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Abstract

The Kneser Graph K(n, k) has as vertices all k-subsets of {1, . . . , n} and edges
connecting two vertices if they are disjoint. The s-stable Kneser Graph Ks−stab(n, k)
is obtained from the Kneser graph by deleting vertices with elements at cyclic dis-
tance less than s. In this article, we show that connected s-Stable Kneser graphs
are Hamiltonian.

Mathematics Subject Classifications: 05C45, 05C75, 05C85

1 Introduction

Let [n] = {1, . . . , n}. For each n > 2k, n, k ∈ {1, 2, 3, . . . }, the Kneser Graph K(n, k)
has as vertices the set

(
[n]
k

)
= {A ⊆ [n] : |A| = k}, the k-subsets of [n], where two vertices

are adjacent if they are disjoint. Kneser graphs have been widely studied throughout
the literature. Two of the most significant problems in the study of Kneser graphs are
determining their chromatic number, which Lovász [8] proved to be n−k+2, and investi-
gating their Hamiltonicity. It was long conjectured that, except for K(5, 2), all connected
Kneser graphs are Hamiltonian. Many articles studied this problem (see [6, 11, 13, 15])
until recently (2023), when Merino, Mütze, and Namrata showed in [9] that the conjecture
is true.

In [14], Schrijver introduced a family of subgraphs of Kneser graphs that are ver-
tex critical in terms of their chromatic number, which means that the removal of any
vertex results in a lower chromatic number. These graphs received the name of Schri-
jver graphs, are denoted by SG(n, k), and are obtained from the Kneser graph K(n, k)
by deleting vertices containing consecutive elements modulo n. Schrijver showed that
the chromatic number of SG(n, k) is n − k + 2, and that deleting any vertex from
SG(n, k) reduces its chromatic number. This family of graphs was generalized in [2],
where Alon, Drewnoski, and Luczak introduced the concept of s-stable Kneser graphs.
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Figure 1: Grid of the vertex {1, 3, 5} in K2−stab(9, 3).

The s-Stable Kneser Graph, Ks−stab(n, k), is the graph that has as vertex set
(
[n]
k

)
s

={
A ∈

(
[n]
k

)
: s 6| i− j |6 n− s, for every pair i, j ∈ A

}
, and edges between disjoint ver-

tices. Notice that Ks−stab(n, k) is an induced subgraph of K(n, k), and that K2−stab(n, k)
and SG(n, k) are the same graph. Since the family of s-stable Kneser graphs was intro-
duced, both it in general, and more specifically the family of Schrijver graphs, started
receiving much attention, partly due to their applications to topology [1]. Thus, several
properties of this family have been studied, such as its automorphism group [4, 16], its
chromatic number [10, 17], its diameter [7], hom-idempotence [17], independence com-
plexes [5], and neighborhood complexes [3].

The problem of Hamiltonicity of s-Stable Kneser graphs began by the authors of this
manuscript in 2019, and earlier results were presented at the annual meeting of Unión
Matemática Argentina (Argentinian Mathematical Union) in 2019 and 2021. The main
result of this article is the following.

Theorem 1. Let k > 1 and s > 3. The graph Ks−stab(n, k) is Hamiltonian if and only if
n > sk. The graph K2−stab(n, k) is Hamiltonian if and only if n > 2k + 1.

For a conference talk (in Spanish) presenting these results, we direct the reader to
https://www.youtube.com/watch?v=9ZJ9-ruKmG0. Similar results were obtained inde-
pendently by Mütze and Namrata in [12].

The rest of the article is organized as follows. In Section 2 we introduce some notation
and provide some insight into the behavior of the vertices of Ks−stab(n, k). Then, in
Section 3 we introduce some auxiliary graphs defined by the orbits of the vertices of
Ks−stab(n, k) under element rotation and use them to prove our main result.

2 Preliminaries

Definition 2. The s-Stable Kneser Graph, Ks−stab(n, k), has vertex set
(
[n]
k

)
s

={
A ∈

(
[n]
k

)
: s 6| i− j |6 n− s, for every pair i, j ∈ A

}
, and edges between disjoint ver-

tices.

Let Ks−stab(n, k), and let V be a vertex of the graph. For a better understanding of
vertices and edges, we represent the elements of [n] as a grid of n squares and a vertex
V as marking k of the positions of the grid with an “x”. The remaining positions are
referred to as empty. Then, for instance, the vertex {1, 3, 5} of K2−stab(9, 3) is a grid in
which positions 1, 3 and 5 are “x” (see Figure 1). Notice, in particular, that when n = sk,
Ks−stab(n, k) is isomorphic to Ks.
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(b) Class (1, 3, 2).

Figure 2: Grid of vertices in K2−stab(9, 3).

It is also interesting to think of a vertex as a list of the spaces between the “x”. We
define the class of a vertex as follows.

Definition 3. The class of a vertex V ∈
(
[n]
k

)
s

is defined as the orbit of V under the cyclic
rotation of the elements of [n].

As this rotation defines an automorphism of Ks−stab(n, k), it will be helpful to study
when a vertex in a class is adjacent to a vertex in a different class. For this purpose,
we represent the class of V with the list of spaces between the elements of V , although
there is some ambiguity in this as other vertices in the same class may present a rotation
of the list of spaces. As an example, in Figure 2 we present all the elements of the
classes (1, 2, 3) and (1, 3, 2) of vertices in K2−stab(9, 3). As we can notice, those classes are
different. Nevertheless, (1, 2, 3), (2, 3, 1) and (3, 1, 2) are the same class.

Let V = {a1, a2, . . . , ak} be a set, we define V +1 = {a1+1, a2+1, . . . , ak+1} (addition
modulo n) as the rotation of V . If V is a vertex in the graph Ks−stab(n, k), then, since
there are at least s−1 positions between any two elements of V , rotating all the elements
by one position guarantees that there is no intersection between V and its rotation. As
we can visualize the elements of a vertex as “x” marks on a grid, the rotation of a vertex
corresponds to shifting all the “x” marks one position to the right (cyclically). Let A be
a class of vertices in Ks−stab(n, k), we define its order |A| to be the number of vertices in
the class. Then, given a vertex V ∈ A, we can form a cycle spanning all vertices in A by
successive rotations.

Claim 4. For each class A and each vertex V ∈ A,

V, V + 1, V + 2, . . . , V + |A| − 1, V

is a cycle spanning the vertices of A.

Proof. In the previous discussion, we have seen that V and V + 1 are adjacent; in the
same way, we can observe adjacency between V + i and V + i+ 1 for 1 6 i 6 |A| − 1. As
in particular, V + |A| = V , we get the desired cycle.

the electronic journal of combinatorics 32(3) (2025), #P3.33 3



We denote by (a1, a2, . . . , ai)
j the concatenation of j copies of a1, a2, . . . , ai. In other

words, (a1, a2, a3, a4)
3 = (a1, a2, a3, a4, a1, a2, a3, a4, a1, a2, a3, a4). Using this notation, we

can represent the order of a class as follows.

Claim 5. |A| = n

d
if and only if d is the maximum number such that A = (a1, a2, . . . , a k

d
)d.

Proof. Let A = (a1, a2, . . . , ak) such that |A| = n

d
. Let V ∈ A, it verifies that V +

n

d
= V ,

hence the number of “x”s between the first
n

d
positions on the grid is

k

d
. As

n

d
is the

smallest number such that V +
n

d
= V , then d is the maximum number to divide the grid

into equal sections. Finally, A = (a1, a2, . . . , a k
d
, . . . , a1, a2, . . . , a k

d
) = (a1, a2, . . . , a k

d
)d.

Let A be a class of vertices in Ks−stab(n, k), and d be the maximum number such that

A = (a1, a2, . . . , a k
d
)d. As

k∑
i=1

ai = n− k, then

k
d∑
i=1

ai =
n− k
d

. Given V ∈ A, if we rotate

V the sum of spaces

k
d∑
i=1

ai plus the number of “x”s between those spaces we obtain V ,

that is V + n−k
d

+ k
d

= V + n
d

= V . Hence |A| 6 n

d
, and due to the conditions on d we

obtain |A| = n

d
.

Notice that, to have a class of order n/d, d must divide both n and k. Consequently,
it must also divide the number of blank places, n − k. As an example, let us consider
the grid of the graph K3−stab(36, 6). There are 36 − 6 = 30 blank places, which must be
divided into 6 blocks, with each block containing at least 2 blank places. We know that
d is a common divisor between 36 and 6, if and only if d is a common divisor between 30
and 6. As 1, 2, 3 and 6 are the common divisors between 36 and 6, there are classes of
order 36, 18, 12 and 6. Table 1 shows some of those classes.

Class Order
(2,2,2,2,11,11) 36
(2, 2, 11)2 = (2, 2, 11, 2, 2, 11) 36/2=18
(2, 8)3 = (2, 8, 2, 8, 2, 8) 36/3=12
(6)6 = (6, 6, 6, 6, 6, 6) 36/6=6

Table 1: Some classes of the graph K3−stab(36, 6).

Although the proof of the following lemma is elementary, we include it here for the
sake of completeness.

Lemma 6. Let A and B be vertices in different classes of Ks−stab(n, k). Then, A and B
are adjacent if and only if A+ 1 and B + 1 are adjacent.
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Proof. Let A = {a1, a2, . . . , ak} and B = {b1, b2, . . . , bk}. If A and B are adjacent, then
A ∩B = ∅.

Suppose that c ∈ (A+ 1∩B+ 1). Then, c = ai + 1 and c = bj + 1, which implies that
ai = bj. Then A+ 1 and B + 1 are adjacent.

3 Class Graph and proof of the main theorem

Definition 7. Let Ks−stab(n, k) with n > sk + 1, we assign every vertex to its class as
we have shown before. The Class Graph of the s-Stable Kneser Graph Ks−stab(n, k),
denoted by CKs−stab(n, k), has as vertices the classes of the vertices of Ks−stab(n, k),
and edges as follows: if two vertices are neighbors in Ks−stab(n, k), then their classes are
neighbors in CKs−stab(n, k).

Our goal is to find a spanning tree of the graph CKs−stab(n, k) with certain properties;
therefore, we focus on a specific subset of edges. Given a class A = (a1, a2, . . . , ai−1, ai,
ai+1, . . . , ak), every class of the form B = (a1, a2, . . . , ai−1 + 1, ai− 1, ai+1, . . . , ak) is called
a friend class of A. In other words, B is a friend class of A if it can be obtained from it
by adding 1 to ai−1 and subtracting 1 from ai for some 1 6 i 6 k, where a0 = ak. Notice
that for B to be a class, ai must be at least s. Thus, each class has at most k friends.

Notice that if we start with a vertex from the class (a1, a2, . . . , ai−1, ai, ai+1, . . . , ak) ∈
CKs−stab(n, k), as shown in (I) below. Then we add 1 to “ai−1” and subtract one from
“ai”, obtained in (II) by moving the “x” between those positions, one place to the right.

(I) x x . . . x x x . . . ∈ (a1, a2, . . . , ai−1, ai, ai+1, . . . , ak)︸ ︷︷ ︸
a1

︸ ︷︷ ︸
ai−1

︸ ︷︷ ︸
ai

(II) x x . . . x x x . . . ∈ (a1, a2, . . . , ai−1 + 1, ai − 1, ai+1, . . . , ak)︸ ︷︷ ︸
a1

︸ ︷︷ ︸
ai−1+1

︸︷︷︸
ai−1

(III) x x . . . x x x . . . ∈ (a1, a2, . . . , ai−1 + 1, ai − 1, ai+1, . . . , ak)︸ ︷︷ ︸
a1

︸ ︷︷ ︸
ai−1+1

︸︷︷︸
ai−1

After that, we move every “x” in (II) one position to the right, getting (III), still
in the same class. We conclude that (I) is not a neighbor of (II), but (I) is a neighbor
of (III). Then, (a1, a2, . . . , ai−1, ai, ai+1, . . . , ak) is adjacent to (a1, a2, . . . , ai−1 + 1, ai −
1, ai+1, . . . , ak) in CKs−stab(n, k). Thus, we have the following.

Claim 8. Friend classes are adjacent in CKs−stab(n, k).

Proof. Suppose A = (a1, a2, . . . , ai−1, ai, ai+1, . . . , ak) and B = (a1, a2, . . . , ai−1 + 1, ai −
1, ai+1, . . . , ak) are friend classes. In particular, this implies ai− 1 > 1. For 1 6 j 6 k, let
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bj =

j∑
`=1

a` and consider vertices

A ={1, b1 + 2, b2 + 3, . . . , bi−2 + i− 1, bi−1 + i, bi + i+ 1, . . . , bk + k + 1},
B ={2, b1 + 3, b2 + 4, . . . , bi−2 + i, bi−1 + i+ 2, bi + i+ 2, . . . , bk + k + 2}.

Notice that A ∈ A and B ∈ B. Further, we have

{2, b1 + 3, b2 + 4, . . . , bi−2 + i} ={1, b1 + 2, b2 + 3, . . . , bi−2 + i− 1}+ 1

and

{bi + i+ 2, . . . , bk + k + 2} ={bi + i+ 1, . . . , bk + k + 1}+ 1.

Thus,

{2, b1 + 3, b2 + 4, . . . , bi−2 + i, bi−1 + i+ 2, bi + i+ 2, . . . , bk + k + 2} ⊂ A+ 1,

which does not intersect A. Finally,

bi−1 + i < bi−1 + i+ 2 < bi + i+ 1,

where the second inequality follows as

bi + i+ 1− (bi−1 + i+ 2) = ai − 1 > 1.

Thus, A ∩B = ∅. Therefore, friend classes are adjacent in CKs−stab(n, k).

Definition 9. We define SCKs−stab(n, k) as the spanning subgraph of CKs−stab(n, k)
induced by the edges between friend classes.

We now proceed to prove that SCKs−stab(n, k) is connected.

Lemma 10. SCKs−stab(n, k) is connected, for n = sk + r, r > 1, s > 2.

Proof. For any vertex in Ks−stab(n, k) the total amount of spaces is n− k = sk+ r− k =
(s− 1)k + r. Consider the vertex (s− 1, s− 1, . . . , s− 1︸ ︷︷ ︸

k−1

, s− 1 + r) ∈ SCKs−stab(n, k).

We would like to prove that this vertex is connected to any vertex through the edges

of the graph. Let (a1, a2, a3, · · · , ak−1, ak) be a vertex such that
k∑
i=1

ai = n− k.

As shown in Claim 8, (s − 1, s − 1, . . . , s − 1, s − 1 + r) is adjacent to (s − 1, s −
1, . . . , s− 1, s, s− 2 + r). Thus, applying the claim successively, we can find a path from
(s − 1, s − 1, . . . , s − 1, s − 1 + r) to (s − 1, s − 1, . . . , s − 1, 2s − 2 + r − ak, ak). But
continuing with this process with the next coordinate, we can find a path to (s − 1, s −
1, . . . , s− 1, 3s− 3 + r− ak−1 − ak, ak−1, ak). We can keep on going this way and connect
(s− 1, s− 1, . . . , s− 1, s− 1 + r) to (a1, a2, a3, · · · , ak−1, ak).
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(1, 1, 1, 1, 4)

(1, 1, 1, 2, 3)(1, 1, 1, 3, 2)

(1, 1, 2, 2, 2)

(1, 1, 2, 1, 3)(1, 1, 3, 1, 2)

(1, 2, 1, 2, 2)

(a) Graph CK2−stab(13, 5).

(1, 1, 1, 1, 4)

(1, 1, 1, 2, 3)(1, 1, 1, 3, 2)

(1, 1, 2, 2, 2)

(1, 1, 2, 1, 3)(1, 1, 3, 1, 2)

(1, 2, 1, 2, 2)

(b) Graph SCK2−stab(13, 5).

Figure 3: Graphs obtained from K2−stab(13, 5).

As an example, consider the graph K2−stab(13, 5) which contains 91 vertices. Since
there are 13 − 5 = 8 spaces to partition into 5 blocks, the classes formed are (1,1,1,1,4),
(1,1,1,2,3), (1,1,1,3,2), (1,1,2,1,3), (1,1,3,1,2), (1,1,2,2,2) y (1,2,1,2,2). In Figure 3 (a) we
can observe the graph CK2−stab(13, 5). Then, if we only keep edges between friend classes,
we obtain the graph SCK2−stab(13, 5) illustrated in Figure 3 (b).

Let G be a connected graph, the degree degG(a) of a vertex a is the number of
edges incident to it in G. A key part of our construction requires that each class A
has at most as many neighbors in SCKs−stab(n, k) as is has elements. In other words,
degSCKs−stab(n,k)

(A) 6 |A| for each A ∈ V (SCKs−stab(n, k)).

Claim 11. If A ∈ V (SCKs−stab(n, k)), then degSCKs−stab(n,k)
(A) 6 |A|, for n = sk + r,

r > 1, s > 2.

Proof. By Claim 5 |A| = n

d
, where d is the maximum number such that

A = (a1, a2, . . . , a k
d
)d.

Notice that when j − i = pk
d
, with 1 6 p 6 d, the friend class of A obtained by adding 1

to ai and subtracting 1 from ai+1 is the same as the friend class obtained by adding 1 to
aj and subtracting 1 from aj+1. Therefore, A has at most k

d
friend classes. Therefore, by

Claim 5, degSCKs−stab(n,k)
(A) = k

d
< n

d
= |A|.

In Figure 4 we present a spanning tree of the graph SCK2−stab(13, 5), rooted in the
vertex (1, 1, 1, 1, 4). The vertices of the graph are labeled according to the notation used
in the proof of Claim 12.

The following claim presents the construction we use to obtain a Hamiltonian cycle of
Ks−stab(n, k) from a spanning tree of the graph CKs−stab(n, k).
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(1, 1, 1, 1, 4)

(1, 1, 1, 2, 3)(1, 1, 1, 3, 2)

(1, 1, 2, 2, 2)

(1, 1, 2, 1, 3)(1, 1, 3, 1, 2) (1, 2, 1, 2, 2)

Level 0R

Level 1A1 A2

Level 2B1

Level 3C1 C3C2

Figure 4: A spanning tree of the graph SCK2−stab(13, 5), rooted in the vertex (1, 1, 1, 1, 4).

Claim 12. Let T be a spanning tree of CKs−stab(n, k) with n > sk+1, s > 2. If degT (A) 6
|A| for every A ∈ V (CKs−stab(n, k)), then the s-Stable Kneser Graph Ks−stab(n, k) is
Hamiltonian.

Proof. Consider T as a rooted tree, and let R be its root. Partition the vertices in levels
according to their distance to R. Thus, vertices in level ` are at distance ` from R. In
particular, R is in level 0.

We construct the cycle inductively. Claim 4 assures the existence of a cycle in
Ks−stab(n, k) for each class A. For each class A, let A1, A2, . . . , A|A| be the vertices in
the class such that

A1, A2, . . . , A|A|, A1

is a cycle, and such that Ai is adjacent to Bi in Ks−stab(n, k) if A is adjacent to B in T ,
Bi ∈ B, (with i computed modulo |A| and |B|, respectively).

Let d = degT (R) and let A1, . . . ,Ad be the vertices adjacent to R in level 1. To
connect the cycles

R1, R2, . . . , R|R|, R1

A1
1, A

1
2, . . . , A

1
|A1|, A

1
1

A2
1, A

2
2, . . . , A

2
|A2|, A

2
2

...

Ad1, A
d
2, . . . , A

d
|Ad|, A

d
1
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R1

A2
1

A1
1

B1
1

C1
1

C3
1

C2
1

R2

A2
2

A1
2

B1
2

C1
2

C3
2

C2
2

R3

A2
3

A1
3

B1
3

C1
3

C3
3

C2
3

R4

A2
4

A1
4

B1
4

C1
4

C3
4

C2
4

R5

A2
5

A1
5

B1
5

C1
5

C3
5

C2
5

R6

A2
6

A1
6

B1
6

C1
6

C3
6

C2
6

R7

A2
7

A1
7

B1
7

C1
7

C3
7

C2
7

R8

A2
8

A1
8

B1
8

C1
8

C3
8

C2
8

R9

A2
9

A1
9

B1
9

C1
9

C3
9

C2
9

R10

A2
10

A1
10

B1
10

C1
10

C3
10

C2
10

R11

A2
11

A1
11

B1
11

C1
11

C3
11

C2
11

R12

A2
12

A1
12

B1
12

C1
12

C3
12

C2
12

R13

A2
13

A1
13

B1
13

C1
13

C3
13

C2
13

Level 0R

Level 1A1

A2

Level 2B1

Level 3

C1

C3

C2

Figure 5: A cycle in each class of the graph K2−stab(13, 5).

we are going to form a cycle consisting of the following paths

R1, A
1
1, A

1
|A1|, A

1
|A1|−1, . . . , A

1
2, R2

R2, A
2
2, A

2
1, A

2
|A2|, . . . , A

2
3, R3

...

Rd, A
d
d, A

d
d−1, A

d
d−2, . . . , A

d
d+1, Rd+1

Rd+1, Rd+2, Rd+3, . . . , R|R|, R1.

As degT (R) 6 |R|, we know that the edges RiRi+1 and Rj, Rj+1 are different if 1 6 i <
j 6 |R|. For 1 6 i 6 degT (R), change edges RiRi+1 and AiiA

i
i+1 for the edges RiA

i
i and

Ri+1A
i
i+1. This generates the cycle

R1, A
1
1, A

1
|A1|, A

1
|A1|−1, . . . , A

1
2, R2, A

2
2, A

2
1, A

2
|A|2 . . . A

2
3, R3, . . . ,

Ad−1d , Rd, A
d
d, A

d
d−1, A

d
d−2, . . . , A

d
d+1, Rd+1, Rd+2, . . . , R|R|, R1

containing all vertices in classes from levels 0 and 1.
In order to connect vertices from level ` to level ` + 1, let B be a vertex in level `,

and let C1, . . . , C|B|−1 be the vertices adjacent to B at level `+ 1. Let BiBi+1 be the edge
that was deleted to connect vertices in the class B to their neighbor at level ` − 1. As
degT (Bj) 6 |Bj|, if 1 6 α < β 6 |Bj|−1 then Bi+αBi+α+1 and Bi+βBi+β+1 are two distinct
edges in our current graph, where addition is done modulo |B|. Then, for each 1 6 α 6
|B|−1, exchange edges Bi+αBi+α+1 and Cα

i+αC
α
i+α+1 for edges Bi+αC

α
i+α and Bi+α+1C

α
i+α+1,

with addition done modulo |B| or modulo |Cα|, according to the vertex. Therefore, after
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repeating this process for all levels of the rooted tree, we obtain a Hamiltonian cycle for
Ks−stab(n, k).

In Figure 5 we present the cycle in each class of the graph K2−stab(13, 5), labeling the
vertices following the notation in the proof of Claim 12. In Figure 6 we show the cycle
obtained.

R1

A2
1

A1
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1
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1

C3
1

C2
1
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2
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2
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2

C3
2

C2
2

R3

A2
3

A1
3

B1
3

C1
3

C3
3

C2
3

R4

A2
4

A1
4

B1
4

C1
4

C3
4

C2
4

R5

A2
5

A1
5

B1
5

C1
5

C3
5

C2
5

R6

A2
6

A1
6

B1
6

C1
6

C3
6

C2
6
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7

A1
7

B1
7

C1
7

C3
7

C2
7

R8

A2
8

A1
8

B1
8

C1
8

C3
8

C2
8

R9

A2
9

A1
9

B1
9

C1
9

C3
9

C2
9

R10

A2
10

A1
10

B1
10

C1
10

C3
10

C2
10

R11

A2
11

A1
11

B1
11

C1
11

C3
11

C2
11

R12

A2
12

A1
12

B1
12

C1
12

C3
12

C2
12

R13

A2
13

A1
13

B1
13

C1
13

C3
13

C2
13

Level 0R

Level 1A1

A2

Level 2B1

Level 3

C1

C3

C2

Figure 6: A Hamiltonian cycle of the graph K2−stab(13, 5).

Our main result follows from Claims 11 and 12.

Proof of Theorem 1. When n = sk, Ks−stab(n, k) is isomorphic to Ks. Thus, if s > 3, it
is Hamiltonian.

Assume now that n > sk + 1, and let T be a spanning tree of SCKs−stab(n, k). By
Claim 11, degT (A) 6 |A|. As V (SCKs−stab(n, k)) = V (CKs−stab(n, k)), T is a spanning
tree of CKs−stab(n, k). Thus, by Claim 12, the s-Stable Kneser Graph Ks−stab(n, k) is
Hamiltonian.
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