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Abstract

Using the sunflower method, we show that if θ ∈ (0, 1) ∩Q and F is a O(n1/3)-
bounded θ-intersecting family over [n], then |F| = O(n), and that if F is o(n1/3)-
bounded, then |F| 6 (32+o(1))n. This partially solves a conjecture of Balachandran,
Mathew and Mishra that any θ-intersecting family over [n] has size at most linear
in n, in the regime where we have no very large sets.

Mathematics Subject Classifications: 05D05, 03E05

1 Introduction

The study of intersecting families of set systems has a long and storied history in extremal
combinatorics, with the prototypical problem taking the form: how large can a family of
subsets of [n] be under the constraint that the sets satisfy some intersection properties?
One of the classic theorems in this direction is Fisher’s Inequality [11], which states that
if 1 6 λ 6 n, and F ⊆ 2[n] is a set family with |F ∩G| = λ for all distinct F,G ∈ F , then
|F| 6 n. With its applications to experimental design, this fundamental theorem is one
of the cornerstones of design theory, where decades of work have culminated in a series
of stunning existence results; by Wilson [16] for strength-2 designs, and independently
by Keevash [14] and by Glock, Kühn, Lo, and Osthus [13] for the general case. In the
context of extremal set theory, various generalisations of Fisher’s Inequality continue
to provide fertile ground for research and theory-building; for instance, one can allow
various different intersection sizes, place restrictions on the sizes of sets in the family,
require all pairwise intersections to be the same, or consider intersections of multiple
sets. Some of the highlights along these lines include the de Bruijn–Erdős Theorem [4],
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the Erdős–Ko–Rado Theorem [9], the Ray-Chaudhuri–Wilson Inequality [15], the Frankl–
Wilson Inequality [12], the Alon–Babai–Suzuki Inequality [1], the Erdős–Rado Sunflower
Lemma [10] and the recent improvement by Alweiss, Lovett, Wu, and Zhang [2]. For
a more complete survey of restricted intersection theorems, we refer the reader to the
monograph of Babai and Frankl [3].

Returning to Fisher’s Inequality, observe that it greatly restricts the set family —
we can only take a linear number of subsets from the exponentially many possibilities.
However, this is perhaps not so surprising, as the condition imposed is very strong. Indeed,
if λ is large, then F can only consist of large sets, since we trivially require |F | > λ for
each F ∈ F , while if λ is small, then the large sets in our family must be essentially
disjoint, and so we do not have space to pack many of them.

It is therefore natural to wonder what happens if we allow the intersections to scale
with the sizes of the subsets, which leads us to the notion of fractional intersecting families,
introduced by Balachandran, Mathew, and Mishra [6]. Given θ ∈ (0, 1) ∈ Q, a (fractional)
θ-intersecting family F over [n] is a collection of nonempty subsets of [n] such that for
all A,B ∈ F with A 6= B, |A ∩ B| ∈ {θ|A|, θ|B|}.1 In [6], the following upper bound is
proved for the size of any θ-intersecting family over [n].

Theorem 1 (Balachandran–Mathew–Mishra [6], 2019). Let θ = a
b
∈ (0, 1)∩Q, and let F

be a θ-intersecting family over [n]. Then, |F| = O
(
n log2 n
log logn

)
, where the implicit constant

depends on b.

On the other hand, the best-known constructions give θ-intersecting families over [n]
of size only linear in n.

Example 2. The sunflower family Fs over [n] is defined as follows:

Fs =

{
{12, 13, . . . , 1n, 1234, 1256, . . . , 12(n− 1)n}, n ≡ 0 (mod 2);

{12, 13, . . . , 1n, 1234, 1256, . . . , 12(n− 2)(n− 1)}, n ≡ 1 (mod 2).

This is easily seen to be a 1
2
-intersecting family, also called a bisection closed family. Note

that |Fs| = b3n/2c − 2.

Example 3. The Hadamard family FH over [2m] is constructed from anm×m normalized
Hadamard matrix H as follows. View the rows A1, . . . , A3m of the following block matrix
as the {±1}-incidence vectors of subsets of [2m], where J denotes the m × m all-ones
matrix: H H

H −H
H −J

 .
Then, FH = {Ai : i ∈ [3m] \ {1,m + 1}}. One can show using the orthogonality of the
rows of H that FH is a bisection closed family over [2m]. Writing 2m = n, we see that
|FH | = 3n/2− 2.

1More generally, given a set L of proper fractions, a (fractional) L-intersecting family F over [n] is a
collection of subsets of [n] such that for all A,B ∈ F with A 6= B, |A ∩ B| ∈ {θ|A|, θ|B|} for some
θ ∈ L.
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It was conjectured in [6] that any θ-intersecting family over [n] is at most linear in
size.2

Conjecture 4 (Balachandran–Mathew–Mishra [6], 2019). For θ ∈ (0, 1) ∩ Q, there is a
constant c > 0 such that for any θ-intersecting family F over [n], |F| 6 cn.

Moreover, the fact that two very different constructions give rise to maximal bisection
closed families over [n] of the same size raises the question whether, for θ = 1/2, we have
|F| 6 b3n/2c−2 for any bisection closed family F over [n]. In [7], there are constructions
of bisection closed families over [n] for n 6 15 which have size greater than b3n/2c − 2,
so the constructions in Examples 2 and 3 are possibly extremal only for large n.

In this note, we make some progress towards resolving the conjecture by proving the
following result. We say that a family of sets is w-bounded, for a positive real w, if every
set in the family has size at most w.

Theorem 5. Let θ ∈ (0, 1) ∩ Q and w = O(n1/3) be a positive real. There is a constant
C > 0 such that the following holds: for all sufficiently large n, if F is a w-bounded
θ-intersecting family over [n], then |F| 6 Cn.

In fact, with the slightly stronger assumption that the family is o(n1/3)-bounded, we
can give an explicit constant that is often tight, and characterise families attaining the
bound. To describe the asymptotically optimal families, we need to introduce a bit of
notation related to our constructions.

First, recall that a sunflower is a set family where all pairwise intersections are the
same; that is, for all distinct F, F ′ ∈ F , we have F ∩ F ′ =

⋂
F ′′∈F F

′′. The common
intersection C =

⋂
F ′′∈F F

′′ is called the core, while the (pairwise disjoint) remainders of
the sets F \C are called petals. Observe that the family Fs from Example 2 is the union
of 2- and 4-uniform sunflowers, whose cores are nested; the definition below generalises
this notion of neatly-arranged sunflowers. In what follows, given a set family F and a
uniformity k, we denote by F(k) the collection of all sets in F of size k.

Definition 6. Let F be a family over [n], and let k1 < · · · < kt be the sizes of sets in F .
We say that F is a bouquet if

1. each F(kj) is a sunflower with at least two petals;

2. Ck1 ( Ck2 ( · · · ( Ckt , where Ckj denotes the core of F(kj);

3. for any F ∈ F we have F ∩ Ckt = C|F |.

In our main result, we provide an explicit upper bound, and show that any family
that attains it must essentially be a bouquet with specific set sizes.

2The conjecture is implicit in [6], and explicitly stated for the case when θ = 1/2.
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Theorem 7. Let a, b ∈ N such that 1 6 a < b and gcd(a, b) = 1. Let θ = a/b, and let
F be a o(n1/3)-bounded θ-intersecting family over [n]. Then |F| 6 (Cθ + o(1))n, where

Cθ = 1
b−a
∑bb/ac

i=1
1
i
, and this constant is best possible for θ ∈ {1/3} ∪ [1/2, 1).

Furthermore, if we have equality, then there is some bouquet F∗ ⊆ F such that |F \
F∗| = o(n), and almost all elements of [n] are contained in sets of size ib for all 1 6 i 6
bb/ac.

2 Main results

Our proofs consist of two parts. First, we show that one can remove a small number of
sets from a bounded θ-intersecting family to obtain a bouquet.

Proposition 8. Let θ ∈ (0, 1)∩Q and w > 1. Let F be a w-bounded θ-intersecting family
over [n]. Then F contains a bouquet F∗ with |F \ F∗| 6 w3.

We then utilise the structure of bouquets to bound their size.

Proposition 9. Let a, b ∈ N such that 1 6 a < b and gcd(a, b) = 1. Let θ = a/b, and let

F∗ be a θ-intersecting bouquet over [n]. Then |F∗| 6 Cθn, where Cθ = 1
b−a
∑bb/ac

i=1
1
i
.

After proving these propositions, we shall combine them to deduce Theorems 5 and 7.

Proof of Proposition 8

We will require the following result of Deza [8] that implies that a large uniform θ-
intersecting family must be a sunflower.

Theorem 10 (Deza [8], 1974). Let F be a w-bounded family of subsets of [n] such that
all pairwise intersections have the same cardinality. If |F| > w2 − w + 2, then F is a
sunflower.

Since F is w-bounded, if a level F(k) is non-empty, then k 6 w. Call a level F(k)
small if |F(k)| 6 w2. Note that |F(1)| 6 1 < w2: the θ-intersecting property requires
that any two distinct singleton sets in F have intersection of size equal to θ ∈ (0, 1), which
is impossible. Thus, we can bound the number of sets in small levels by∑

k : |F(k)|6w2

|F(k)| = |F(1)|+
∑

k>1 : |F(k)|6w2

|F(k)| 6 1 + (w − 1)w2 < w3. (1)

We remove these sets from F , and shall show that what remains must be a bouquet (after
removing at most one more set, if needed). Let k1 < k2 < · · · < kt be the remaining
nonempty levels.

1. By Theorem 10, each F(kj) is a sunflower with at least two sets.
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2. Let Ckj be the core of F(kj). Since F is θ-intersecting, |Ckj | = θkj for all 1 6 j 6 t.
Now, let 1 6 j < j′ 6 t, and suppose F ′ ∈ F(kj′). Then |F ′ ∩ F | > θkj = |Ckj |
for every F ∈ F(kj), since F is θ-intersecting. If Ckj * F ′, then F ′ must intersect
every petal in F(kj). But then |F ′| > |F(kj)| > w2, which is not possible since F is
w-bounded. Thus, Ckj ⊆ F ′ for every F ′ ∈ F(kj′), which implies that Ckj ⊆ Ckj′ .

3. Let j < t and F ∈ F(kj). If F ∩ (Ckt \ Ckj) 6= ∅, then for any G ∈ F(kt)
we have |F ∩ G| > |Ckj | = θkj. Thus, necessarily, |F ∩ G| = θkt. Again, F is
not large enough to meet every petal of F(kt), and so we have Ckt ⊆ F . Now,
for any j′ < t, if there was another such set F ′ ∈ F(kj′), then we would have
|F ∩F ′| > |Ckt | = θkt /∈ {θ|F |, θ|F ′|}, contradicting that F is θ-intersecting. Hence,
there is at most one such set; if so, we remove it, and the remaining family satisfies
F ∩ Ckt = C|F |.

Then, having removed at most w3 sets, we are left with a bouquet F∗. �

Proof of Proposition 9

Let k1 < · · · < kt be the nonempty levels in the bouquet F∗ over [n], and set Y = [n]\Ckt .
Note that for each F ∈ F∗ we have |F ∩ Y | = (1− θ)|F |. Moreover, for each j, the sets
in F∗(kj) are pairwise disjoint over Y . Thus, we have

|F∗| =
∑
F∈F∗

1 =
∑
F∈F∗

∑
y∈F∩Y

1

(1− θ)|F |
=
∑
y∈Y

∑
F∈F∗:
y∈F

1

(1− θ)|F |
.

For each y ∈ Y , let Sy = {|F | : F ∈ F∗, y ∈ F}. Then we have

|F∗| = 1

1− θ
∑
y∈Y

∑
s∈Sy

1

s
. (2)

Now observe that if F, F ′ ∈ F∗ and |F | < θ|F ′|, then we must have |F ∩ F ′| = θ|F |.
However, F ∩ F ′ ∩ Cit = C|F |, which is of size θ|F |, and so F ∩ F ′ ∩ Y = ∅. This means
that for every y ∈ Y , we have maxSy 6 1

θ
minSy. Moreover, since F∗ is θ-intersecting,

b must divide |F | for every F ∈ F∗. Thus, for every y ∈ Y , we have some my ∈ N such
that Sy ⊆ {bmy, b(my + 1), . . . , bbmy/θc}, and

∑
s∈Sy

1

s
6
bmy/θc∑
i=my

1

bi
=

1

b

bmy/θc∑
i=my

1

i
.

Hence we have

|F∗| = 1

1− θ
∑
y∈Y

∑
s∈Sy

1

s
6

1

(1− θ)b
∑
y

bmy/θc∑
i=my

1

i
.

Now write b = a`+ r, where ` ∈ N and 0 6 r 6 a− 1. Then,

bmy/θc = bbmy/ac = `my + brmy/ac 6 `my +my − 1 = (`+ 1)my − 1.
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Thus,

bmy/θc∑
i=my

1

i
=

`−1∑
j=1

(j+1)my−1∑
i=jmy

1

i
+

`my+brmy/ac∑
i=`my

1

i

6
`−1∑
j=1

(j+1)my−1∑
i=jmy

1

jmy

+

(`+1)my−1∑
i=`my

1

`my

=
∑̀
j=1

1

j
. (3)

Noting that ` = bb/ac, 1
(1−θ)b = 1

b−a , and that there are at most n choices for y ∈ Y , we
obtain the desired bound. �

Theorem 5 immediately follows from Propositions 8 and 9. To establish Theorem 7,
we need to characterise the bouquets that attain equality in Proposition 9.

Proof of Theorem 7

Let F be a w-bounded θ-intersecting family over [n], where θ = a
b
. By Proposition 8, we

can discard at most w3 = o(n) sets from F to obtain a bouquet F∗ ⊆ F . By Proposition 9,

it follows that |F∗| 6 Cθn, where Cθ = 1
b−a
∑bb/ac

i=1
1
i
. Thus, we have |F| 6 (Cθ + o(1))n.

In order to have equality, we must have |F∗| > (Cθ − o(1))n. In the proof of Proposi-
tion 9, specifically (2), we have |F∗| = 1

1−θ
∑

y∈Y
∑

s∈Sy

1
s
, where Y is the set of elements

outside the largest core of the bouquet, and Sy is the set of sizes of the sets that contain
y. In (3) we then bounded 1

1−θ
∑

s∈Sy

1
s

in terms of my = minSy, showing it achieves its

maximum of Cθ when Sy = {1, 2, . . . , bb/ac}; we call this latter set S∗.
To prove stability, let Y = Y1 ∪ Y2 ∪ Y3, where Y1 = {y ∈ Y : Sy = S∗}, Y2 = {y ∈ Y :

my > 2}, and Y3 = {y ∈ Y : my = 1, Sy ( S∗}.
For y ∈ Y3, since Sy is missing at least one element from S∗, we have 1

1−θ
∑

s∈Sy

1
s
6

Cθ − 1
(1−θ)bb/ac .

For y ∈ Y2, consider the j = 1 term in the inequality in (3). Here, in the sum
∑2my−1

i=my

1
i
,

we bound the summands from above by 1
my

to show that this sum is at most 1. However,

if my > 2, then for the terms with 3
2
my 6 i 6 2my − 1, of which there are at least 1

3
my,

the summand is in fact at most 2
3my

. Thus, in this case, this sum is at most 8
9
. This shows

that for y ∈ Y2, we have 1
1−θ
∑

s∈Sy

1
s
6 Cθ − 1

9(1−θ) .
Hence, we have

|F∗| = 1

1− θ
∑
y∈Y

∑
s∈Sy

1

s
6 Cθn−

1

9(1− θ)
|Y2| −

1

(1− θ)bb/ac
|Y3|.

Thus, to have |F∗| > (Cθ − o(1))n, we must have |Y2| = |Y3| = o(n), which means
almost all elements of the ground set are in Y1, and are thus contained in sets of size
b, 2b, . . . , bb/acb.

Finally, we show this constant Cθ is best possible when θ ∈ {1/3} ∪ [1/2, 1) by means
of the following constructions of θ-intersecting o(n1/3)-bounded families over [n].
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• For θ = a/b ∈ (1/2, 1), let F be a maximal b-uniform sunflower over [n] with core
of size a. Then F is a

b
-intersecting and |F| = bn−a

b−a c = bCθn− a
b−ac.

• For θ = 1/2, the family Fs has size b3n/2c − 2 over [n], and C1/2 = 3/2.

• For θ = 1/3, assume n ≡ 3 (mod 24) for convenience, and consider the family
F = F(3) ∪ F(6) ∪ F(9), where:

– F(3) is a sunflower with core {1} and petals {{2i, 2i+ 1} : 2 6 i 6 (n− 1)/2},
– F(6) is a sunflower with core {1, 2} and petals {{24i+ j, 24i+ j + 6, 24i+ j +

12, 24i+ j + 18} : 0 6 i 6 (n− 27)/24, 4 6 j 6 9}, and

– F(9) is a sunflower with core {1, 2, 3} and petals {{6i−2, 6i−1, 6i, . . . , 6i+3} :
1 6 i 6 (n− 3)/6}.

F is then 1
3
-intersecting, and |F| = (n − 3)

(
1
2

+ 1
4

+ 1
6

)
= 11

12
(n − 3) = C1/3n − 33

12
.

�

3 Concluding remarks

Sharpening the constant. While Theorem 7 establishes the correct constant for cer-
tain values of θ, further arguments can be made to improve the constant for other fractions.
We briefly illustrate this with the example of θ = 1/4: any o(n1/3)-bounded 1

4
-intersecting

family has size at most
(

7
12

+ o(1)
)
n, rather than the

(
25
36

+ o(1)
)
n bound that Theorem 7

gives.
For the lower bound, we construct such a family using sets of size 4, 8 and 16. The

sunflowers have nested cores of size 1, 2 and 4 respectively, and for the petals, we divide
the remaining elements into blocks of size 36, arranged in 3× 12 rectangles. Each row (of
size 12) is the petal of a 16-set, and is partitioned into four petals of size 3 each (for the
4-sets). The 12 columns are paired up to form the petals of the 8-sets, in such a way that
they intersect each small petal at most once.

For the upper bound, we first note that if the constant of 25
36

from the theorem were
tight, then almost all elements of the ground set would have to be contained in sets of size
4, 8, 12, and 16. However, it is not hard to show (we omit the details) that sets of size 12
are not compatible with the other set sizes. Given this, one can then show that

∑
s∈Sy

1
s

is maximised when Sy = {4, 8, 16}, which results in a bound of
(

7
12

+ o(1)
)
n instead.

It appears a difficult task to see what the correct constant is in general, even for
θ = 1/b, and it would be interesting to obtain further results in this direction.

Small families. The o(n) error in Theorem 7 is necessary, because of the existence of
bisection closed families of size greater than 3n/2 for n 6 15. These are constructed in [7]
using the Fano plane. Define the family FFano over [8] as follows:

FFano = Fs ∪ {1357, 1368, 1458, 1467}
= {12, 13, 14, 15, 16, 17, 18, 1234, 1256, 1278, 1357, 1368, 1458, 1467}.
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It is easy to check that FFano is a bisection closed family of size 14 over [8], and it arises
from the symmetric 2-(7, 4, 2) design. We can similarly modify Fs using the sets 1357,
1368, 1458, and 1467 to get bisection closed families over [n] of size more than b3n/2c− 2
for n 6 15.

Unbounded families. Our constant Cθ in Theorem 7 is strictly smaller than 3/2 when
θ 6= 1/2, and the proof of Proposition 9 shows that even when θ = 1/2, we obtain a
smaller constant unless almost all elements of [n] are contained in sets of size 2. However,
the existence of the Hadamard families FH of Example 3 precludes any simple extension
of the argument given in this note to try and establish an upper bound of (3

2
+ o(1))n for

the size of an arbitrary bisection closed family, since these are bisection closed families of
size 3n/2 − 2 that do not contain any sets of size 2 (in fact, the set sizes in FH are all
either n/2 or n/4).

Families of large sets. The best results known so far in the “large” regime are given
in [6]: if all the sets in F have size at least 1

4(1−θ)n−Θ(
√
n), then |F| = O(n).

A linear algebraic reformulation. In [7], the authors consider a related problem
of finding bounds on the ranks of certain symmetric matrices. Specifically, large θ-
intersecting families induce such matrices of low rank. There the authors construct low
rank matrices using bipartite graphs and ask whether any of them arise from θ-intersecting
families. Theorem 5 shows that it is not possible for bounded bisection closed families to
induce such matrices. This explains in a sense why the Fano construction does not seem
to extend beyond small values of n to produce larger bisection closed families from Fs.

Hierarchically closed families. Our results also have implications in the setting of
hierarchically r-closed θ-intersecting families, as defined by Balachandran, Bhattacharya,
Kher, Mathew, and Sankarnarayanan [5]. Given r > 2, we say F is hierarchically r-
closed θ-intersecting if, for any 2 6 t 6 r and any t-subset {A1, . . . , At} of F , we have
|
⋂t
i=1Ai| ∈ {θ|Ai| : i ∈ [t]}. From our previous examples, note that Fs is hierarchically

r-closed for all r, while FH is not hierarchically r-closed for any r > 3. Thus, in this
sense, the two families are at opposite ends of a spectrum, despite having the same size.3

In [5, Theorem 5], it was shown that Conjecture 4 holds for hierarchically closed
fractional intersecting families with a constant cθ 6 1

b−a(2 log(θ−1) + 2). In the special
case of θ = 1/2, the authors improved the constant to the tight c1/2 = 3/2, and further
showed that Fs from Example 2 is the unique extremal family, up to permutation of the
ground set. To prove their results, they showed that a hierarchically closed fractional
intersecting family must essentially be a bouquet, and then gave an upper bound on the
size of bouquets.

In Proposition 9, we provide sharper estimates on the size of bouquets, and thus we
improve the bounds in [5] for hierarchically closed fractional intersecting families, showing

3Note that a hierarchically 2-closed family is just a θ-intersecting family as defined in Section 1. So,
when we say that a θ-intersecting family F is hierarchically closed, we mean that it is hierarchically
r-closed for some r > 3.
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that these have size at most (Cθ + o(1))n as well. Furthermore, since the constructions of
bouquets in Theorem 7 are also hierarchically closed, the tightness results carry over as
well.
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