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Abstract

In this paper, we show that TREEWIDTH is NP-complete for cubic graphs,
thereby improving the result by Bodlaender and Thilikos from 1997 that TREE-
WIDTH is NP-complete on graphs with maximum degree at most 9. We add a new
and simpler proof of the NP-completeness of treewidth, and show that TREEWIDTH
remains NP-complete on subcubic induced subgraphs of the infinite 3-dimensional

grid, and on cubic line graphs.
Mathematics Subject Classifications: 68Q25,68R10,05C85,05C83,05C78

1 Introduction

Treewidth is one of the most studied graph parameters, with many applications for both
theoretical investigations as well as for applications. The problem of determining the tree-
width of a given graph, and finding a corresponding tree decomposition, single-handedly
led to a plethora of studies, including exact algorithms, algorithms for special graph
classes, approximations, upper and lower bound heuristics, parameterised algorithms,
and more. In this paper, we look at the basic problem TREEWIDTH: decide, for a given

graph G and integer k, whether the treewidth of GG is at most k.

In 1987, Arnborg, Corneil and Proskurowski [1] showed this problem to be NP-
complete; their proof also gives NP-completeness on co-bipartite graphs. As the tree-
width of a graph (without parallel edges) does not change under subdivision of edges, it
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easily follows and is well known that TREEWIDTH is NP-complete on bipartite graphs.
In 1997, Bodlaender and Thilikos [6] modified the construction of Arnborg, Corneil and
Proskurowski [1] and showed that TREEWIDTH remains NP-complete if we restrict the
inputs to graphs with maximum degree 9. In this paper, we sharpen this bound of 9 to
3. Our proof uses a simple transformation, whose correctness follows from well-known
facts about treewidth and simple insights. We also give a new simple proof of the NP-
completeness of TREEWIDTH on arbitrary (and on co-bipartite) graphs. We obtain a
number of corollaries of the results, in particular NP-completeness of TREEWIDTH on
d-regular graphs for each fixed d > 3, for graphs that can be embedded in a 3-dimensional
grid, and for cubic line graphs. (A graph is cubic if each vertex has degree 3.) Very re-
cently, Bonnet [7] obtained a new NP-completeness proof for treewidth of general graphs;
this proof also gives an inapproximability result (assuming P # NP), and a 2% lower
bound (assuming the Exponential Time Hypothesis) for TREEWIDTH.

Our techniques are based on the techniques in [1] and [6] with streamlined and sim-
plified arguments, and some additional new but elementary ideas. As a starting point for
the reductions, we use the NP-complete problems CUTWIDTH on cubic graphs and PATH-
WIDTH; the NP-completeness proofs for these were given by Monien and Sudborough [15]
in 1987.

Pathwidth is a well studied graph parameter, related to treewidth. There exist several
independent NP-completeness proofs for PATHWIDTH, using different equivalent charac-
terisations of the pathwidth of graphs [1, 10, 13, 16]. Monien and Sudborough [15] showed
that PATHWIDTH is NP-complete for graphs of maximum degree 3, using the terminology
of vertex separation; as shown by Kinnersley [11], this is equivalent to pathwidth. In this
paper, we observe as corollary that the PATHWIDTH problem stays NP-complete for cubic
line graphs.

This paper is organised as follows. In Section 2, we give basic definitions and some
well-known results on treewidth. In Section 3, we give a new simple proof of the NP-
completeness of TREEWIDTH on co-bipartite graphs that uses an elementary transforma-
tion from pathwidth. Section 4 gives our main result: NP-completeness for TREEWIDTH
on cubic graphs. In Section 5, we derive as consequences some additional NP-completeness
results: on d-regular graphs for each fixed d; on graphs that can be embedded in a 3-
dimensional grid, and on cubic line graphs. Some final remarks are made in Section 6.

2 Definitions and preliminaries

Throughout the paper, we denote the number of vertices of the graph G by n. All graphs
considered in this paper are undirected. A graph G is d-regular if each vertex has degree
d. We say that a graph G is cubic if G is 3-regular. If each vertex of G has degree at most
3, we say that G is subcubic. All numbers considered are assumed to be integers, and an
interval [a, b] denotes the set of integers {a,a + 1,a+ 2,...,b— 1,b}. Furthermore, for a
positive integer a, we denote by [a] the interval [1,a]. A graph G is a minor of a graph H
if G can be obtained from H by zero or more vertex deletions, edge deletions, and edge
contractions. For a graph G and a set of vertices A C V(G), we write G + clique(A) for
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the graph obtained by adding an edge between each pair of distinct non-adjacent vertices
in A, i.e. by turning A into a clique.

A tree decomposition of a graph G is a pair (T, 5) such that T is a tree and f is
a mapping assigning each node = of T to a bag f(xz) C V(G), satisfying the following
conditions: every vertex of G belongs to some bag, for every edge of G there exists a bag
containing both endpoints of the edge, and for every vertex of GG, the set of nodes x of T'
such that v € () induces a connected subtree of T. The width of a tree decomposition
(T, 5) is the maximum, over all nodes x of T, of the value of |f(x)| — 1. The treewidth
of a graph G, denoted tw(G), is the minimum width of a tree decomposition of G. Path
decompositions and pathwidth (denoted pw(G)) are defined analogously, but with the
additional requirement that the tree 7" is a path.

We use a number of well-known and easy to observe facts about treewidth and tree
decompositions.

Lemma 1 (Folklore). Let G be a graph, and (T, 3) a tree decomposition of width k of G.
Then the following statements hold.

1. Let W be a clique in G. Then, there is a node x of T with W C [(z).

2. Assume thatv,w € V(Q), {v,w} € E(G). If there is a node x of T withv,w € 5(z),
then (T, ) is a tree decomposition of width k of the graph obtained by adding the
edge {v,w} to G.

3. Assume that W C V(G). Then, there is a node x in T such that when we remove
B(x) and all incident edges from G, then each connected component of G contains

at most |V(G)|/2 vertices of W.

4. Let y be a leaf of T, with parent y'. If 5(y) C B(y'), then removing y with its bag
from the tree decomposition (T, [3) yields another tree decomposition of G of width
at most k.

5. If H is a minor of G, then tw(H) < tw(G), and pw(H) < pw(G).

A graph G is co-bipartite if V(G) = AU B with A a clique and B a clique (that is,
the complement of G is bipartite). The following fact is also well known, and follows
implicitly from the proofs of Arnborg et al. [1]. For completeness, we give a proof here.

Lemma 2 (See, e.g. [1]). Let G be a co-bipartite graph, with V(G) = AU B where A and
B are cliques. Then:

1. tw(G) = pu(G).

2. G has a path decomposition (P, () with width equal to tw(G) such that A C B(p1)
and B C B(p), where p; and p, are the two endpoints of P.
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Proof. Let (T, ) be a tree decomposition of G of width tw(G). By Lemma 1(1), there is
anode x in T with A C §(z), and a node y in T" with B C S(y). Let P be the path from
rtoyinT.

If there are nodes in T" that do not belong to P, then we can apply the following step.
At least one such node must be a leaf of T. Take a leaf z of T such that z is not in P.
Let 2’ be the parent (i.e., unique neighbour) of z in T. For each v € AN 3(z), it holds
that v € 5(2') as 2’ is on the path from z to x, and for each v € BN f(z), it holds that
v € 5(2') as 2 is on the path from z to y. So, by Lemma 1(4), we can remove z from T’
and obtain another tree decomposition of G. Repeating this step as long as possible gives
the desired result. O]

The vertex separation number of a graph G is denoted by vsn(G) and defined as the
minimum, over all orderings o = (vy, ..., v,) of the vertex set of G, of the maximum, over
all i € {1,...,n}, of the number of vertices v; such that j > i and v; has a neighbour in
{v1,...,v;}. Kinnersley proved the following characterisation of pathwidth.

Theorem 3 (Kinnersley [11]). The pathwidth of every graph equals its vertex separation
number.

TREEWIDTH is the following decision problem: Given a graph G and an integer k,
is the treewidth of G at most k&7 The problems PATHWIDTH and VERTEX SEPARATION
NUMBER are defined analogously.

In 1987, Arnborg, Corneil, and Proskurowski established NP-completeness of TREE-
WIDTH in the class of co-bipartite graphs [1]. Ten years later, Bodlaender and Thilikos [6]
proved that TREEWIDTH is NP-complete on graphs with maximum degree at most 9.
Monien and Sudborough [15] proved that VERTEX SEPARATION NUMBER is NP-complete
on planar graphs with maximum degree at most 3. Combining this result with Theorem 3
directly shows the following.

Theorem 4 (Monien and Sudborough [15]). PATHWIDTH is NP-complete on planar
graphs with mazimum degree at most 3.

A well-known type of graphs are the walls. A wall with r rows and ¢ columns has r x ¢
vertices; for an illustrating example, see Figure 1.

Figure 1: A wall with 5 rows and 12 columns.

! The most common notion of a wall does not have the vertices of degree one, which we see at the bottom
left and top right corner of Figure 1. We keep these degree-one vertices, for slightly easier notation.
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It is well known that the pathwidth and treewidth of an r by ¢ grid are both equal
to min{r, c}, see, e.g. [4, Lemmas 87 and 88]. Since any wall is a subgraph of a grid, the
upper bound also holds for walls, and the standard construction gives the following result.

Lemma 5 (Folklore). Let B, . be a wall with r rows and ¢ columns. Then tw(B,.) <
pu(B,.) < r and there is a path decomposition (P, 3) of B, of width r with B(py) the set
of vertices in the first column of B, ., and B(p,) the set of vertices in the last column of
B, ., where py and p, are the two endpoints of P.

A linear ordering of a graph G is a bijection f : V(G) — {1,...,n}. The cutwidth of

a linear ordering of G is

max
i€[n]

{{v,w} € BG) | fv) <i< f(w)}’.

The cutwidth of a graph G, denoted by cw(G), is the minimum cutwidth of a linear
ordering of G. Observe that if a graph H can be obtained from a graph G by deleting
edges and/or contracting vertices of degree 2 to a neighbour, then cw(H) < cw(G).

The CuTWIDTH problem asks to decide, for a given graph G and integer k, whether
the cutwidth of G is at most k. Monien and Sudborough [15] showed that CUTWIDTH
is NP-complete on graphs of maximum degree three (using the problem name MINIMUM
CuT LINEAR ARRANGEMENT). As their proof does not generate vertices of degree one,
and the cutwidth of a graph does not change by subdividing an edge, from their proof,
the next result follows.

Theorem 6 (Monien and Sudborough [15]). CUTWIDTH is NP-complete on cubic graphs.

3 A simple proof for co-bipartite graphs

In this section, we give a new simple proof that TREEWIDTH is NP-complete. Our
proof borrows elements from the NP-completeness proof from Arnborg, Corneil and
Proskurowski [1], but uses an easy transformation from PATHWIDTH.

Let G be a graph. We denote by F(G) the graph obtained from G as follows. The
vertices of F'(G) consist of two copies v and v’ for every v € V(G); we denote by V and V'
the sets V(G) and {v' | v € V(G)}, respectively. Moreover, the graph F(G) contains for
every v € V(G) an edge between v and v/, and for every edge {u,v} € E(G), it contains
one edge between u and v' and one edge between v and «'. Finally, F/(G) contains all
edges between every pair of distinct vertices in V' and every pair of distinct vertices in
V’. Note that each of the sets V and V"’ is a clique in F'(G). Hence, G is co-bipartite. An
example is given in Figure 2.

Lemma 7. Let G be a graph. Then, tw(F(G)) = pw(F(G)) = n + pw(G), where n =
V(G)].
Proof. First, we show that pw(F(G)) < n + pw(G). Let k = pw(G). Take a path decom-

position (P, 8) of G of width k, with P = (p1,...,p,). Now, let v(p;) be a set of vertices
of F(G) defined as follows:

ot
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U1 (%1 (1
Vo Vo v
U3 v A
V4 V4 vl
Us Us vl

Figure 2: A graph G with F(G).

e For each v € V(G) such that there is a j > i with v € B(p;), add v to v(p;).
e For each v € V(G) such that there is a j < ¢ with v € (p;), add v' to vy(p;).

An example of this construction, applied to the graphs G and F(G) of Figure 2, is
given in Figure 3.

'

Figure 3: A path decomposition of the graph G from Figure 2 and the corresponding path
decomposition of F(G).

We claim that (P,~) is a path decomposition of F(G) of width n 4+ k. We first verify
that (P, ) is a path decomposition. The first and third conditions of path decompositions
are clearly satisfied. Notice that V' C ~(py), and V' C ~(p,). So, for each edge in
F(G) between two vertices in V', or between two vertices in V’, there is a bag in (P,~)
containing the two endpoints of the edge, namely, the bag corresponding to the node p; or
pr, respectively. Consider an edge {v,v'} for a vertex v € V(G). There is a node p, with
v € B(py), and therefore v,v" € vy(p,). Consider an edge {v,w'} in F(G), corresponding to
an edge {v,w} € E(G). Thereis a node p,, with v,w € 5(pyw). Now, v, ', w,w" € Y(pyw)-

To see that the width is n + k, consider some bag v(p;) and a vertex v € V(G). There
are three possible cases:

1. For each j with v € B(p;), j > i. Now, v € v(p;); v & v(p:)-
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2. For each j with v € (p;), j < i. Now, v' € v(pi); v & v(pi)-

3. If the previous two cases do not hold, then there is a j < ¢ with v € §(p;), and a
j' =i with v € B(py). From the definition of path decompositions, it follows that
v € B(p;). From the construction of v, we have v,v" € v(p;).

In each of the cases, we have one vertex more in ~y(p;) than in 5(p;), so for each node,
the size of its v-bag is exactly n larger than the size of its $-bag. The claim follows.

Now, assume that the treewidth of G equals ¢. From Lemma 2(2), it follows that
we can assume we have a path decomposition (P, ) of F(G) of width ¢, with P having
successive bags p1,pa, ..., pr, and with V- C y(p;) and V' C y(p,).

We now define a path decomposition (P,d) of G, as follows. For each node x on P,
set 0(z) ={veV |very(x)Av €vy(x)}. (Note that this is the reverse of the operation
in the first part of the proof; compare with Figure 3.)

We now verify that (P,¢) is indeed a path decomposition of GG. For each vertex v, the
set {v,v'} is an edge in F'(G), so there is a node z,, with v,v" € v(x,), hence v € §(x,). For
each edge {v,w} € E(G), the set {v,v',w,w'} forms a clique in F(G), so there is a node
Ty With {v, v/ w, w'} C (zy,) (see Lemma 1(1)). Hence v, w € 6(x,,,). Finally, for each
v € V(Q), the set of nodes = with v € §(x) is the intersection of the nodes with v € (z)
and the nodes with v' € y(z); the intersection of connected subtrees is connected, so the
third condition in the definition of path (tree) decompositions also holds.

Finally, we show that the width of (P,d) is £ — n. Consider a vertex v, and i € [r].
There must be 7, with {v,v'} C ~v(p;,). If i < iy, then v € y(p;); if i > 4,, then v' € y(p;)
(using that v € v(p;) and v" € v(p,)). So, we have {v,v'} N~y (p;) # 0.

Now, for each node p;, i € [r], for each vertex v, we have that v(p;) contains both
vertices from the set {v,v'} when v € §(p;), and ~(p;) contains exactly one vertex from
the set {v,v'} when v & 0(p;). So, |y(pi)| = |d(pi)| + n. As this holds for each bag, we
have that the width of (P,~) is exactly n larger than the width of (P, d). It follows that
pw(G) < tw(F(G)) —n < pw(F(G)) — n, which shows the result. O

Lemma 7, together with the NP-completeness of VERTEX SEPARATION NUMBER [15],
and the equivalence between pathwidth and vertex separation number (Theorem 3), leads
to an alternative simple proof of NP-completeness of TREEWIDTH in the class of co-
bipartite graphs.

Corollary 8. TREEWIDTH s NP-complete on co-bipartite graphs.

One can obtain a proof of the NP-completeness of TREEWIDTH on graphs with max-
imum degree five by combining the proof above with the technique of replacing a clique
with a wall or grid (as in [6] or in the next section). Instead of this, we give in the next
section a proof that reduces from CUTWIDTH and shows NP-completeness of TREEWIDTH
on cubic graphs.
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4 Cubic graphs

The construction leading to an NP-completeness proof for TREEWIDTH on cubic graphs
uses a few steps, which we now summarize. The first step is a simplified version of the NP-
completeness proof from Arnborg, Corneil and Proskurowski [1]; the second step follows
the idea of Bodlaender and Thilikos [6] to replace the cliques by grids or walls. After
this step, we have a graph with maximum degree 7. In the third step, we replace vertices
of degree more than 3 by trees of maximum degree 3, and show that this step does not
change the treewidth. The fourth step makes the graph 3-regular by simply contracting
over vertices of degree 2. For later use, we also give bounds on the pathwidth of the
constructed graphs.

Theorem 9. TREEWIDTH is NP-complete on cubic graphs.

Proof. We use a transformation from CUTWIDTH on 3-regular graphs.

Let G be an n-vertex 3-regular graph and k an integer. Using a sequence of inter-
mediate steps and intermediate graphs G, G, G3, we construct a 3-regular graph Gy
with the property that G has cutwidth at most k, if and only if G4 has treewidth at most
3n+k+ 2.

Step 1: From Cutwidth to Treewidth The first step is a streamlined version of the
proof from Arnborg, Corneil and Proskurowski [1]. For each vertex v € V(G), we take a
set A, = {v!,v% v3}, which has three copies of v.

For each edge e € E(G), we have a set B, = {e!,e?}, which consists of two vertices
that represent the edge.

Let A =U,cy(q) 4v and B = cp(q) Be- We create Gy by taking AU B as vertex set,
turning A into a clique, turning B into a clique, and for each pair v, e with v an endpoint
of e, adding edges between all vertices in A, and all vertices in B,.

Claim 10. Let G and Gy be as above. Then, tw(Gy) = pw(G;) = cu(G) + 3n + 2.

Proof. First, assume G has cutwidth &, and let f be a linear ordering of G of cutwidth &,
and denote the ith vertex in the linear ordering as v; = f~*(i).

Build a path decomposition (P, 3) with P the path with nodes py, ..., p,. For i € [n],
set

Bp:) ={vi|j=inae{l,23}}
U{e’ | e={vj,vy} € E(G) Amin{j,j'} <iAbe[2]}.

That is, we take the representatives of the vertices v;, vj11,...,v,, and all vertices that
represent an edge with at least one endpoint in {vy, va, ..., v;}.

We can verify that (P, () is a path decomposition of GG;. From the construction,
it directly follows that A C ((p;) and B C B(p,). For the second condition of path
decompositions, it remains to look at edges in G; with one vertex of the form v{ and
one vertex of the form e’. Necessarily, v; is an endpoint of e, and now we can note that
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both vertices are in bag [(p;). From the construction, it directly follows that the third
condition of path decompositions is fulfilled.

To show that the width of this path decomposition is at most k + 3n + 2, we use
an accounting system. Consider §(p;). Give each vertex v € V(G) three credits, except
v;, which gets six credits. Each edge that ‘crosses the cut’, i.e. it belongs to the set
{{v,w} € E(G) | f(v) <i < f(w)}, gets one credit. All other edges get no credit. We
handed out at most k+3n+ 3 credits. We now redistribute these credits to the vertices in
B(pi). Each vertex v;, j > 1, gives one credit to each vertex of the form v, a € {1,2, 3}.
For an edge e = {v;,v;}, with j < i and j' < i, the vertices ' and e* get, respectively,
a credit from v; and vy. For an edge e = {v;,v;/}, with j < i < j/, the vertices e' and
e? get, respectively, a credit from v; and a credit from e. Now, each vertex and edge
precisely spends its credit: a vertex v; with j < ¢ gives one credit to each of its incident
edges, v; gives one credit to each of its copies v}, vZ, v}, and one credit to each of its
incident edges, and v; with j > 7 gives one credit to each of its copies v, v}, v}. BEach
vertex in the bag B(p;) gets one credit, so the size of the bag is at most k + 3n + 3. As
this holds for each bag, the width of the path decomposition is at most k£ + 3n + 2.

Now, assume that we have a tree decomposition (T, y) of G; of width . By Lemma 1(1),
as A and B are cliques, there is a bag p; with A C ~(p1), and a bag p, with B C v(p,).
As in the proof of Lemma 2, we can remove all bags not on the path from p; and p,, and
still keep a tree decomposition of GG;. So, we can assume we have a path decomposition
(P,~) of width at most ¢ of G, where P is a path with successive vertices py, pa, . . ., Dp,
and v(p1) = A and y(p,) = B.

For each v € V(G), set g(v) to the maximum 4 such that {v',v* v3} C B(p;). (As
{vlv2, 03} C A C B(p1), g(v) is well defined and in [r].)

Take a linear ordering f of G such that for all v,w € V(G), g(v) < g(w) = f(v) <
f(w). (That is, order the vertices with respect to increasing values of g, and arbitrarily
break the ties when vertices have the same value g(v).) We claim that f has cutwidth at
most ¢ — 3n — 2.

Consider a vertex v € V(G), and assume g(v) = ¢’. Let e be an edge incident to v. The
set {vl, v v3 el e?} is a clique in Gy, so there is an i, with {v',v? 03 e, e?} C B(p;,).
From the definition of path decompositions and the construction of g, we have i, < i'. As
{e', e*} C B(pi.) N B(p,), we have that {e!,e?} C B(py).

Now, consider an i € [n]. Let v = f~!(i) be the ith vertex of the ordering and
C = f7'[i] be the first 7 vertices in the linear ordering. Let E' be the set of edges with
exactly one endpoint in C, and let E? be the set of edges with both endpoints in C. Let
i" = g(v). We now examine which vertices belong to S(py):

e By definition, v!, v?, v3.

e For each w € V(G) \ C, there is an i,, > i’ with {w', w? w*} C B(p;,), hence w',
w?, and w? are in B(py). (We use here that these vertices are in 3(p;).) The number
of such vertices is 3n — 3i.
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e For each edge e € E'UE?, from the discussion above it follows that there is an 3, < 7/
with e!,e? € B(p;.), and, as these vertices are in 5(p,), we have {e!,e?} C B(py).

Thus, the size of 5(py) is at least 3n — 31 +3+ 2 |Ey| + 2 - |Ey|. As each vertex in C
is incident to exactly three edges, we have 3i = |Ey| + 2 - |Es|. Now, ¢ > |B(py)| —1 =
3n—3i+2+2-|E| +2-|Ey| =3n+2+ |E;|. It follows that the size of the cut can be
bounded as follows:

){{x,y} € E(G) | f(=) <z‘<f<y)}\ — |By| <t—3n—2.

As this holds for each ¢ € [n], the bound of £ — 3n — 2 on the cutwidth of f follows.

We have thus shown that pw(G;) < cw(G)+3n+2 and that cw(G) < tw(Gy) —3n—2.
Together with the inequality tw(G;) < pw(Gy), this proves the claim. O

Step 2: The wall construction In the second step, we use a technique from Bodlaen-
der and Thilikos [6]. We construct a graph Go from the graph G; by removing the edges
between vertices in A and the edges between vertices in B; then, we add a wall with 3n
rows and 24n columns, and add a matching from the vertices in the last column of the
wall to the vertices in A. Similarly, we add another wall with 3n rows and 24n columns,
and add a matching from the vertices in the first column of this wall to the vertices in B.

As applying the wall construction to a graph obtained from the first step would be
unwieldy, the example in Figure 4 shows the wall construction applied to the graph from
the previous section.

Figure 4: Illustration of the wall construction. Here, it is applied to the graphs from
Figure 2, and the number of columns shown is smaller than that in the actual construction.

Claim 11. tw(G,) = pw(G1) = tw(G2) = pu(Ga). Moreover, there is a path decomposi-
tion of Gy of optimal width with a node x4 with A C 5(x4) and a node xg with B C B(xp).

Proof. Suppose we have a tree decomposition (7', 3) of G5 of optimal width k. By
Lemma 1(3), there is a node x such that each connected component of G\ f(x) contains
at most 36n? vertices of the left wall.

We claim that f(x) must contain a vertex of each row from the left wall. Suppose not.
Let W, be the vertex set of a row that does not contain a vertex from g(x). Each column
contains a vertex from W, and each pair of two successive columns induces a connected
subgraph. As we have 24n columns in the left wall, there are at least 12n — |3(x)| pairs of
successive columns that do not contain a vertex from [(z). All vertices in such a pair of
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columns belong to the same connected component of Gy \ (x) as W,: the two columns
are connected, contain vertices from W, but no vertex from §(z). This gives 12n —|5(x)|
disjoint sets of 6n vertices in this connected component. And, thus, G5 \ B(z) has a
connected component with at least (6n) - (12n — B(z)) = 72n* —6n - (k+ 1) > 36n?, using
that & < |E(G)| = 3n/2. This contradicts the stated property of .

By Lemma 1(2), (7, ) is also a tree decomposition of the graph obtained from G,
by adding edges between each pair of vertices in 5(z). Apply the same step to the right
wall. We see that (T, 3) is a tree decomposition of width k of a graph that for each pair
of rows in the left wall contains an edge between a pair of vertices from these rows, and
similarly for the right wall. Call this graph Gj,.

The rightmost vertex of a row of the left wall is adjacent to one vertex in A; we now
contract each row of the left wall to this vertex in A. Similarly, we contract each row
of the right wall to the vertex in B that is adjacent to the leftmost vertex of the row.
Observe now that the graph obtained by these contractions is GG;. Furthermore, G is a
minor of G, and thus, by Lemma 1(5), tw(G) < tw(Gh) < k.

By Lemma 2, tw(G) = pw(G1), and there is a path decomposition (P, ) of G of op-
timal width ¢ such that A C v(p;) and B C ~(p,), where p; and p, are the endpoints of P.

We can now build a path decomposition of G5 of the same width ¢ as follows: first,
take the successive bags of a path decomposition of the left wall, of width 3n, where we
can end with a bag that contains all vertices of A. Then, we take the bags of (P,~).
Now, we add a path decomposition of the right wall, of width 3n, that starts with a bag
containing all vertices in B. O]

Step 3: Making the graph subcubic Let us observe that the maximum degree of
a vertex in (G5 is seven. Indeed, any vertex in A has one neighbour in the wall, and six
neighbours in B (the vertex it represents has three incident edges, and each is represented
by two vertices). Similarly, any vertex in B has degree seven: again, one neighbour in the
wall, and six neighbours in A (each endpoint of the edge it represents is represented by
three vertices). Vertices in the walls have degree at most three.

Given (G5, we build a subcubic graph G3. We do this by replacing each vertex in A
and in B by a tree, and replacing edges to vertices in A and B by edges to leaves or the
root of these trees.

For vertices v® in A (with v € V(G), o € [3]), we take an arbitrary tree with a root
of degree 2, all other internal vertices of degree 3, and six leaves. The root (which we
denote by the name of the original vertex v*) is made adjacent to the neighbour of v* in
the wall.

Each vertex e* € B (with e € E(G), « € [2]) is also replaced by a tree with a root of
degree 2, all other internal vertices of degree 3, and six leaves, but here we need to use
a specific shape of the tree. Suppose e has endpoints v and w. Figure 5 shows this tree.
In particular, note that the root is made adjacent to the neighbour of e® in the wall, the
leaves that go to the subtrees that represent v are grouped together, and the leaves that
go to the subtrees that represent w are grouped together.

Each edge between a vertex v® in A and a vertex e®in B now becomes an edge from

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(3) (2025), #P3.36 11



to the tree of v!

v 2
to the tree of v
2
v

e v3 > s to the tree of v3
in the wall wh in the wall to the tree of w'
w? to the tree of w?

w3

to the tree of w?

Figure 5: Replacing a vertex e® from B by a tree; e is here the edge {v, w}.

a leaf of the tree representing v®, to a leaf of the tree representing e®'; a € [3], o/ € [2].
The roots of the trees are made adjacent to a vertex in the wall; this is the same vertex
as the wall neighbour of the original vertex in Gj.

Claim 12. Suppose tw(G2) > 68. Then tw(G2) = pw(G2) = tw(G3). Furthermore,
pw(G3) < tw(Gs) + 69.

Proof. We have already established that tw(Gs) = pw(Gy).
First, note that (G5 is a minor of G3: we obtain G5 from (3 by contracting each of the
new trees to its original vertex. By Lemma 1(5), we have tw(G2) < tw(G3).

Suppose we have a path decomposition (P, ) of Go of optimal width ¢ = pw(Gs) =
tw(Gy). By Claim 11, we may assume that there is a bag that contains all vertices in A,
and that there is a bag that contains all vertices in B.

For each vertex v € V(G), we claim that there is a node p;, with v!,v* v € B(p;,)
and e!, e? € B(p;,) for each of the three edges e incident to v. It is possible to derive this
from the proofs of Claims 10 and 11; a more compact argument is the following: The
pair (P, ) is also a path decomposition of the graph G + clique(A) + clique(B), obtained
from G5 by adding edges between each pair of vertices in A, and each pair of vertices in
B (since there is a bag containing all vertices of A and a bag containing all vertices of B
and by Lemma 1(2)). The claim now follows from Lemma 1(1) by observing that these
nine vertices (vertices v',v? v®, and vertices e!, e* for each edge e incident to v) form a
clique in G + clique(A) + clique(B).

Now, we can construct a tree decomposition of G5 as follows. Take (P, 5). Each vertex
v € AU B has a subtree in (G5 that represents v; in each bag that contains v, we replace v
by the root of that subtree. For each vertex v € V(G), we add one additional bag to the
tree decomposition; this bag becomes a leaf of the tree decomposition. (Note that after
this step, we no longer have a path decomposition.)

Consider a vertex v € V(G). Take a new node x,,, and make x, adjacent to p;, in the
tree. Let the bag of x, contain the following vertices: all vertices in the subtrees that

represent v!, v?, v3, for each edge e with v as endpoint the vertices e!, el €2, €2, and
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the descendants of ¢! and e? in the respective subtrees (the vertices in the yellow area in
Figure 5, assuming that e = {v, w}).

Left grid wall Right grid wall

Figure 6: Illustration of the proof. The decomposition before and after adding the new
node z,.

Each vertex in A is represented by a binary tree with a root of degree two and six
leaves, so by eleven vertices. For each of the three edges incident to v, we have two subtrees
of which we take six vertices each, so the total size of this new bagis 3-11+3-2-6 = 69.
One easily verifies that we have a tree decomposition of (G5, and as the original bags keep
the same size, when ¢ > 68 we have a tree decomposition of G of width at most £.

By merging the new bags with their parents, we obtain a path decomposition of Gj
of width ¢ + 69, proving the second part of the claim. O

Claim 10 and Claim 11 imply that, by taking a sufficiently large n (e.g. n > 22 works),
we can assume that tw(Gy) > 68.

Step 4: Making the graph 3-regular The fourth step is simple. Note that when the
treewidth of a graph is at least three, the treewidth does not change when we contract a
vertex of degree at most two to a neighbour (see [2]), possibly removing parallel edges.
Note that this also cannot increase the pathwidth of the graph. We apply this step as
many times as possible, and let G4 be the resulting graph. The graph Gy is a 3-regular
graph, and, when n > 22, its treewidth equals the treewidth of Gy, which is cw(G)+3n+2.
As the pathwidth is not increased, by Claim 12 we have:

Claim 13. pw(G4) < tw(Gy) + 69.

As we can construct GG4 in polynomial time, this completes the transformation, and
we can conclude that TREEWIDTH is NP-complete on 3-regular graphs. O]

5 Special cases

In this section, we give three NP-completeness proofs for TREEWIDTH on special graph
classes, which follow from minor modifications of the proof of Theorem 9.
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5.1 Regular graphs

We first observe that for any fixed d > 4, TREEWIDTH is NP-complete on d-regular
graphs.

Proposition 14. For each d > 3, TREEWIDTH is NP-complete on d-reqular graphs.

Proof. The result for d = 3 was given as Theorem 9.

A small modification of the proof of Theorem 9 gives the result for 4-regular graphs:
instead of using a wall, use a grid. At the borders of this grid, we have vertices of degree
less than 3. We can avoid these by first contracting vertices of degree 2, and then noting
that there is a perfect matching with the vertices of degree 3 at the sides of the grid.
Replace each edge in this matching by a small subgraph, as shown in Figure 7. Note that
this step increases the degree of v and w by one, while, when the treewidth of GG is at
least 5, the step will not change the treewidth of the graph.

Figure 7: Increasing the degree of two adjacent vertices by one.

In the step where we change vertices of degree 7 to vertices of degree 3 by replacing
a vertex by a small tree, we instead use a tree with the root having two children, each
with three children. These roots are made adjacent to the grid. Now, the roots have
degree 3, and we add an arbitrary perfect matching between these root vertices in A, and
similarly for B. (Note that in the construction, there is a bag containing all roots for A,
and similarly B; these sets have even size.) This gives the result for d = 4.

Consider the following gadget. Take a clique with d+ 1 vertices, and remove one edge,
say {z,y}, from this clique. For a vertex v in a graph G, add an edge from = to v, and
an edge from y to v. See Figure 8.

Figure 8: Increasing the degree of a vertex: if tw(G) > 4, then the step increases the
degree of v from 3 to 5, but does not change the treewidth.

If G has treewidth at least d, then this step increases the degree of v by 2 without
changing the treewidth. Now, if d is odd, we can take an instance of the hardness proof on
3-regular graphs, and add to each vertex of that instance (d — 3)/2 copies of this gadget.
We obtain an equivalent instance that is d-regular. If d is even, we add (d — 4)/2 copies
of the gadget to an instance of the hardness proof on 4-regular graphs. O]
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5.2 Grid graphs

A d-dimensional grid graph is a finite induced subgraph of the infinite d-dimensional grid.
Observe that d-dimensional grid graphs have degree at most 2d, and in particular the
3-dimensional grid graphs have degree at most 6. As a consequence of lowering the degree
of hard TREEWIDTH instances from 9 to at most 6, we can show that computing the
treewidth of 3-dimensional grid graphs is NP-complete. Since we lowered the degree of
hard instances down to at most 3, we can even show the following.

Proposition 15. TREEWIDTH is NP-complete on subcubic 3-dimensional grid graphs.

Proof. The argument is simply that every n-vertex (sub)cubic graph admits a subdivision
of polynomial size that is a 3-dimensional grid graph. We give a simple such embedding.

We reduce from TREEWIDTH on cubic graphs, which is NP-hard by Theorem 9. Let
G be any cubic graph, vy, vy, ..., v, its vertices, and ey, e, . . ., €3,/ its edges. We build
a subcubic induced subgraph H of the (6n — 1) x (3n + 1) x 3 grid that is a subdivision
of G. In particular, tw(H) = tw(G) and H has O(n?) vertices and edges, implying the
desired conclusion.

For each i € [0,n — 1], vertex v; is encoded by the path made by the 5 vertices (z, 0, 0)
with x € [6i,6i + 4]. We arbitrarily assign (67, 0,0), (67 4+ 2,0,0), (6 +4,0,0) each with
a distinct neighbour of v; in G, say v;(), vi(1), Vi(2), Tespectively.

Every edge e, = {v;,v;} of G with i < j is encoded in the following way. Let a,b € [0, 2]
be such that i(a) = j and j(b) = 4. We build a path from (6i + 2a,0,0) to (65 + 2b,0,0)
with degree-2 vertices, by first adding all the vertices (6i + 2a,y,0) and (67 + 2b,y,0)
for y € [2k], then bridging (67 + 2a,2k,0) and (65 + 2b,2k,0) by adding (6¢ + 2a, 2k, 1),
(6i+2a, 2k, 2), (6i+2a+1,2k,2), (6i+2a+2,2k,2), ..., (6j+2b—1,2k,2), (6j+2b, 2k, 2),
and (65 + 2b,2k,1). An example of this construction is illustrated in Figure 9.

This finishes the construction of H. All of its vertices have degree 2, except the vertices
of the form (6: + 2,0, 0), which have degree 3. It is easy to see that H is a subdivision of
G (where each edge gets subdivided at most 12n 4 5 times). O

We can easily adapt the previous proof to show hardness for finite subcubic (non-
induced) subgraphs of the co x oo x 2 grid.

5.3 Cubic line graphs

In this section, we combine some simple observations, earlier proofs from this paper, and
the NP-hardness proofs of Monien and Sudbourough [15], to obtain that TREEWIDTH is
NP-hard for cubic line graphs.

For a graph G, the line graph L(G) of G is obtained by taking F(G) as the set of
vertices, and adding an edge between two distinct e, e’ € F if and only if e and €’ share an
endpoint. Consider a cubic graph GG. Now, subdivide each edge in G once, and then take
the line graph H of the latter graph. In other words, we can obtain H from G by replacing
each vertex v of G by a triangle and each edge of G by an edge between corresponding
triangles, using each vertex in a triangle once for an external edge; see Figure 10 and
Figure 11. Note that H is again a cubic graph.
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(6i + 2,2k, 2) (65 + 2,2k, 2)
6@+22k:0 r r6j+22kz0

67 62+16z+26z+36@+4 6j 6j+16j+265+3675+4

Figure 9: Embedding of a cubic graph G into a subcubic 3-dimensional grid graph em-
ployed in the proof of Proposition 15. The figure illustrates the two paths representing
the vertices v; and v; in G together with the path corresponding to the edge e, between
v; and v; in G. Note that i(1) = j and j(1

Y

Figure 10: A local transformation that corresponds to taking the line graph of a subdivi-
sion of a cubic graph.

o B[]

Figure 11: A graph, its subdivision, and the line graph of the subdivision.

We start with a simple observation. It is interesting to note that taking the line graph
of the subdivision of a cubic graph increases the pathwidth only by a small additive term,
whereas in many other cases, taking the line graph can increase of the pathwidth or
treewidth by a multiplicative factor; see the study by Harvey and Wood [9].
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Lemma 16. Let G be a cubic graph and let H be the line graph of the graph obtained
by subdividing each edge of G once. Then cu(G) < cw(H) < cw(G) + 2 and pu(G) <
pw(H) < pw(G) + 4.

Proof. Note that contracting each triangle in H representing the edges incident to a
degree-3 vertex of G results in the graph G. Hence, G is a minor of H and thus, by
Lemma 1(5), the pathwidth of G is at most the pathwidth of H. Also, G can be obtained
from H by edge deletions (remove from each triangle one edge) and contractions over
vertices of degree 2, so the cutwidth of GG is at most the cutwidth of H.

Assume that we have a linear ordering f of G of cutwidth k. Replace each vertex v of
G by the three vertices in H that represent its incident edges, in the order of the other
endpoints of these edges. This gives a linear ordering of H of cutwidth at most k + 2.
This can be seen by a simple case analysis. If w immediately follows v in f, then the same
number of edges cross the cut between v and w as well as the cut between the last vertex
of the triangle of v and the first vertex of the triangle of w. Each cut between vertices in
a triangle representing v has size at most k + 2: two edges from the triangle, and at most
k other edges, as these other edges are a subset of one of the cuts left or right from v in
f.

For each graph of maximum degree three, we have that the cutwidth equals a param-
eter called search number (see [14, Corollary 3.3]), and for each graph G, the pathwidth
of G is at most the search number of G, which is at most pw(G) + 2 (see [8, Theorem
2.1]); the result now follows. O

Corollary 17. Let G be a cubic graph with pw(G) < tw(G) + 69, and let H be the line
graph of the graph obtained by subdividing each edge of G once. Then tw(G) < tw(H) <
tw(G) + 73.

Proof. As G is a minor of H (contract the edges of each triangle), we have tw(G) < tw(H
by Lemma 1(5). Using Lemma 16, we have tw(H) < pw(H) < pw(G)+4 < tw(G)+69+4 =
tw(G) + 73. O

The main idea of the remainder of the proof in this section is the following. If we can
show that for cubic graphs with pathwidth at most the treewidth plus 69, approximating
treewidth is NP-hard for an additive term of 73, then this fact together with Corollary 17
will imply that computing the treewidth of cubic line graphs is NP-hard. Such a non-
approximability result can be obtained by looking at a chain of reductions starting with
EDGE-WEIGHTED CUTWIDTH for trees to TREEWIDTH for cubic graphs, from [15], and
our paper. For the first problem, it is easy to observe that approximating within a constant
additive term is NP-hard; then, for each reduction in the chain, one can observe that the
NP-hardness of approximation with a constant additive term is preserved. Finally, we
observe that our construction in Section 4 indeed creates graphs with pathwidth at most
treewidth plus 69. We make this proof idea formal below.

Monien and Sudborough [15] consider an edge-weighted version of CUTWIDTH. Here,
each edge has a positive integer weight. The weighted cutwidth of a linear ordering is
the maximum over all cuts of the total weight of the edges crossing the cut (whereas the
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standard cutwidth counts the number of edges.) Monien and Sudborough [15] show that
EDGE-WEIGHTED CUTWIDTH is NP-complete for trees. Then, they give a transformation
from EDGE-WEIGHTED CUTWIDTH for trees to CUTWIDTH for planar graphs. (This
transformation replaces an edge of weight o by « parallel edges, and then subdivides each
of these edges once.) After that, they give an elaborate transformation from CUTWIDTH
for planar graphs to CUTWIDTH for cubic planar graphs.?

In order to keep the discussion sufficiently compact, we do not give a self-contained
proof, but will instead refer to some details from proofs by Monien and Sudborough [15].

Proposition 18. Let ¢ > 73 be a positive integer.

Let Gy be an edge-weighted tree, and ko > 2¢ an integer.
Let Gy be obtained by multiplying all edge weights in Go by c+1. Let ky = ky-(c+1).

Let (Go, k) be obtained from (G, k1) by applying the transformation given in [15]
from EDGE-WEIGHTED CUTWIDTH for trees to CUTWIDTH for planar graphs.

Let (G3, k3) be obtained from (Gg, ks) by applying the transformation given in [15]
from CUTWIDTH for planar graphs to CUTWIDTH for cubic planar graphs.

Let (Gy, ky) be obtained from (Gs, k3) by applying the transformation given in Sec-
tion 4 from CUTWIDTH for cubic planar graphs to TREEWIDTH for cubic graphs.

Let H be obtained from G4 by subdividing each edge once and then taking the line
graph.

Then the following are equivalent.

1.

S N N

8.

Gy has a linear ordering with weighted cutwidth at most k.

G has a linear ordering with weighted cutwidth at most k.

G has a linear ordering with weighted cutwidth at most ky + c.
Go has cutwidth at most ks.

G9 has cutwidth at most kqy + c.

G'3 has cutwidth at most ks.

Gs has cutwidth at most ks + c.

G4 has treewidth at most ky.

2More precisely, the construction by Monien and Sudborough [15] creates a graph of maximum degree
3. This graph has no vertices of degree at most one, but some vertices of degree 2. However, when we
contract each vertex of degree 2 with one of its neighbour, the construction still gives a simple graph,
with the same cutwidth. So, we may assume the resulting graph is cubic.
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9. G4 has treewidth at most k4 + c.
10. H has treewidth at most k4 -+ c.

Proof. The equivalence of (1) and (2) is trivial, as we multiply all values by ¢+ 1. As all
weights in G are a multiple of ¢ + 1, each linear ordering of GGy has weighted cutwidth
which is a multiple of ¢ + 1, and thus the equivalence of (2) and (3) follows.

The equivalences of (2), (4), (6), and (8) follow from the correctness of the various
transformations, i.e., the proofs from [15] and Section 4.

To see the equivalences of (3), (5), (7), and (9) we have to look into the details of
the respective transformations (from [15] and Section 4). Following these proofs, one can
without much effort observe that the transformation indeed also preserves the equivalences
for width values that are a small constant larger than k;.

By Claim 13, G4 satisfies pw(G4) < tw(G4) +69. Hence, by Corollary 17, we have that
if tw(Gy) < kg, then tw(H) < kg + 73, so (8) implies (10), and that if tw(H) < ks + ¢
then tw(Gy) < k4 + ¢, so (10) implies (9). The proposition now follows. O

Corollary 19. TREEWIDTH is NP-complete for cubic line graphs.

Proof. Clearly, the problem is in NP. NP-hardness follows by transforming from EDGE-
WEIGHTED CUTWIDTH for trees; the transformation first multiplies all weights by 74,
and then successively carries out the transformations from [15] from EDGE-WEIGHTED
CuTwIDTH for trees to CUTWIDTH for planar graphs, then to CUTWIDTH for cubic planar
graphs, then the transformation from Section 4 to TREEWIDTH for cubic graphs. Finally,
we subdivide each edge, take the line graph, and add 4 to the parameter. Correctness
follows from Proposition 18. O]

We can also observe the following result.
Corollary 20. PATHWIDTH is NP-complete for cubic line graphs.

Proof. In a similar way as above, we build upon reductions given by Monien and Sudbor-
ough [15]. Start with an input of EDGE-WEIGHTED CUTWIDTH for trees. Multiply all
weights by 5. Then, follow the reductions from [15] to VERTEX SEPARATION NUMBER
for graphs of degree at most three. Recall that the vertex separation number of a graph
equals its pathwidth [11]. Note that their construction constructs graphs with vertices of
degree two and three. Suppose these constructions build a graph G. Let H be the graph
obtained by subdividing each edge in G between vertices of degree three, and then taking
the line graph. As in Lemma 16, pw(G) < pw(H) < pw(G) + 4. With a series of similar
arguments to Lemma 18, we have that an instance of EDGE-WEIGHTED CUTWIDTH for
trees is positive, if and only if the pathwidth of G is at most k, if and only if the pathwidth
of H is at most k£ 4+ 4. NP-hardness follows. O
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6 Conclusions

In this paper, we gave a number of NP-completeness proofs for TREEWIDTH. The first
proof is an elementary reduction from PATHWIDTH to TREEWIDTH on co-bipartite graphs;
while the hardness result is long known, our new proof has the advantage of being very
simple, and presentable in a matter of minutes. Our second main result is the NP-
completeness proof for TREEWIDTH on cubic graphs, which improves upon the over 25-
years-old bound of degree 9.

We end this paper with a few open problems. A long standing open problem is the
complexity of TREEWIDTH on planar graphs. It is interesting to recall that the famous
ratcatcher algorithm by Seymour and Thomas[18] solves the BRANCHWIDTH problem
on planar graphs in polynomial time, but several other related questions still have the
complexity status open. We list a number of open problems:

e [s TREEWIDTH for planar graphs NP-complete? Or, is there a polynomial time
algorithm?

e [s there a constant ¢ such that TREEWIDTH on graphs with genus at most c is
NP-complete?

e Is there a fixed (non-planar) graph H such that TREEWIDTH is NP-complete for
graphs that do not have H as a minor? (Note that for a planar graph H, there is a
linear time algorithm for TREEWIDTH of graphs without H as minor, as graphs that
avoid a planar graph as minor have bounded treewidth, so we can combine [17, 3].)

e Is there a (non-planar) surface S such that BRANCHWIDTH for graphs that can be
drawn without crossings on S is polynomial time solvable?

e Is there a constant ¢ such that BRANCHWIDTH on graphs with genus at most c is
NP-complete?

e [s there a constant ¢ such that BRANCHWIDTH on graphs with degree at most ¢
is NP-complete? What is the complexity of BRANCHWIDTH of cubic graphs? (We
conjecture it is NP-complete.)

e Current proofs for lower bounds for the approximation of treewidth create graphs of
large minimum degree [7, 19]. Can we give improved upper or lower bound for the
approximation ratio of polynomial time approximation algorithms for treewidth?

The reductions in our hardness proofs increase the parameter by a term linear in n,
so shed no light on the parameterised complexity of TREEWIDTH. Hence, it would be
interesting to obtain parameterised reductions (i.e. reductions that change k to a value
bounded by a function of k), and also aim at lower bounds (e.g. based on the (S)ETH)
on the parameterised complexity of TREEWIDTH. Very recently, Bonnet [7] showed that
under the ETH, TREEWIDTH requires 2™ time, which also implies a lower bound of
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2RO for TREEWIDTH. Korhonen and Lokshtanov [12] gave an algorithm with run-
ning time 0(20(1&)”0(1)); thus, as an open problem we have to find reductions that increase
the 22%) lower bound or give FPT algorithms with dependency on k of the form 2°:*).

Finally, while ‘our’ reductions are simple, the NP-hardness of TREEWIDTH is derived
from the NP-hardness of PATHWIDTH or CUTWIDTH. Thus, it would be good to have
simple NP-hardness proofs for PATHWIDTH and/or CUTWIDTH, preferably building upon
‘classic’” NP-hard problems like SATISFIABILITY, elementary graph problems like CLIQUE,
or BIN PACKING.
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