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Abstract

A conjecture of Talagrand (2010) states that the so-called expectation and frac-
tional expectation thresholds are always within at most some constant factor from
each other. The expectation threshold q for an increasing class F ⊆ 2X allows to
locate the threshold for F within a logarithmic factor. The same holds for the frac-
tional expectation threshold qf . These are important breakthrough results of Park
and Pham (2022), resp. Frankston, Kahn, Narayanan and Park (2019). We will
survey what is known about the relation between q and qf and prove some further
special cases of Talagrand’s conjecture.

Mathematics Subject Classifications: 05D40, 05C65

1 Introduction

Let X be a finite nonempty set and let p ∈ [0, 1]. An abstract model for studying
random subsets of X is often denoted by Xp, where each element from X is included in
Xp independently of the others with probability p. Depending on the choice of X, one
obtains various probabilistic models which were studied extensively in the last decades,
such as a random subset of the positive integers [n]p (with X = [n]), binomial random

graph G(n, p) (with X =
󰀃
[n]
2

󰀄
and we identify a graph with its edges), random k-uniform

hypergraph H(k)(n, p) (where X =
󰀃
[n]
k

󰀄
). For initial pointers to the literature we refer to

standard reference books such as [1, 3, 9, 10].
For a given set X we denote its power set by 2X . A set (or a class) F ⊆ 2X is called

a property ; moreover, we say that F is nontrivial if F ∕= ∅, 2X . A property F is called
increasing if whenever A ∈ F and A ⊆ B we have B ∈ F (that is, adding elements to a
set A ∈ F does not destroy the property). An example of an increasing graph property
is subgraph containment such as, say, hamiltonicity.

For any increasing nontrivial F ⊆ 2X we will be interested in the probability P[Xp ∈
F ], that is, how likely is Xp to possess the property F? One can show that the function
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f(p) := P[Xp ∈ F ] is continuous and strictly increasing in p and hence there exists a
unique pc ∈ [0, 1] with P[Xpc ∈ F ] = 1/2. Such value pc is called the threshold for F .

In the setting of random graphs, threshold functions were discovered by Erdős and
Rényi in [6] who observed that many graph properties possess thresholds. The study
of thresholds has been and remains one of the central topics of study in the theory of
random graphs ever since. As for a general result, Bollobás and Thomason [4] proved
that every nontrivial increasing property F has a threshold function.1 Despite the fact of
knowing that a threshold function exists, it is not clear at all how to determine it. Kahn
and Kalai [11] and subsequently Talagrand [13] proposed far-reaching conjectures about
the location of the threshold pc. The latter was proved by Frankston, Kahn, Narayanan
and Park [7] (following ideas from a breakthrough of Alweiss, Lovett, Wu and Zhang [2]
on the sunflower conjecture) while the former was proved by Park and Pham in [12]. In
the following we introduce some notation in order to describe the results and come to the
matter of the present paper.

One common idea for a lower bound on pc is to find a random variable Y 󰃍 0 (depen-
dent on p and n) such that Y 󰃍 1 whenever Xp ∈ F holds. This yields with Markov’s
inequality that P (Xp ∈ F) 󰃑 P (Y 󰃍 1) 󰃑 E [Y ].

One possibility to construct such a random variable Y is to find a set G ⊆ 2X such
that for every S ∈ F there exists a T ∈ G such that T ⊆ S and then let Y = YG denote
the number of T ∈ G which are contained in Xp, i.e. T ⊆ Xp. It should be clear that
E [YG] =

󰁓
T∈G p|T |. We call F to be p-small if there exists such a set G ⊆ 2X such that

E[YG] 󰃑 1/2.
A somewhat advanced way to construct a random variable Y is to find a function

g : 2X → [0, 1] which satisfies for every S ∈ F the inequality
󰁓

T⊆S g(T ) 󰃍 1 and to
choose Y = Yg :=

󰁓
T⊆Xp

g(T ). In this case the function g can be thought of as a

fractional version for the set G above (it should be clear that YG = Y1G
). Again we can

easily compute E [Yg] =
󰁓

T∈2X g(T ) · p|T |. We call F to be weakly p-small if we can find
such a function g as above (i.e. Xp ∈ F ⇒ Yg 󰃍 1) with E [Yg] 󰃑 1

2
. It should be clear

that if F is p-small then F is also weakly p-small with g = 1G.

Definition 1. For an increasing nontrivial F ⊆ 2X define:

q := q(F) := max{p : F is p-small}, (1.1)

and

qf := qf (F) := max{p : F is weakly p-small}. (1.2)

One refers to q as the expectation threshold, whereas qf is the fractional expectation thresh-
old.

1A threshold function for properties of random graphs is defined somewhat differently, as follows: p̂ : N →
[0, 1] is a threshold for some property A = ∪n∈NAn, if P[G(n, p) ∈ An] → 1 for p = ω(p̂) and
P[G(n, p) ∈ An] → 0 for p = o(p̂) as n tends to infinity (observe that one considers a sequence of
probability spaces). Defining for a nontrivial increasing property An the threshold p̂(n) := pc with
P[G(n, pc) ∈ An] = 1/2 for every n, the function p̂ is a threshold function.
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From the discussion above we see immediately that q 󰃑 qf 󰃑 pc (by using g = 1G).
Kahn and Kalai conjectured in [11] that there exists a universal constant K > 0 such
that pc 󰃑 Kq log |X|, and Talagrand conjectured in [13] an apparently weaker form:
pc 󰃑 Kqf log |X|. These conjectures were resolved in breakthrough works in [12] and
in [7]2, which allows for many properties to obtain new results or to provide alternative
proofs of deep results from the theory of random graphs.

Until the proof of the Kahn-Kalai conjecture in [12], a promising route was suggested
by Talagrand in [13, Conjecture 6.3] to show that q and qf are always within a constant
factor of each other.

Conjecture 2 (Talagrand [13]). There exists some fixed L > 1 such that for every finite
nonempty X and any nontrivial F ⊆ 2X the following is true: If F is weakly p-small then
F is also (p/L)-small. Equivalently: qf 󰃑 L · q.

We find it convenient to formulate the problem somewhat differently. For this purpose
we are introducing some additional notation.

First we introduce the weight functions implicitly mentioned previously.

Definition 3. For p ∈ [0, 1], G ⊆ 2X and g : 2X → [0,∞) we define:

w(G, p) :=
󰁛

T∈2X
1{T∈G} · p|T |,

w(g, p) :=
󰁛

T∈2X
g(T ) · p|T |.

Thus, in the notation above the weights w(G, p) and w(g, p) correspond to E[YG] and
E[Yg]. Moreover, the range of g is allowed to be [0,∞) since it will be used in later
sections.

The set G and the function g which are needed for F to be p- resp. weakly p-small
imply that the following sets contain F (corresponding to the sets {S : YG(S) 󰃍 1} and
{S : Yg(S) 󰃍 1} respectively).

Definition 4. For G ⊆ 2X and g : 2X → [0,∞) we define:

〈G〉 :=
󰀫
S ∈ 2X

󰀏󰀏󰀏󰀏󰀏
󰁛

T⊆S

1{T∈G} 󰃍 1

󰀬
,

〈g〉 :=
󰀫
S ∈ 2X

󰀏󰀏󰀏󰀏󰀏
󰁛

T⊆S

g(T ) 󰃍 1

󰀬
.

The following observation is straightforward.

2In fact, Talagrand conjectured the strengthenings of both conjectures that log |X| can be replaced by
log ℓ, where ℓ is the largest cardinality among all minimal sets of F . Both strengthenings were proved
in [12] resp. in [7].
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Observation 5. We have:

(i) The set F is p-small if and only if there exists a set G ⊆ 2X satisfying F ⊆ 〈G〉
and w(G, p) 󰃑 1/2.

(ii) The set F is weakly p-small if and only if there exists a function g : 2X → [0, 1]
satisfying F ⊆ 〈g〉 and w(g, p) 󰃑 1/2.

Now as a simplification since X is finite there is always an n ∈ N with |X| = n and we
can think of X as [n] = {1, . . . , n}. Moreover, since p0 = 1 we may assume that ∅ ∕∈ G.

Recall that the largest p in Observation 5 corresponds to q and qf resp. and ∅ ∕∈ G,
hence if we change 1/2 to 1 in Definition 1.1 and require g(∅) = 0, then the values q and
qf change at most by a factor of 2. We thus restate Talagrand’s conjecture (Conjecture 2)
as follows.

Conjecture 6. There exists some fixed L > 1 such that for all n ∈ N, g : 2X → [0, 1]
with g(∅) = 0 and p ∈ [0, 1] the following holds. If w(g, p) = 1 then there exists a set
G ⊆ 2X \ {∅} with 〈g〉 ⊆ 〈G〉 and w

󰀃
G, p

L

󰀄
󰃑 1.

It is not difficult to see that Conjectures 2 and 6 are equivalent. Indeed, if the former
is true and w(g, p) = 1, then F := 〈g〉 is weakly p′-small for some p′ ∈ [p/2, p] and hence
F is p′/L-small. Thus there exists a set G ⊆ 2X with F = 〈g〉 ⊆ 〈G〉 and w

󰀃
G, p

2L

󰀄
󰃑

w
󰀓
G, p

′

L

󰀔
󰃑 1/2. On the other hand, if Conjecture 6 is true and some nontrivial set

F ⊆ 2X is weakly p-small then there exists a weight function g : 2X → [0, 1] with F ⊆ 〈g〉
and w(g, p) 󰃑 1/2. This implies g(∅) 󰃑 1/2. We define g̃(∅) = 0 and for T ∕= ∅ we set
g̃(T ) := min{2g(T ), 1} and observe that 〈g〉 ⊆ 〈g̃〉 and w(g̃, p) 󰃑 2

󰁓
T∈2X g(T )p|T | 󰃑 1.

We thus find p̃ 󰃍 p so that w(g̃, p̃) = 1. The truth of Conjecture 6 implies the existence
of G ⊆ 2X \ {∅} with F ⊆ 〈g〉 ⊆ 〈g̃〉 ⊆ 〈G〉 and w

󰀃
G, p̃

L

󰀄
󰃑 1. Hence we obtain

w
󰀃
G, p

2L

󰀄
󰃑 w

󰀃
G, p̃

2L

󰀄
󰃑 1/2.

Another equivalent version of Conjecture 2 can be stated as follows.

Conjecture 7. There is a fixed L > 0 such that for any finite set X, any p ∈ [0, 1] and
function λ : 2X \ {∅} → [0,∞) the set

󰀻
󰀿

󰀽S ⊂ X :
󰁛

T⊆S

λ(T ) 󰃍
󰁛

T∈2X\{∅}

(Lp)|T |λ(T )

󰀼
󰁀

󰀾

is p-small.

For further details we refer the interested reader to [5, 8].
To the best of our knowledge, Conjecture 6 (respectively 2 or 7) is open, and only some

special cases of it have been solved. Talagrand [13] proved Conjecture 6 for functions g
whose support supp(g) := {S : g(S) ∕= 0} is contained in

󰀃
X
1

󰀄
and also for functions g

so that, for some set J ⊆ X, all sets S from 〈g〉 contain at least (2e)p|J | elements from
J (see [13, Lemma 5.9]). Talagrand [13] also suggested two further special cases as test
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cases: when g is constant and supported by the edge sets of the cliques of some fixed
order k in the complete graph Kn and when g is supported by a subset of 2-sets in X (i.e.
supp(g) ⊆

󰀃
X
2

󰀄
). The former case was verified by DeMarco and Kahn in [5] and the latter

was verified by Frankston, Kahn and Park in [8].
From now on we will always assume that g(∅) = 0 and that ∅ ∕∈ G often without

explicitly mentioning it. In the remainder of the Introduction we state more results about
Conjecture 6 alongside some remarks. All this should help to structure the conjecture
into easier to handle cases. We provide the proofs in the subsequent sections.

It will be useful to think of the function g as corresponding to a weighted hypergraph
on X (where the weighted edges correspond to the sets from supp(g)).

Our first result allows to reduce the problem to the case when the function g has its
support in

󰀃
X
k

󰀄
for some k ∈ N.

Theorem 8. Suppose there exists some L > 1 such that for all k ∈ N and all finite sets
X the following holds. Whenever a function gk :

󰀃
X
k

󰀄
→ [0, 1] satisfies w(gk, p) 󰃑 1 for

some p ∈ [0, 1], there exists a set Gk ⊆ 2X with 〈gk〉 ⊆ 〈Gk〉 and w
󰀃
Gk,

p
L

󰀄
󰃑 1.

Then the following is true for any finite set X. If a function g : 2X → [0, 1] satisfies
w(g, p) = 1 then there exists a set G ⊆ 2X with 〈g〉 ⊆ 〈G〉 and w

󰀃
G, p

4L

󰀄
󰃑 1.

We remark that the assumption w(gk, p) 󰃑 1 above could be replaced by the only
apparently stronger w(gk, p) = 1, since, by monotonicity of the weight function we could
pick some p′ with w(gk, p

′) = 1 and from the monotonicity of w (Gk, p
′/L) we would

obtain w (Gk, p/L) 󰃑 w (Gk, p
′/L) 󰃑 1. The above reduction allows to work in the

uniform setting to attack Conjecture 6 and simplifies it to the following conjecture:

Conjecture 9. There exists some fixed L > 1 such that for all finite sets X, k ∈ N,
g :

󰀃
X
k

󰀄
→ [0, 1] and p ∈ [0, 1] the following holds.

If w(g, p) = 1 then there exists a set G ⊆ 2X \ {∅} with 〈g〉 ⊆ 〈G〉 and w
󰀃
G, p

L

󰀄
󰃑 1.

In particular this allows us to rewrite w(g, p) = 1 as p =
󰀓󰁓

T∈(Xk)
g (T )

󰀔− 1
k
or

󰁓
T∈(Xk)

g (T ) = p−k respectively (cf. Definition 3). We will now present some results

on special cases of Conjecture 9.

1.1 A naive approach with a surprisingly precise answer

One might think that Conjecture 9 could be solved by just picking G ⊆ supp(g) in a
clever way. But this is indeed not possible as the following simple example shows: Let

n be even, k < n
2
and define g =

󰀃
n/2
k

󰀄−1 · 1(Xk). Then 〈g〉 = {S : |S| 󰃍 n/2} and from

w(g, p) = 1 it follows that p ≈ 1/2, while G ⊆ supp(g) =
󰀃
X
k

󰀄
and 〈g〉 ⊆ 〈G〉 imply that

|G| 󰃍 n/(2k). Thus, if w(G, p/L) = |G|(p/L)k 󰃑 1 then L = Ω(n1/k).
And by randomizing the function g through interpreting its values as probabilities

we can even prove that L = O(n1/k) can always be reached with a G ⊆ supp(g), which
conveniently solves Conjecture 9 for all k = Ω(log(n)):
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Theorem 10. Let p ∈ [0, 1], n 󰃍 k ∈ N, X be an n-element set and g :
󰀃
X
k

󰀄
→ [0, 1] a

function.

If w(g, p) = 1 then there exists G ⊆ supp(g) with 〈g〉 ⊆ 〈G〉 and w
󰀓
G, p

4·n
1
k

󰀔
󰃑 1.

In particular, for k 󰃍 C log2(n) with some C > 0, it holds that if w(g, p) = 1 then
there exists G ⊆ supp(g) with 〈g〉 ⊆ 〈G〉 and w

󰀃
G, p

4·21/C
󰀄
󰃑 1.

We remark that by the example given above the first statement in Theorem 10 is
asymptotically optimal in the sense that the bound p/n

1
k cannot be substantially im-

proved. Furthermore it is possible to improve it to w

󰀕
G, p

4·log2(m)
1
k

󰀖
󰃑 1 with some

additional care for m being the number of minimal elements in 〈g〉, which also improves
the second result to k 󰃍 C log2(log2 (m)).

Additionally we remark that the second statement of Theorem 10 can also be proven
with the methods used in [5] where it is proven for the clique case. Also we want to
add that together with a recent result of Pham [14], this narrows the gap between frac-
tional and expectation threshold down to O(log(log(n)), which is an improvement to the
previously known O(log(n)) bound due to Park and Pham [12].

1.2 Some more special cases

The following proposition deals with the case when 〈g〉 only contains large enough sets
or supp(g) is very large like in the example before Theorem 10. Its first part was proven
by Talagrand [13, Lemma 5.9]. For the sake of completeness we provide the proof of the
first part as well.

Proposition 11. Let n, k ∈ N with n 󰃍 k, let p ∈ [0, 1], let V ⊆ X, where X is an
n-element set and V ∕= ∅. If g :

󰀃
X
k

󰀄
→ [0, 1] is a function with w(g, p) = 1 such that

every S ∈ 〈g〉 satisfies |S ∩ V | 󰃍 ep
L
|V | (for some L > 0) then there exists G ⊆ 2X with

〈g〉 ⊆ 〈G〉 and w(G, p
L
) 󰃑 1.

In particular, if we have a function g :
󰀃
V
k

󰀄
→ [0, 1] which is constant on its support,

satisfying w(g, p) = 1 and | supp(g)| 󰃍
󰀓

e2

L

󰀔k 󰀃|V |
k

󰀄
, then there exists G ⊆ 2X with 〈g〉 ⊆

〈G〉 and w(G, p
L
) 󰃑 1.

Proof of Proposition 11. By taking

G =

󰀕
V󰀉

e·p
L

· |V |
󰀊
󰀖

we get 〈g〉 ⊆ 〈G〉 since all S ∈ 〈g〉 intersect V in at least
󰀉
e·p
L

· |V |
󰀊
elements and we

obtain

w
󰀓
G,

p

L

󰀔
=

󰀕
|V |󰀉

e·p
L

· |V |
󰀊
󰀖
·
󰀓 p

L

󰀔⌈ e·p
L

·|V |⌉
󰃑

󰀣
e · |V | · p󰀉
e·p
L

· |V |
󰀊
· L

󰀤⌈ e·p
L

·|V |⌉
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󰃑
󰀕

e · |V | · p
e·p
L

· |V | · L

󰀖⌈ e·p
L

·|V |⌉
= 1.

Which proves the first statement.
For the second statement, let g :

󰀃
V
k

󰀄
→ [0, 1] be constant on its support, i.e. g(T ) = c

for all T ∈ supp(g) for some c > 0 and satisfy w(g, p) = 1 and | supp(g)| 󰃍
󰀓

e2

L

󰀔k 󰀃|V |
k

󰀄
.

Let s ∈ N, s 󰃍 k, be such that
󰀃
s
k

󰀄−1 󰃑 c <
󰀃
s−1
k

󰀄−1
. Then S ∈ 〈g〉 has at least s elements

in V . From w(g, p) = 1 we obtain

p = (| supp(g)|c)−1/k 󰃑
󰀃
s
k

󰀄1/k
󰀓󰀃

e2

L

󰀄k 󰀃|V |
k

󰀄󰀔1/k
󰃑 (es/k)

(e2/L) · (|V |/k) =
Ls

e|V | ,

from which ep
L
|V | 󰃑 s follows. Hence, we can apply the first statement of the proposition

and get the second one.

A k-uniform hypergraph H ⊆
󰀃
X
k

󰀄
on the vertex set X is called linear, if any two

distinct vertices lie in at most one (hyper-)edge. For a set V ⊆ X, we denote through
H[V ] the induced hypergraph H ∩

󰀃
V
k

󰀄
on V . For two distinct vertices x, y ∈ X, the

codegree of x and y in H will be denoted by degH(x, y) (or simply deg(x, y) whenH is clear
from the context) and defined through deg(x, y) := |{e ∈ H | x, y ∈ e}|. The maximum
codegree of H is ∆2(H) := max{x,y}∈(X2 )

degH(x, y). Our last result generalizes the result

of Frankston, Kahn and Park [8] when supp(g) ⊆
󰀃
X
2

󰀄
to the case when H := supp(g) is

a ‘nearly’ linear k-uniform hypergraph.

Theorem 12. There exists some constant C > 1 such that the following holds. Let X be
a finite set and let k, c ∈ N with |X| 󰃍 k, p ∈ [0, 1] and let g :

󰀃
X
k

󰀄
→ [0, 1] be a function

such that

∆2(supp(g)) 󰃑 ck.

If w(g, p) = 1 then there exists G ⊆ 2X with 〈g〉 ⊆ 〈G〉 and

w
󰀓
G,

p

C · c2
󰀔
󰃑 1.

As a corollary we obtain that Conjecture 6 holds when g is supported only by k-
APs, where a k-AP stands for a k-term arithmetic progression, i.e. a set of the form
{a, a+d, . . . , a+(k−1)d} (with d ∕= 0). Indeed, this follows since the maximum codegree
of the k-uniform hypergraph of k-APs is at most (k − 1)2.

Corollary 13. There exists a constant C > 1 such that for all n, k ∈ N the following
holds. If X = [n] and a function g :

󰀃
X
k

󰀄
→ [0, 1] is such that supp(g) consists only of

k-APs and w(g, p) = 1 for some p ∈ [0, 1], then 〈g〉 is p/C-small.

In the subsequent sections we provide proofs of Theorems 8, 10 and 12 respectively.
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2 Proof of Theorem 8

The idea behind the proof of Theorem 8 is to decompose the given function g : 2X → [0, 1]
into functions gk :

󰀃
X
k

󰀄
→ [0, 1]. Knowing that 〈gk〉 are contained in 〈Gk〉, we will need to

establish the relation between 〈g〉 and 〈∪n
k=1Gk〉. We will also need an auxiliary lemma,

Lemma 15 below, which allows us to deduce that, under quite natural conditions, we can
find Gk so that 〈gk〉 ⊆ 〈Gk〉 and w(Gk,

p
cL
) 󰃑 1

ck
, which will help us to bound the weight

of ∪n
k=1Gk.
We start with the following definition.

Definition 14. For a set X, numbers k, m ∈ N with |X| 󰃍 k and a function g :
󰀃
X
k

󰀄
→

[0,∞), let (Xi)
m
i=1 be distinguishable and disjoint copies of X and gi :

󰀃
Xi

k

󰀄
→ [0,∞) be

copies of g. We define:

X(m) :=
󰁞̇m

i=1
Xi,

g(m) :

󰀕
X(m)

k

󰀖
→ [0,∞),

g(m)(S) :=
m󰁛

i=1

1{S⊆Xi}gi(S).

The following lemma allows us to infer that, under quite natural conditions, the weight
of a ‘covering’ set G ‘scales’ with p/c at the ‘rate’ k even though G need not consist only
of sets of cardinality at least k.

Lemma 15. Let p ∈ [0, 1], L > 0, c, k ∈ N, let X be a finite set with |X| 󰃍 k and
g :

󰀃
X
k

󰀄
→ [0,∞) a function. Set m = ck and suppose that w

󰀃
g(m), p

c

󰀄
󰃑 1 and there exists

a set G(m) ⊆ 2X
(m)

such that
󰀍
g(m)

󰀎
⊆

󰀍
G(m)

󰀎
and w

󰀃
G(m), p

c·L
󰀄
󰃑 1. Then w (g, p) 󰃑 1

and there exists a set G ⊆ 2X with 〈g〉 ⊆ 〈G〉 and w
󰀃
G, p

c·L
󰀄
󰃑 1

ck
.

Proof. We have

w (g, p) =
󰁛

T∈(Xk)

g(T ) · pk · c
k

ck
= m · w

󰀓
g,

p

c

󰀔
= w

󰀓
g(m),

p

c

󰀔
󰃑 1,

where the first equality follows from supp(g) ⊆
󰀃
X
k

󰀄
and the definition of w(g, p) (cf.

Definition 3), while the second equality follows from m = ck and the third holds since the
gi’s are (m many) copies of g.

Observe that all 〈gi〉 ⊆ 2Xi (i ∈ [m]) are disjoint and contained in
󰀍
g(m)

󰀎
. Hence,

we can choose pairwise disjoint Gi := 2Xi ∩ G(m) and get 〈gi〉 ⊆ 〈Gi〉 for every i ∈ [m].
Therefore it follows

m󰁛

i=1

w
󰀓
Gi,

p

c · L

󰀔
󰃑 w

󰀓
G(m),

p

c · L

󰀔
󰃑 1.

Thus there exists an i ∈ [m] such that w
󰀃
Gi,

p
c·L

󰀄
󰃑 1

m
= 1

ck
. Since 〈gi〉 is a copy of 〈g〉

there also exists a required G.
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Now we are in position to prove Theorem 8.

Proof of Theorem 8. Let X be any fixed finite set and let g : 2X → [0, 1] be any function
with w(g, p) = 1. We can write g =

󰁓n
k=1 gk, where gk :

󰀃
X
k

󰀄
→ [0, 1] are defined through

gk(T ) := g(T ) · 1{T∈(Xk)} for all T ∈
󰀃
X
k

󰀄
.

Next we define, for every k ∈ [n], a function hk :
󰀃
X
k

󰀄
→ [0, 1] by setting hk(T ) :=

min
󰀋
2k · gk(T ), 1

󰀌
for all T ∈

󰀃
X
k

󰀄
. We then have that

w
󰀓
hk,

p

2

󰀔
󰃑 2k · w

󰀓
gk,

p

2

󰀔
=

2k

2k
· w(gk, p) 󰃑 w(g, p) = 1,

where we use the definition of w(g, p) (cf. Definition 3), hk 󰃑 2k · gk and the assumption
of Theorem 8 that w(g, p) = 1.

We choose c = 2 and set m = ck. By construction (cf. Definition 14), we have

h
(m)
k :

󰀕
Xm

k

󰀖
→ [0, 1] and w

󰀓
h
(m)
k ,

p

4

󰀔
=

m

2k
· w

󰀓
hk,

p

2

󰀔
= w

󰀓
hk,

p

2

󰀔
󰃑 1.

Since the domain of h
(m)
k are sets of size k, the assumption of Theorem 8 on h

(m)
k

(as gk) and p
4
(as p) implies that there exists H

(m)
k ⊆ 2X with

󰁇
h
(m)
k

󰁈
⊆

󰁇
H

(m)
k

󰁈
and

w
󰀓
H

(m)
k , p

4L

󰀔
󰃑 1.

This makes Lemma 15 applicable to hk (as g), H
(m)
k (as G(m)), p

2
(as p) and c = 2.

Hence, there exists a set Hk ⊆ 2X with 〈hk〉 ⊆ 〈Hk〉 and w
󰀃
Hk,

p
4L

󰀄
= w

󰀓
Hk,

p/2
2L

󰀔
󰃑 1

2k
.

Therefore we obtain:

w

󰀣
n󰁞

k=1

Hk,
p

4L

󰀤
󰃑

n󰁛

k=1

w
󰀓
Hk,

p

4L

󰀔
<

∞󰁛

k=1

1

2k
= 1. (2.1)

On the other hand, for every S ∈ 〈g〉 we have:

n󰁛

k=1

󰁛

T⊆S

gk(T ) =
󰁛

T⊆S

g(T ) 󰃍 1.

By the pigeonhole principle there is an index k ∈ [n] such that
󰁓

T⊆S gk(T ) 󰃍 1
2k

and

hence (since hk(T ) = min
󰀋
2k · gk(T ), 1

󰀌
) this also yields

󰁓
T⊆S hk(T ) 󰃍 1, which shows

S ∈ 〈hk〉. Therefore the following sequence of inclusions holds

〈g〉 ⊆
n󰁞

k=1

〈hk〉 ⊆
n󰁞

k=1

〈Hk〉 =
󰀭

n󰁞

k=1

Hk

󰀮
. (2.2)

The claim now follows with G =
󰁖n

k=1 Hk and (2.1), (2.2).
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3 Proof of Theorem 10

We will construct a desired setG ⊆ 2X from supp(g) by taking each S ∈ 〈g〉 randomly with
probability proportional to the weight g(S) independently of the others. The following
lemma estimates the probability that such random G satisfies 〈g〉 ⊆ 〈G〉.

Lemma 16. Let n, k ∈ N with k 󰃑 n and let X be an n-element set. Let c > 0 and
let g :

󰀃
X
k

󰀄
→ [0, 1] be a function. The set G ⊆ supp(g) is obtained by including each

T ∈ supp(g) into G with probability P(T ∈ G) := min {cg(T ), 1} independently of the
others. Then we have

P (〈g〉 ⊆ 〈G〉) 󰃍 1− en−c.

Proof. Let S ∈ 〈g〉. From Definition 4 we know that
󰁓

T⊆S g(T ) 󰃍 1 and we get (we
assume c · g(T ) < 1 for all T ⊆ S otherwise this is trivial):

P (S ∕∈ 〈G〉) =
󰁜

T⊆S

P (T ∕∈ G) =
󰁜

T⊆S

(1− c · g(T )) 󰃑
󰁜

T⊆S

e−c·g(T ) = e−c·
󰁓

T⊆S g(T ) 󰃑 e−c.

Taking union bound over all S ∈ 〈g〉 and since | 〈g〉 | 󰃑 2n we obtain

P (〈g〉 ⊆ 〈G〉) = 1− P (∃S ∈ 〈g〉 : S ∕∈ 〈G〉) 󰃍 1− 2n · e−c 󰃍 1− en−c.

Next we estimate the expected weight of G constructed in Lemma 16.

Lemma 17. Let g be a function and let G be a random set as in assumption of Lemma 16.
If w(g, p) = 1 we obtain for any L 󰃍 1 that

E
󰁫
w
󰀓
G,

p

L

󰀔󰁬
󰃑 c

Lk
.

Proof.
By the linearity of expectation we get

E
󰁫
w
󰀓
G,

p

L

󰀔󰁬
=

󰁛

S∈(Xk)

P (S ∈ G) ·
󰀓 p

L

󰀔k

󰃑 1

Lk
·
󰁛

S∈(Xk)

c · g(S) · pk = c

Lk
· w (g, p) =

c

Lk
.

Proof of Theorem 10. We set c = n+ 1 with foresight. Lemma 16 yields:

P (〈g〉 ⊆ 〈G〉) 󰃍 1

2
,

whereas Lemma 17 (applied with L = 4n1/k) guarantees

E
󰀗
w

󰀕
G,

p

4 · n 1
k

󰀖󰀘
󰃑 n+ 1

4k · n 󰃑 1

2
.
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Consequently we obtain with w(·, ·) 󰃍 0 and E [X] = P (A)E [X | A] + P (¬A)E [X | ¬A]
for any event A and random variable X:

E
󰀗
w

󰀕
G,

p

4 · n 1
k

󰀖󰀏󰀏󰀏󰀏 〈g〉 ⊆ 〈G〉
󰀘
󰃑 1.

Hence there has to be a choice of G that fulfills 〈g〉 ⊆ 〈G〉 and w
󰀓
G, p

4·n
1
k

󰀔
󰃑 1, which

completes the proof of the first statement of Theorem 10.
The second assertion of Theorem 10 follows by using k 󰃍 C log2(n) and the mono-

tonicity of w (G, p) in p:

w

󰀕
G,

p

4 · 2 1
C

󰀖
= w

󰀕
G,

p

4 · n
1

C log2 n

󰀖
󰃑 w

󰀕
G,

p

4 · n 1
k

󰀖
󰃑 1.

4 Proof of Theorem 12

The proof of Theorem 12 follows along the lines of the proof of Frankston, Kahn and
Park [8] for functions supported by 2-element sets. However, we write it up for the state-
ment according to Conjecture 6 and the details are a little different, require adaptations
at several places and also lead to certain technical simplifications so that we see no other
way than to provide the proof in its entirety.

As already mentioned in the introduction, Talagrand [13, Section 6] solved the special
case of Conjecture 6 when g is supported by 1-element subsets of X. We provide its short
proof for the sake of completeness.

Proposition 18. For every g :
󰀃
X
1

󰀄
→ [0, 1] and p ∈ [0, 1] the following holds. If w(g, p) =

1 then there exists a set G ⊆ 2X with 〈g〉 ⊆ 〈G〉 and w
󰀃
G, p

4e

󰀄
󰃑 1.

Proof. Let (Ti)
n
i=1 be the elements of

󰀃
X
1

󰀄
such that g (Ti) 󰃍 g (Ti+1) for all i ∈ [n−1]. We

define a := ⌈
󰁓n

i=1 g (Ti)⌉ = ⌈p−1⌉ and observe that a 󰃑 p−1 + 1 󰃑 2 · p−1 = 2 ·
󰁓n

i=1 g (Ti)
since p 󰃑 1.

We then define G as follows

G :=
n󰁞

j=1

󰁞

I∈([min{j·a,n}]
j )

󰀫
󰁞

i∈I

Ti

󰀬
.

Since (g (Ti))i∈[n] is a monotone decreasing sequence, we have that

a 󰃍
n󰁛

i=1

g (Ti) > a ·
󰁛

j:j·a<n

g (Tj·a+1) . (4.1)
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Assume now there is a set S ∈ 〈g〉 such that S ∕∈ 〈G〉. Let I ⊆ [n] be such that
S =

󰁖
i∈I Ti. Then we know that

󰁓
i∈I g (Ti) 󰃍 1 and |I ∩ [j · a]| < j for all j ∈ [n]. From

this it follows directly that

a ·
󰁛

j:j·a<n

g (Tj·a+1) 󰃍 a ·
󰁛

i∈I

g (Ti) 󰃍 a.

Which is a contradiction to (4.1) and therefore 〈g〉 ⊆ 〈G〉 holds. Finally we compute the
weight w

󰀃
G, p

4e

󰀄
as follows

w
󰀓
G,

p

4e

󰀔
󰃑

n󰁛

j=1

󰀕
j · a
j

󰀖󰀓 p

4e

󰀔j

󰃑
n󰁛

j=1

󰀕
e · j · a

j

󰀖j 󰀓 p

4e

󰀔j

a󰃑2·p−1

󰃑
n󰁛

j=1

󰀕
e · 2 · p−1 · p

4e

󰀖j

=
n󰁛

j=1

1

2j
󰃑 1.

Like in [8], the idea is to use the result above for k = 1 by looking at the function

f :

󰀕
X

1

󰀖
→ [0, 1], f ({x}) := L

4ek
· pk−1

󰁛

T :x∈T

g(T )

and then to only worry about sets from 〈g〉 \ 〈f〉. Therefore, we take care about that
first which motivates the following definition of the set 〈g〉J,L ⊆ 2X which requires ‘higher
weight’ for a set S ∈ 〈g〉 to be included into 〈g〉J,L.

Definition 19. For J , L 󰃍 1, k ∈ N, a finite set X and a function g :
󰀃
X
k

󰀄
→ [0,∞) define

〈g〉J,L :=

󰀻
󰁁󰀿

󰁁󰀽
S ∈ 2X

󰀏󰀏󰀏󰀏󰀏󰀏󰀏

󰁛

T∈(Sk)

g(T ) 󰃍 max

󰀫
J,

L

4ek
· pk−1 ·

󰁛

x∈S

󰁛

T :x∈T

g(T )

󰀬󰀼
󰁁󰁀

󰁁󰀾
.

We remark that pk−1 ·
󰁓

x∈S
󰁓

T :x∈T g(T ) can be thought of as the sum of weighted
vertex degrees from S in the weighted k-uniform hypergraph g and that for k = 2 this is
the weight considered in [8]. Also recall from the introduction that from supp(g) ⊆

󰀃
X
k

󰀄

and w(g, p) = 1 we can directly compute p =
󰀓󰁓

T∈(Xk)
g (T )

󰀔− 1
k
or

󰁓
T∈(Xk)

g (T ) = p−k

respectively. We will mainly express things in dependence of p to make the formulas more
compact, but occasionally switching to

󰁓
T∈(Xk)

g (T ) can be helpful.

The following theorem below is a generalization of Theorem 2.2 from [8] to linear
hypergraphs with constant weight (i.e. supp(g) is linear when viewed as a k-uniform
hypergraph and g is interpreted as its weight). The main difference in the proof is that
we exploit the observation that in a linear hypergraph a k-uniform star with m edges has
exactly (k − 1) ·m+ 1 vertices and that we use notation according to Conjecture 6.
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Theorem 20. For all n, k ∈ N with n 󰃍 k, J 󰃍 1, r > 0, L 󰃍 210 · e2, any n-element
set X and for any function g :

󰀃
X
k

󰀄
→ [0,∞) which equals 1

r
on its support and with

∆2(supp(g)) 󰃑 1 the following holds. If w(g, p) = 1 then there exists a set G ⊆ 2X with

〈g〉J,L ⊆ 〈G〉 and w
󰀃
G, p

L

󰀄
󰃑

󰀃
1
L

󰀄√
J·r
27 .

Proof. We may assume w.l.o.g. that k 󰃍 2 as otherwise 〈g〉J,L = ∅ and the assertion is
trivial.

We may also assume w.l.o.g. that J ·r > 25·k since otherwise we would have 25k
r

󰃍 J 󰃍 1
and we could just take G = supp(g) because then (25k) · g attains value at least one on

its support and also w
󰀃
(25k) · g, p

L

󰀄
= 25k

Lk ·w(g, p) 󰃑
󰀃
1
L

󰀄 k
2 =

󰀃
1
L

󰀄 25k
26 󰃑

󰀃
1
L

󰀄√
Jr
26 . Therefore

we can fix an ℓ ∈ N such that

22·ℓ+3 <
J · r
k − 1

󰃑 22·(ℓ+1)+3 = 22·ℓ+5. (4.2)

For every i ∈ [ℓ], let

Li := 2i−1 and bi := 22·(ℓ−i)−min{i−1,ℓ−i}. (4.3)

For every x ∈ X define N(x) := {T ∈ supp(g)|x ∈ T} (that is the set of incident edges
to x) to be the neighborhood of x. Furthermore, we denote with deg(x) := |N(x)| =
r ·

󰁓
T :x∈T g(T ) the degree of x. It follows:

󰁛

x∈X

deg(x) = k ·
󰁛

T∈supp(g)

r · g(T ) = k · r · p−k, (4.4)

since, by assumption, w(g, p) = 1. Because we view supp(g) as a k-uniform hypergraph,
we call a union

󰁖
e∈U e of the edges from U ⊆ supp(g) a k-uniform star with center z (or

shortly: a star), if all edges from U intersect pairwise exactly in z. Observe that in a
linear hypergraph, it is enough to ask for all the edges to contain z which means they are
in N(z).

Next we want to construct sets of vertex-disjoint stars G(bi, Li) in the hypergraph
supp(g). For this we define for every x ∈ X that ui(x) := max

󰀋
Li,

L
8ek

· deg(x) · pk−1
󰀌

and with this:

G(bi, Li) :=

󰀻
󰀿

󰀽
󰁞̇bi

j=1

󰁞

e∈Uj

e

󰀏󰀏󰀏󰀏 ∀j ∈ [bi] ∃xj ∈ X and Uj ⊆ N(xj) such that

|Uj| = ui(xj) and ∀j′ ∕= j :

󰀳

󰁃
󰁞

e∈Uj

e

󰀴

󰁄
󰁟

󰀳

󰁃
󰁞

e∈Uj′

e

󰀴

󰁄 = ∅

󰀼
󰁀

󰀾 . (4.5)

This means that each set from G (bi, Li) consists of the vertex set of exactly bi vertex-
disjoint stars, each star (with center z) with exactly ui(z) edges. The set G ⊆ 2X consists
then of all possible sets from G (bi, Li) for some i ∈ [ℓ]:

G :=
ℓ󰁞

i=1

G (bi, Li) .
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In the following we will verify that G covers 〈g〉J,L and that the weight of G is as

claimed, i.e. at most
󰀃
1
L

󰀄√
J·r
27 .

Claim 21. 〈g〉J,L ⊆ 〈G〉 .

Proof of Claim 21. Let S ∈ 〈g〉J,L. Then we know from the definition of 〈g〉J,L that

󰁛

T∈(Sk)

g(T ) 󰃍 max

󰀫
J,

L

4ek
· pk−1 ·

󰁛

x∈S

󰁛

T :x∈T

g(T )

󰀬
.

We will construct pairs (xj, Uj) for j ∈ [n], where xj ∈ S and Uj is a star with center xj in
the induced hypergraph supp(g)[S]. We will proceed inductively repeating the following
steps (starting with j = 1 and increasing the value of j until no suitable star can be found
anymore):

1. Choose xj ∈ S \
󰀓󰁖

j′<j Uj′

󰀔
such that the size of Uj := N (xj) ∩

󰀃S\(󰁖j′<j Uj′)
k

󰀄
is

maximized under the condition that it has size at least L
8ek

· deg(xj) · pk−1.

2. If no such xj exists we set Uj′ = ∅ for all j′ 󰃍 j and stop.

This procedure ensures that we end up with a collection of pairwise disjoint sets in S
(corresponding to vertex-disjoint stars in supp(g)[S]). Next we argue that we can always
find an i ∈ [ℓ] such that there exists a set from G(bi, Li) (defined in (4.5)) which is the
union of all edges from some bi stars that we found, and hence is contained in the set S.

We set dj := |Uj| (for all j ∈ [n]) and observe that for every e ∈ supp(g)[S] at least
one of the following is true:

(i) e is contained in some Uj.

(ii) e was removed because it intersects an e′ ∈ Uj for some j.

(iii) Some vertex x from e has degree less than L
8ek

·deg(x)·pk−1 in the induced hypergraph

supp(g)
󰁫
S \

󰀓󰁖
j Uj

󰀔󰁬
.

For the possibility (iii) above we account at most

󰁛

x∈S

L

8ek
· deg(x) · pk−1

edges (by adding up all the degrees of vertices that cannot be chosen as a center). We
account for the possibilities (i) and (ii), whereby excluding those edges already covered
by (iii), at most

󰁓n
j=1 (k − 1) · d2j edges. This is due to the fact, that a star with dj edges

contains exactly (k − 1)dj + 1 vertices (since each two edges share precisely the center
of the star) and the current maximum degree of an eligible vertex at step j is dj, which
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results in removing at most (k−1)d2j edges from supp(g)[S] plus those edges already taken
care of by (iii).

The sum of both these estimates is an upper bound on the total number of edges in
supp(g)[S]:

n󰁛

j=1

(k − 1) · d2j +
󰁛

x∈S

L

8ek
· deg(x) · pk−1 󰃍

󰁛

T∈(Sk)

1{T∈supp(g)} = r ·
󰁛

T∈(Sk)

g(T ).

With deg(x) = r ·
󰁓

T :x∈T g(T ) and S ∈ 〈g〉J,L (cf. Definition 19) we know:

󰁛

x∈S

L

8ek
· deg(x) · pk−1 =

r

2
· L

4ek
·
󰁛

x∈S

󰁛

T :x∈T

g(T ) · pk−1 󰃑 r

2
·
󰁛

T∈(Sk)

g(T ).

The above inequalities together imply:

n󰁛

j=1

(k − 1) · d2j 󰃍
r

2
·
󰁛

T∈(Sk)

g(T )
Definition 19

󰃍 r · J
2

󰃍 22·ℓ+2 · (k − 1) ,

where the last inequality used the choice of ℓ (cf. (4.2)).
Now all stars (with center x) meet by construction that they have at least L

8ek
·deg(x) ·

pk−1 edges. So we only need to prove that we have an i such that there are at least
bi many stars, each with at least Li edges (remember that it is sufficient to have one
set from a single G(bi, Li) being contained in S). Therefore, for every i ∈ [ℓ] we define
Bi := {dj |Li 󰃑 dj < Li+1}, where we set Lℓ+1 := ∞. We aim to find an i ∈ [ℓ] such that
|Bi| 󰃍 bi. If |Bℓ| 󰃍 1 = bℓ then we are done. Otherwise we have

ℓ−1󰁛

i=1

(k − 1) · |Bi| · L2
i+1 󰃍

n󰁛

j=1

(k − 1) · d2j 󰃍 (k − 1) · 22·ℓ+2,

which simplifies to (recalling the definition of Li = 2i−1, cf. (4.3))

ℓ−1󰁛

i=1

|Bi| · 22·(i−ℓ)−2 󰃍 1.

We rewrite the sum by relating it to the bis (cf. (4.3)):

1 󰃑
ℓ−1󰁛

i=1

|Bi| · 22·(i−ℓ)−2 =
ℓ−1󰁛

i=1

|Bi|
22·(ℓ−i)−min{i−1,ℓ−i} · 2

−min{i−1,ℓ−i}

4

󰃑 1

2
·
ℓ−1󰁛

i=1

|Bi|
bi

·
󰀃
2−i + 2−ℓ+i−1

󰀄
,

from which the existence of an i ∈ [ℓ − 1] with |Bi| 󰃍 bi follows by the geometric sum.
And this means that for this i at least one set from G(bi, Li) is contained in S.
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Finally we turn to calculating the weight of G.

Claim 22. w
󰀃
G, p

L

󰀄
󰃑

󰀃
1
L

󰀄√
J·r
27 .

Proof of Claim 22. As a reminder: each star in G (bi, Li) with center z has exactly (k−1)·
ui(z) + 1 vertices (in every star, every pair of edges only shares z and each star has ui(z)
edges) and each element of G (bi, Li) consists of precisely bi disjoint such stars. Therefore,
we estimate:

w
󰀓
G,

p

L

󰀔
󰃑

ℓ󰁛

i=1

󰁛

Gi∈G(bi,Li)

󰀓 p

L

󰀔|Gi|

󰃑
ℓ󰁛

i=1

󰁛

Z∈(Xbi)

󰁜

z∈Z

󰀕
deg(z)

ui(z)

󰀖
·
󰀓 p

L

󰀔(k−1)·ui(z)+1

.

We simplify each most inner term as follows

󰀕
deg(z)

ui(z)

󰀖
·
󰀓 p

L

󰀔(k−1)·ui(z)+1

󰃑
󰀕
e · deg(z)
ui(z)

󰀖ui(z)

· p
k

Lk
·
󰀕
pk−1

Lk−1

󰀖ui(z)−1

=
e · deg(z) · pk
ui(z) · Lk

·
󰀕
e · deg(z) · pk−1

ui(z) · Lk−1

󰀖ui(z)−1

󰃑 e · deg(z) · pk
Li · Lk

·
󰀣

e · deg(z) · pk−1

L
8ek

· deg(z) · pk−1 · Lk−1

󰀤ui(z)−1

= deg(z) · e · pk
Li · Lk

·
󰀕
8 · e2 · k

Lk

󰀖ui(z)−1

󰃑 deg(z) · e · pk
Li · Lk

·
󰀕
8 · e2 · k

Lk

󰀖Li−1

.

Where in the last step we used the assumption of the theorem that L 󰃍 210 · e2 and
therefore 8·e2·k

Lk 󰃑 1. With this we obtain:

w
󰀓
G,

p

L

󰀔
󰃑

ℓ󰁛

i=1

󰀳

󰁅󰁃
󰁛

Z∈(Xbi)

󰁜

z∈Z

deg(z)

󰀴

󰁆󰁄 ·
󰀕

e · pk
Li · Lk

󰀖bi

·
󰀕
8 · e2 · k

Lk

󰀖bi·(Li−1)

.

Now observe that the right hand side above is maximised when all deg(z) are the same

for all z. In this case we have for all z ∈ X that deg(z) = r·p−k·k
n

(cf.(4.4)). And so we
get:

w
󰀓
G,

p

L

󰀔
󰃑

ℓ󰁛

i=1

󰀕
n

bi

󰀖󰀕
r · p−k · k

n

󰀖bi

·
󰀕

e · pk
Li · Lk

󰀖bi

·
󰀕
8 · e2 · k

Lk

󰀖bi·(Li−1)
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󰃑
ℓ󰁛

i=1

󰀕
e · n
bi

󰀖bi

·
󰀕
r · p−k · k

n

󰀖bi

·
󰀕

e · pk
Li · Lk

󰀖bi

·
󰀕
8 · e2 · k

Lk

󰀖bi·(Li−1)

=
ℓ󰁛

i=1

󰀕
e2 · r · k
bi · Li · Lk

󰀖bi

·
󰀕
8 · e2 · k

Lk

󰀖bi·(Li−1)

(4.2),(4.3)

󰃑
ℓ󰁛

i=1

󰀕
e2 · 22·ℓ+5 · k2

22(ℓ−i)−min{i−1,ℓ−i} · 2i−1 · Lk · J

󰀖bi

·
󰀕
8 · e2 · k

Lk

󰀖bi·(Li−1)

=
ℓ󰁛

i=1

󰀕
e2 · k2

Lk · J · 2i+6+min{i−1,ℓ−i}
󰀖bi

·
󰀕
8 · e2 · k

Lk

󰀖bi·(Li−1)

󰃑
ℓ󰁛

i=1

󰀕
e2 · 27 · k2

Lk · J · 22i−2

󰀖bi

·
󰀕
25 · e2 · k
4 · Lk

󰀖bi·(Li−1)

(4.3)
=

ℓ󰁛

i=1

󰀕
e2 · 27 · k2

Lk · J · L2
i · 4−Li+1

󰀖bi

·
󰀕
25 · e2 · k

Lk

󰀖bi·(Li−1)

(4.3)

󰃑
ℓ󰁛

i=1

󰀕
e2 · 27 · k2

Lk · J

󰀖bi

·
󰀕
25 · e2 · k

Lk

󰀖bi·(Li−1)

. (4.6)

By assumption of the theorem, L 󰃍 210 · e2 and since k 󰃍 2 we have e227k2

Lk/2J
󰃑 1

2
and

25e2k 󰃑 Lk/2. Hence, we simplify the last term of (4.6) as follows:

w
󰀓
G,

p

L

󰀔
󰃑

ℓ󰁛

i=1

󰀕
1

2 · L k
2

󰀖bi

·
󰀕

1

L
k
2

󰀖bi(Li−1)

=
ℓ󰁛

i=1

󰀕
1

2

󰀖bi

·
󰀕

1

L
k
2

󰀖bi·Li

(4.3)
=

ℓ󰁛

i=1

󰀕
1

2

󰀖22·(ℓ−i)−min{i−1,ℓ−i}

·
󰀕

1

L
k
2

󰀖22·(ℓ−i)−min{i−1,ℓ−i}·2i−1

󰃑
ℓ󰁛

i=1

󰀕
1

2

󰀖22·(ℓ−i)−(ℓ−i)

·
󰀕

1

L
k
2

󰀖22·(ℓ−i)−(ℓ−i)·2i−1

=
ℓ󰁛

i=1

󰀕
1

2

󰀖2ℓ−i

·
󰀕

1

L
k
2

󰀖2ℓ−1

=
ℓ󰁛

j=1

󰀕
1

2

󰀖2j−1

·
󰀕

1

L
k
2

󰀖√
22ℓ+5−7

(4.2)

󰃑
ℓ󰁛

j=1

󰀕
1

2

󰀖j

·
󰀕

1

L
k
2

󰀖󰁴
J·r

27·(k−1)

󰃑
󰀕
1

L

󰀖√
J·r
24

󰃑
󰀕
1

L

󰀖√
J·r
27

.

This finishes the proof of Theorem 20.

The next theorem will allow us to reduce the weighted case to an unweighted version
where Theorem 20 becomes applicable.
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Theorem 23. For n, k ∈ N with n 󰃍 k, J 󰃍 1, any n-element set X and any function
g :

󰀃
X
k

󰀄
→ [0, 1] with

󰁓
S∈(Xk)

g(S) > 0 define for every i ∈ N

(a)

gi(S) :=
1

4i−1
· 1{ 1

4i−1󰃍g(S)> 1

4i
}

,

(b)

ℓi :=

󰁓
S∈(Xk)

gi(S)
󰁓

S∈(Xk)
g(S)

and for ℓi ∕= 0: Ji := max

󰀝
1,

ℓ−1
i

2i−1

󰀞
.

Suppose there exist L, c 󰃍 1 and p′ ∈ [0, 1] such that for every i ∈ N with ℓi ∕= 0 if
we have w

󰀃
10ℓ−1

i · gi, p′
󰀄
= 1 then there exists Gi ⊆ 2X with

󰀍
10ℓ−1

i · gi
󰀎
Ji,

L
10

⊆ 〈Gi〉 and

w
󰀓
Gi,

p′

L

󰀔
󰃑 c

i2
.

Then the following holds. If w(g, p) = 1 for some p ∈ [0, 1] then there exists G ⊆ 2X

with 〈g〉1,L ⊆ 〈G〉 and w
󰀃
G, p

100·c·L
󰀄
󰃑 1.

Proof. Let p ∈ [0, 1] and let g :
󰀃
X
k

󰀄
→ [0, 1] be as in the assumption of the theorem,

i.e. w(g, p) = 1. From the definition of gi and ℓi, we have for every i ∈ N with ℓi ∕= 0
that

󰁓
S∈(Xk)

ℓ−1
i · gi(S) =

󰁓
S∈(Xk)

g(S). Since w(g, p) = 1 we can choose p′ := p
101/k

and

obtain w
󰀃
10ℓ−1

i · gi, p′
󰀄
= 1. Therefore, by the assumption of the theorem, for every i

with ℓi ∕= 0, there exists Gi ⊆ 2X with
󰀍
10ℓ−1

i · gi
󰀎
Ji,

L
10

⊆ 〈Gi〉 and w
󰀓
Gi,

p′

L

󰀔
󰃑 c

i2
.

We set

G =
∞󰁞

i=1: ℓi ∕=0

Gi

and we will verify the assertion of the theorem for G.
First we estimate (using monotonicity of the weight function):

w
󰀓
G,

p

100 · c · L

󰀔
󰃑 1

10c
·

∞󰁛

i=1: ℓi ∕=0

w

󰀕
Gi,

10 · p′
10 · L

󰀖
󰃑 1

10c
·

∞󰁛

i=1

c

i2
󰃑 1.

Then we turn to show 〈g〉1,L ⊆ 〈G〉. Take any S ∈ 〈g〉1,L. By the definition of 〈g〉1,L
(cf. Definition 19), we have

󰁛

T∈(Sk)

g(T ) 󰃍 max

󰀫
1,

L

4ek
· pk−1 ·

󰁛

x∈S

󰁛

T :x∈T

g(T )

󰀬
. (4.7)
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Moreover, from the definition of the functions gi and parameters ℓi we have g(T ) 󰃑󰁓∞
i=1 gi(T ) 󰃑 4 · g(T ) for all T and

󰁓∞
i=1 ℓi 󰃑 4. We thus obtain from (4.7) the following

inequality

10 ·
󰁛

T∈(Sk)

∞󰁛

i=1

gi(T ) 󰃍
∞󰁛

i=1

ℓi +
∞󰁛

i=1

1

2i−1
+

L

4ek
· pk−1 ·

󰁛

x∈S

󰁛

T :x∈T

∞󰁛

i=1

gi(T )

=
∞󰁛

i=1

󰀣
ℓi +

1

2i−1
+

L

4ek
· pk−1 ·

󰁛

x∈S

󰁛

T :x∈T

gi(T )

󰀤
.

It follows that there exists an index i ∈ N with ℓi ∕= 0 such that

10 ·
󰁛

T∈(Sk)

gi(T ) 󰃍 ℓi +
1

2i−1
+

L

4ek
· pk−1 ·

󰁛

x∈S

󰁛

T :x∈T

gi(T )

and therefore (since
󰁓

T∈(Xk)
ℓ−1
i · gi(T ) =

󰁓
T∈(Xk)

g(T ) = p−k 󰃍 1) we get

󰁛

T∈(Sk)

10 · ℓ−1
i · gi(T ) 󰃍 1 +

ℓ−1
i

2i−1
+

L

4ek
·

󰀳

󰁅󰁃
󰁛

T∈(Xk)

ℓ−1
i · gi(T )

󰀴

󰁆󰁄

−1+ 1
k

·
󰁛

x∈S

󰁛

T :x∈T

ℓ−1
i · gi(T )

󰃍 1 +
ℓ−1
i

2i−1
+

L
10

4ek
·

󰀳

󰁅󰁃
󰁛

T∈(Xk)

10 · ℓ−1
i · gi(T )

󰀴

󰁆󰁄

−1+ 1
k

·
󰁛

x∈S

󰁛

T :x∈T

10 · ℓ−1
i · gi(T )

󰃍 Ji +
L
10

4ek
· p′ k−1 ·

󰁛

x∈S

󰁛

T :x∈T

10 · ℓ−1
i · gi(T ),

where we used w
󰀃
10ℓ−1

i · gi, p′
󰀄
= 1 and Ji := max

󰁱
1,

ℓ−1
i

2i−1

󰁲
for the last equation. And

this leads to:

󰁛

T∈(Sk)

10 · ℓ−1
i · gi(T ) 󰃍 max

󰀫
Ji,

L
10

4ek
· p′ k−1 ·

󰁛

x∈S

󰁛

T :x∈T

10 · ℓ−1
i · gi(T )

󰀬
,

which implies that (recalling Definition 19)

S ∈
󰀍
10ℓ−1

i · gi
󰀎
Ji,

L
10

.

Therefore this yields S ∈
󰁖∞

i=1: ℓi ∕=0

󰀍
10ℓ−1

i · gi
󰀎
Ji,

L
10

which finishes the proof due to our

choice of G =
󰁖∞

i=1: ℓi ∕=0 Gi such that
󰀍
10ℓ−1

i · gi
󰀎
Ji,

L
10

⊆ 〈Gi〉.

Now we are in position to provide the proof of Theorem 12.
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Proof of Theorem 12. First we consider the special case when c = 1, hence supp(g) is a
linear k-uniform hypergraph, i.e. for all distinct x, y ∈ X we have

|{T ∈ supp(g) |x, y ∈ T }| 󰃑 1.

We set L = 10 · 210 · e2 with foresight and consider the set

VL :=

󰀫
S ∈ 2X

󰀏󰀏󰀏󰀏󰀏
L

4ek
· pk−1 ·

󰁛

x∈S

󰁛

T :x∈T

g(T ) 󰃍 1

󰀬
.

Observe that 〈g〉 ⊆ 〈g〉1,L ∪ VL since for every S ∈ 〈g〉 we have
󰁓

T∈(Sk)
g(T ) 󰃍 1 and

S ∕∈ 〈g〉1,L implies that the maximum in the definition of 〈g〉1,L is attained through the
second term and hence S ∈ VL.

Next we consider the function

f :

󰀕
X

1

󰀖
→ [0, 1], f ({x}) := L

4ek
·

󰀳

󰁅󰁃
󰁛

T∈(Xk)

g(T )

󰀴

󰁆󰁄

−1+ 1
k

󰁛

T :x∈T

g(T )

defined for every x ∈ X. We set f̃ := min{f, 1} and observe that
󰁇
f̃
󰁈
= VL. We estimate

󰁛

x∈X

f̃ ({x}) =
󰁛

x∈X

min

󰀫
1,

L

4ek
· pk−1 ·

󰁛

T :x∈T

g(T )

󰀬

󰃑 L

4e
· pk−1 ·

󰁛

T∈(Xk)

g(T )

=
L

4e
· pk−1.

From the assumption w(g, p) = 1 we have that p =
󰀓󰁓

T∈(Xk)
g(T )

󰀔− 1
k
and therefore

w
󰀃
f, 4e

L
· p
󰀄
= 1. Hence, Proposition 18 asserts the existence of G′ ⊆ 2X such that󰁇

f̃
󰁈
= VL ⊆ 〈G′〉 and w

󰀃
G′, p

L

󰀄
󰃑 1.

Thus, it remains to cover 〈g〉1,L. For every i ∈ N, we define gi as follows for all S ∈
󰀃
X
k

󰀄
:

gi(S) :=
1

4i−1
· 1{ 1

4i−1󰃍g(S)> 1

4i
}.

Consequently, for every i ∈ N, define ℓi and Ji through

ℓi :=

󰁓
S∈(Xk)

gi(S)
󰁓

S∈(Xk)
g(S)

and for ℓi ∕= 0: Ji := max

󰀝
1,

ℓ−1
i

2i−1

󰀞
.
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For every i with ℓi ∕= 0 and for every S ∈
󰀃
X
k

󰀄
we set g̃i(S) := 10 · ℓ−1

i · gi(S) and, by the
choice of ℓi, we get

󰁓
S∈(Xk)

g̃i(S) =
󰁓

S∈(Xk)
10 · g(S). Since w(g, p) = 1 we have with

p′ := p
101/k

that w (g̃i, p
′) = 1 for all i (where ℓi ∕= 0). Recall that g̃i is constant on its

support
󰀋

1
4i−1 󰃍 g(S) > 1

4i

󰀌
and equals to 1

ri
with

ri :=
ℓi · 4i−1

10
. (4.8)

For any i ∈ N with ℓi ∕= 0, the assumptions of Theorem 20 are fulfilled (with g̃i as g, p
′

as p, L/10 as L, Ji as J and ri as r). Therefore, we find a set Gi ⊆ 2X with 〈g̃i〉Ji, L10 ⊆ 〈Gi〉
and weight

w

󰀕
Gi,

10 · p′
L

󰀖
󰃑

󰀕
10

L

󰀖√
Ji·ri
27

. (4.9)

Next we claim that we always have Ji · ri 󰃍 max{1, 2i−1

10
}. Indeed, if Ji = 1 then 1 󰃍 ℓ−1

i

2i−1

and ℓi · 2i−1 󰃍 1, which implies Ji · ri 󰃍 2i−1

10
(due to (4.8)). If Ji =

ℓ−1
i

2i−1 then Ji · ri = 2i−1

10
.

We thus futher simplify (4.9) to

w

󰀕
Gi,

p′

L

󰀖
󰃑 w

󰀕
Gi,

10 · p′
L

󰀖
󰃑

󰀕
10

L

󰀖√
2i−19

󰃑 200

i2
.

Thus we have shown that, for every i ∈ N with ℓi ∕= 0, we have

w
󰀃
10ℓ−1

i · gi, p′
󰀄
= 1

and there exists Gi ⊆ 2X with
󰀍
10ℓ−1

i · gi
󰀎
Ji,

L
10

⊆ 〈Gi〉 and w
󰀓
Gi,

p′

L

󰀔
󰃑 200

i2
.

We thus conclude, by Theorem 23 (with 10 · 210e2 as L, 200 as c), that there exists a
set G ⊆ 2X \ {∅} with 〈g〉1,L ⊆ 〈G〉 and w

󰀃
G, p

2·104·L
󰀄
󰃑 1. Altogether we have

〈g〉 ⊆ 〈G′ ∪G〉 and w
󰀓
G′ ∪G,

p

4 · 104 · L

󰀔
󰃑 1.

This finishes the special case when the k-uniform hypergraph supp(g) is linear with the
constant

C̃ = 105 · 212 · e2. (4.10)

Next we turn to the case

∆2 (supp(g)) 󰃑 ck.

Observe that we can write g =
󰁓(2c)k

j=1 gj with gj :
󰀃
X
k

󰀄
→ [0, 1] (so that

󰁓
S∈(Xk)

gj(S) > 0),

where supp(gj) ∩ supp(gi) = ∅ for all i ∕= j ∈ [ck] and supp(gj) is a linear k-uniform
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hypergraph for each j ∈ [ck]. This can be seen by considering an auxiliary graph F on
the vertex set supp(g), where {e, f} ∈

󰀃
supp(g)

2

󰀄
is an edge whenever |e ∩ f | 󰃍 2. It is

clear that the maximum degree ∆(F ) of F is at most
󰀃
k
2

󰀄
· ck < (2c)k =: m and therefore

the chromatic number χ(F ) of F is at most m. Each color class Fj ⊆ supp(g) is a linear
k-uniform hypergraph. Setting gj = g · 1Fj

we obtain the desired decomposition.
Next we observe that 〈g〉 ⊆ ∪m

j=1 〈m · gj〉. Indeed, let S ∈ 〈g〉, therefore we have󰁓
T⊆S

󰁓m
j=1 gj(T ) =

󰁓
T⊆S g(T ) 󰃍 1, from which we find an index j ∈ [m] such that󰁓

T⊆S gj(T ) 󰃍 1
m
, hence

󰁓
T⊆S m · gj(T ) 󰃍 1 and S ∈ 〈m · gj〉.

Next, for every j ∈ [m], we consider the function (m · gj)(m) :
󰀃
X(m)

k

󰀄
→ [0,∞), which

is obtained by creating m independent copies of the function m·gj (cf. Definition 14 where
here we use m · gj instead of g). We observe that

w

󰀕
(m · gj)(m) ,

p

(2c)2

󰀖
=

m

(2c)k
· w

󰀓
m · gj,

p

2c

󰀔
=

m2

(2c)2k
w (gj, p) = w (gj, p)

󰃑 w (g, p) = 1.

Set h(S) := min{1, (m · gj)(m) (S)} for all S ∈
󰀃
X(m)

k

󰀄
and observe that 〈h〉 =

󰁇
(m · gj)(m)

󰁈

holds. Moreover, we have w (h, p̂) = 1 for some p̂ 󰃍 p
(2c)2

. Since supp (h) is a linear k-
uniform hypergraph, we infer by the first part of the theorem that there exists a constant

C̃ (cf. (4.10)) so that there exists a set G
(m)
j ⊆ 2X

(m)
with 〈h〉 ⊆

󰁇
G

(m)
j

󰁈
and

w

󰀕
G

(m)
j ,

p̂

C̃

󰀖
󰃑 1.

Consequently we have
󰁇
(m · gj)(m)

󰁈
⊆

󰁇
G

(m)
j

󰁈
, w

󰀓
G

(m)
j , p

(2c)2·C̃

󰀔
󰃑 1 and, additionally,

w
󰀓
(m · gj)(m) , p

(2c)2

󰀔
󰃑 1. Lemma 15 (we apply it to m · gj for g, p/(2c) instead of p, C̃

instead of L and 2c instead of c) asserts the existence of a set Gj ⊆ 2X with 〈m · gj〉 ⊆ 〈Gj〉
and w

󰀓
Gj,

p

(2c)2·C̃

󰀔
󰃑 1

(2c)k
.

Finally, we set G := ∪m
j=1Gj and, hence, 〈g〉 ⊆

󰁖m
j=1 〈m · gj〉 ⊆ 〈G〉 and

w

󰀕
G,

p

(2c)2 · C̃

󰀖
󰃑 1.

We thus can choose C := 4C̃. This finishes the proof of Theorem 12.
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[10] S. Janson, T. 󰀀Luczak and A. Ruciński, Random graphs. New York, NY: Wiley (2000).

[11] J. Kahn and G. Kalai, Thresholds and expectation thresholds. Combin. Probab. Com-
put. 16, No. 3, 495–502 (2007).

[12] J. Park and H. T. Pham, A proof of the Kahn-Kalai conjecture. J. Am. Math. Soc.
37, No. 1, 235–243 (2024), doi:https://doi.org/10.1090/jams/1028.

[13] M. Talagrand, Are many small sets explicitly small? Proceedings of the forty-second
ACM symposium on Theory of computing (STOC ’10). Association for Computing
Machinery, New York, NY, USA, 13–36 (2010), doi:10.1145/1806689.1806693.

[14] H. T. Pham, A sharp version of Talagrands selector process conjecture and an appli-
cation to rounding fractional covers. In Proceedings of the 57th Annual ACM Sym-
posium on Theory of Computing (STOC ’25). Association for Computing Machinery
(ACM), New York, NY, USA, 322–328, (2025), doi:10.1145/3717823.3718256.

the electronic journal of combinatorics 32(3) (2025), #P3.39 23

https://doi.org/10.4007/annals.2021.194.3.5
https://doi.org/10.1002/rsa.20559
https://doi.org/https://doi.org/10.1002/rsa.21077
https://doi.org/https://doi.org/10.1090/jams/1028
https://doi.org/10.1145/1806689.1806693
https://doi.org/10.1145/3717823.3718256

