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Abstract

Let K3,3+v be the graph obtained by adding a new vertex v to K3,3 and joining
v to the four vertices of a 4-cycle. In this paper, we characterize all 4-connected
graphs that do not contain K3,3 + v as a minor.

Mathematics Subject Classifications: 05C83

1 Introduction

All graphs in this article are simple. Define the contraction of an edge e as identifying
the two ends of e and then deleting all but one edge from each resulting parallel family.
Given two graphs G and H, we say that H is a minor of G, if there is a subgraph
of G to which we can apply a sequence of edge contractions and deletions to obtain a
graph isomorphic to H. We call G H-free if H is not a minor of G. The Robertson-
Seymour Graph Minors project has shown that minor-closed classes of graphs can be
characterized by finitely many forbidden minors. We can get some graph classes which
have many interesting properties in the process of excluding small minors. In addition,
many important problems in graph theory can be formulated in terms of H-free graphs.
For instance, Tutte’s 4-flow conjecture asserts that every bridgeless Petersen-free graph
admits a 4-flow.

Ding and Liu [3] surveyed all H-free graphs for 3-connected H with at most 11 edges.
For graphs with 12 edges, there are 51 3-connected graphs. Let G be a 3-connected graph.
We define G to be internally 4-connected if the order of G is at least five, and for every
3-separation {G1, G2} of G, exactly one of G1, G2 is isomorphic to K1,3. In addition, there
are only three internally 4-connected graphs with 12 edges, the cube, the octahedron (or
Oct for short), and the Wagner graph V8. Maharry [7, 8] characterized all cube-free graphs
and 4-connected Oct-free graphs. Ding [1] characterized all Oct-free graphs, and Maharry
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and Robertson [9] characterized internally 4-connected V8-free graphs. For graphs with 13
edges, there are again only three internally 4-connected ones, which are described below.
Let Oct+ be the graph obtained from the octahedron by adding an edge. And Maharry
[6] characterized all 4-connected Oct+-free graphs. Let cube+e denote the graph obtained
by adding a long diagonal to the cube. Let K3,3 + v be the graph obtained by adding
a new vertex v to K3,3 and joining v to the four vertices of a 4-cycle. Ding [2] pointed
out that cube+e-free and K3,3 + v-free graphs remain uncharacterized. In this paper, we
characterize all 4-connected K3,3 + v-free graphs.

To state our main result we need to define a few classes of graphs and symbols. We use
G/e to denote the graph obtained from G by contracting e, and G\e to denote the graph
obained from G by deleting e. For each integer n > 3, let DWn denote a double-wheel,
which is the graph on n + 2 vertices obtained from a cycle Cn by adding two adjacent
vertices and connecting them to all vertices on the cycle. Let DW = {DWn : n > 3}.
For each integer n > 5, let C2

n be the graph obtained from a cycle Cn by joining all pairs
of vertices of distance two on the cycle. Let C0 = {C2

2n : n > 3}, C1 = {C2
2n+1 : n > 2}

and C = C0 ∪ C1. The graph L(G) is called the line graph of G if V (L(G)) = E(G), and
for any two vertices e, f in V (L(G)), e and f are adjacent in L(G) if and only if they are
adjacent edges in G. Our main result is the following.

Theorem 1. A 4-connected graph G is K3,3 +v-free if and only if either G is planar or G
belongs to DW∪C1∪{L(K3,3), K6, K6\e,Γ1,Γ2}, where Γ1 and Γ2 are the last two graphs
shown below.

DW6K3,3 + v C2
7

Γ1 Γ2

1

2

3

4 5

6

7

81

2

3

4

5

6

7

Figure 1: Some graphs in Theorem 1.1

Let G be a 3-connected graph. We call G weakly 4-connected if for every 3-separation

{G1, G2} of G, one of G1 or G2 contains at most four edges. For each internally 4-connected

graph H, Ding has described in [2] how 3-connected H-free graphs can be constructed from

weakly 4-connected H-free graphs. This result indicates that to determine all K3,3 + v-free

graphs, it is sufficient to determine all weakly 4-connected K3,3 + v-free graphs. However, this

is a challenging problem. Instead, we focus on determining all 4-connected K3,3 + v-free graphs,

which provides a significant step towards a complete characterization of all weakly 4-connected

graphs with no K3,3 + v-minor.

2 Preliminaries

In this section, we introduce some definitions and known results to prove Theorem 1.1.

Let G be a graph. For a vertex v in G, let NG(v) denote the set of vertices of G that

are adjacent to the vertex v, and simply write N(v) when there is no ambiguity. If G is 4-

connected, then a 4-split of v produces a new graph G′ as follows. Given two sets A,B ⊆ NG(v)

with A ∪ B = NG(v) and min{|A|, |B|} ≥ 3, the graph G′ is obtained by adding to G − v two

adjacent vertices a and b such that NG′(a) = A ∪ {b} and NG′(b) = B ∪ {a}. We also call G′ a

split of G. Note that G′ is also 4-connected and G′/ab = G.

A sequence of 4-connected graphs G0, G1, . . . , Gn is called a (G0, Gn)-chain if each Gi (i < n)

has an edge ei such that Gi/ei = Gi+1. The following theorem due to Qin and Ding [10] is an

important tool to generate all 4-connected graphs. Let L = {L(G) : G is an internally 4-

connected cubic graph}. For convenience, we abbreviate K3,3 + v as Kv in the rest of this
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Figure 1: Some graphs in Theorem 1 .

Let G be a 3-connected graph. We call G weakly 4-connected if for every 3-separation
{G1, G2} of G, one of G1 or G2 contains at most four edges. For each internally 4-connected
graph H, Ding has described in [2] how 3-connected H-free graphs can be constructed from
weakly 4-connected H-free graphs. This result indicates that to determine all K3,3+v-free
graphs, it is sufficient to determine all weakly 4-connected K3,3 + v-free graphs. However,
this is a challenging problem. Instead, we focus on determining all 4-connected K3,3 + v-
free graphs, which provides a significant step towards a complete characterization of all
weakly 4-connected graphs with no K3,3 + v-minor.
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2 Preliminaries

In this section, we introduce some definitions and known results to prove Theorem 1.
Let G be a graph. For a vertex v in G, let NG(v) denote the set of vertices of G that

are adjacent to the vertex v, and simply write N(v) when there is no ambiguity. If G
is 4-connected, then a 4-split of v produces a new graph G′ as follows. Given two sets
A,B ⊆ NG(v) with A ∪ B = NG(v) and min{|A|, |B|} > 3, the graph G′ is obtained
by adding to G − v two adjacent vertices a and b such that NG′(a) = A ∪ {b} and
NG′(b) = B ∪ {a}. We also call G′ a split of G. Note that G′ is also 4-connected and
G′/ab = G.

A sequence of 4-connected graphs G0, G1, . . . , Gn is called a (G0, Gn)-chain if each
Gi (i < n) has an edge ei such that Gi/ei = Gi+1. The following theorem due to Qin and
Ding [10] is an important tool to generate all 4-connected graphs. Let L = {L(G) : G is
an internally 4-connected cubic graph}. For convenience, we abbreviate K3,3 + v as Kv

in the rest of this paper.

Theorem 2 ([10]). Let G be a 4-connected graph not in C ∪L. If G is planar, then there
exists a (G,C2

6)-chain; if G is non-planar, then there exists a (G,K5)-chain.

The following results are necessary to prove Theorem 1.1.

Lemma 3 ([5]). If G ∈ L is 4-connected and Kv-free, then G is planar or G = L(K3,3).

Lemma 4 ([5]). Graphs in C are all 4-connected Kv-free graphs.

Lemma 5 ([5]). If a 4-connected graph G is Kv-free, then it is planar, C2
2k+1 (k > 2),

L(K3,3) or it is obtained from C2
5 by repeatedly 4-splitting vertices.

Lemma 6 ([4]). The only 4-splits of C2
5 are K6, K6\e, DW4.

Thus, we next characterize Kv-free graphs obtained from K6, K6\e and DW4 by
repeatedly 4-splitting vertices.

3 Proof of Theorem 1

In this section, we prove the following lemma from which the Theorem 1.1 follows.

Lemma 7. Let G be a 4-connected graph obtained from K6, K6\e and DW4 by repeatedly
4-splitting vertices. Then G is Kv-free if and only if G ∈ DW ∪ {Γ1,Γ2}.

Next we divide the proof of Lemma 7 into a sequence of lemmas.

Lemma 8. Every graph in DW is Kv-free.

Proof. Observe that every G ∈ DW has a set S of at most two vertices such that the
maximum degree of G − S is at most two. This is a property preserved by all minor of
G, but Kv does not posses it. Thus G is Kv-free.
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Lemma 9. All graphs in {K6, K6\e,Γ1,Γ2} are Kv-free.

Proof. Since Kv − v is bipartite, Kv does not contain two disjoint triangles. Note that
|E(Γ1)| = 15 = |E(Kv)| + 2. If Γ1 contains a Kv-minor, then Kv is obtained from Γ1

by deleting two edges incident with the vertex 4. If e, f are edges of Γ1 that are incident
with 4, then Γ1\{e, f} contains two disjoint triangles, 123 and 567, so this graph is not
isomorphic to Kv.

Observe that Γ2 has eight vertices. If Γ2 contains a Kv-minor, we may assume that Kv

is obtained from Γ2 by contracting one edge. Up to symmetry, there are exactly two such
constructions, Γ2/12 and Γ2/45. Since |E(Γ2/12)| = 13, no edges of Γ2/12 can be deleted.
Note that Γ2/12 has two disjoint triangles, so it is not isomorphic to Kv. Additionally,
Γ2/45 is isomorphic to Γ1, which is Kv-free.

Furthermore, K6 and K6\e are Kv-free, since |V (K6)| = |V (K6\e)| < |V (Kv)|.

Lemma 10. Every graph obtained by adding an edge to Γ1 or Γ2 contains K
v as a minor.

Proof. By symmetry, there is only one way to add an edge to each of Γ1 and Γ2, respec-
tively. It is straightforward to verify that both Γ1 + 16 and Γ2 + 16 contain Kv as a minor
(see Figure 2).

Proof. Since Kv−v is bipartite, Kv does not contain two disjoint triangles. Note that |E(Γ1)| =
15 = |E(Kv)| + 2. If Γ1 contains a Kv-minor, then Kv is obtained from Γ1 by deleting two

edges incident with the vertex 4. If e, f are edges of Γ1 that are incident with 4, then Γ1\{e, f}
contains two disjoint triangles, 123 and 567, so this graph is not isomorphic to Kv.

Observe that Γ2 has eight vertices. If Γ2 contains a Kv-minor, we may assume that Kv

is obtained from Γ2 by contracting one edge. Up to symmetry, there are exactly two such

constructions, Γ2/12 and Γ2/45. Since |E(Γ2/12)| = 13, no edges of Γ2/12 can be deleted. Note

that Γ2/12 has two disjoint triangles, so it is not isomorphic to Kv. Additionally, Γ2/45 is

isomorphic to Γ1, which is Kv-free.

Furthermore, K6 and K6\e are Kv-free, since |V (K6)| = |V (K6\e)| < |V (Kv)|.

Lemma 3.4. Every graph obtained by adding an edge to Γ1 or Γ2 contains Kv as a minor.

Proof. By symmetry, there is only one way to add an edge to each of Γ1 and Γ2, respectively.

It is straightforward to verify that both Γ1 + 16 and Γ2 + 16 contain Kv as a minor (see Figure

2).
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Figure 2: Graphs Γ1 + 16 and Γ2 + 26 (The vertices of color red and blue belong to the

two color classes of K3,3 respectively, and the vertex of color green corresponds to v.)

Lemma 3.5. Every graph obtained by adding an edge to DWn (n ≥ 5) contains Kv as a minor.

Proof. First, we consider the case when n = 5. Up to symmetry, there is a unique way to add an

edge. The resulting graph, denoted by DW e
5 , contains Kv as a minor (see Figure 3). Next, we

consider n ≥ 6. Let F = {F : F is the graph obtained by adding an edge to DWn}. Note that

5

Figure 2: Graphs Γ1 + 16 and Γ2 + 26 (The vertices of color red and blue belong to the
two color classes of K3,3 respectively, and the vertex of color green corresponds to v).

Lemma 11. Every graph obtained by adding an edge to DWn (n > 5) contains Kv as a
minor.

Proof. First, we consider the case when n = 5. Up to symmetry, there is a unique way to
add an edge. The resulting graph, denoted by DW e

5 , contains Kv as a minor (see Figure
3). Next, we consider n > 6. Let F = {F : F is the graph obtained by adding an edge to
DWn}. Note that all the graphs in F will always contain DW e

5 as a minor by contracting
some edges on the cycle C = 1, 2, . . . , n. Therefore, every graph obtained by adding an
edge to DWn (n > 6) contains Kv as a minor.

Lemma 12. The only Kv-free splits of DW4 are Γ1 and DW5.

the electronic journal of combinatorics 32(3) (2025), #P3.37 4



all the graphs in F will always contain DW e
5 as a minor by contracting some edges on the cycle

C = 1, 2, . . . , n. Therefore, every graph obtained by adding an edge to DWn (n ≥ 6) contains

Kv as a minor.
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Figure 3: Graphs DW5 + 25 and DWn + 13

Lemma 3.6. The only Kv-free splits of DW4 are Γ1 and DW5.

Proof. We first consider splitting a degree-4 vertex of DW4. Suppose both of the two new

vertices have degree four. Up to symmetry, there are exactly three such splits, denoted by

G1, G2 and G3, which are shown in Figure 4. The first two splits, G1 and G2, contain Kv as a

minor. The third split, G3 is isomorphic to DW5, which is Kv-free by Lemma 3.2.

Now suppose at least one of the two new vertices has degree exceeding four. Then this split,

denoted by G, is obtained from G1, G2, or G3 by adding edges. If G contains G1 or G2, then

G contains a Kv-minor. Therefore, we assume that G is obtained from DW5 by adding edges,

which contains a Kv-minor by Lemma 3.5.
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Figure 4: Three splits G1, G2, G3 of DW4

Next we consider splitting a degree-5 vertex. Suppose both of the two new vertices, a and

b, have degree four. Up to symmetry, there are exactly four such splits, denoted by H1, H2, H3
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Figure 3: Graphs DW5 + 25 and DWn + 13.

Proof. We first consider splitting a degree-4 vertex of DW4. Suppose both of the two new
vertices have degree four. Up to symmetry, there are exactly three such splits, denoted
by G1, G2 and G3, which are shown in Figure 4. The first two splits, G1 and G2, contain
Kv as a minor. The third split, G3 is isomorphic to DW5, which is Kv-free by Lemma 8.

Now suppose at least one of the two new vertices has degree exceeding four. Then this
split, denoted by G, is obtained from G1, G2, or G3 by adding edges. If G contains G1 or
G2, then G contains a Kv-minor. Therefore, we assume that G is obtained from DW5 by
adding edges, which contains a Kv-minor by Lemma 11.
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Lemma 3.6. The only Kv-free splits of DW4 are Γ1 and DW5.

Proof. We first consider splitting a degree-4 vertex of DW4. Suppose both of the two new

vertices have degree four. Up to symmetry, there are exactly three such splits, denoted by

G1, G2 and G3, which are shown in Figure 4. The first two splits, G1 and G2, contain Kv as a

minor. The third split, G3 is isomorphic to DW5, which is Kv-free by Lemma 3.2.

Now suppose at least one of the two new vertices has degree exceeding four. Then this split,

denoted by G, is obtained from G1, G2, or G3 by adding edges. If G contains G1 or G2, then

G contains a Kv-minor. Therefore, we assume that G is obtained from DW5 by adding edges,

which contains a Kv-minor by Lemma 3.5.
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Figure 4: Three splits G1, G2, G3 of DW4.

Next we consider splitting a degree-5 vertex. Suppose both of the two new vertices,
a and b, have degree four. Up to symmetry, there are exactly four such splits, denoted
by H1, H2, H3 and H4, which are shown in Figure 5. The last three splits, H2, H3 and
H4, contain Kv as a minor. The first split, H1 is isomorphic to Γ1, which is Kv-free by
Lemma 9.

Now suppose at least one of the two new vertices has degree exceeding four. Then this
split, denoted by H, is obtained from H1, H2, H3, or H4 by adding edges. If H contains
H2, H3, or H4 then H contains a Kv-minor. So we assume that H is obtained from Γ1 by
adding edges, which contains a Kv-minor by Lemma 10.

In summary, the only Kv-free splits of DW4 are Γ1 and DW5.

Lemma 13. The only Kv-free splits of Γ1 is Γ2.

Proof. We first claim that splitting a degree-4 vertex of Γ1 must result in a Kv-minor.
Let {1, 2, 3, 4, 5, 6, 7} be the vertices of Γ1. Up to symmetry, we consider splitting the
vertex 1. Suppose both of the two new vertices, a and b, have degree four. By symmetry,
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and H4, which are shown in Figure 5. The last three splits, H2, H3 and H4, contain Kv as a

minor. The first split, H1 is isomorphic to Γ1, which is Kv-free by Lemma 3.3.

Now suppose at least one of the two new vertices has degree exceeding four. Then this split,

denoted by H, is obtained from H1, H2, H3, or H4 by adding edges. If H contains H2, H3, or

H4 then H contains a Kv-minor. So we assume that H is obtained from Γ1 by adding edges,

which contains a Kv-minor by Lemma 3.4.

In summary, the only Kv-free splits of DW4 are Γ1 and DW5.
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Figure 5: Another four splits H1, H2, H3, H4 of DW4

Lemma 3.7. The only Kv-free splits of Γ1 is Γ2.

Proof. We first claim that splitting a degree-4 vertex of Γ1 must result in a Kv-minor. Let

{1, 2, 3, 4, 5, 6, 7} be the vertices of Γ1. Up to symmetry, we consider splitting the vertex 1.

Suppose both of the two new vertices, a and b, have degree four. By symmetry, there are four

such splits, denoted by G1, G2, G3, and G4, each of which contains Kv as a minor, as shown in

Figure 6.
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Figure 6: Four splits G1, G2, G3, G4 of Γ1 (The colored edges mean to be contracted and

the resulted new vertices belong to the same color classes of K3,3.)
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there are four such splits, denoted by G1, G2, G3, and G4, each of which contains Kv as a
minor, as shown in Figure 6.
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which contains a Kv-minor by Lemma 3.4.
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Figure 6: Four splits G1, G2, G3, G4 of Γ1 (The colored edges mean to be contracted and
the resulted new vertices belong to the same color classes of K3,3).

Now, suppose at least one of the two new vertices has degree exceeding four. Then
this split, denoted by G, is obtained from the four initial graphs by adding edges. Then
G contains a Kv-minor.

Next, we consider splitting a degree-6 vertex. Suppose both of the two new vertices,
a and b, have degree four. Up to symmetry, there are exactly three such splits, denoted
by H1, H2, and H3, which are shown in Figure 7. The first two splits, H1 and H2, contain
Kv as a minor. The third split, H3 is isomorphic to Γ2, which is Kv-free by Lemma 9.

Now, suppose at least one of the two new vertices has degree exceeding four. Then
this split, denoted by H, is obtained from H1, H2, or H3 by adding edges. If H contains
H1 or H2, then H contains a Kv-minor. Thus we assume that H is obtained from Γ2 by
adding edges, which contains a Kv-minor by Lemma 8.

Now, suppose at least one of the two new vertices has degree exceeding four. Then this

split, denoted by G, is obtained from the four initial graphs by adding edges. Then G contains

a Kv-minor.

Next, we consider splitting a degree-6 vertex. Suppose both of the two new vertices, a and

b, have degree four. Up to symmetry, there are exactly three such splits, denoted by H1, H2,

and H3, which are shown in Figure 7. The first two splits, H1 and H2, contain Kv as a minor.

The third split, H3 is isomorphic to Γ2, which is Kv-free by Lemma 3.3.

Now, suppose at least one of the two new vertices has degree exceeding four. Then this split,

denoted by H, is obtained from H1, H2, or H3 by adding edges. If H contains H1 or H2, then

H contains a Kv-minor. Thus we assume that H is obtained from Γ2 by adding edges, which

contains a Kv-minor by Lemma 3.2.

1

2

3

4

5

6

7 1

2

35

6

7

a b

1

2

35

6

7

a b

1

2

35

6

7

a b
H3
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Figure 7: Another three splits H1, H2, H3 of Γ1

Lemma 3.8. Every 4-split of Γ2 contains a Kv-minor.

Proof. By symmetry, we only need to consider splitting the vertex 1. Suppose both of the two

new vertices, a and b, have degree four. Up to symmetry, there are exactly two such splits,

denoted by H1, H2, which are shown in Figure 8. In addition, both of H1 and H2 contain Kv

as a minor. Now suppose at least one of the two new vertices has degree exceeding four. Then

this split, denoted by H, is obtained from H1 or H2 by adding edges. Consequently, H contains

a Kv-minor.

Lemma 3.9. For each n ≥ 5, the only Kv-free split of DWn is DWn+1.

8

Figure 7: Another three splits H1, H2, H3 of Γ1.
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Lemma 14. Every 4-split of Γ2 contains a Kv-minor.

Proof. By symmetry, we only need to consider splitting the vertex 1. Suppose both of
the two new vertices, a and b, have degree four. Up to symmetry, there are exactly two
such splits, denoted by H1, H2, which are shown in Figure 8. In addition, both of H1 and
H2 contain Kv as a minor. Now suppose at least one of the two new vertices has degree
exceeding four. Then this split, denoted by H, is obtained from H1 or H2 by adding
edges. Consequently, H contains a Kv-minor.
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Proof. Suppose the vertices on the rim are labeled 1, . . . , n, in the order they appear on the

cycle. Let G be a split of DWn. We first consider the case where G is obtained by splitting a

vertex of degree n + 1. Let a and b be the two new adjacent vertices.

For n ≥ 6, without loss of generality, we can assume that a has degree exceeding four while

b has degree four. Let i (1 ≤ i ≤ n) be a neighbor of a. Note that |NG(a) ∪ NG(b)| ≥ 9,

we can choose i such that i /∈ NG(b). Then G1 = G/ij (j = i + 1) is a split of DWn−1, since

G1/ab = DWn−1, and dG1(a), dG1(b) ≥ 4. Therefore, by repeating this process, we conclude that

G contains a minor that is obtained by splitting a vertex of degree 6 of DW5. Up to symmetry,

there are two splits such that both of the two new vertices have degree four. Since both splits

contain Kv-minor (as illustrated in Figure 9), it follows that G contains a Kv-minor.
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new vertices, a, b, have degree four. Up to symmetry, there are exactly three such splits, denoted

by G1, G2, and G3, which are shown in Figure 10. The last two splits, G2 and G3, contain Kv

as a minor. The first split G1 is isomorphic to DWn+1, which is Kv-free by Lemma 3.2.

Now, suppose at least one of the two new vertices has degree exceeding four. Then this split,
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Lemma 15. For each n > 5, the only Kv-free split of DWn is DWn+1.

Proof. Suppose the vertices on the rim are labeled 1, . . . , n, in the order they appear on
the cycle. Let G be a split of DWn. We first consider the case where G is obtained by
splitting a vertex of degree n + 1. Let a and b be the two new adjacent vertices.

For n > 6, without loss of generality, we can assume that a has degree exceeding four
while b has degree four. Let i (1 6 i 6 n) be a neighbor of a. Note that |NG(a)∪NG(b)| >
9, we can choose i such that i /∈ NG(b). Then G1 = G/ij (j = i + 1) is a split of DWn−1,
since G1/ab = DWn−1, and dG1(a), dG1(b) > 4. Therefore, by repeating this process, we
conclude that G contains a minor that is obtained by splitting a vertex of degree 6 of
DW5. Up to symmetry, there are two splits such that both of the two new vertices have
degree four. Since both splits contain Kv-minor (as illustrated in Figure 9), it follows
that G contains a Kv-minor.
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Next, suppose that G is obtained by splitting a vertex of degree 4. Suppose both of
the two new vertices, a, b, have degree four. Up to symmetry, there are exactly three such
splits, denoted by G1, G2, and G3, which are shown in Figure 10. The last two splits,
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G2 and G3, contain Kv as a minor. The first split G1 is isomorphic to DWn+1, which is
Kv-free by Lemma 8.

Now, suppose at least one of the two new vertices has degree exceeding four. Then
this split, denoted by G, is obtained from G1, G2, or G3 by adding edges. If G contains
G2 or G3, then G contains a Kv-minor. So we assume that G is obtained from DWn+1

by adding edges, which contains a Kv-minor by Lemma 11. Thus G is either DWn+1 or
contains a Kv-minor.

denoted by G, is obtained from G1, G2, or G3 by adding edges. If G contains G2 or G3, then

G contains a Kv-minor. So we assume that G is obtained from DWn+1 by adding edges, which

contains a Kv-minor by Lemma 3.5. Thus G is either DWn+1 or contains a Kv-minor.
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Figure 10: Three splits G1, G2, G3 of DWn

Lemma 3.10. Every 4-split of K6\e or K6 contains Kv as a minor.

Proof. According to Lemmas 3.4 and 3.5, every graph obtained by adding an edge to Γ1 or DW5

contains Kv as a minor. Note that K6\e is the graph obtained by adding an edge, say 14, to

DW4. Every graph generated by 4-splitting all vertices except 1 and 4 of K6\e is isomorphic

to a graph obtained by adding at least one edge to some graph generated by 4-splitting these

vertices of DW4. Thus, these graphs contain Kv-minor by Lemmas 3.4-3.6. Next, we consider

splitting the vertex 1, up to symmetry.

Suppose both of the two new vertices, a, b, have degree four. Up to symmetry, there are

exactly three such splits, denoted by G1, G2, and G3, which are shown in Figure 11. Note that

G1, G2, and G3 all contain Kv as a minor. Now, suppose at least one of the two new vertices

has degree exceeding four. Then this split, denoted by G, is obtained from G1, G2, or G3 by

adding edges. Consequently, G contains a Kv-minor. Thus, every 4-split of K6\e contains Kv

as a minor.

Note that K6\e + 36 ∼= K6. Based on a similar discussion as above, it suffices to consider

splitting the vertex 3. However, the resulting graphs are isomorphic to the graphs obtained by

adding 36 to the splits shown in Figure 11, which all contain Kv as a minor. Thus, every 4-split

of K6 contains Kv as a minor.
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Figure 10: Three splits G1, G2, G3 of DWn.

Lemma 16. Every 4-split of K6\e or K6 contains Kv as a minor.

Proof. According to Lemmas 10 and 11, every graph obtained by adding an edge to Γ1 or
DW5 contains Kv as a minor. Note that K6\e is the graph obtained by adding an edge,
say 14, to DW4. Every graph generated by 4-splitting all vertices except 1 and 4 of K6\e
is isomorphic to a graph obtained by adding at least one edge to some graph generated
by 4-splitting these vertices of DW4. Thus, these graphs contain Kv-minor by Lemmas
10-12. Next, we consider splitting the vertex 1, up to symmetry.

Suppose both of the two new vertices, a, b, have degree four. Up to symmetry, there
are exactly three such splits, denoted by G1, G2, and G3, which are shown in Figure 12.
Note that G1, G2, and G3 all contain Kv as a minor. Now, suppose at least one of the
two new vertices has degree exceeding four. Then this split, denoted by G, is obtained
from G1, G2, or G3 by adding edges. Consequently, G contains a Kv-minor. Thus, every
4-split of K6\e contains Kv as a minor.

Note that K6\e + 36 ∼= K6. Based on a similar discussion as above, it suffices to
consider splitting the vertex 3. However, the resulting graphs are isomorphic to the
graphs obtained by adding 36 to the splits shown in Figure 11, which all contain Kv as a
minor. Thus, every 4-split of K6 contains Kv as a minor.

Proof of Lemma 7. The necessity follows from Lemmas 8 and 9. For the sufficiency, by
Lemma 16, we only need to consider the splits of DW4. Then Lemma 12 indicates that
we only need to consider the splits of Γ1 and DW5. Finally, Lemmas 13-15 conclude that
all Kv-free splits of Γ1 and DW5 belong to {Γ2} ∪ DW .

Lemma 17. L(K3,3) is Kv-free.
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Proof. If Kv is a minor of L(K3,3), then it can be obtained by contracting two edges e and f
in L(K3,3) and subsequently deleting some edges. By symmetry, we only need to contract
one edge in L(K3,3). Let L(K3,3)/e denote the graph obtained by contracting an edge e in
L(K3,3). Then, by symmetry, we can contract one of the edges {16, 12, 24, 23, 35, 45, 38}
in L(K3,3)/e. We verify every case in order and up to isomorphism there are six resulting
graphs, we denote them by Hj

i , where j is the number of edges in each graph. Note that
the graph H14

1 has 14 edges. If Kv is a minor of H14
1 , then Kv must be obtained by

deleting an edge adjacent to the vertex a. However, each of the resulting graphs contains
two disjoint triangles, making them Kv-free.

Observe that graphs H13
2 and H13

3 both have 13 edges. Specifically, the graph H13
2

contains two disjoint triangles, while the graph H13
3 has a vertex of degree 5, making

them Kv-free. The graph H14
4 has 14 edges and two cubic vertices, meaning that only the

edge between two vertices of degree 5 can be deleted. The resulting graph also contains
two disjoint triangles, thus is Kv-free. Note that the graph H15

5 is isomorphic to Γ1, and
according to Lemma 9, it is Kv-free. The graph H14

6 has a vertex of degree 2 and thus
cannot contain a Kv-minor. In summary, L(K3,3) is Kv-free.
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6
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5 1
H   14

6
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Figure 12: Graphs L(K3,3), L(K3,3)/e and Hj
i .

Proof of Theorem 1. By Theorem 2, we only need to consider the graphs in C ∪ L and
the splits of C2

5 . The sufficiency of Theorem 1.1 follows from Lemmas 3-6 and 7. For the
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necessity, since Kv is non-planar, all planar graphs are Kv-free. Then the result follows
from Lemmas 4, 8, 9, and 17.
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