a path from φi(1) to φj(2), we have that

V (T ) ⊆ Ri ∗Q ∗Rj

⊆ (V (Pi) r {φi(2)}) ∪ V (Q) ∪ (V (Pj) r {φj(1)}) .

We observe that

1. V (Pi) 6⊆ V (T ) because φi(2) /∈ V (Q), as Q is a strand,

2. V (Pj) 6⊆ V (T ) because φj(1) /∈ V (Q), as Q is a strand,

3. V (Pk) 6⊆ V (T ) for k ∈ [`] r {i, j}; otherwise, V (Pk) ⊆ V (Q) (since the Pi are
vertex-disjoint), which is impossible because Q is a strand.

The next result establishes that (1) implies (2) of Theorem 51.

Corollary 54. Let P := P1, . . . , P` be vertex-disjoint oriented induced paths of a block
graph G. Then, PInd contains an internal strand, an internal fork, a double fork, or a
complete ladder if and only if KPInd

has a directed cycle of length two.

Proof. ( =⇒ ) Proposition 53 implies that it suffices to construct a strand from Pi to Pj
and a strand from Pj to Pi whenever PInd contains one of the graphs in question.

If Q is an internal strand from Pi to Pj, then it is clear that Q is a strand from Pi to
Pj and vice versa.
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Let H be an internal fork from Pi to Pj. Without loss of generality, we may suppose
that b 6= φj(2) and that c 6= φj(1). Then, Q ∗ [φQ(2), c] is a strand from Pi to Pj, and
[b, φQ(2)] ∗Q is a strand from Pj to Pi.

Let H be a double fork from Pi to Pj. Without loss of generality, we may suppose
that a 6= φi(2), b 6= φi(1), c 6= φj(2), and d 6= φj(1). Then, [a, φQ(1)] ∗ Q ∗ [φQ(2), d] is a
strand from Pi to Pj, and [c, φQ(2)] ∗Q ∗ [φQ(1), b] is a strand from Pj to Pi.

Suppose that H is a complete ladder. Without loss of generality, we may suppose that
a (respectively, c) is closer to φi(1) (respectively, φj(1)) than b (respectively, d). Then,
[a, d] is a strand from Pi to Pj, and [c, b] is a strand from Pj to Pi.

(⇐= ) Suppose that KPInd
has a directed cycle of length two; then there exist induced

paths Q1 and Q2 of PInd realizing this directed cycle. Without loss of generality, we may
suppose that Q1 (respectively, Q2) realizes the arc (1, 2) (respectively, (2, 1)). Lemma
44 implies that Qi = Qi,1 ∗ γi ∗ Qi,2 for i = 1, 2 where Qi,1 is a subpath of P1 and Qi,2

is a subpath of P2. Let a (respectively b) be the terminal vertex of γ1 (respectively γ2)
contained in P1. Let c (respectively d) be the terminal vertex of γ1 (respectively γ2)
contained in P2. We denote the subpath of P1 (respectively P2) having terminal vertices
a and b (respectively c and d) by [a, b] (respectively [c, d]).

Case 1. Suppose that V (γ1) ∩ V (γ2) = ∅. Then, a, b, c, and d are distinct vertices,
and

[a, b] ∗ γ2 ∗ [d, c] ∗ γ1

is a cycle. Since G is a block graph, the induced subgraph on {a, b, c, d} is a complete
graph. Thus, PInd contains a complete ladder.

Case 2. Refer to Figure 7 for this case. Suppose that V (γ1) ∩ V (γ2) 6= ∅. Lemma 44
applied to γ1 and γ2 implies that there is a decomposition γi = µi,1 ∗ ω ∗ µi,2 where µi,1
intersects P1 and µi,2 intersects P2 for i = 1, 2.

When a = b and c = d, ω is an internal path. When a = b and c 6= d, the subgraph of
PInd having vertices V (ω) ∪ {c, d} and edges E(ω) ∪E(µ1,2) ∪E(µ2,2) is an internal fork.
When a 6= b and c 6= d, the subgraph of PInd having vertices V (ω) ∪ {a, b, c, d} and edges
E(ω) ∪ E(µ1,1) ∪ E(µ1,2) ∪ E(µ2,1) ∪ E(µ2,2) is a double fork.

The following lemmas will help us control the intersection of strands.

Lemma 55. If γ is a strand from Pi to Pk and V (γ)∩V (Pj) 6= ∅ for some j ∈ [`]r{i, k},
then KPInd

contains the arc (i, j) or the arc (j, k).

Proof. By Lemma 43, we can write γ as γ1 ∗ω ∗ γ2 where V (γn)∩ V (Pj) = {vn} for some
vertices vn for n = 1, 2, ω is a subpath of Pj, V (γ1)∩V (Pi) 6= ∅, and V (γ2)∩V (Pk) 6= ∅.
If v1 6= φj(1), then γ1 is a strand from Pi to Pj. If v2 6= φj(2), then γ2 is a strand from Pj
to Pk. It cannot be the case that both v1 = φj(1) and v2 = φj(2), as γ does not contain
Pj.

Proposition 56. Suppose that PInd does not contain an internal strand, an internal fork,
a double fork, or a complete ladder. Let γ1 be a strand from Pa to Pb, and γ2 be a strand
from Pb to Pc. If V (γ1) ∩ V (γ2) 6= ∅, then KPInd

contains the arc (a, c).
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Figure 7: Illustration for Corollary 54

Proof. For this proof, refer to Figure 8. If V (γ1) ∩ V (Pc) 6= ∅, then Lemma 55 implies
that (a, c) or (c, b) is an arc of KPInd

. Corollary 54 implies that (c, b) cannot be an arc
of KPInd

. Likewise, it is shown that if V (γ2) ∩ V (Pa) 6= ∅, then (a, c) is an arc of KPInd
.

Thus, we may assume that V (γ1) ∩ V (Pc) = ∅ and that V (γ2) ∩ V (Pa) = ∅. Lemma 44
implies that there is a decomposition

γi = µi,1 ∗ ω ∗ µi,2,

where µi,j is determined by the condition of containing the vertex φγi(j) for 1 6 i, j 6 2.
We denote the intersection of µ2,1 (respectively, µ1,2) with Pb by the vertex t (respectively,
s). We denote the vertex that is the intersection of µ2,1 and µ1,2 by r, and we denote the
vertex which is the intersection of µ1,1 and µ2,2 by v. We denote the vertices belonging to
µ1,1 and µ2,2 and adjacent to v by u and w, respectively. We observe that either r = s = t
(in which case r is an internal vertex of Pb), or the induced subgraph on {r, s, t} is a
complete graph (by Lemma 42). We consider the path Q = µ1,1 ∗µ2,2. We observe that Q
is not an induced subpath of PInd if and only if {u,w} ∈ E(PInd) (by Lemma 42). Let Q̃
denote the induced subpath of Q. We show that Q̃ does not contain Pk for any 1 6 k 6 `.
Otherwise, it would follow that Q̃ is a strand from Pa to Pc, and the result would follow
from Proposition 53.

Suppose by contradiction that Q̃ contains Pk for some 1 6 k 6 `. Since γ1 does not
intersect Pc and γ2 does not intersect Pa, it follows that Q̃ does not contain Pa or Pc.

Case 1. Suppose that Q̃ = Q is an induced path. Then, v is an internal vertex of Pk;
otherwise, Pk would be properly contained in either µ1,1 or in µ2,2, which would contradict
γ1 and γ2 being strands. When s 6= t, the subgraph having vertices V (ω) ∪ {s, t} and
edges E(ω)∪{{r, s}, {r, t}} is an internal fork. When s = t, the subgraph having vertices
V (ω) ∪ {s} and edges E(ω) ∪ {{r, s}} is an internal strand.

Case 2. Suppose that Q̃ 6= Q. Then, Q̃ contains the edge {u,w}. Moreover, Pk contains
the edge {u,w}, since Pk is not contained in γ1 or γ2. It follows that there is a subgraph
H with V (H) ⊆ V (ω) ∪ {u,w} ∪ {s, t} and with E(H) ⊆ E(ω) ∪ {{u, v}, {r, s}, {r, t}},
which is an internal strand, an internal fork, or a double fork.
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Proposition 57. Suppose that PInd does not contain an internal strand, an internal fork,
a double fork, or a complete ladder. Let γ1 be a strand from Pa to Pb, and γ2 be a strand
from Pc to Pd where a, b, c, d ∈ [`] are distinct. If V (γ1)∩V (γ2) 6= ∅, then KPInd

contains
at least one of the arcs (a, c), (a, d), (b, d), (c, a), (c, b), (d, a), or (d, b).

If, in addition V (γ1)∩V (Pi) = ∅ for i ∈ {c, d} and V (γ2)∩V (Pj) = ∅ for j ∈ {a, b},
then KPInd

contains the arc (a, d) or the arc (c, b).

Proof. For this proof, refer to Figure 9. By Proposition 55, we may assume that V (γ1) ∩
Pi = ∅ for i ∈ {c, d} and V (γ2)∩Pi = ∅ for i ∈ {a, b}. Lemma 44 implies that there is a
decomposition

γi = µi,1 ∗ ω ∗ µi,2,

where µi,j is determined by the condition of containing the vertex φγi(j) for 1 6 i, j 6 2.
Case 1. Suppose that V (µ1,1) ∩ V (µ2,2) 6= ∅. Then, we have that V (µ1,1) ∩ V (µ2,2) =

{v} and that V (µ1,2) ∩ V (µ2,1) = r. (When |V (ω)| = 1, we have that v = r.) We denote
by u and t the vertices of µ1,1 and µ2,2, respectively, which are adjacent to v. We denote
by s and w the vertices of µ1,2 and µ2,1, respectively, which are adjacent to r. We denote
by Q1 and Q2 the paths µ1,1 ∗ µ2,2 and µ2,1 ∗ µ1,2, respectively. The paths Q1 and Q2

are not an induced path if and only if {u, t} and {w, s} are induced edges of Q1 and Q2,
respectively. Let Q̃1 and Q̃2 denote the induced subpath of PInd on V (Q1) and V (Q2),
respectively. We show that it is not possible for both Q̃1 and Q̃2 to contain paths Pi and
Pj for some i, j ∈ [`] distinct. In which case, it follows that Q̃1 or Q̃2 is a strand from Pa

the electronic journal of combinatorics 32(3) (2025), #P3.31 25



to Pd or a strand from Pc to Pb, respectively. The result then follows from Proposition
53.

Suppose by contradiction that Q̃1 contains Pi and that Q̃2 contains Pj, and we consider
the following subcases.

Subcase 1.(a). Suppose that Q̃1 = Q1 and that Q̃2 = Q2. First, we observe that
Pi contains v as an internal vertex; otherwise, Pi would belong to γ1 or γ2. For similar
reasons, Pj contains r as an internal vertex. When |V (ω)| = 1, r = v; contradicting Pi and
Pj being vertex-disjoint. When V (ω) > 2, ω would be an internal strand, a contradiction.

Subcase 1.(b). Suppose that Q̃1 contains the edge {u, t} and that Q̃2 = Q2. Then,
{u, t} ∈ E(Pi), and r is an internal vertex of Pj. It follows that the subgraph having
vertices V (ω)∪{u, t} and edges E(ω)∪{{u, v}, {t, v}} is an internal fork, a contradiction.

Subcase 1.(c). Suppose that Q̃1 = Q1 and that Q̃2 contains the edge {w, s}. This
subcase is analogous to subcase 1.(b).

Subcase 1.(d). Suppose that Q̃1 contains the edge {u, t} and that Q̃2 contains the edge
{w, s}. Then, {u, t} ∈ E(Pi) and {w, s} ∈ E(Pj). Consequently, the subgraph having
vertices V (ω)∪{u, t, w, s} and edges E(ω)∪{{u, v}, {t, v}, {w, r}, {s, r}} is a double fork,
a contradiction.

Case 2. Suppose that V (µ1,1) ∩ V (µ2,1) 6= ∅. Then, we have that V (µ1,1) ∩ V (µ2,1) =
{v} and that V (µ1,2)∩ V (µ2,2) = {r}. (We may suppose that v 6= r; otherwise, we would
be in Case 1.) We denote by u and w the vertices of µ1,1 and µ2,1, respectively, which
are adjacent to v. We denote by s and t the vertices of µ1,2 and µ2,2, respectively, which
are adjacent to r. We denote by Q1 and Q2 the paths µ1,1 ∗ ω ∗ µ2,2 and µ2,1 ∗ ω ∗ µ1,2,
respectively. We observe that Q1 is an induced path of PInd by Lemma 42 together with
the observations that µ1,1 ∗ ω and ω ∗ µ2,2 are induced paths of PInd being subpaths of
the induced paths γ1 and γ2, respectively. Similarly, Q2 is an induced path of PInd. If Q1

contains the path Pi for some i ∈ [`], then u and t belong to V (Pi); otherwise, Pi would be
contained in γ1 or γ2. It follows that Q2 cannot contain any path Pj for j ∈ [`] as such a
path would necessarily be vertex-disjoint from Pi and contain ω, which is impossible.

We are now ready to prove Theorem 51.

Proof of Theorem 51. (1) =⇒ (2): If P is DOIP, then in particular KPInd
has no directed

two cycle. Corollary 54 implies that PInd does not contain an internal strand, an internal
fork, a double fork, or a complete ladder.

(2) =⇒ (1): We assume that PInd does not contain an internal strand, an internal
fork, a double fork, or a complete ladder, and we show that P is DOIP. By Theorem 24,
this is equivalent to showing that KPInd

is directed acyclic. Suppose by contradiction that
KPInd

has a minimal cycle of length m, i.e. that KPInd
has no cycle of size smaller than m.

Proposition 52 and Corollary 54 imply that m > 3. Without loss of generality, we may
suppose that (i, i+1) are arcs of KPInd

for 1 6 i 6 m−1 and that (m, 1) is an arc of KPInd
.

Proposition 53 implies that there are strands γi from Pi to Pi+1 for 1 6 i 6 m − 1 and
a strand γm from Pm to P1. Lemma 55 and Propositions 56 and 57 imply for i, j ∈ [m]
that:

1. V (γi) ∩ V (γj) = ∅ whenever |i− j| > 2,
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Figure 9: Illustration for Proposition 57

2. V (γi) ∩ V (γi+1) = ∅, and

3. V (γi) ∩ V (Pj) = ∅ whenever j 6= i or j 6= i+ 1.

If not, these propositions and lemmas would imply the existence of an arc (i, j) for some
i, j ∈ [m] distinct, which would contradict the assumption that KPInd

has a minimal cycle
of length m. We denote by Ri the unique subpath of Pi having terminal vertices φγi−1

(2)
and φγi(1). It follows that

Q := R1 ∗ γ1 ∗R2 ∗ γ2 ∗ · · · ∗ γm−1 ∗Rm ∗ γm

is a cycle. Since G is a block graph, the induced graph on V (Q) is a complete graph. Thus,
at most one of the Ri contains an internal vertex of Pi; otherwise, the edge connecting
two distinct internal vertices would be an internal strand. Since m > 3, we may assume
without loss of generality that P2 and P3 are each a singleton edge. It follows from the
definition of strands that R2 = P2 and that R3 = P3. Thus, the induced subgraph on
V (P2) ∪ V (P3) is a complete ladder, a contradiction.

6.3 Another Characterization of DOIP Paths

We take the time to record an equivalent characterization of Thereom 51 in terms of
forbidden subgraphs. This reformulation will be particularly useful in the subsequent
section as additional constraints are placed upon the forbidden subgraphs.

Definition 58. Let G be a block graph, and let P := P1, . . . , P` be vertex-disjoint induced
paths in G. Let H be an internal strand, an internal fork, or a double fork. We say that
H is edge-disjoint from P if E(H) ∩ E(P ) = ∅.
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Example 59. Let G be the graph depicted in Figure 6, and let P be as defined in Example
50. Then, the graph on the vertices {2, 3, 5, 10, 9, 8, 7} is a double fork of PInd which is
not edge-disjoint from P (because E(H) ∩ E(P ) = {{9, 10}}).

Proposition 60. Let G be a block graph, and let P := P1, . . . , P` be vertex-disjoint induced
paths of G. The following are equivalent:

1. PInd does not contain any of the following as subgraphs:

(a) an internal strand,

(b) an internal fork,

(c) a double fork,

(d) a complete ladder.

2. PInd does not contain any of the following as subgraphs:

(a) an internal strand which is edge-disjoint from P ,

(b) an internal fork which is edge-disjoint from P ,

(c) a double fork which is edge-disjoint from P ,

(d) a complete ladder.

Proof. It is clear that (1) implies (2). That (2) implies (1) follows from Lemmas 61 and
62.

Lemma 61. If PInd contains an internal strand as a subgraph, then PInd contains an
internal strand that is edge-disjoint from P .

Proof. Let H be an internal strand of PInd. We prove by induction on |E(H)| that there
exists an internal strand of PInd that is edge-disjoint from P . If |E(H)| = 1, then by
Definition 45, H is edge-disjoint from P . Suppose that H is an internal strand with
|E(H)| > 2. If H is edge-disjoint from P , there is nothing to prove. Suppose that
E(Pi) ∩ E(H) 6= ∅ for some 1 6 i 6 `. Lemma 43 implies that H = H1 ∗ γ ∗H2 where
γ is a subpath of Pi with |E(γ)| > 1. Because H does not contain Pi, at least one of
the terminal vertices of H1 or H2 is an internal vertex of Pi. Without loss of generality,
suppose that it is H1. Then, H1 is an internal strand of PInd with |E(H1)| < |E(H)|. By
the induction hypothesis, applied to H1, there exists an internal strand of PInd which is
edge-disjoint from P , which completes the proof.

Lemma 62. If PInd contains an internal fork or a double fork as a subgraph, then PInd

contains an internal strand, an internal fork, or a double fork which is edge-disjoint
from P .

Proof. Let H be an internal fork or a double fork of PInd. Let Q be the subpath of
H, as defined in Definitions 46 and 47. The proof proceeds by induction on |E(Q)|.
When |E(Q)| = 0, i.e., Q is the path consisting of a singleton vertex, it is clear from
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the definitions that H is edge-disjoint from P . When |E(Q)| > 1, the proof proceeds
via induction, as in the proof of Lemma 61. We observe that in replicating the proof of
Lemma 61 that: if H is an internal fork, then H1 or H2 is a strand or a fork with at least
one of them being internal; and if H is a double fork, then H1 and H2 are forks with at
least one of them being internal.

Example 63. We illustrate Lemma 62 in the context of Example 59. Observe that H1

and H2 are the graphs on the vertices {2, 3, 5, 10} and {9, 8, 7}, respectively. Then, H1 is
an internal fork of PInd.

7 Combinatorial Characterization of reg(S/JG)
for Block Graphs

In this section, we prove the following theorem.

Theorem 64. Let G be a block graph. Then,

ν(G) = reg(S/JG).

It suffices to show that reg(S/JG) 6 ν(G), and to do so, we utilize the theory developed
in [MMK21], which we now recall.

Definition 65. For a graph G, define Ĝ := G r IS(G) where IS(G) denotes the set of
isolated vertices of G. For v ∈ V (G), recall that NG(v) denotes the vertices of G adjacent
to v. For v ∈ V (G), we define the graph Gv as follows:

V (Gv) := V (G)

E(Gv) := E(G) ∪ {{u,w} | u,w ∈ NG(v)}.

The graph Gv is referred to as the completion of G at v.

Definition 66. We say that a subset G of all finite graphs is compatible if G satisfies
the following conditions:

1.
⊔t
i=1Kni

∈ G for all ni ∈ Z with ni > 2,

2. Ĝ ∈ G for all G ∈ G,

3. Gr {v} ∈ G for all G ∈ G and v ∈ V (G),

4. Gv ∈ G for all G ∈ G and v ∈ V (G).

Definition 67 ([MMK21, Definition 2.1]). Let G be a subset of all finite graphs. Suppose
that G is compatible. A map ϕ : G → N0 is called compatible if it satisfies the following
conditions:

1. ϕ(Ĝ) 6 ϕ(G) for all G ∈ G,
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2. if G =
⊔t
i=1Kni

, where ni > 2 for every 1 6 i 6 t, then ϕ(G) > t,

3. if G 6=
⊔t
i=1Kni

, then there exists v ∈ V (G) such that

(a) ϕ(Gr v) 6 ϕ(G), and

(b) ϕ(Gv) < ϕ(G).

Theorem 68 ([MMK21, Theorem 2.3]). Let G be a subset of all finite graphs. Suppose
that G is compatible and that ϕ : G → N>0 is compatible. Then, for all G ∈ G,

reg(S/JG) 6 ϕ(G).

Remark 69. Theorem Theorem 68 was originally shown for the set G of all finite graphs
[MMK21]. The proof there has two main steps. First, they show for a graph G that

reg(S/JGr{v}) 6 ϕ(Gr {v})
reg(S/JGv) < ϕ(Gv)

Second, they utilize induction on the number of internal vertices of a graph together with
the short exact sequence

0→ S/JG → S/JGv ⊕ Sv/JGrv → Sv/JGvrv → 0

to deduce that reg(S/JG) 6 ϕ(G). The fact that G is compatible, i.e., closed under vertex
completion and deletion, allows us to apply the induction step in our setting.

Example 70. The class of chordal graphs and the class of block graphs are compatible.

Lemma 71. Let G be a compatible subset of finite graphs, and let ν : G → N0 be defined
as in Definition 29. Then, ν satisfies conditions 1, 2, and 3a of Definition 67.

Proof. The claims follow from the straightforward observations that:

1. If H is an induced subgraph of G, then ν(H) 6 ν(G),

2. If G = G1 tG2, then ν(G) = ν(G1) + ν(G2),

3. ν(Kn) = 1 for all n > 2.

Theorem 68 and Lemma 71 show that to prove Theorem 64 it suffices to show that
there exists a vertex c of the block graph G such that ν(Gc) < ν(G). We now introduce
some notation and prove a few preparatory lemmas.

Definition 72. A vertex v of G is called a cut vertex if the number of connected
components of G r {v} is strictly larger than the number of connected components of
G. For a vertex v of G, we define the clique degree of v, denoted by cdeg(v), as the
number of maximal distinct cliques of G containing v. The number of maximal cliques
in a block graph G is denoted by c(G). We say that a block graph G has the two-block
property if, for every vertex v of G, cdeg(v) 6 2. We say that a block graph G is a path
of cliques if every block of G has at most two cut vertices. In a path of cliques, blocks
with exactly one cut vertex are called terminal blocks.
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Example 73. Consider the graph constructed from the complete graph on three vertices
by attaching a whisker to each vertex of the complete graph. (This graph is sometimes
referred to as the net.) This graph has the two-block property but is not a path of cliques.

Lemma 74. Let G be a block graph that has the two-block property. Let A denote a
collection of edges of G such that no two edges belong to a common clique of G. Let P
denote the disjoint union of paths obtained from A after concatenating those edges of A
sharing a terminal vertex. Let PInd denote the induced subgraph of G on V (P ). Then,
PInd is DOIP.

Proof. Suppose by contradiction that there exists a block graph G together with a set
of edges A of G satisfying the stated hypotheses such that PInd is not DOIP. We may
suppose that among all such block graphs that G has been chosen to minimize c(G). It is
clear that c(G) > 3, as any block graph on two or fewer cliques, together with any choice
of edges A, realizes PInd that is DOIP. By Theorem 51 and Proposition 60, PInd contains
H, an internal strand, an internal fork, or a double fork, which is edge-disjoint from P
(H is not a complete ladder because no two edges of A belong to the same clique). By
minimality of c(G), we may assume that

1. V (H) ∩ V (Bi) 6= ∅ for all 1 6 i 6 c(G), and

2. for every block B of G, there exists an edge e of A contained in B.

(If G did not satisfy these two conditions, then we could produce a smaller counterexample
by deleting irrelevant blocks of G.) The first condition implies that G is a path of cliques,
since H is necessarily contained in a path of cliques. We may label the cliques of G
consecutively, starting from a terminal clique, by B1, B2, B3, . . . , Bc(G). We denote by vi
the vertex common to Bi and Bi+1 for 1 6 i 6 c(G) − 1. We denote by ei the edge
of A belonging to Bi. Consequently, H contains the subpath [v1, v2, v3, . . . , vc(G)−1]. In
particular, vi ∈ V (PInd). We show that v2 is not a vertex of e2 through consideration of
two cases below. In which case, we can construct G

′
by deleting the block B1 from G, A′

by deleting e1 from A, and P
′

and P
′

Ind coming from A′ and G
′
. If e2 = {a, b}, then we

construct H
′

by:

V (H
′
) := (V (H) r {v1}) ∪ {a, b}

E(H
′
) := (E(H r {v1})) ∪ {{v2, a}, {v2, b}},

which is an internal fork or a double fork of P
′

Ind. This would contradict minimality of
c(G).

Claim: e2 does not contain v2.
Proof of Claim. We consider the following two cases.
Case 1. Suppose that e1 does not contain v1. Then, it must be the case that e2 contains

v1 (because V (H) ⊆ V (P )). As e2 6= {v1, v2} (because H is edge-disjoint from P ), e2 does
not contain v2.

Case 2. Suppose that e1 contains v1. Then, E(H)∩E(B1) = ∅, since H does contain
e1 and G is a path of cliques having B1 as a terminal vertex. It follows that v1 is a
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terminal vertex of H. Hence, it must be the case that e2 contains v1. Since e2 6= {v1, v2},
it again follows that e2 does not contain v2.

Corollary 75. If G is a block graph with the two-block property, then ν(G) = reg(S/JG) =
c(G).

Remark 76. In Corollary 75, the statement that reg(S/JG) = c(G) follows from [HR18,
Proposition 1.3].

Proof. For this family of graphs, Lemma 74 proves that that c(G) 6 ν(G). For any
graph G, we have that ν(G) 6 reg(S/JG) 6 c(G) by Theorem 30 and [MMK21, Corollary
2.7].

Lemma 77. Let G be a block graph. Suppose that G = G1 ∪G2 and that G1 ∩G2 = {c}
for some vertex c of G where G1 has the two-block property and G2 is a block graph. Let
v1 ∈ V (G1). Suppose that P is a union of vertex-disjoint induced paths of G that contains
the edge {v1, c}. If H is an internal strand, an internal fork, or a double fork of PInd that
is edge-disjoint from P , then

V (H) ∩ (V (G1) r {c}) = ∅.

Proof. Suppose by contradiction that V (H) ∩ (V (G1) r {c}) 6= ∅. Then, c is an internal
vertex of H; otherwise, H would be a subgraph of G1, which would contradict Lemma 74
together with Theorem 51. We denote by a the vertex of V (H) ∩ V (G1) that is adjacent
to c. Since {v1, c} /∈ E(H), it must be the case that a 6= v1. We define the graph H

′
by

V (H
′
) := (V (H) ∩ V (G1)) ∪ {v1}

E(H
′
) := (E(H) ∩ E(G1)) ∪ {{a, v1}}.

It follows from Definitions 46, 47 that H
′

is an internal fork or a double fork of PInd. This
contradicts Lemma 74.

Lemma 78. Let G be a block graph, P vertex-disjoint induced paths of G, and H an
internal strand, an internal fork, or a double fork of PInd that is edge-disjoint from P .
Suppose that c is an internal vertex of both H and P . Then, there exists an internal
strand or an internal fork of PInd which is edge-disjoint from P and which contains c as
a terminal vertex.

Proof. Since c is an internal vertex of H, there exist subgraphs H1 and H2 of H such that

H = H1 ∪H2

{c} = H1 ∩H2.

Now, H1 is an internal strand or an internal fork of PInd which is edge-disjoint from P .

Proposition 79. Let G be a block graph. Then, for some cut vertex c of G, we have that
ν(Gc) < ν(G).
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Proof. If G has the two-block property, then the result follows from Corollary 75. Thus,
we may assume that G is a block graph which does not have the two-block property.
Pick c ∈ Cut(G) such that cdeg(c) > 3 and G1, G2, . . . , Gt are subgraphs of G, t > 3,
satisfying:

1. Gi has the two-block property for 1 6 i 6 t− 1,

2. G =
⋃t
i=1Gi, and

3. Gi ∩Gj = {c} for 1 6 i < j 6 t.

Such a c exists because G does not have the two-block property, and by induction on the
number of blocks of G. For 1 6 i 6 t, denote by Bi the block of Gi that contains c. Let
B be the block of Gc containing c. Let P

′
be DOIP paths of Gc such that

ν(Gc) = |E(P
′
)|.

Let P
′

Ind be the induced subgraph of Gc on V (P
′
). From P

′
, we construct a DOIP path

P of G such that

|E(P
′
)| < |E(P )|.

From which, it follows that ν(Gc) < ν(G). This construction proceeds across several
cases.

Case 1. For this case, refer to Figure 10. Suppose that E(B) ∩ E(P
′
) = ∅. It follows

that P
′

is a subgraph of G. In particular, it follows that E(Bi) ∩ E(P
′
) = ∅ for all

1 6 i 6 t. Pick v1 ∈ B1 r {c}. We define P to be the subgraph of G as follows:

V (P ) := V (P
′
) ∪ {v1, c}

E(P ) := E(P
′
) ∪ {{v1, c}}.

The assumptions that G1 has the two-block property and that E(B1)∩E(P
′
) = ∅ imply

that P consists of vertex-disjoint induced paths. Suppose by contradiction that H is an
internal strand, an internal fork, or a double fork of PInd which is edge-disjoint from E(P ).
Lemma 77 implies that H does not contain v1. Hence, H contains c; otherwise, H would
be an internal strand, an internal fork, or a double fork of P

′

Ind, a contradiction. Moreover,
c is not a terminal vertex of H, since degP (c) = 1 and V (H)∩ (V (B1)r{c}) = ∅. Hence,
c is an internal vertex of H. We denote the vertices of H adjacent to c by a1 and a2, and
we define the graph H

′
of Gc as follows:

V (H
′
) := V (H) r {c}

E(H
′
) := (E(H) r {{a1, c}, {a2, c}}) ∪ {{a1, a2}}.

Because a1 and a2 are adjacent to c, {a1, a2} is indeed an edge of Gc. We observe that
the condition E(B) ∩ E(P

′
) = ∅ implies that {a1, a2} does not contain an edge of P

′
.
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(a) G, PInd (solid line), and H (dashed
lines)

c a2

v1
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(b) Gc and H
′

(dashed line)

Figure 10: Illustration for Case 1

Moreover, this condition implies that if ai is a terminal vertex of H, then ai is an internal
vertex of P . It now follows from Definitions 45, 46, 47 that H

′
is an internal strand, an

internal fork, or a double fork of P
′

Ind, a contradiction.
We next consider the case where E(B) ∩ E(P

′
) 6= ∅. We distinguish between cases

based on whether this edge of E(B) ∩ E(P
′
) contains the vertex c.

Case 2. Suppose that {a, c} is an edge of E(B) ∩ E(P
′
). If necessary, relabel B1

and G1 by B2 and G2, respectively, so that we may assume that a /∈ V (G1). We pick
v1 ∈ V (B1) r {c} and construct P of G as follows:

V (P ) := V (P
′
) ∪ {v1}

E(P ) := E(P
′
) ∪ {{v1, c}}.

We observe that P consists of vertex-disjoint induced paths of G, since E(P )∩E(B1) = ∅
and G1 has the two-block property. Suppose by contradiction that H is an internal strand,
an internal fork, or a double fork of PInd which is edge-disjoint from E(P ). Lemma 77
implies that H does not contain v1. Hence, H contains c; otherwise, H would be an
internal strand, an internal fork, or a double fork of P

′

Ind, a contradiction. By Lemma 78,
we may assume that c is a terminal vertex of H. Let b denote the vertex of H which is
adjacent to c. We construct H

′
of Gc as follows:

V (H
′
) := V (H) ∪ {b}

E(H
′
) := E(H) ∪ {{b, a}}.

Since H is edge-disjoint from P , b 6= a. Hence, H
′

is an internal fork or a double fork of
P
′

Ind, a contradiction.
Case 3. Suppose that {a, b} is an edge of E(B) ∩ E(P

′
) with a 6= c and b 6= c. Let v1

and v2 be vertices of B1r {c} and B2r {c}, respectively. We construct P , vertex-disjoint
induced paths of G from P

′
, by deleting the edge {a, b} from P

′
, removing any isolated
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vertices created after deleting this edge, and then adding the edges {v1, c} and {v2, c}.
Suppose by contradiction that H is an internal strand, an internal fork, or a double fork
of PInd which is edge-disjoint from P . Lemma 77 allows us to assume that H contains c,
and Lemma 78 allows us to assume that c is a terminal vertex of H. We denote by d the
vertex of H which is adjacent to c.

Subcase (a). We suppose that d 6= a and that d 6= b. Then, we construct H
′
, an

internal fork or a double fork of P
′

Ind, as follows:

V (H
′
) := (V (H) r {c}) ∪ {a, b}

E(H
′
) := (E(H) r {{c, d}}) ∪ {{a, d}, {b, d}}.

Subcase (b). We suppose without loss of generality that a = d. This implies that

a ∈ V (P ). The construction of P from P
′

involved deleting the edge {a, b} and any
isolated vertices. Hence, it must be the case that degP ′ (a) = 2, i.e., that a is an internal

vertex of P
′
. We construct the graph H

′
as follows:

V (H
′
) := V (H) r {c}

E(H
′
) := E(H) r {{a, c}}.

We observe that H being edge-disjoint from P implies that if a ∈ V (Pi), then V (H
′
) ∩

V (Pi) = {a}. Hence, H
′

is an internal strand or an internal fork of P
′

Ind, a contradiction.
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