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Abstract

A cycle with four blocks C(k1, k2, k3, k4) is an oriented cycle formed of four blocks
of lengths k1, k2, k3 and k4 respectively. Recently, Cohen et al. conjectured that
for every positive integers k1, k2, k3, k4, there is an integer g(k1, k2, k3, k4) such that
every strongly connected digraph D containing no subdivisions of C(k1, k2, k3, k4)
has a chromatic number at most g(k1, k2, k3, k4). This conjecture is confirmed by
Cohen et al. for the case of C(1, 1, 1, 1) and by Al-Mniny for the case of C(k1, 1, 1, 1).
In this paper, we affirm Cohen et al.’s conjecture for the case where k2 = k4 = 1,
namely g(k1, 1, k3, 1) = O((k1 + k3)

2). Moreover, we show that if in addition D is
Hamiltonian, then the chromatic number of D is at most 6k, with k = max{k1, k3}.
Mathematics Subject Classifications: 05C38, 05C15, 05C20

1 Introduction

Throughout this paper, all graphs are considered to be simple, that is, there are no loops
and no multiple edges. By giving an orientation to each edge of a graph G, the obtained
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oriented graph is called a digraph. Reciprocally, the graph obtained from a digraph D
by ignoring the directions of its arcs is called the underlying graph of D, and denoted by
G(D) (a circuit of length 2 in D correspond to one edge in G(D)). The chromatic number
of a digraph D, denoted by χ(D), is the chromatic number of its underlying graph. A
digraph D is said to be k-chromatic if χ(D) = k.

An oriented path (resp. oriented cycle) is an orientation of a path (resp. cycle). The
length of a path (resp. cycle) is the number of its edges. The order of a path (resp.
cycle) is the number of its vertices. An oriented path (resp. oriented cycle) is said to be
directed if all its arcs have the same orientation. More formally, an oriented path P whose
vertex-set is V (P ) = {x1, x2, . . . , xn} and edge-set is E(P ) = {(xi, xi+1); 1 󰃑 i 󰃑 n − 1}
is called a directed path. In this case, we write P = x1, x2, . . . , xn. Given an oriented
path P (resp. oriented cycle C), a block is a maximal directed subpath of P (resp. of C).
We denote by P (k1, k2, . . . , kn) (resp. C(k1, k2, . . . , kn)) the oriented path (resp. oriented
cycle) formed of n blocks of lengths k1, k2, . . . , kn−1 and kn respectively. Since any two
consecutive blocks must have opposite directions, one may easily see that an oriented
cycle cannot have an odd number of blocks. Hence, n must be even for any oriented cycle
C(k1, k2, . . . , kn).

Given a digraph D, a directed path (resp. a directed cycle) in D is said to be Hamiltonian
if it passes through all the vertices of D. If D has a Hamiltonian directed cycle, then
D is called a Hamiltonian digraph. Moreover, D is said to be strongly connected if for
any two vertices x and y there is a directed path from x to y. However, D is said to be
acyclic if it contains no directed cycles. Given a digraph H, a subdivision of H, denoted
by S-H, is a digraph H ′ obtained from H by replacing each arc (x, y) by an xy-dipath of
length at least 1, all new paths being internally disjoint. If a digraph D does not contain
a subdivision of H as a subdigraph, then D is said to be H-subdivision-free.

An important question to be asked is the following:

Problem 1. Which are the graphs G such that every graph with sufficiently high chro-
matic number contains G as a subgraph?

In this context, Erdős and Hajnal [10] proved that every graph with chromatic number at
least k contains an odd cycle of length at least k. A counterpart of this theorem for even
length was settled by Mihok and Schiermeyer [16]: Every graph with chromatic number
at least k contains an even cycle of length at least k. Further results on graphs with
prescribed lengths of cycles have been obtained [12, 13, 15, 16, 19].

In their article, Cohen et al. [8] investigated a generalization of Problem 1 by considering
the analogous problem for directed graphs:

Problem 2. Which are the digraphs D such that every k-chromatic digraph contains D
as a subdigraph?

A famous theorem by Erdős [9] states that there exist digraphs with arbitrarily large
chromatic number and arbitrarily high girth. This implies that ifD is a digraph containing
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an oriented cycle, there exist digraphs with arbitrarily high chromatic number with no
subdigraph isomorphic to D. Thus the only possible candidates to answer Problem 2 are
the oriented trees. Burr [7] conjectured that every (2k − 2)-chromatic digraph contains
every oriented tree T of order k, and he was able to prove that every (k − 1)2-chromatic
digraph contains a copy of any oriented tree T of order k. The best known bound, due
to Addario-Berry et al. [3], is in (k/2)2. For special oriented trees, better bounds on the
chromatic number are known. The most famous one, known as Gallai-Roy theorem, deals
with directed paths:

Theorem 3. (Gallai [11], Roy [17]) Every k-chromatic digraph contains a directed path
of length k − 1.

However, for paths with two blocks, the best possible upper bound has been determined
by Addario-Berry et al. as follows:

Theorem 4. (Addario-Berry et al. [2]) Let k1 and k2 be positive integers such that
k1 + k2 󰃍 3. Every (k1 + k2 + 1)-chromatic digraph D contains any two-blocks path
P (k1, k2).

The following famous theorem of Bondy shows that the story does not stop here:

Theorem 5. (Bondy [6]) Every strong digraph D contains a directed cycle of length at
least χ(D).

The strong connectivity assumption is indeed necessary, because there exist acyclic di-
graphs (transitive tournaments) with large chromatic number and no directed cycle. Since
any directed cycle of length at least k can be seen as a subdivision of the directed cycle
Ck of length k, Cohen et al. conjectured that Bondy’s theorem can be extended to all
oriented cycles:

Conjecture 6. (Cohen et al. [8]) For every positive integers k1, k2, . . . , kn, there ex-
ists a constant g(k1, k2, . . . , kn) such that every strongly connected digraph containing
no subdivisions of the oriented cycle C(k1, k2, . . . , kn) has a chromatic number at most
g(k1, k2, . . . , kn).

Cohen et al. [8] noticed that the strongly connected connectivity assumption is also
necessary in Conjecture 6. This follows from proving the existence of acyclic digraphs
with large chromatic number and no subdivisions of C for any oriented cycle C:

Theorem 7. (Cohen et al. [8]) For any positive integers b, c, there exists an acyclic
digraph D with χ(D) 󰃍 c in which all oriented cycles have more than b blocks.

In their article, Cohen et al. [8] proved Conjecture 6 for the case of two-blocks cycles. More
precisely, they showed that the chromatic number of strong digraphs with no subdivisions
of a two-blocks cycle C(k1, k2) is bounded from above by O((k1 + k2)

4):

Theorem 8. (Cohen et al. [8]) Let k1 and k2 be positive integers such that k1 󰃍 k2 󰃍 2
and k1 󰃍 3. If D is a strong digraph having no subdivisions of C(k1, k2), then the chromatic
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number of D is at most (k1 + k2 − 2)(k1 + k2 − 3)(2k2 + 2)(k1 + k2 + 1).

More recently, this bound was improved by Kim et al. as follows:

Theorem 9. (Kim et al. [14]) Let k1 and k2 be positive integers such that k1 󰃍 k2 󰃍 1 and
k1 󰃍 2. If D is a strong digraph having no subdivisions of C(k1, k2), then the chromatic
number of D is at most 2(2k1 − 3)(k1 + 2k2 − 1).

In [2], Addario et al. asked if the upper bound of the chromatic number of strongly
connected digraphs having no subdivisions of C(k1, k2) can be improved to O(k1 + k2),
which remains an open problem. More recently, Al-Mniny et al. [5] introduced the notion
of secant edges and provided a positive answer to Addario et al.’s question for the class
of digraphs having a Hamiltonian directed path.

On the other hand, for the case of four-blocks cycles, Conjecture 6 is still unresolved
unless for some cases. For every positive integers k1, k2, k3, k4, a cycle with four blocks
C(k1, k2, k3, k4) is an oriented cycle formed of four blocks of lengths k1, k2, k3 and k4
respectively. The order of the blocks is shown in Figure 1.

Figure 1: A four blocks cycle C(k1, k2, k3, k4)

In fact, the restriction of Conjecture 6 on four-blocks cycles was confirmed by Cohen et
al. [8] for the case where k1 = k2 = k3 = k4 = 1 and by Al-Mniny [4] for the case where
k1 is arbitrary and k2 = k3 = k4 = 1 as follows:

Theorem 10. (Cohen et al. [8]) Let D be a strongly connected digraph with no subdivi-
sions of C(1, 1, 1, 1), then the chromatic number of D is at most 24.

Theorem 11. (Al-Mniny [4]) Let k1 be a positive integer and let D be a strongly connected
digraph with no subdivisions of C(k1, 1, 1, 1), then the chromatic number of D is at most
83 · k1.

In this paper, we confirm Conjecture 6 for the four-blocks cycles C(k1, 1, k3, 1) as follows:

Theorem 12. Let D be a strongly connected digraph having no subdivisions of C(k1, 1, k3,
1) and let k = max{k1, k3}, then the chromatic number of D is at most 36 · (2k) · (4k+2).

Moreover, we provide a linear bound for the chromatic number of Hamiltonian digraphs
having no subdivisions of C(k1, 1, k3, 1). More precisely, we prove the following:
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Theorem 13. Let D be a Hamiltonian digraph having no subdivisions of C(k1, 1, k3, 1)
and let k = max{k1, k3}. Then D is (6k − 1)-degenerate and thus χ(D) 󰃑 6 · k.

The paper is organized as follows: In Section 2, we introduce some terminologies and
notations that will be used throughout the coming sections. In Section 3, we prove
Theorem 12 by using the simple notion of a maximal-tree and the technique of digraphs
decomposing. Then in Section 4, we prove Theorem 13 that reduces the chromatic number
obtained in Theorem 12 for the class of Hamiltonian digraphs having no subdivisions of
C(k1, 1, k3, 1).

2 Preliminaries

In this section, we introduce some basic definitions and terminologies that will be elemen-
tary for the coming sections.

In what follows, we denote by [l] := {1, 2, . . . , l} for every positive integer l. A graph
G is said to be d-degenerate, if any subgraph of G contains a vertex having at most d
neighbors. Using an inductive argument, one may easily see the following statement:

Lemma 14. If G is d-degenerate graph, then G is (d+ 1)-colorable.

Given two digraphs D1 and D2, D1 ∪D2 is defined to be the digraph whose vertex-set is
V (D1) ∪ V (D2) and whose arc-set is A(D1) ∪ A(D2). The next lemma will be useful for
the coming proofs:

Lemma 15. χ(D1 ∪D2) 󰃑 χ(D1)× χ(D2) for any two digraphs D1 and D2.

Proof. For i ∈ {1, 2}, let φi : V (Di) −→ {1, 2, . . . ,χ(Di)} be a proper χ(Di)-coloring of
Di. Define ψ, the coloring of V (D1 ∪D2), as follows:

ψ(x) =

󰀻
󰀿

󰀽

(φ1(x), 1) x ∈ V (D1) \ V (D2);
(φ1(x),φ2(x)) x ∈ V (D1) ∩ V (D2);
(1,φ2(x)) x ∈ V (D2) \ V (D1).

We may easily verify that ψ is a proper coloring of D1 ∪D2 with color-set

{1, 2, . . . ,χ(D1)}× {1, 2, . . . ,χ(D2)}.

Consequently, it follows that χ(D1 ∪D2) 󰃑 χ(D1)× χ(D2).

A consequence of the previous lemma is that, if we partition the arc-set of a digraph D
into A1, A2, . . . , Al, then bounding the chromatic number of all spanning subdigraphs Di

of D with arc-set Ai gives an upper bound for the chromatic number of D.

Let D be a digraph. For a dipath or a directed cycle H of D and for any two vertices u, v
of H, we denote by H[u, v] the subdipath of H with initial vertex u and terminal vertex
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v. Also, we denote by H[u, v[, H]u, v] and H]u, v[ the dipaths H[u, v]− v,H[u, v]− u and
H[u, v]− {u, v}, respectively. Given an oriented cycle C in D, a vertex u of C is said to
be a source if the two neighbors of u in C are both out-neighbors. If u is a vertex of D,
we denote by ND

+(u) (resp. N−
D (u)) the set of vertices v such that (u, v) (resp. (v, u))

is an arc of D. The out-degree (resp. in-degree) of u, denoted by d+(u) (resp. d−(u)),
is the cardinality of N+(u) (resp. N−(u)). The maximum out-degree of D is defined by
∆+(D) = maxu∈V (D)d

+(u). For a vertex u of a graph G, we denote by NG(u) the set of
all neighbors of u in G, by dG(u) the cardinality of NG(u) and by δ(G) = minu∈V (G)dG(u).

A tree is a connected graph containing no cycles. An oriented tree is an orientation of a
tree. An out-tree is an oriented tree in which all vertices have in-degree at most 1. This
implies that an out-tree has exactly one vertex of in-degree 0, called the source. Given a
digraph D having a spanning out-tree T with source r, the level of a vertex x with respect
to T , denoted by lT (x), is the order of the unique rx-directed path in T . For a positive
integer i, we define Li(T ) := {x ∈ V (T )|lT (x) = i}. For a vertex x of D, the ancestors
of x are the vertices that belong to T [r, x]. If y is an ancestor of x with respect to T , we
write y 󰃑T x. Denoting by S(x) the set of the vertices y of D such that x is an ancestor of
y, Tx is defined to be the subtree of T rooted at x and induced by S(x). For two vertices
x1 and x2 of D, the least common ancestor z of x1 and x2, abbreviated by l.c.a{x1, x2},
is the common ancestor of x1 and x2 having the highest level in T . Note that the latter
notion is well-defined since r is a common ancestor of all vertices. For two vertices x and
y, we define minT{x, y} := {x} if lT (x) < lT (y) and minT{x, y} := {y} if lT (y) < lT (x).
An arc (x, y) of D is said to be forward with respect to T if lT (x) < lT (y). Otherwise,
(x, y) is called a backward arc. If for every backward arc (x, y) of D y 󰃑T x, then T is
called a final out-tree of D. In such case, one may easily see that D[Li(T )] is an empty
digraph for all i 󰃍 1.

The next proposition shows an interesting structural property on digraphs having a span-
ning out-tree:

Proposition 16. Given a digraph D having a spanning out-tree T , then D contains a
final out-tree.

Proof. Initially, set T0 := T . If T0 is final, there is nothing to do. Otherwise, there is an
arc (x, y) of D which is backward with respect to T0 such that y is not ancestor of x. Let
T1 be the out-tree obtained from T0 by adding (x, y) to T0, and deleting the arc of head
y in T0. We can easily see that the level of each vertex in T1 is at least its level in T0,
and there exists a vertex (y) whose level has strictly increased. Since the level of a vertex
cannot increase infinitely, we can see that after a finite number of repeating the above
process we reach an out-tree which is final.
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3 The existence of S-C(k1, 1, k3, 1) in strong digraphs

From now on, we consider k1 and k3 to be two positive integers and k = max{k1, k3}. The
aim of this section is to bound from above the chromatic number of strongly connected
digraphs having no subdivisions of C(k, 1, k, 1). To this end, we considerD to be a digraph
having a final spanning out-tree T rooted at r without subdivisions of C(k, 1, k, 1). Then
we partition the vertex-set of D into subsets V1, V2, . . . , V2k, where Vi := ∪α󰃍0Li+α(2k)(T )
for all 1 󰃑 i 󰃑 2k. After that, denoting by Di the subdigraph of D induced by Vi, we
partition the arc-set of Di as follows:

A1 := {(x, y)|lT (x) < lT (y) and x 󰃑T y};

A2 := {(x, y)|lT (x) > lT (y) and y 󰃑T x};
A3 := A(Di) \ (A1 ∪ A2).

In the coming sections, we denote by Dj
i the spanning subdigraph of Di whose arc-set is

Aj, for 1 󰃑 i 󰃑 2k and j = 1, 2, 3.

3.1 Coloring D1
i

The main goal of this section is to prove that χ(D1
i ) 󰃑 6. To this end, we are going to

prove that D1
i is a 5-wheel-free digraph. For any integer k 󰃍 3, a k-wheel is a graph

formed by a cycle C and a vertex u not in V (C), called the center, such that u has at
least k neighbors in C. A wheel with a cycle C and a center u is denoted by (C, u). A
graph G is said to be k-wheel-free graph if it does not contain a k-wheel as a subgraph.

Theorem 17. (G.E. Turner [18]) For any integer k 󰃍 4, if G is a k-wheel-free graph,
then G contains a vertex of degree at most k.

Note that the result of Turner in [18] is slightly weaker than Theorem 17, but the proof
of Turner proves exactly Theorem 17 (see [1]). Due to an inductive argument, Theorem
17 easily implies the following result:

Corollary 18. For any integer k 󰃍 4, if G is a k-wheel-free graph, then G is (k + 1)-
colorable.

Before going into details, we would like to outline the way we follow to prove that D1
i is

a 5-wheel-free digraph. The plan is first to reduce the question about the existence of a
5-wheel with a cycle C in D1

i to the existence of a 5-wheel with a cycle C in a well-defined
family C of cycles (this part will be done in Subsection 3.1.2 in which we describe the
structure of cycles expected to exist in D1

i according to the number and length of blocks,
and according to the position of the vertices of the cycle with respect to 󰃑T ). To this
end, we prove in Subsection 3.1.1 a very useful lemma that describes the possible positions
of the vertices of any three internally disjoint directed paths of D1

i with respect to 󰃑T .
Finally, we prove in Subsection 3.1.3 that D1

i is a 5-wheel-free digraph by considering all

the electronic journal of combinatorics 32(3) (2025), #P3.4 7



the possible positions for the center of the wheel and its neighbors in each expected cycle
in D1

i , that is, in each cycle in C.

3.1.1 Properties of internally disjoint directed paths of D1
i

In the following, we study the structural properties of any three internally disjoint directed
paths of D1

i . For this purpose, we prove a very useful lemma that our proofs heavily rely
on (see Figure 2):

Lemma 19. Let R1 = u1, . . . , un, R2 = r1, . . . , rs and R3 = v1, . . . , vf be vertex-disjoint
directed paths in D1

i of length at least 1, except possibly un = rs or u1 = r1. Then non of
the following occurs:

1. V (R1) and V (R2) are ancestors, v1 󰃑T r1 󰃑T u1 󰃑T vf (r1 ∕= u1), and one of the
below holds:

a. un ∈ Tvf and rs ∈ Tvf ;

b. For all 1 < j 󰃑 f with r1 󰃑T vj, neither un and vj are ancestors nor rs and vj
are ancestors.

2. V (R1), V (R2) and V (R3) are ancestors, un ∕= rs, u1 and r1 are ancestors of v1, v1
is an ancestor of rs and un, and rs and un are ancestors of vf .

3. l(Rj) = 1 for j = 1, 2, 3, with r1 󰃑T v1 󰃑T u1 󰃑T v2 󰃑T u2 󰃑T r2, u2 ∕= r2, and
u1 ∕= r1.

4. u1 󰃑T v1, un and vf are not ancestors, α /∈ R1 ∪ R3 with α = l.c.a{un, vf}, and
l(T [α, ui]) 󰃍 k for all ui ∈ Tα.

Figure 2: Illustration of Lemma 19.

Proof. Assume the contrary is true. First, assume that (1.a) holds. Let i1 and i2 be
maximal satisfying ui1 󰃑T vf and ri2 󰃑T vf . Note that the existence of ui1 and ri2 is
guaranteed by the fact that r1 󰃑T u1 󰃑T vf . Assume without loss of generality that
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ri2 󰃑T ui1 . Let i3 be maximal satisfying vi3 󰃑T ri2 and let i4 be minimal satisfying
ui1 󰃑T vi4 . Possibly, vi3 = v1 and vi4 = vf . This implies that T [vi3 , ri2 ] ∩ R3 = {vi3} and
T [ui1 , vi4 [∩(R1 ∪ R2 ∪ R3) = {ui1}. If rs = un, then the union of T [vi3 , ri2 ] ∪ R2[ri2 , rs],
R3[vi3 , vi4 ], T [ui1 , vi4 ] and R1[ui1 , un] is a S-C(k, 1, k, 1) inD, a contradiction. Else, assume
without loss of generality that rs 󰃑T un, and let i5 be chosen to be minimal such that
rs 󰃑T ui5 . Then the union of T [vi3 , ri2 ] ∪ R2[ri2 , rs] ∪ T [rs, ui5 ], R3[vi3 , vi4 ], T [ui1 , vi4 ] and
R1[ui1 , ui5 ] is a S-C(k, 1, k, 1) in D, a contradiction. Now assume that (1.b) holds. Since
r1 󰃑T vf , it follows that rs and vf are not ancestors, and un and vf are not ancestors.
Consequently, l.c.a{un, vf} /∈ R3. Let i1 be minimal satisfying r1 󰃑T vi1 . Possibly,
vi1 = vf . Then vi1 and un are not ancestors, and vi1 and rs are not ancestors. Let i2 and
i3 be maximal satisfying ui2 󰃑T vi1 and ri3 󰃑T vi1 . Assume without loss of generality that
ri3 󰃑T ui2 . This implies that T [vi1−1, ri3 ]∩R3 = {vi1−1} and T [ui2 , vi1 [∩(R1 ∪R2 ∪R3) =
{ui2}. If rs = un, then the union of T [vi1−1, ri3 ] ∪ R2[ri3 , rs], (vi1−1, vi1), T [ui2 , vi1 ] and
R1[ui2 , un] is a S-C(k, 1, k, 1) inD, a contradiction. Else, assume without loss of generality
that rs 󰃑T un, and let i4 be chosen to be minimal such that rs 󰃑T ui4 . Then the union of
T [vi1−1, ri3 ]∪R2[ri3 , rs]∪T [rs, ui4 ], (vi1−1, vi1), T [ui2 , vi1 ] and R1[ui2 , ui4 ] is a S-C(k, 1, k, 1)
in D, a contradiction. Assume now that (2) holds. Let i1 and i2 be minimal satisfying
v1 󰃑T ui1 and v1 󰃑T ri2 . Assume without loss of generality that ri2 󰃑T ui1 . Let i3 be
maximal satisfying vi3 󰃑T ri2 , and let i4 be minimal satisfying ui1 󰃑T vi4 . Possibly, vi3 =
v1 and vi4 = vf . This implies that T ]vi3 , ri2 [∩(R1∪R2∪R3) = φ and T ]ui1 , vi4 [∩(R1∪R3) =
φ. If r1 = u1, then the union of R1[u1, ui1 ]∪T [ui1 , vi4 ], R2[r1, ri2 ], T [vi3 , ri2 ] and R3[vi3 , vi4 ]
is a S-C(k, 1, k, 1) in D, a contradiction. Else, assume without loss of generality that
ui1−1 󰃑T ri2−1. Hence, the union of R1[ui1−1, ui1 ]∪T [ui1 , vi4 ], T [ui1−1, ri2−1]∪R2[ri2−1, ri2 ],
T [vi3 , ri2 ] andR3[vi3 , vi4 ] is a S-C(k, 1, k, 1) inD, a contradiction. Let’ assume now that (3)
holds, then the union of T [r1, v1]∪(v1, v2), R2, R1∪T [u2, r2] and T [u1, v2] is a S-C(k, 1, k, 1)
in D, a contradiction. Finally if (4) holds, let i1 be maximal satisfying ui1 󰃑T v1 and
let i2, i3 be minimal satisfying α 󰃑T vi2 and α 󰃑T ui3 . Possibly, ui1 = u1, vi2 = vf and
ui3 = un. This implies that T [ui1 , v1] ∩ R1 = {ui1} and T [α, vi2 ] ∩ R3 = {vi2}. Then the
union of T [ui1 , v1]∪R3[v1, vi2 ], R1[ui1 , ui3 ], T [α, ui3 ] and T [α, vi2 ] is a S-C(k, 1, k, 1) in D,
a contradiction. This terminates the proof of Lemma 19.

From now on, we say that [R1, R2, R3] satisfies Lemma 19(1.a) (resp. (1.b), (2), (3)) if
there exist three directed paths R1, R2, R3 satisfying the conditions of Lemma 19(1.a)
(resp. (1.b), (2), (3)). Also, we say that [R1, R3] satisfies Lemma 19(4), if there exist two
directed paths R1 and R3 satisfying the conditions of Lemma 19(4).

3.1.2 The landscape of cycles in D1
i

This subsection is devoted to reduce the question about the existence of a 5-wheel with a
cycle C in D1

i to the question about the existence of a 5-wheel with a cycle C in C for a
crucial family C of cycles to be defined below.

We first define a special class of cycles C on at most 8 blocks inD1
i by C := C2∪C4∪C6∪C8,
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where C2 = {C ∈ D1
i ;C is a 2-blocks cycle} and Ci is the set of cycles in D1

i with i blocks
defined below, for i = 4, 6, 8 (see Figure 3). Now we are going to define the class Ci of
cycles with i blocks for i = 4, 6, 8. To this end, we need to define eight internally disjoint
directed paths in D1

i as follows: P1 = n1, . . . , nt; P2 = m1, . . . ,ml; Q1 = x1, . . . , xt1 ;
Q2 = y1, . . . , yl1 ; Q3 = z1, . . . , zm; Q4 = w1, . . . , wr; Q5 = c1, . . . , cα1 ; Q6 = d1, . . . , dα2 ,
with t, l, t1, l1,m, r,α1,α2 󰃍 2. We advise here the reader to skip the definitions of Ci

exposed below and move directly to Lemma 20. While reading the proof of Lemma 20,
one can check each cycle and go back to its definition in C.

Figure 3: C := C2 ∪ C4 ∪ C6 ∪ C8, with C4 =
󰁖8

i=1 C
j
4 and C6 =

󰁖4
i=1 C

j
6 . Blocks with a

length of at least 2 do not necessarily have the length drawn in the figure. All the cycles
are drawn according to their location in T .

Let C be a cycle of D1
i with at most 8 blocks. First, we will define C4 =

󰁖8
i=1 C

j
4 , with

Cj
4 is a class of cycles on 4 blocks for j = 1, . . . , 8, and containing cycles with the form

P1 ∪ P2 ∪Q1 ∪Q2. In this case x1 = y1, nt = xt1 , n1 = m1, and ml = yl1 :

- C1
4 := {C;C is a 4-blocks cycle such that l(Q1) = l(Q2) = 1, nt and ml are not

ancestors with x1 󰃑T n1 = l.c.a{nt,ml}, and l(Pj) 󰃍 1 for j = 1, 2},

- C2
4 := {C;C is a 4-blocks cycle such that l(C2

4) = 4, n2 and m2 are not ancestors
with x1 󰃑T n1 󰃑T l.c.a{n2,m2}},
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- C3
4 := {C;C is a 4-blocks cycle such that l(Q1) = l(Q2) = l(P2) = 1, l(P1) 󰃍 2, nt

and m2 are not ancestors with x1 󰃑T n1 󰃑T nt−1 󰃑T l.c.a{nt,m2}},

- C4
4 := {C;C is a 4-blocks cycle such that l(Q1) = l(Q2) = 1, l(Pj) 󰃍 2 for j = 1, 2, nt

and ml are not ancestors with x1 󰃑T n1 󰃑T ml−1 󰃑T n2 󰃑T nt−1 󰃑T l.c.a{nt,ml}},

- C5
4 := {C;C is a 4-blocks cycle such that l(P2) = l(Q2) = 1, l(P1) 󰃍 1, l(Q1) 󰃍 2,

and x1 󰃑T xt1−1 󰃑T n1 󰃑T nt 󰃑T m2},

- C6
4 := {C;C is a 4-blocks cycle such that l(Q1) = l(Q2) = 1, l(Pj) 󰃍 1 for j = 1, 2,

and x1 󰃑T n1 󰃑T nt 󰃑T m2},

- C7
4 := {C;C is a 4-blocks cycle such that l(P1) = l(Q1) = l(Q2) = 1, l(P2) 󰃍 2,

x1 󰃑T n1 󰃑T ml−1 󰃑T n2 󰃑T ml},

- C8
4 := {C;C is a 4-blocks cycle such that l(P1) = l(P2) = l(Q2) = 1, l(Q1) 󰃍 2, and

x1 󰃑T n1 󰃑T x2 󰃑T n2 󰃑T m2}.

Now we will define C6 =
󰁖4

i=1 C
j
6 , with Cj

6 is a class of cycles on 6 blocks, for j = 1, . . . , 4,
and containing cycles with the form P1 ∪ P2 ∪Q1 ∪Q2 ∪Q3 ∪Q4. In this case n1 = m1,
yl1 = ml, z1 = y1, zm = wr, w1 = x1, and xt1 = nt:

- C1
6 := {C;C is a 6-blocks cycle such that l(P2) = l(Q1) = l(Q2) = l(Q3) = 1,

l(P1) 󰃍 1, l(Q4) 󰃍 1, and y1 󰃑T x1 󰃑T z2 󰃑T n1 󰃑T nt 󰃑T m2},

- C2
6 := {C;C is a 6-blocks cycle such that l(P2) = l(Q2) = l(Q3) = 1, l(Q1) 󰃍 2,

l(P1) 󰃍 1, l(Q4) 󰃍 1, y1 󰃑T x1 󰃑T z2 󰃑T x2 󰃑T xt1−1 󰃑T n1 󰃑T nt 󰃑T m2},

- C3
6 := {C;C is a 6-blocks cycle such that l(P2) = l(Q1) = l(Q2) = l(Q3) =

l(Q4) = 1, l(P1) 󰃍 1, z2 and m2 are not ancestors with y1 󰃑T x1 󰃑T n1 󰃑T

nt 󰃑T l.c.a{z2,m2}},

- C4
6 := {C;C is a 6-blocks cycle such that l(P2) = l(Q2) = l(Q3) = 1; l(P1), l(Q1),

l(Q4) 󰃍 1, z2 and m2 are not ancestors with x1 = l.c.a{z2,m2}, y1 󰃑T x1 󰃑T

xt1−1 󰃑T n1 󰃑T nt 󰃑T m2, and y1 󰃑T x1 󰃑T z2}.

Now we will define C8, a class of cycles on 8 blocks, and containing cycles with the form
P1 ∪P2 ∪ (

󰁖6
j=1 Qj). In this case n1 = m1, yl1 = ml, z1 = y1, zm = wr, w1 = c1, cα1 = dα2 ,

d1 = x1, and xt1 = nt.

- C8 := {C;C is an 8-blocks cycle such that C = P1∪P2∪ (
󰁖6

j=1 Qj), l(P2) = l(Q2) =
l(Q3) = l(Q4) = 1, l(P1), l(Q1), l(Q5), l(Q6) 󰃍 1, z2 and m2 are not ancestors with
x1 = l.c.a{z2,m2}, y1 󰃑T x1 󰃑T xt1−1 󰃑T n1 󰃑T nt 󰃑T m2, and x1 󰃑T dα2−1 󰃑T

w1 󰃑T dα2 󰃑T z2}.

The following lemma describes the structure of all cycles expected to exist in D1
i , and

reduces the question about the existence of a 5-wheel with a cycle C in D1
i to the question

about the existence of a 5-wheel with a cycle C in C:

Lemma 20. Let C be a cycle in D1
i , then C ∈ C.
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Proof. If C is a 2-blocks cycle, then C ∈ C2 and so C ∈ C. Now assume that C is a cycle
with at least 4 blocks. Let n1 be a source of C with maximal level with respect to 󰃑T .
Let P1 = n1, . . . , nt, P2 = m1, . . . ,ml, Q1 = x1, . . . , xt1 , and Q2 = y1, . . . , yl1 be blocks of
C, with n1 = m1, xt1 = nt, yl1 = ml, and t, l, t1, l1 󰃍 2. Clearly, x1 and y1 are sources of
C. Moreover, x1 󰃑T n1 and y1 󰃑T n1, due to the definition of D1

i and the maximality of
n1.

Assertion 21. If nt and ml are not ancestors, then C ∈
󰁖4

j=1 C
j
4 .

Proof of Assertion 21. Let v = l.c.a{nt,ml}.
Claim 22. C is a 4-blocks cycle and (Q1 ∪Q2) ∩ T ]x1, n1[= φ.

Proof of Claim 22. Assume by contradiction that this is not the case. Let s1 and s2 be
maximal such that xs1 󰃑T n1 and ys2 󰃑T n1. Note that in case C is not a 4-blocks cycle,
then x1 ∕= y1 and possibly xs1 = x1 or ys2 = y1. Otherwise, according to our assumption,
we may have either xs1 = x1 or ys2 = y1 = x1 but not both. Thus, xs1 ∕= ys2 . Assume
without loss of generality that xs1 󰃑T ys2 . According to the choice of s1, it follows that
xs1+1 ∈ T ]n1, nt]. Consequently, [P2, Q2[ys2 , yl1 ], (xs1 , xs1+1)] satisfies Lemma 19(1.a) or
Lemma 19(1.b), a contradiction. This confirms Claim 22. 󰃆

Therefore, according to Claim 22, we have C ∩ T [r, n1[= {x1} = {y1}. Moreover, observe
that if v = n1 then l(Q1) = 1, since otherwise the union of (x1, x2) ∪ T [x2, nj], (x1, y2),
T [n1, y2] and P1[n1, nj] is a S-C(k, 1, k, 1) in D, where j is minimal such that x2 󰃑T nj.
By symmetry, if v = n1 then l(Q2) = 1 and so C ∈ C1

4 . Assume now that v ∕= n1.
Observe that v /∈ V (D1

i ). In fact, if v ∈ D1
i \(Q1 ∪ P2), then [Q1, P2] satisfies Lemma

19(4), a contradiction. Else if v ∈ Q1∪P2, then v ∈ D1
i \(Q2∪P1) and so [Q2, P1] satisfies

Lemma 19(4), a contradiction. Hence, v /∈ V (D1
i ).

Claim 23. l(Q1) = l(Q2) = 1.

Proof of Claim 23. Assume first that Q1 ∩ T [n1, v] ∕= φ, and let yj be the vertex of
Q2 satisfying n1 󰃑T x2 󰃑T yj. If yj and nt are ancestors, then [P1, Q1[x2, nt], Q2[y1, yj]]
satisfies Lemma 19(1.a), a contradiction. This means that yj and nt are not ancestors
and so [P1, Q1[x2, nt], Q2[y1, yj]] satisfies Lemma 19(1.b), a contradiction. This proves
that Q1 ∩ T [n1, v] = φ. By symmetry, we have Q2 ∩ T [n1, v] = φ. Now assume that
Q1∩T ]v, nt[ ∕= φ. Hence, x2 ∕= nt and so the union of (x1, x2)∪T [x2, nj1 ], (y1, y2), T [nj2 , y2]
and P1[nj2 , nj1 ] is a S-C(k, 1, k, 1) in D, where j1 is minimal such that x2 󰃑T nj1 and j2 is
maximal such that nj2 󰃑T v. Thus, Q1 ∩ T ]v, nt[= φ and by symmetry Q2 ∩ T ]v,ml[= φ.
As a result, Q1 = (x1, nt) and Q2 = (y1,ml). This yields the desired claim. 󰃆

Notice that l(T [v, nt]) < k, since else [(x1, nt), P2] satisfies Lemma 19(4), a contradiction.
By symmetry, l(T [v,ml]) < k. Hence, P1 ∩ T [v, nt[= φ and P2 ∩ T [v,ml[= φ. If l(P1) =
l(P2) = 1, then C = C2

4 . Thus let us consider the opposite and assume without loss of
generality that ml−1 󰃑T nt−1. If ml−1 = n1, then l(P2) = 1 and so C ∈ C3

4 . Now assume
that ml−1 ∕= n1. This implies that l(P1) > 1 and l(P2) > 1. Observe that for all f in
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P1 ∩ T ]ml−1, nt−1], there is no w in T ]n1,ml−1[ such that (w, f) ∈ A(P1), since otherwise
[(w, f), Q1, (mj−1,mj)] satisfies Lemma 19(3), where j is minimal such that w 󰃑T mj.
Hence, ml−1 󰃑T n2 and so C ∈ C4

4 . This confirms Assertion 21. ♦

Assertion 24. Let R =
4󰁞

j=1

Rj be a 4-blocks path in D1
i , where R1 = r1, . . . , rs, R2 =

u1, . . . , un, R3 = g1, . . . , gκ, and R4 = v1, . . . , vh are the 4 blocks of R, with rs = un,
g1 = u1, gκ = vh, r1 ∕= v1, r1 󰃑T u1, v1 󰃑T u1, and un 󰃑T gκ. Then l(R3) = 1, rs−1 󰃑T u1,
and vh−1 󰃑T r1.

Proof of Assertion 24. We are going to prove first that vh−1 󰃑T r1. Indeed, R4 ∩
T ]r1, u1[= φ, since otherwise [R3, R4[vj, vh], R1] satisfies Lemma 19(1.a), with j is min-
imal such that r1 󰃑T vj 󰃑T u1, a contradiction. Moreover, R4 ∩ T ]u1, gκ[= φ, since
otherwise [R1, R4[v1, vh−1], R3] satisfies Lemma 19(2), a contradiction. This gives that
vh−1 󰃑T r1. Now we want to show that rs−1 󰃑T u1. In fact, R1 ∩ T ]u1, rs[= φ.
If not, let j be minimal such that u1 󰃑T rj 󰃑T rs and let i be maximal such that
ui 󰃑T rj. According to our assumption together with the previous observation, we get
that [(vh−1, vh), (rj−1, rj), (ui, ui+1)] satisfies Lemma 19(3), a contradiction. This proves
that rs−1 󰃑T u1. To end the proof, it remains to prove that l(R3) = 1. Assume other-
wise and consider the possible positions of g2. If g2 󰃑T rs, let j be maximal satisfying
uj 󰃑T g2. Then the union of T [uj, g2]∪R3[g2, gκ], R2[uj, un], T [vh−1, r1]∪R1 and (vh−1, vh)
is a S-C(k, 1, k, 1) in D, a contradiction. Thus rs−1 󰃑T g1 󰃑T rs 󰃑T g2 󰃑T vh and so
[(vh−1, vh), (rs−1, rs), (g1, g2)] satisfies Lemma 19(3), a contradiction. This implies that
g2 = gκ and so l(R3) = 1. ♦
Assertion 25. If nt and ml are ancestors and C is a 4-blocks cycle, then C ∈

󰁖8
j=5 C

j
4 .

Proof of Assertion 25. Since C is a 4-blocks cycle, then x1 = y1. Recall that the maximal-
ity of n1 gives that x1 󰃑T n1. Assume without loss of generality that nt 󰃑T ml. Note that
Q2 ∩ T ]x1, n1[= ∅, since otherwise Assertion 24 implies that yl1−1 󰃑T x1, a contradiction.
If Q1 ∩ T ]x1, n1[ ∕= φ, then Assertion 24 together with the previous remark imply that
C ∈ C5

4 . Let us assume now that the opposite is true. Hence, n1 󰃑T x2 and n1 󰃑T y2.
Clearly, l(Q2) = 1, since else lT (n1) < lT (y2) < lT (ml) and so [(y1, y2), Q1, P2] satisfies
Lemma 19(2), a contradiction. To conclude, we need to prove the following two claims.

Claim 26. If P2 ∩ T ]nt,ml[ ∕= φ, then C ∈ C6
4 .

Proof of Claim 26. Observe first that P2 ∩ T ]n1, nt[= φ, since else [Q2, (ni−1, ni), (mj,
mj+1)] satisfies Lemma 19(3), where j is maximal satisfying mj 󰃑T nt and i is minimal
satisfying mj 󰃑T ni. Moreover, note that l(Q1) = 1, since else the union of (x1, x2) ∪
T [x2, nj], Q2, (n1,m2)∪T [m2,ml] and P1[n1, nj] is a S-C(k, 1, k, 1) inD, where j is minimal
satisfying x2 󰃑T nj. Hence, C ∈ C6

4 . 󰃆
Claim 27. If P2 ∩ T ]nt,ml[= φ, then C ∈

󰁖8
j=6 C

j
4.
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Proof of Claim 27. We are going to argue on the possible lengths of P1. If l(P1) = 1,
then either l(P2) > 1 or l(P2) = 1. Suppose first that the former holds. We will prove
that l(Q1) = 1. Assume else and consider the possible positions of x2: If x2 󰃑T ml−1,
then [Q2, (mi2−1,mi2), (xi1 , xi1+1)] satisfies Lemma 19(3), where i1 is maximal satisfy-
ing xi1 󰃑T ml−1, and i2 is minimal satisfying xi1 󰃑T mi2 . Else if ml−1 󰃑T x2, then
[P1, (ml−1,ml), (x1, x2)] satisfies Lemma 19(1.a), a contradiction. Hence, l(Q1) = 1 and
so C ∈ C7

4 . Now assume that the later holds, i.e. l(P2) = 1. Then either l(Q1) = 1
and so C ∈ C6

4 , or l(Q1) > 1 and so C ∈ C8
4 . Else if l(P1) > 1, we will prove that

l(Q1) = l(P2) = 1. First assume that l(Q1) > 1 and consider the possible positions of x2:
If x2 󰃑T nt−1, then [Q2, (ni2−1, ni2), (xi1 , xi1+1)] satisfies Lemma 19(3), where i1 is max-
imal satisfying xi1 󰃑T nt−1, and i2 is minimal satisfying xi1 󰃑T ni2 . Else if nt−1 󰃑T x2,
then [(nt−1, nt), P2, (x1, x2)] satisfies Lemma 19(1.a), a contradiction. Hence, l(Q1) = 1.
Now assume that l(P2) > 1 and consider the possible positions of m2 in T ]n1, nt[: If
m2 󰃑T n2, then [(n1, n2), Q1, P2[m2,ml]] satisfies Lemma 19(2), a contradiction. Else if
n2 󰃑T m2, then [Q2, (n1,m2), (ni, ni+1)] satisfies Lemma 19(3), where i is maximal satis-
fying ni 󰃑T m2, a contradiction. Hence, l(P2) = 1. As a result, C ∈ C6

4 . This completes
the proof of our claim. 󰃆

In view of what precedes, Assertion 25 is confirmed. ♦

From now on, V (P1 ∪ P2 ∪ Q1 ∪ Q2) are considered to be ancestors and C is considered
to be a cycle with at least six blocks. Let Q3 = z1, . . . , zm and Q4 = w1, . . . , wr be two
other blocks of C, with z1 = y1 and zm = wr. Note that if C is a six-blocks cycle then
w1 = x1. If C is a cycle with at least ten blocks, then consider Q5 = c1, . . . , cα1 and
Q6 = d1, . . . , dα2 to be also blocks of C, with w1 = c1, cα1 = dα2 and d1 = x1. In what
follows, we will assume without loss of generality that nt 󰃑T ml. In accordance with
Assertion 24, it follows that l(P2) = 1, yl1−1 󰃑T x1 and xt1−1 󰃑T n1.

The following observation will be very useful for the rest of the proof.

Assertion 28. Let (p, q) ∈ A(D1
i ) such that one of the following holds:

1. p ∈ T [r, yl1−1[ and q ∈ Tyl1−1
− yl1−1.

2. p ∈ T ]x1, n1[\Q1 and q ∈ (T ]n1,m2[∪Tm2)\(P1 ∪ P2).

3. p ∈ T ]yl1−1, xt1−1[ and q ∈ T ]xt1−1,m2[∪Tm2 .

Then (p, q) /∈ A(C).

Proof of Assertion 28. Assume else and suppose first that (1) holds. Assume that
q 󰃑T m2. If q ∈ T ]yl1−1, xt1−1], then the union of T [p, yl1−1] ∪ (yl1−1,m2), (p, q) ∪
T [q, xt1−1] ∪ (xt1−1, nt), T [n1, nt] and P2 is a S-C(k, 1, k, 1) in D, a contradiction. Else
if q ∈ T ]xt1−1, nt[, then [(xt1−1, nt), (yl1−1,m2), (p, q)] satisfies Lemma 19(1.a), a contra-
diction. Else if q ∈ T ]nt,m2[, then [(xt1−1, nt), (p, q), P2] satisfies Lemma 19(2), a contra-
diction. Now assume that m2 󰃑T q, then [P2, (p, q), (xt1−1, nt)] satisfies Lemma 19(3), a
contradiction. This means that q and m2 are not ancestors. Let β = l.c.a{q,m2}. Observe
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that β ∈ T [yl1−1, xt1−1[, since otherwise either β ∈ T [n1,m2[ and so [P2, (yl1−1,m2), (p, q)]
satisfies Lemma 19(1.b), or β ∈ T [xt1−1, n1[ and so [(xt1−1, nt), (yl1−1,m2), (p, q)] sat-
isfies Lemma 19(1.b). Notice that if β ∕= yl1−1, then l(T [β, q]) < k, since otherwise
[(p, q), (yl1−1,m2)] satisfies Lemma 19(4). Hence, the structure of C and the above discus-
sion imply that there exists (p1, q1) in A(C) such that λ ∈ T ]yl1−1, xt1−1[, p1 ∈ T ]yl1−1,λ[,
q1 and m2 are not ancestors, with λ = l.c.a{q1,m2}. Thus, [(yl1−1,m2), (p1, q1)] sat-
isfies Lemma 19(4) as l(T [λ,m2]) 󰃍 k, a contradiction. Assume now that (2) holds.
If q ∈ T ]n1,m2[\(P1 ∪ P2), then [(p, q), (xt1−1, nt), P2] satisfies Lemma 19(2), a contra-
diction. Else if q ∈ Tm2 , then [P2, (p, q), Q1] satisfies Lemma 19(1.a), a contradiction.
To end the proof, assume that (3) holds and consider the possible positions of q in
T ]xt1−1,m2[∪Tm2 . If q ∈ T ]xt1−1, nt[, then [(xt1−1, nt), (yl1−1,m2), (p, q)] satisfies Lemma
19(3). Else if q ∈ T ]nt,m2[, then [(p, q), (xt1−1, nt), P2] satisfies Lemma 19(2). Else if
m2 󰃑T q, then [P2, (p, q), (xt1−1, nt)] satisfies Lemma 19(3), a contradiction. This con-
firms our assertion. ♦

Notice that Assertion 28(1) together with the structure of C imply that l(Q2) = 1.

Assertion 29. If all the vertices of C are ancestors, then C ∈ C1
6 ∪ C2

6 .

Proof of Assertion 29. We will prove a series of claims and conclude.

Claim 30. z2 ∈ T ]x1, x2[ and z2 󰃑T n1.

Proof of Claim 30. Notice that z2 /∈ T ]n1,m2[ since else [Q1, (y1, z2), P2] satisfies Lemma
19(2), a contradiction. Moreover, observe that z2 /∈ Tm2\{m2} since else [P2, (y1, z2),
(xt1−1, nt)] satisfies Lemma 19(3), a contradiction. This proves that z2 󰃑T n1. Now are
going to show that z2 ∈ T ]x1, x2[. Assume first that l(Q1) = 1. Then Assertion 28(1
and 3) together with the structure of C imply our claim. Assume now that l(Q1) > 1.
If z2 󰃑T x1, then Assertion 28(1 and 3) implies that there exists (p, q) ∈ A(C) such
that p ∈ T ]y1, x1[ and q ∈ T ]x1, xt1−1[, and so [(xj, xj+1), Q2, (p, q)] satisfies Lemma
19(3), where j is maximal such that xj 󰃑T q, a contradiction. Else if z2 ∈ T ]x2, n1[,
then Assertion 28 implies that z2 /∈ T ]xt1−1, n1[ and so z2 ∈ T ]x2, xt1−1[. If there exists
(p, q) ∈ A(C) such that p ∈ T ]y1, x1[ and q ∈ T ]x1, xt1−1[, then [(xj, xj+1), Q2, (p, q)]
satisfies Lemma 19(3), where j is maximal such that xj 󰃑T q, a contradiction. Combining
what precedes together with Assertion 28(1 and 3) and the structure of C, we guarantee
the existence of an arc (p, q) of C such that p ∈ T [x1, x2[ and q ∈ T ]x2, xt1−1[. Hence,
[(xj, xj+1), Q2, (p, q)] satisfies Lemma 19(3), where j is maximal such that xj 󰃑T q, a
contradiction. This proves that z2 ∈ T ]x1, x2[ and thus confirms our claim. 󰃆

Claim 31. For all p ∈ T [x1, z2[, there exists no vertex q ∈ T ]z2, n1[ such that (p, q) ∈
A(C).

Proof of Claim 31. Assume otherwise. Then [Q1, (p, q), (y1, z2)] satisfies Lemma 19(1.a),
a contradiction. 󰃆
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In view of Assertion 28, Claim 31 and Lemma 19(3), one may easily see that l(Q3) = 1.
Consequently, Assertion 28 and Lemma 19(3) imply that w1 ∈ T [x1, z2[. In what follows,
assume that C is not a 6-blocks cycle, that is, w1 ∕= x1.

Claim 32. For all p ∈ T [x1, w1[, there exists no vertex q ∈ T ]w1, z2[ such that (p, q) ∈
A(C).

Proof of Claim 32. Assume else and let j be maximal such that wj 󰃑T q. Then [(wj, wj+1),
Q2, (p, q)] satisfies Lemma 19(3), a contradiction. 󰃆
In view of Assertion 28, Claims 31 and 32 and Lemma 19(3), one may easily see that
the structure of C induces the existence of the arc (x1, q) in A(C) for some q ∈ T ]w1, z2[,
which contradicts Claim 32. As a result, C is a 6-blocks cycle and so x1 = w1. Hence,
C ∈ C1

6 ∪ C2
6 . This completes the proof of Assertion 29. ♦

In what follows, we denote by C = h1, h2, . . . ., hδ, h1.

Assertion 33. If there exist vertices hj1 and hj2 of C for some j1, j2 ∈ {1, . . . , δ} such that
hj1 and hj2 are not ancestors, then C ∈ C3

6 ∪ C4
6 ∪ C8.

Proof of Assertion 33. We will prove a series of claims.

Claim 34. Let q1 ∈ V (D1
i ) such that m2 and q1 are not ancestors and v∗ = l.c.a{m2, q1} ∈

Ty1 − y1. Let pj ∈ T ]y1, v
∗] for j = 1, 2 with p1 ∕= p2, and let q2 ∈

󰁞

z∈T ]v∗,q1]

Tz. If

(p1, q1) ∈ A(C), then (p2, q2) /∈ A(C).

Proof of Claim 34. Suppose otherwise and assume without loss of generality that p1 󰃑T p2.
Notice that v∗ ∈ T ]nt,m2[, since else [Q2, (p1, q1)] satisfies Lemma 19(4) as l(T [v∗,m2]) 󰃍
k. If q1 and q2 are ancestors (possibly q1 = q2), then [(p1, q1), (p2, q2), Q2] satisfies Lemma
19(1.b), a contradiction. This means that if such arcs exist in C then q1 and q2 are not
ancestors and so the structure of C implies that l(T [v∗, qj]) 󰃍 k for j = 1, 2. Now we
are going to show that pj ∈ T ]n1, nt[ for j = 1, 2. Notice first that n1 󰃑T p1, since
otherwise [(p1, q1), P2] satisfies Lemma 19(4), a contradiction. Now note that p2 ∕= v∗,
since else [P2, (p1, q1)] satisfies Lemma 19(4), a contradiction. Moreover, observe that
p2 󰃑T nt, since otherwise the union of T [v∗, q2], T [v

∗,m2], T [xt1−1, n1]∪P2 and (xt1−1, nt)∪
T [nt, p2]∪(p2, q2) is a S-C(k, 1, k, 1) inD, a contradiction. Thus, pj ∈ T ]n1, nt[ for j = 1, 2.
Consequently, the structure of C induces the existence of an arc (f1, f2) ∈ A(C), such that
either f1 ∈ T ]n1, nt[ and f2 ∈ T ]nt,m2[∪Tm2\{m2}, or f1 󰃑T n1 and f2 ∈ T ]n1, nt[. If the
former holds, then [P2, (f1, f2), (xt1−1, nt)] satisfies Lemma 19(1.a), a contradiction. Else
if the latter holds, then [(f1, f2), (xt1−1, nt), P2] satisfies Lemma 19(2), a contradiction.
This completes the proof of our claim. 󰃆

Let β be minimal such that hβ and m2 are not ancestors. According to Claim 34, it
follows that hβ = z2. Let v∗ = l.c.a{m2, z2}. Indeed, Assertion 28(1) together with the
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structure of C imply that v∗ ∕= y1 and so induce the existence of an arc (p, q) ∈ A(C)

such that p ∈ T ]y1, v
∗] and q ∈

󰁞

z∈T ]v∗,z2]

Tz.

Claim 35. If v∗ ∈ T ]nt,m2[, then C ∈ C3
6 .

Proof of Claim 35. Notice first that l(T [v∗, z2]) < k, since else [(y1, z2), P2] satisfies Lemma
19(4), a contradiction. This implies that q ∈ Tz2 and p ∕= v∗. In fact, q = z2, since else the
union of (y1, z2)∪T [z2, q], Q2, T [p,m2] and (p, q) is a S-C(k, 1, k, 1) in D, a contradiction.
This gives that p = hβ+1 = wr−1. Now we will study the position of p. If p ∈ T ]xt1−1, n1[,
then the union of T [p, n1] ∪ P2, (p, z2), T [y1, xt1−1] ∪ (xt1−1, nt) ∪ T [nt, z2] and Q2 is a S-
C(k, 1, k, 1) in D, a contradiction. Else if p ∈ T ]n1, v

∗[, then the maximality of n1 implies
that w1 󰃑T n1, and so [(xt1−1, nt), Q4[w1, wr−1], P2] satisfies Lemma 19(2), a contradiction.
Else if p ∈ T ]y1, x1[, then Assertion 28(1), Assertion 28(3) and Claim 34 imply that
there exists an arc (h, h′) ∈ A(C) such that h ∈ T ]y1, x1[ and h′ ∈ T ]x1, xt1−1[, and so
[(xj, xj+1), Q2, (h, h

′)] satisfies Lemma 19(3), where j is maximal satisfying xj 󰃑T h′, a
contradiction. Else if p ∈ T [x1, xt1−1[ and t1 − 1 ∕= 1, then the union of T [y1, p] ∪ (p, z2),
Q2, T [xt1−1, n1] ∪ P2 and (xt1−1, nt) ∪ T [nt, z2] is a S-C(k, 1, k, 1) in D, a contradiction.
Then p = xt1−1 = x1, and so C ∈ C3

6 . This completes the proof. 󰃆
Claim 36. If v∗ /∈ T ]nt,m2[, then v∗ = p = x1.

Proof of Claim 36. Since v∗ /∈ T ]nt,m2[, then v∗ ∈ T ]y1, nt] and so clearly l(T [v∗,m2]) 󰃍 k.
Observe that p = v∗, since else [Q2, (p, q)] satisfies Lemma 19(4), a contradiction. This
gives that l(T [v∗, q]) 󰃍 k. If v∗ ∈ T ]x1, nt[, then [(y1, z2), Q1] satisfies Lemma 19(4), a
contradiction. Else if v∗ ∈ T ]y1, x1[, then Assertion 28(1), Assertion 28(3) and Claim 34
imply that there exists an arc (h, h′) ∈ A(C) such that h ∈ T ]y1, x1[ and h′ ∈ T ]x1, xt1−1[,
and so [(xj, xj+1), Q2, (h, h

′)] satisfies Lemma 19(3), where j is maximal satisfying xj 󰃑T

h′, a contradiction. Hence, v∗ = p = x1. This confirms our claim. 󰃆

From now on, we will assume that v∗ = p = x1, since else C ∈ C3
6 , due to Claim 36 and

Claim 35.

Claim 37. For all z ∈ Tz2 − z2, there exists no vertex w ∈ T [x1, z2[ such that (w, z) ∈
A(C).

Proof of Claim 37. Assume the contrary is true. Then the union of (y1, z2) ∪ T [z2, z],
Q2, T [x1,m2] and T [x1, w] ∪ (w, z) is a S-C(k, 1, k, 1) in D, a contradiction. 󰃆

Now Claims 37 and 34, Assertion 28 and Lemma 19(3) imply that l(Q3) = 1 and for all

j 󰃍 β + 1, hj ∈ {x1} ∪
󰁞

z∈T ]x1,z2[

Tz. Now it remains to prove two claims and conclude.

Claim 38. If hj and z2 are ancestors for all j 󰃍 β + 1, then C ∈ C4
6 ∪ C8.
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Proof of Claim 38. Assume first that C is a 6-blocks cycle. Then w1 = x1 and so C ∈ C4
6

as l(Q3) = 1. Now assume that C is a cycle with at least eight blocks. If C is an 8-blocks
cycle, then Claim 37 implies that cα1 󰃑T z2 and d1 = x1. As d1 󰃑T w1, then Assertion
24 implies that l(Q4) = 1 and dα2−1 󰃑T w1. Hence, C ∈ C8. Let us assume now that
C is a cycle with at least ten blocks. Then d1 ∕= x1. If d1 󰃑T w1, then Assertion 24
implies that l(Q4) = 1 and dα2−1 󰃑T w1, cα1 󰃑T z2 and v∗ 󰃑T d1. Observe that for all
f ∈ T [x1, dα2−1[, there exists no w ∈ T ]dα2−1, z2[ such that (f, w) is an arc of C. Assume
else, then either w ∈ T ]dα2−1, cα1 [ and so [(dα2−1, cα1), Q3, (f, w)] satisfies Lemma 19(3),
or w ∈ T ]cα1 , z2[ and so [(f, w), Q6, Q4] satisfies Lemma 19(2), a contradiction. Moreover,
observe that for all f ∈ T [x1, d1[, there exists no w ∈ T ]d1, dα2−1[ such that (f, w) is an
arc of C, since else [(dj1 , dj1+1), (y1, z2), (f, w)] satisfies Lemma 19(2), where j1 is maximal
satisfying dj1 󰃑T w, a contradiction. In view of these two observations, it follows that
hδ ∈ T ]d1, z2[ and so (x1, hδ) /∈ A(C), a contradiction. Thus, w1 󰃑T d1. Again we will
notice two observations. For all f ∈ T ]c1, cα1 [, there exists no vertex w ∈ T ]cα1 , z2[ such
that (f, w) is an arc of C, since else [(f, w), Q3, (cj1−1, cj1)] satisfies Lemma 19(3), where
j1 is minimal satisfying f 󰃑T cj1 . Also observe that for all f ∈ T [x1, c1[, there exists
no vertex w ∈ T ]c1, cα1 [ such that (f, w) is an arc of C, since else [(cj2 , cj2+1), Q3, (f, w)]
satisfies Lemma 19(3), where j2 is maximal satisfying cj2 󰃑T w. Hence, hδ ∈ T ]w1, cα1 [
and so (x1, hδ) /∈ A(C), a contradiction. This completes the proof. 󰃆
Claim 39. For all j 󰃍 β + 1, hj and z2 are ancestors.

Proof of Claim 39. Assume the contrary is true. Let i > β + 1 be minimal such
that hi and z2 are not ancestors. Then hi−1 ∈ T ]x1, z2[∩C and (hi−1, hi) ∈ A(C).
Set x = l.c.a{hi, z2}. The structure of C implies that there exists an arc (h, h∗) of

C such that h ∈ T [x1, x]\{hi−1} and h∗ ∈
󰁞

z∈T ]x,hi]

Tz. Assume that (h, h∗) is cho-

sen to be the first arc of C with this property. Clearly, x /∈ V (D1
i ), since otherwise

[Q3, (h, h
∗)] or [Q3, (hi−1, hi)] satisfies Lemma 19(4), a contradiction. Observe that for all

z ∈ T [x1, x[\{hi−1}, there exists no vertex w ∈ T ]x, hi] ∪ Thi
such that (z, w) ∈ A(C),

since otherwise [(z, w), (hi−1, hi), Q3] satisfies Lemma 19(1.b), a contradiction. This im-
plies that h∗ and hi are not ancestors. Let ρ > i be minimal such that hρ and hi

are not ancestors and let γ = l.c.a{hρ, hi}. Clearly, hρ−1 ∈ T ]x, γ] as x /∈ V (D1
i ).

Moreover, the definition of D1
i and the structure of C imply that there exists i1, with

i 󰃑 i1 < ρ − 1, hi1 ∈ T ]γ, hi] ∪ Thi
and hi1+1 ∈ T ]x, γ] such that (hi1+1, hi1) ∈ A(C)

(possibly hi1 = hi and hi1+1 = hρ−1). Indeed, for all z ∈ T ]γ, hρ]∪Thρ , there exists no ver-
tex w ∈ T ]hi−1, γ]\{hρ−1} such that (w, z) ∈ A(C), since else [(w, z), (hρ−1, hρ), (hi−1, hi)]
satisfies Lemma 19(1.b), a contradiction. Furthermore, for all z ∈ V (D1

i ) such that z and
hi1 are not ancestors and l.c.a{z, hi1} ∈ T [hi1+1, hi[, there exists no vertex w ∈ T [x1, hi−1[
such that (w, z) ∈ A(C), since else [(hi−1, hi), (hi1+1, hi1), (w, z)] satisfies Lemma 19(1.b).
In view of these observations together with the structure of C, we guarantee the existence
of an arc (w, z) ∈ A(C) such that z and hρ are not ancestors, w1 = l.c.a{z, hρ} ∈ T ]γ, hρ[
and w ∈ T ]hi−1, γ]. Let j be minimal such that (hj+1, hj) satisfies the properties of (w, z).
Notice that l(T [γ, hi]) < k, since otherwise [(hi−1, hi), (hρ−1, hρ)] or [(hi−1, hi), (hj+1, hj)]
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satisfies Lemma 19(4), a contradiction. Thus γ /∈ V (D1
i ), hi1 ∈ Thi

and hi1+1 ∈ T ]x, γ[.
One may easily check that the position of hj, the structure of C and the definition of
D1

i imply that l(T [γ, hj]) 󰃍 k and l(T [γ, hρ]) 󰃍 k. This gives that hj+1 ∈ T ]hi1+1, γ[
and hρ ∈ T [hi1+1, γ[, since otherwise [(hj+1, hj), (hi1+1, hi1)] or [(hρ−1, hρ), (hi1+1, hi1)] sat-
isfies Lemma 19(4), a contradiction. Now all the above explanation implies that if γ1 =
l.c.a{h∗, hi} ∈ T [hi1+1, hi[, then h ∈ T ]hi1+1, γ1[, a contradiction. Hence, γ1 ∈ T ]x, hi1+1[.
Notice that if hi−1 󰃑T h, then [(hi−1, hi), (h, h

∗)] satisfies Lemma 19(4), a contradiction.
Hence, h 󰃑T hi−1 and so l(T [γ1, h

∗]) < k, since otherwise [(h, h∗), (hi−1, hi)] satisfies
Lemma 19(4), a contradiction. Now the minimality of (h, h∗), the fact that γ1 /∈ V (D1

i ),
the structure of C and the definition of D1

i imply that there exists an arc (p1, q1) of C

such that p1 ∈ T ]x, γ1[ annd q1 ∈
󰁞

z∈T ]γ1,h∗]

Tz. Then [(hi−1, hi), (p1, q1)] satisfies Lemma

19(4), a contradiction. This completes the proof of Claim 39. 󰃆

Therefore, Claims 34, 35, 36, 37, 38, and 39 complete the proof of Assertion 33. ♦

In the light of all the above Assertions, Lemma 20 is proved.

3.1.3 The existence of 5-wheels in D1
i

In this subsection, we provide an upper bound for the chromatic number of D1
i and

complete the proof by proving that D1
i is a 5-wheel-free digraph.

Proposition 40. χ(D1
i ) 󰃑 6 for all i ∈ {1, . . . , 2k}.

Proof. Assume to the contrary that χ(D1
i ) > 6. Then Corollary 18 implies that D1

i

contains a 5-wheel with cycle C and center ω, denoted by W = (C,ω). Let {a1, . . . , a5} ⊆
NC(ω). By Lemma 20, C ∈ C. Clearly C /∈ C2

4 , since W is a 5-wheel and the cycles in
C2

4 are of 4 vertices. We will prove series of claims and conclude.

Claim 41. C /∈ C2.

Proof of Claim 41. Assume to the contrary that C ∈ C2, and assume without loss of
generality that a1 󰃑T a2 󰃑T a3 󰃑T a4 󰃑T a5. Let P1 = n1, . . . , nt, t 󰃍 2; P2 = m1, . . . ,ml,
l 󰃍 2 with n1 = m1 and nt = ml be the blocks of C. Notice that if ω 󰃑T a1, or
a5 󰃑T ω, then there exist at least two vertices in {a2, a3, a4} that belongs to the same
block of C. Assume without loss of generality that a2 and a4 are vertices of P1. Let i1 be
maximal satisfying mi1 󰃑T a2, and let i2 be minimal satisfying a4 󰃑T mi2 . Assume first
that ω 󰃑T a1. Then either ω 󰃑T mi1 and so [(ω, a2), (ω, a4), P2[mi1 ,ml]] satisfies Lemma
19(2), or mi1 󰃑T ω and so P2 ∩ T [ω, a2] = φ and the union of (ω, a4) ∪ T [a4,mi2 ], (ω, a2),
P1[m1, a1]∪T [a1, a2] and P2[m1,mi2 ] is a S-C(k, 1, k, 1) inD, a contradiction. Now assume
that a5 󰃑T ω. If mi2 󰃑T ω, or mi2 and ω are not ancestors, then the union of T [mi1 , a2]∪
(a2,ω), P2[mi1 ,mi2 ], T [a4,mi2 ] and (a4,ω) is a S-C(k, 1, k, 1) in D, a contradiction. And
if ω 󰃑T mi2 , then P2 ∩ T [a4,ω] = φ and so the union of T [mi1 , a2] ∪ (a2,ω), P2[mi1 ,ml],
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T [a4, a5] ∪ P1[a5, nt] and (a4,ω) is a S-C(k, 1, k, 1) in D, a contradiction. So either 3 󰃑
|N+

C (ω)| 󰃑 4, or 3 󰃑 |N−
C (ω)| 󰃑 4. Assume that the former holds and let aj1 󰃑T aj2 󰃑T aj3

be distinct out-neighbors of ω in C, and let aj4 be an in-neighbors of ω in C. Assume
without loss of generality that aj1 ∈ P1. We are going to prove that m2 ∈ Ta5 , ω 󰃑T n2,
and so |N+

C (ω)| = 4. Notice that P2∩T ]ω, a5[= φ, since else [P1[n1, aj1 ], P2[n1,mi], (ω, a5)]
satisfies Lemma 19(2), where i is minimal satisfying ω 󰃑T mi. Observe that P2∩T ]n1,ω[=
φ, since else [P2[m2,ml], (ω, aj3), P1[n1, aj1 ]] satisfies Lemma 19(1.a). Som2 ∈ Ta5 . Clearly,
ω 󰃑T n2 since else, [(ω, aj2), (m1,m2), (ni, ni+1)] satisfies Lemma 19(3), where i is maximal
satisfying ni 󰃑T ω. Then aj4 = n1 = m1. Since m2 ∈ Ta5 , assume without loss of
generality that a4 = aj3 󰃑T aj5 = a5. Then the union of (ω, aj3) ∪ T [aj3 ,m2], (ω, aj2),
(m1, n2) ∪ T [n2, aj2 ] and (m1,m2) is a S-C(k, 1, k, 1) in D, a contradiction. So the latter
holds. Let aj1 󰃑T aj2 󰃑T aj3 be distinct in-neighbors of ω in C, and let aj4 be an out-
neighbor of ω in C. Assume without loss of generality that aj3 ∈ P1, and let i is maximal
satisfying mi 󰃑T ω. We are going to prove that ml−1 ∈ T [r, a1] and |N−

C (ω)| = 4. Notice
that P2 ∩ T ]a1,ω[= φ, since else [P1[aj3 , nt], P2[mi,ml], (a1,ω)] satisfies Lemma 19(1.a).
Also notice that ml−1 󰃑T ω, since else [P2[m1,mi+1], (aj1 ,ω), P1[aj3 , nt]] satisfies Lemma
19(2). Now observe that P1 ∩ T ]ω,ml[= φ, since else [(aj2 ,ω), (ni1 , ni1+1), (ml−1,ml)]
satisfies Lemma 19(3), where i1 is maximal satisfying ni1 󰃑T ω. Then aj4 = nt = ml

and nt−1 󰃑T ω. So |N−
C (ω)| = 4. Now since ml−1 ∈ T [r, a1], then assume without loss of

generality that aj5 = a1 󰃑T aj1 = a2. So the union of T [ml−1, aj1 ] ∪ (aj1 ,ω), (ml−1,ml),
T [aj2 , aj3 ] ∪ P1[aj3 ,ml] and (aj2 ,ω) is a S-C(k, 1, k, 1) in D, a contradiction. ♦
Claim 42. C /∈ C1

4 .

Proof of Claim 42. Assume to the contrary that C ∈ C1
4 . First observe that ω /∈

T [r, n1[\{x1}, since else there exist aj ∈ (P1∪P2)\{n1}, such that (ω, aj) ∈ A(W ). Due to
symmetry, we will assume that aj ∈ P2. Then [Q1, (ω, aj)] or [(ω, aj), Q1] satisfies Lemma
19(4), a contradiction. As ω /∈ T [r, n1[\{x1}, then by symmetry we may assume that
NC(ω) ⊆ P1 ∪ {x1}. Assume now that either ω ∈ Tnt\{nt}, or ω and nt are not ancestors
(clearly if the latter holds, then l.c.a{ω, nt} ∈ T [n4, nt[ as W is a 5-wheel). Then in both
cases there exist at least three in-neighbors of ω in P1\{nt}, say aj1 󰃑T aj2 󰃑T aj3 , and
so [(aj1 ,ω), (aj2 ,ω), Q1] satisfies Lemma 19(1.a) or Lemma 19(1.b). So ω ∈ T ]n1, nt[\P1.
Let i be minimal satisfying ω 󰃑T ni. If |N+

P1
(ω)| 󰃍 3 or |N−

C (ω)| 󰃍 3 with ni ∕= nt in
case |N−

C (ω)| 󰃍 3, then there exist j ∈ [5] such that aj ∈ V (P1)\{nt, x1, ni, ni−1}, and
[(ω, aj), Q1, (ni−1, ni)], or [(ni−1, ni), Q1, (aj,ω)] satisfies Lemma 19(3), a contradiction.
Then |N−

C (ω)| 󰃍 4. Let ai1 󰃑T ai2 󰃑T ai3 󰃑T ai4 be distinct in-neighbors of ω in C. So
the union of T [x1, ai2 ]∪ (ai2 ,ω), Q1, T [ai3 , ai4 ]∪P1[ai4 , nt] and (ai3 ,ω) is a S-C(k, 1, k, 1),
a contradiction. ♦
Claim 43. C /∈ C3

4 ∪ C4
4 .

Proof of Claim 43. Assume to the contrary that C ∈ C3
4∪C4

4 . Let v = l.c.a{nt,ml}. Notice
that ω /∈ T [v, nt[∪T [v,ml[, since else [Q1, (ml−1,ml)] or [Q2, (nt−1, nt)] satisfies Lemma
19(4), a contradiction. Also notice that for all p ∈ T [r, v[\{nt−1}, there exist no vertex
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q ∈ Tnt such that (p, q) ∈ A(W )\{(x1, nt)}. Since else [(y1, q), (ml−1,ml)] satisfies Lemma
19(4), or [(nt−1, nt), (p, q), Q2] satisfies Lemma 19(1.b), or [(ml−1,ml), Q2, (p, q)] satisfies
Lemma 19(1.b), a contradiction. Similarly we prove that for all p ∈ T [r, v[\{ml−1}, there
exist no vertex q ∈ Tml

such that (p, q) ∈ A(W )\{(x1,ml)}. So ω /∈ T [v, nt] ∪ T [v,ml] ∪
Tnt ∪ Tml

, and if ω ∈ T [r, v[\V (C), then {nt,ml} ∩ NC(ω) = φ. If ω and nt are not
ancestors, then there exist two distinct in-neighbors aj1 , aj2 of ω in T [n1, v[∩V (C), and
so [(aj1 ,ω), (aj2 ,ω), Q1] satisfies Lemma 19(1.b), a contradiction. Then ω ∈ T [r, v[. As-
sume that ω 󰃑T ml−1. Clearly, if there exist two out-neighbors of ω in P1[n2, nt−1],
say aj1 , aj2 , then [(ω, aj1), (ω, aj2), (ml−1,ml)] satisfies Lemma 19(2). So |NP2[n1,ml−1](ω)|
󰃍 3, and hence C ∈ C4

4 . Let mi1 󰃑T mi2 󰃑T mi3 be distinct neighbors of ω in
P2[n1,ml−1]. If ω 󰃑T n1, then [(ω,mi2), (ω,mi3), (n1, n2)] satisfies Lemma 19(2), a con-
tradiction. Then ω ∈ T ]n1,ml−1[\V (C). Let i4 be maximal satisfying mi4 󰃑T ω. As
|NP2[n1,ml−1](ω)| 󰃍 3, then there exist j ∈ {i1, i2, i3} such that [(ω,mj), Q2, (mi4 ,mi4+1)]
or [(mi4 ,mi4+1), Q2, (mj,ω)] satisfies Lemma 19(3), a contradiction. So ml−1 󰃑T ω.
Clearly, if C ∈ C4

4 , then there exist no p ∈ T [y1,ml−1[∩V (C) such that p ∈ NC(ω), since
else [(n1, n2), (p,ω), (ml−1,ml)] satisfies Lemma 19(2), a contradiction. So |NP1[n2,nt−1](ω)|
󰃍 4. Now similarly as in the above case we prove that if ω 󰃑T nt−1, then Lemma
19(3) is satisfied, a contradiction. Hence nt−1 󰃑T ω. Let ni1 󰃑T ni2 󰃑T ni3 󰃑T ni4

be distinct in-neighbors of ω in P2[n2, nt−1], then the union of T [y1, ni1 ] ∪ (ni1 ,ω), Q1,
T [ni2 , nt−1]∪ (nt−1, nt) and (ni2 ,ω) is a S-C(k, 1, k, 1), a contradiction. This confirms our
claim. ♦
Claim 44. If C ∈ (

󰁖3
i=1 C

i
6) ∪ (

󰁖8
i=5 C

i
4), then ω ∈ T ]y1,ml[. If C ∈ C4

6 , then ω ∈
T ]x1,m2[. And if C ∈ C8, then ω ∈ T ]x1,m2[∪T ]x1, z2[.

Proof of Claim 44. First we will show that if C ∈ C4
6 ∪ C8, then ω /∈ T [r, x1[\{y1},

and if C ∈ C4
6 , then ω /∈ T ]x1, z2[. Assume that C ∈ C4

6 ∪ C8 and ω ∈ T [r, x1[\{y1},
then there exists aα ∈ V (C)\{y1, x1}, such that (ω, aα) ∈ A(W ) for some α ∈ [5], and
so [(ω, aα), Qj] or [Qj, (ω, aα)] satisfies Lemma 19(4) with j ∈ {2, 3}, a contradiction.
Assume now that C ∈ C4

6 and ω ∈ T ]x1, z2[, and let j1 be minimal satisfying ω 󰃑T wj1 .
If either |N−

Q4∪{y1}(ω)| 󰃍 3 with wj1 ∕= z2, or |N+
Q4
(ω)| 󰃍 3, then there exists α ∈ [5]

such that [(ω, aα), Q3, (wj1−1, wj1)] or [(wj1−1, wj1), Q3, (aα,ω)] satisfies Lemma 19(3), with
aα ∈ NQ4\{z2,wj1−1,wj1

}(ω), a contradiction. Then |N−
Q4∪{y1}(ω)| 󰃍 4, and so the union

of T [y1, ai2 ] ∪ (ai2 ,ω), Q3, T [ai3 , ai4 ] ∪ Q4[ai4 , z2] and (ai3 ,ω) is a S-C(k, 1, k, 1), where
ai1 󰃑T ai2 󰃑T ai3 󰃑T ai4 are distinct in-neighbors of ω in Q4 ∪ {y1}, a contradiction. So
if C ∈ C4

6 , then ω /∈ T ]x1, z2[. Let’s assume now that C ∈ (
󰁖4

i=1 C
i
6) ∪ (

󰁖8
i=5 C

i
4) ∪ C8.

Moreover assume that ω /∈ T ]y1,ml[ in case C ∈ (
󰁖3

i=1 C
i
6) ∪ (

󰁖8
i=5 C

i
4), ω /∈ T ]x1,m2[ in

case C ∈ C4
6 , and ω /∈ T ]x1,m2[∪T ]x1, z2[ in case C ∈ C8. Then the above observations

with our assumption implies that |T ]y1,ml[∩NC(ω)| 󰃍 3 or |T [x1, z2[∩NC(ω)| 󰃍 3. Let
aij ∈ V (C)\{y1,ml, z2} for j = 1, 2, such that ai1 󰃑T ai2 be two distinct neighbors of ω. If
lT (ω) > lT (y1), then [(ai1 ,ω), (ai2 ,ω), Qj] satisfies Lemma 19(1.a) or Lemma 19(1.b) with
j ∈ {2, 3}, a contradiction. Then ω 󰃑T y1, and so [(ω, ai1), (ω, ai2), Qj] satisfies Lemma
19(2) with j ∈ {2, 3}, a contradiction. ♦
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Claim 45. C /∈ C1
6 ∪ C2

6 .

Proof of Claim 45. Assume the contrary is true, then Claim 44 implies that ω ∈ T ]y1,m2[.
As W is a 5-wheel, then either |N+

C (ω)| 󰃍 3 or |N−
C (ω)| 󰃍 3. Assume first that |N+

C (ω)|
󰃍 3. Let ai1 󰃑T ai2 󰃑T ai3 be three out-neighbors of ω in C, let p ∈ V (C) such that
T ]ω, p[∩C = φ, and let q ∈ N−

C (p) (if exist). Clearly, ω 󰃑T nt. Assume now that ω 󰃑T z2.
If ai3 ∈ T ]z2,m2], then [(ω, ai3), Q1, Q3] satisfies Lemma 19(1.a), a contradiction. Then
ai2 ∈ T ]ω, z2[, and so [(x1, x2), Q2, (ω, ai2)] or θ = [(ω, ai2), Q2, (q, p)] satisfies Lemma
19(3), a contradiction. If ω ∈ T ]n1, nt[ or ω ∈ T ]z2, xt1−1[ (note that in case C ∈ C2

6 ,
we may have: ω ∈ T ]z2, xt1−1[), then θ satisfies Lemma 19(3), a contradiction. So if
C ∈ C1

6 (resp. C ∈ C2
6), then ω ∈ T ]z2, n1[ (resp. ω ∈ T ]xt1−1, n1[). Then the union

of T [y1, x1] ∪ Q1, Q2, T [ω, n1] ∪ P2 and (ω, ai2) ∪ T [ai2 , nt] is a S-C(k, 1, k, 1) in D, a
contradiction. Hence, |N−

C (ω)| 󰃍 3. Clearly ω /∈ T ]y1, x1[. Let ai1 󰃑T ai2 󰃑T ai3 be
three in-neighbors of ω in C, let p ∈ V (C) such that T ]p,ω[∩C = φ, and let q ∈ N+

C (p)
(if exist). Assume first that n1 󰃑T ω. If ai1 ∈ T [y1, n1[, then [(ai1 ,ω), Q1, P2] satisfies
Lemma 19(2), a contradiction. Then ai2 ∈ T ]n1, nt[, and so [(ai2 ,ω), Q2, (xt1−1, nt)] or
θ1 = [(p, q), Q2, (ai2 ,ω)] satisfies Lemma 19(3), a contradiction. Now if ω ∈ T ]x1, z2[ or
ω ∈ T ]x2, n1[ (in case C ∈ C2

6 , we may have: ω ∈ T ]x2, n1[), then θ1 satisfies Lemma 19(3),
a contradiction. So if C ∈ C1

6 (resp. C ∈ C2
6), then ω ∈ T ]z2, n1[ (resp. ω ∈ T ]z2, x2[),

and hence the union of Q1 ∪ T [nt,m2], T [x1, ai2 ] ∪ (ai2 ,ω), Q3 ∪ T [z2,ω] and Q2 is a
S-C(k, 1, k, 1), a contradiction. This completes the proof. ♦
Claim 46. C /∈ C3

6 ∪ C4
6 ∪ C8 ∪ (

󰁖8
j=5 C

j
4).

Proof of Claim 46. Assume the contrary is true. Then Claim 44 implies that if C /∈
C4

6 ∪ C8, then ω ∈ T ]y1,ml[, if C ∈ C4
6 , then ω ∈ T ]x1,m2[, and if C ∈ C8 then

ω ∈ T ]x1,m2[∪T ]x1, z2[. By symmetry, if C ∈ C8, then we will assume that ω ∈ T ]x1,m2[.
Notice that if C ∈ C3

6 , then z2 /∈ NC(ω) since otherwise [(ω, z2), (x1, z2), Q2] satisfies
Lemma 19(1.b). We will prove a useful observation before taking all the possible po-
sitions of ω: For all p ∈ T ]y1, n1[\V (C), there exist no q ∈ T ]n1,ml]\{nt} such that
(p, q) ∈ A(W ). Assume else and notice that in case C ∈ C4

6 ∪ C8, then clearly Claim
44 implies that p /∈ T ]y1, x1[. If C ∈ C5

4 ∪ C6
4 ∪ C3

6 ∪ C4
6 ∪ C8, then [(p, q), Q1, P2]

satisfies Lemma 19(2) or [(p, q), (n1,m2), Q1] satisfies Lemma 19(1.a) or [(p,m2), P2, Q3]
satisfies Lemma 19(1.b), a contradiction. And if C ∈ C7

4 ∪ C8
4 , then [P1, Q2, (p, q)] sat-

isfies Lemma 19(3) or [(p, q), (ml−1,ml), Q1] satisfies Lemma 19(1.a), a contradiction.
This confirms our observation. Now we will discuss according to the position of ω. As-
sume first that ω 󰃑T n1. Then our observations with the fact that W is a 5-wheel
implies that C ∈ C5

4 ∪ C4
6 ∪ C8, and |N+

C (ω)| 󰃍 3 or |N−
C (ω)| 󰃍 3. Assume that

|N+
C (ω)| 󰃍 3, and let ai1 󰃑T ai2 󰃑T ai3 be three out-neighbors of ω in C. Clearly

our observation implies that ω 󰃑T xt1−1, ai1 ∈ Q1, and ai3 ∕= m2. So the union of
T [y1, x1] ∪Q1[x1, ai1 ] ∪ T [ai1 , ai2 ], Q2, (ω, ai3) ∪ T [ai3 ,m2] and (ω, ai2) is a S-C(k, 1, k, 1)
in D, a contradiction. Then |N−

C (ω)| 󰃍 3, and so [(xi, xi+1), Q2, (ai2 ,ω)] satisfies Lemma
19(3), where ai1 󰃑T ai2 󰃑T ai3 are three in-neighbors of ω in C, and i is maximal satis-
fying xi 󰃑T ω. Hence n1 󰃑T ω 󰃑T ml. Clearly if there exist p ∈ NC(ω) ∩ T [y1, n1[, then
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[Q1, (p,ω), P2] satisfies Lemma 19(2), a contradiction. Then NC(ω)∩T [y1, n1[= φ. We will
notice one more observation: For all p ∈ T ]n1, nt[, there exist no q ∈ T ]nt,ml] such that
(p, q) ∈ A(W ), since otherwise [(p, q), P2, Q1] satisfies Lemma 19(1.a) or [(p, q), P1, Q2]
satisfies Lemma 19(3), a contradiction. Assume that ω ∈ T ]nt,ml[, then our observa-
tion with the fact that W is a 5-wheel implies that C ∈ C6

4 and |NP2[m2,ml](ω)| 󰃍 3. If
ω ∈ T ]nt,m2[, then our observations implies that [(ω, aj2), Q2, (n1,m2)] satisfies Lemma
19(3), where aj1 󰃑T aj2 󰃑T aj3 are three out-neighbors of ω in P2[m2,ml], a contradic-
tion. So ω ∈ T ]m2,ml[. Then N−

C (ω) ∩ {n1, nt} = φ, since else [(nt,ω), Q2, (n1,m2)]
satisfies Lemma 19(3), or the union of Q1 ∪ T [nt,m2], Q2, (n1,ω) ∪ T [ω,ml], (n1,m2) is
a S-C(k, 1, k, 1) in D, a contradiction. Hence NC(ω) ⊆ V (P2)\{n1}, and so there ex-
ists α ∈ [5] such that [(ω, aα), Q2, (mi,mi+1)] satisfies Lemma 19(3), where i is maximal
satisfying mi 󰃑T ω, or the union of T [x1, aj1 ] ∪ (aj1 ,ω), Q2, T [aj2 , aj3 ] ∪ P2[aj3 ,ml] and
(aj2 ,ω) is a S-C(k, 1, k, 1) in D, where aj1 󰃑T aj2 󰃑T aj3 are three in-neighbors of ω in
P2[m2,ml−1], a contradiction. So ω ∈ T ]n1, nt[, and hence the above observations implies
that NC(ω) ⊆ T [n1, nt]. Assume first that |N+

C (ω)| 󰃍 3, and let ai1 󰃑T ai2 󰃑T ai3 be
three out-neighbors of ω in C. Let p ∈ V (C) such that T ]ω, p[∩C = φ, and let q ∈ N−

C (p).
Then either C /∈ C8

4 and so [(ω, ai2), Q2, (q, p)] satisfies Lemma 19(3), or C ∈ C8
4 and so

[(ω, ai3), P2, Q1[x1, p]] satisfies Lemma 19(1.a), a contradiction. Then |N−
C (ω)| 󰃍 3. Let

ai1 󰃑T ai2 󰃑T ai3 be three in-neighbors of ω in C. Let p ∈ V (C) such that T ]p,ω[∩C = φ,
and let q ∈ N+

C (p). Then either C /∈ C7
4 and so [(p, q), Q2, (ai2 ,ω)] satisfies Lemma 19(3),

or C ∈ C7
4 and so [(ai1 ,ω), P1, P2[p,ml]] satisfies Lemma 19(2), a contradiction. This

completes the proof. ♦

All the above discussion implies that C /∈ C, a contradiction. This completes the proof.

3.2 Coloring D2
i

In this section, we study the chromatic number of D2
i . In fact, the coloring of D2

i heavily
depends on the following observation:

Lemma 47. Let D be an acyclic digraph. Then G(D) is ∆+(D)-degenerate and thus
χ(D) 󰃑 ∆+(D) + 1.

Proof. Let G be a subgraph of G(D) and let H be the subdigraph of D whose underlying
graph is G. Let P be a longest directed path of H. One may easily see that the initial
end of P , say u, has no in-neighbors in H, since otherwise we get either a directed path
longer than P or a directed cycle in H. These are contradictions to the facts that P is a
longest directed path of H and that D is acyclic. Hence, the only neighbors of u in G are
its out-neighbors in H. This implies the desired result.

Proposition 48. χ(D2
i ) 󰃑 6 for all i ∈ [2k].

Proof. Let B1 and B2 be a partition of the vertex-set of D2
i , with B1 := {v ∈ Vi|d+D2

i
(v) 󰃑

1} and B2 := Vi \ B1. Obviously, ∆+(D2
i [B1]) 󰃑 1. Now we are going to prove that
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∆+(D2
i [B2]) 󰃑 3. Assume the contrary is true and let u be a vertex of B2 whose out-

degree in D2
i [B2] is at least 4. By the definition of A2, it is easy to see that all the

out-neighbors of u belong to T [r, u]. This induces an ordering of the out-neighbors of u in
D2

i [B2] with respect to 󰃑T , say v1, v2, . . . , vt with vi−1 󰃑T vi for all 2 󰃑 i 󰃑 t. According
to our assumption, note that t must be greater than 3. Moreover, the definition of B2

forces the existence of an out-neighbor wi of vi other than v1, for each 2 󰃑 i 󰃑 t − 1.
Due to the definition of A2, wi and v1 must be ancestors. More precisely, wi 󰃑T v1 for
all 2 󰃑 i 󰃑 t − 1, since otherwise if there exists i0 ∈ {2, . . . , t − 1} such that v1 󰃑T wi0 ,
then the union of T [vi0 , vt], (vi0 , wi0), (u, v1) ∪ T [v1, wi0 ] and (u, vt) is a S-C(k, 1, k, 1) in
D, a contradiction. To reach the final contradiction, we consider two out-neighbors vi, vj
of u with 2 󰃑 i < j 󰃑 t − 1 and their respective out-neighbors wi, wj. Note that the
existence of vi and vj is guaranteed by the assumption that t 󰃍 4. Moreover, note that
possibly wi = wj. In view of the above observation, wi 󰃑T v1 and wj 󰃑T v1. If wi 󰃑T

wj, then the union of T [vj, vt], (vj, wj), (u, v1) ∪ T [v1, vi] ∪ (vi, wi) ∪ T [wi, wj] and (u, vt)
forms a S-C(k, 1, k, 1) in D, a contradiction. Otherwise, the union of T [vj, vt], (vj, wj) ∪
T [wj, wi], (u, v1) ∪ T [v1, vi] ∪ (vi, wi) and (u, vt) is a S-C(k, 1, k, 1) in D, a contradiction.
This proves that ∆+(D2

i [B2]) 󰃑 3. Consequently, due to the fact that D2
i is acyclic

together with Lemma 47, it follows that D2
i [B1] is 2-colorable and D2

i [B2] is 4-colorable.
Therefore, by assigning the vertices of B1 2 colors and those of B2 4 new colors, we get a
proper 6-coloring of D2

i . This completes the proof.

3.3 Coloring D3
i

This section is devoted to color D3
i properly.

Proposition 49. χ(D3
i ) 󰃑 4k + 2 for all i ∈ [2k].

Proof. Assume to the contrary that χ(D3
i ) 󰃍 4k + 3. Due to Theorem 4, D3

i contains a
copy Q of P (2k + 1, 2k + 1), which is the union of two directed paths Q1 and Q2 which
are disjoint except in their initial vertex, say Q1 = y0, y1, . . . , y2k and Q2 = z0, z1, . . . , z2k
with y0 = z0. We need to prove a series of assertions as follows:

Assertion 50. For all i ∈ [2k− 1] and j ∈ [2k], yi is not an ancestor of zj and zi is not an
ancestor of yj.

Proof of Assertion 50. Due to symmetry, we are going to show that yi is not an ancestor
of zj for all 1 󰃑 i 󰃑 2k − 1 and 1 󰃑 j 󰃑 2k. Assume the contrary is true. Then there
exists i ∈ [2k− 1] such that yi 󰃑T zj for some j ∈ [2k]. Suppose that yi and zj are chosen
so that T [yi, zj] ∩Q2[y0, zj] = {zj}. By the definition of A3, note that yi+1 /∈ T [yi, zj], as
(yi, yi+1) ∈ A3. Observe now that T [r, yi+1] ∩ (Q1[y0, yi] ∪Q2[y0, zj]) ∕= ∅, since otherwise
the union of T [β, yi+1], T [β, y0] ∪ Q2[y0, zj], T [yi, zj] and (yi, yi+1) forms a S-C(k, 1, k, 1)
in D, with β = l.c.a{y0, yi+1}. This is a contradiction to the fact that D is C(k, 1, k, 1)-
subdivision-free. Let α ∈ T [r, yi+1] such that T [α, yi+1] ∩ (Q1[y0, yi] ∪ Q2[y0, zj]) = {α}.
Clearly, α /∈ {zj, yi}. If α ∈ Q1, then the union of Q1[y0,α]∪T [α, yi+1], Q2[y0, zj], T [yi, zj]
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and (yi, yi+1) is a S-C(k, 1, k, 1) in D, a contradiction. This implies that α must belong
to Q2 − y0. But the union of T [α, yi+1], Q2[α, zj], T [yi, zj] and (yi, yi+1) is a S-C(k, 1, k, 1)
in D, a contradiction. This confirms our assertion. ♦

In what follows, we denote by x1 = l.c.a{y0, y1}, x2 = l.c.a{y0, z1} and x3 = l.c.a{y1, z1}.
Assertion 51. x3 /∈ {x1, x2}.

Proof of Assertion 51. Suppose the contrary is true, that is, x3 = x1 or x3 = x2. Without
loss of generality, assume that x3 = x2. This means that x2 󰃑T x1. By the definition of
D3

i , note that T [x1, y1] and T [x2, z1] are of length at least 2k. Throughout the proof of
this assertion, we denote by T1 = T [x1, y1] ∪ T [x2, z1] ∪ T [x2, y0].

Claim 52. y0 is not an ancestor neither of yi nor of zi for all i ∈ [2k].

Proof of Claim 52. Due to symmetry, we are going to prove that y0 is not an ancestor of yi
for all i ∈ [2k]. Assume the contrary is true. Then there exists i ∈ [2k] such that y0 󰃑T yi.
Assume that yi is chosen so that y0 is not an ancestor of yj for all j < i. Clearly, i > 1.
Then the union of T [x2, z1], T [x2, y1] ∪ Q1[y1, yi], T [y0, yi] and (y0, z1) is a S-C(k, 1, k, 1),
a contradiction. This affirms our claim. 󰃆
Claim 53. For all 0 󰃑 i 󰃑 k and j ∈ [2k], zi is not an ancestor of zj.

Proof of Claim 53. We proceed by induction on i. The base case i = 0 follows by Claim
52. Suppose now that zt is not an ancestor of zj for all 0 󰃑 t < i and j ∈ [2k]. Our aim
is to prove that zi is not an ancestor of zj for all j ∈ [2k]. Assume the contrary is true,
that is, there exists j ∈ [2k] such that zi 󰃑T zj. Assume that zj is chosen so that lT (zj)
is maximal and T [zi, zj] ∩Q2 = {zi, zj}. Clearly, zi+1 /∈ T [zi, zj]. Let α1 be the vertex of
T [r, zi+1] such that T [α1, zi+1] ∩ T1 = {α1} if x2 ∈ T [r, zi+1] and α1 = l.c.a{x2, zi+1} oth-
erwise. Note that T [α1, zi+1] ∩Q2[y0, zi] = ∅, due to the induction hypothesis. Moreover,
T [α1, zi+1] ∩Q1[y1, y2k−1] = ∅, according to Assertion 50. Now we are going to show that
α1 ∈ T ]x1, y1]. In fact, if α1 /∈ T ]x1, y1], we consider two possibilities: If α1 ∈ T [x2, z1],
then the union of T [x2, y1], T [x2, zi+1]∪Q2[zi+1, zj], Q2[y0, zi]∪T [zi, zj] and (y0, y1) is a S-
C(k, 1, k, 1), a contradiction. Else if α1 /∈ T [x2, z1], then α1 and x1 are ancestors and so the
union of T [β, y1], T [β, zi+1]∪Q2[zi+1, zj], Q2[y0, zi]∪T [zi, zj] and (y0, y1) is a S-C(k, 1, k, 1)
in D with β = minT{x1,α1}, a contradiction. Now we consider the vertex α2 of T [r, y2]
such that T [α2, y2]∩(T1∪T [α1, zi+1]∪T [zi, zj]) = {α2} if x2 ∈ T [r, y2] and α2 = l.c.a{x2, y2}
otherwise. Note that T [α2, y2] ∩ Q2[y0, z2k−1] = ∅, according to Assertion 50 and Claim
52. Moreover, T [α2, y2] ∩ T [zi, zj] = ∅, according to Assertion 50. Actually, α2 ∈
T ]α1, zi+1]. If not, then the union of T [β, y2], T [β, zi+1] ∪Q2[zi+1, zj], Q2[y0, zi] ∪ T [zi, zj]
and Q1[y0, y2] is a S-C(k, 1, k, 1) in D, where β = minT{α1,α2} if α1 and α2 are ancestors
and β = l.c.a{α1,α2} otherwise. This is a contradiction to the fact that D is C(k, 1, k, 1)-
subdivision-free digraph. ∗{Note here that l(T [α2, y2]) < k and l(T [α2, zi+1]) < k, since
otherwise the union of T [α2, y2], T [α2, zi+1]∪Q2[zi+1, zj], T [x2, z1]∪Q2[z1, zi]∪T [zi, zj] and
T [x2, y1] ∪ (y1, y2) is a S-C(k, 1, k, 1), a contradiction. This implies that l(T [α1,α2]) 󰃍 k,
as l(T [α1, y2]) 󰃍 2k. Moreover, note that l(Q2[zi+1, zj]) 󰃑 k−2, since otherwise the union
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of T [α2, zi+1]∪Q2[zi+1, zj], T [α2, y2], T [x2, y1]∪(y1, y2) and T [x2, z1]∪Q2[z1, zi]∪T [zi, zj] is
a S-C(k, 1, k, 1), a contradiction. This guarantees the existence of zj+1. Let α3 be the ver-
tex of T [r, zj+1] such that T [α3, zj+1]∩(T1∪T [α1, zi+1]∪T [α2, y2]∪T [zi, zj]) = {α3} if x2 ∈
T [r, zj+1] and α3 is the l.c.a of x2 and zj+1 otherwise. Observe that T [α3, zj+1]∩Q2[y0, zj] =
∅. In fact, T [α3, zj+1] ∩ Q2[y0, zi−1] = ∅, due to the induction hypothesis. Moreover,
T [α3, zj+1] ∩Q2[zi+1, zj−1] = ∅, since otherwise if there exists i+ 1 󰃑 t 󰃑 j − 1 such that
zt 󰃑T zj+1, then the union of T [α2, zi+1] ∪ Q2[zi+1, zt] ∪ T [zt, zj+1], T [α2, y2], T [x2, y1] ∪
(y1, y2) and T [x2, z1] ∪ Q2[z1, zi] ∪ T [zi, zj] ∪ (zj, zj+1) is a S-C(k, 1, k, 1), a contradic-
tion. This together with the maximality of zj imply that zi is also not an ancestor
of zj+1. To reach the final contradiction, we study the possible positions of α3. If
α3 ∈ T ]α1, zi+1], then the union of T [β, zj+1], T [β, y2], T [x2, y1] ∪ (y1, y2) and T [x2, z1] ∪
Q2[z1, zi]∪T [zi, zj]∪ (zj, zj+1) with β = minT{α2,α3} is a S-C(k, 1, k, 1), a contradiction.
If α3 ∈ T ]α2, y2], then l(T [α2, zj+1]) 󰃍 2k. But l(T [α2, zj+1]) = l(T [α2,α3])+l(T [α3, zj+1])
and l(T [α2,α3]) < l(T [α2, y2]) < k, then l(T [α3, zj+1]) 󰃍 k. Consequently, the union of
T [α3, zj+1], T [α3, y2], T [x2, y1] ∪ (y1, y2) and T [x2, z1] ∪Q2[z1, zi] ∪ T [zi, zj] ∪ (zj, zj+1) is a
S-C(k, 1, k, 1), a contradiction. Otherwise, let β = minT{α1,α3} if α1 and α3 are ances-
tors and β = l.c.a{α1,α3} otherwise. Then the union of T [β, zi+1], T [β, zj+1], T [zi, zj] ∪
(zj, zj+1) and (zi, zi+1) is a S-C(k, 1, k, 1) in D, a contradiction}∗ affirming that zi is not
an ancestor of zj for all j ∈ [2k]. This ends the proof. 󰃆

In a similar way, we can prove that yi is not an ancestor of yj, for all 0 󰃑 i 󰃑 k and
j ∈ [2k]. To complete the proof, we consider the vertices α1 and α2 of T [r, zk] and T [r, yk]
respectively such that T [α1, zk] ∩ T1 = {α1} if x2 ∈ T [r, zk] and α1 = l.c.a{x2, zk} oth-
erwise, and T [α2, yk] ∩ T1 = {α2} if x2 ∈ T [r, yk] and α2 = l.c.a{x2, yk} otherwise. Note
that (T [α1, zk] ∪ T [α2, yk]) ∩ (Q1[y0, y2k−1] ∪ Q2[y0, z2k−1]) = ∅. Let β1 = minT{α1,α2} if
α1 and α2 are ancestors and β1 = l.c.a{α1,α2} otherwise. Given that β2 = l.c.a{yk, zk},
we study two cases: If β1 = β2, then at least one of T [β1, yk] and T [β1, zk] has length
greater than k. Consequently, the union of T [β1, zk], T [β1, yk], Q1[y0, yk] and Q2[y0, zk]
is a S-C(k, 1, k, 1) in D, a contradiction. Otherwise, we get α1 = α2 = β1 and β2 ∈
T ]α1, zk]. Clearly, l(T [β2, yk]) < k and l(T [β2, zk]) < k, since otherwise the union of
T [β2, zk], T [β2, yk], Q1[y0, yk] andQ2[y0, zk] would be a S-C(k, 1, k, 1) inD, a contradiction.
To reach the final contradiction, let α3 be the vertex of T [r, zk+1] such that T [α3, zk+1] ∩
(T1 ∪ T [α1, yk] ∪ T [α1, zk]) = {α3} if x2 ∈ T [r, zk+1] and α3 = l.c.a{x2, zk+1} otherwise. If
α3 ∈ T [β2, zk], then the union of T [β2, zk+1], T [β2, yk], Q1[y0, yk] and Q2[y0, zk+1] forms
a S-C(k, 1, k, 1) in D, a contradiction. Else if α3 ∈ T ]β2, yk], then l(T [α3, zk+1]) 󰃍
k, since otherwise l(T [β2, yk]) > T [β2,α3] 󰃍 k, a contradiction. Thus the union of
T [α3, zk+1], T [α3, yk], Q1[y0, yk] and Q2[y0, zk+1] forms a S-C(k, 1, k, 1) in D, a contra-
diction. Else if α3 /∈ T [β2, yk] ∪ T [β2, zk], then consider β3 = {α3} if α3 󰃑T β2 and
β3 = l.c.a{α3, β2} otherwise. It is easy to check that β3 is the least common ancestor
of zk and zk+1 as well as of yk and zk+1. Thus l(T [β3, zk+1]) 󰃍 2k and so the union of
T [β3, zk+1], T [β3, yk], Q1[y0, yk] and Q2[y0, zk+1] forms a S-C(k, 1, k, 1) in D, a contradic-
tion. This finishes the proof of Assertion 51. ♦
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In view of Assertion 51, we get that x1 = x2. In what follows, we denote by T1 =
T [x1, y1] ∪ T [x1, z1] ∪ T [x1, y0].

Assertion 54. For all i ∈ [k] and j ∈ [2k], zi is not an ancestor of zj.

Proof of Assertion 54. Assume the contrary is true, that is, there exists i ∈ [k] and
j ∈ [2k] such that zi 󰃑T zj. Assume that i is chosen to be minimal and j is chosen
so that lT (zj) is maximal and T [zi, zj] ∩ Q2 = {zi, zj}. Clearly, zi+1 /∈ T [zi, zj]. Let
α1 be the vertex of T [r, zi+1] such that T [α1, zi+1] ∩ T1 = {α1} if x1 ∈ T [r, zi+1] and
α1 = l.c.a{x1, zi+1} otherwise. Due to the choice of zi together with Assertion 50, keep in
mind that T [α1, zi+1] ∩ (Q1[y1, y2k−1] ∪Q2[z1, zi]) = ∅.
Claim 55. α1 ∈ T ]x1, y1].

Proof of Claim 55. Assume the contrary is true. First, assume that α1 = y0. Let α2 be the
vertex of T [r, y2] such that T [α2, y2]∩(T1∪T [y0, zi+1]∪T [zi, zj]) = {α2} if x1 ∈ T [r, y2] and
α2 = l.c.a{x1, y2} otherwise. Note that T [r, y2]∩T [zi, zj] = ∅, since otherwise zi would be
an ancestor of y2, a contradiction to Assertion 50. If α2 /∈ T [y0, zi+1], we consider two cases:
If α2 ∈ T ]x3, z1], then the union of T [α2, z1]∪Q2[z1, zi]∪T [zi, zj], T [α2, y2], T [x1, y1]∪(y1, y2)
and T [x1, zi+1] ∪Q2[zi+1, zj] forms a S-C(k, 1, k, 1), a contradiction. Otherwise, consider
β = minT{α2, x3} if α2 and x3 are ancestors and β = l.c.a{α2, x3} otherwise. Then
the union of T [β, y2], T [β, z1] ∪Q2[z1, zi] ∪ T [zi, zj], T [y0, zi+1] ∪Q2[zi+1, zj] and Q1[y0, y2]
forms a S-C(k, 1, k, 1), a contradiction. Else if α2 ∈ T [y0, zi+1], then α2 ∕= y0, since oth-
erwise the union of T [y0, y2], T [y0, zi+1] ∪ Q2[zi+1, zj], T [x3, z1] ∪ Q2[z1, zi] ∪ T [zi, zj] and
T [x3, y1] ∪ (y1, y2) is a S-C(k, 1, k, 1) in D, a contradiction. Moreover, l(T [α2, y2]) 󰃑
k − 1 and l(T [α2, zi+1]) 󰃑 k − 1, since otherwise the union of T [α2, y2], T [α2, zi+1] ∪
Q2[zi+1, zj], T [x1, y1] ∪ (y1, y2) and T [x1, y0] ∪ Q2[y0, zi] ∪ T [zi, zj] is a S-C(k, 1, k, 1) in
D, a contradiction. Furthermore, Q2[zi+1, zj] has length at most k − 2, since other-
wise the union of T [α2, zi+1] ∪ Q2[zi+1, zj], T [α2, y2], T [x1, y1] ∪ (y1, y2) and T [x1, y0] ∪
Q2[y0, zi] ∪ T [zi, zj] is a S-C(k, 1, k, 1) in D, a contradiction. This induces the exis-
tence of zj+1. Let α3 be the vertex of T [r, zj+1] such that T [α3, zj+1] ∩ (T1 ∪ T [α2, y2] ∪
T [y0, zi+1] ∪ T [zi, zj]) = {α3} if x1 ∈ T [r, zj+1] and α3 = l.c.a{x1, zj+1} otherwise. Ob-
serve that T [α3, zj+1] ∩ Q2]y0, zj] = ∅. In fact, T [α3, zj+1] ∩ Q2]y0, zi−1] = ∅, due to the
choice of zi. Moreover, T [α3, zj+1] ∩ Q2[yi+1, zj−1] = ∅, since otherwise if there exists
i + 1 󰃑 t 󰃑 j − 1 such that zt 󰃑T zj+1, then the union of T [α2, zi+1] ∪ Q2[zi+1, zt] ∪
T [zt, zj+1], T [α2, y2], T [x1, y1] ∪ (y1, y2) and T [x1, y0] ∪Q2[y0, zi] ∪ T [zi, zj] ∪ (zj, zj+1) is a
S-C(k, 1, k, 1), a contradiction. This together with the maximality of zj imply that zi
is also not an ancestor of zj+1. To reach the final contradiction, we study the possible
positions of α3: If α3 ∈ T ]α2, y2], then l(T [α3, zj+1]) 󰃍 k, since otherwise l(T [α3, y2]) 󰃍 k,
a contradiction. Consequently, the union of T [α3, zj+1], T [α3, y2], T [x1, y1] ∪ (y1, y2) and
T [x1, y0]∪Q2[y0, zi]∪ T [zi, zj]∪ (zj, zj+1) is a S-C(k, 1, k, 1), a contradiction. Else if α3 /∈
T ]α2, y2] and lT (α3) > lT (y0), then the union of T [β, zj+1], T [β, y2], T [x1, y1]∪ (y1, y2) and
T [x1, y0]∪Q2[y0, zi]∪T [zi, zj]∪ (zj, zj+1) is a S-C(k, 1, k, 1) in D, with β = minT{α2,α3}.
This is a contradiction to the fact that D is C(k, 1, k, 1)-subdivision-free. Else, let
β = minT{α3, y0} if α3 and y0 are ancestors and let β = l.c.a{α3, y0} otherwise. Note
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that possibly α3 = y0. Hence, the union of T [β, zi+1], T [β, zj+1], T [zi, zj] ∪ (zj, zj+1) and
(zi, zi+1) is a S-C(k, 1, k, 1) in D, a contradiction affirming that y0 is not an ancestor
of zi+1 and thus α1 ∕= y0. But α1 /∈ T ]x1, y1], then x1 and α1 are ancestors. Conse-
quently, the union of T [β, y1], T [β, zi+1] ∪Q2[zi+1, zj], Q2[y0, zi] ∪ T [zi, zj] and (y0, y1) is a
S-C(k, 1, k, 1) in D, with β = minT{x1,α1}. This a contradiction to the fact that D is
C(k, 1, k, 1)-subdivision-free and thus a confirmation to our claim. 󰃆

Now we consider the vertex α2 of T [r, y2] such that T [α2, y2]∩(T1∪T [α1, zi+1]∪T [zi, zj]) =
{α2} if x1 ∈ T [r, y2] and α2 = l.c.a{x1, y2} otherwise. Note that T [α2, y2] ∩ (Q2]y0, zj] ∪
T [zi, zj]) = ∅, according to Assertion 50.

Claim 56. α2 ∈ T ]α1, zi+1].

Proof of Claim 56. Assume the contrary is true. First, assume that α2 = y0. If
α1 ∈ T ]x1, x3], then the union of T [α1, zi+1], T [α1, y1] ∪ (y1, y2), T [y0, y2] and Q2[y0, zi+1]
forms a S-C(k, 1, k, 1), a contradiction. Else if α1 ∈ T ]x3, y1], then l(T [α1, zi+1]) 󰃑 k − 1,
since otherwise the union of T [α1, zi+1], T [α1, y1] ∪ (y1, y2), T [y0, y2] and Q2[y0, zi+1] is
a S-C(k, 1, k, 1) in D, a contradiction. This implies that l(T [x3,α1]) 󰃍 k. Moreover,
Q2[zi+1, zj] has length at most k−2, since otherwise the union of T [α1, zi+1]∪Q2[zi+1, zj],
T [α1, y1] ∪ (y1, y2), T [y0, y2] and Q2[y0, zi] ∪ T [zi, zj] is a S-C(k, 1, k, 1) in D, a contradic-
tion. This guarantees the existence of zj+1. Let α3 be the vertex of T [r, zj+1] such that
T [α3, zj+1] ∩ (T1 ∪ T [y0, y2] ∪ T [α1, zi+1] ∪ T [zi, zj]) = {α3} if x1 ∈ T [r, zj+1] and α3 =
l.c.a{x1, zj+1} otherwise. Observe that T [α3, zj+1] ∩ Q2]y0, zj] = ∅. In fact, T [α3, zj+1] ∩
Q2]y0, zi−1] = ∅, due to the choice of zi. Moreover, T [α3, zj+1] ∩ Q2[zi+1, zj−1] = ∅, since
otherwise if there exists i+1 󰃑 t 󰃑 j−1 such that zt 󰃑T zj+1, then the union of T [α1, zi+1]∪
Q2[zi+1, zt]∪T [zt, zj+1], T [α1, y1]∪(y1, y2), T [y0, y2] andQ2[y0, zi]∪T [zi, zj]∪(zj, zj+1) is a S-
C(k, 1, k, 1), a contradiction. This together with the maximality of zj imply that zi is also
not an ancestor of zj+1. To reach the final contradiction, we study the possible positions of
α3: If α3 ∈ T [y0, y2], then the union of T [y0, zj+1], (y0, y1), T [x3, y1], T [x3, z1]∪Q2[z1, zj+1]
is a S-C(k, 1, k, 1) in D, a contradiction. Else if α3 /∈ T ]α1, y1], let β = minT{α1,α3}
if α1 and α3 are ancestors and let β = l.c.a{α1,α3} otherwise. Then the union of
T [β, zj+1], T [β, y1] ∪ (y1, y2), T [y0, y2] and Q2[y0, zj+1] is a S-C(k, 1, k, 1), a contradiction.
Else, α3 ∈ T ]α1, y1]. Note that l(T [α3, zj+1]) 󰃑 k − 1, since otherwise the union of
T [α3, zj+1], T [α3, y1]∪(y1, y2), T [y0, y2] and Q2[y0, zj+1] is a S-C(k, 1, k, 1), a contradiction.
But l(T [α1, zj+1]) 󰃍 2k, then l(T [α1,α3]) 󰃍 k and so the union of T [α1, y1], T [α1, zi+1] ∪
Q2[zi+1, zj], (y0, y1) and Q2[y0, zi]∪ T [zi, zj] is a S-C(k, 1, k, 1), a contradiction. This con-
firms that α2 ∕= y0. To complete the proof, we assume to the contrary that α2 /∈ T ]α1, zi+1]
and we consider β = minT{α1,α2} if α1 and α2 are ancestors and β = l.c.a{α1,α2} other-
wise. Then the union of T [β, y2], T [β, zi+1]∪Q2[zi+1, zj], Q1[y0, y2] and Q2[y0, zi]∪T [zi, zj]
is a S-C(k, 1, k, 1), a contradiction. This implies Claim 56. 󰃆

The rest of the proof of Assertion 54 is exactly the same as ∗{. . .}∗ in Claim 53, with
exactly two differences. The first difference is that each place we have used T [x2, z1] ∪
Q2[z1, zi] in ∗{. . .}∗ must be replaced by T [x2, y0] ∪ Q2[y0, zi] in the proof of Assertion
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54. The second one is that in the proof of Claim 53 T [α3, zj+1] ∩ Q2[y0, zi−1] = ∅ due to
the induction hypothesis. However, in the proof of this assertion we have T [α3, zj+1] ∩
Q2]y0, zi−1] = ∅ by the choice of zi. Indeed, the case where y0 ∈ T [α3, zj+1] in the proof
of this assertion will be prevented by the last contradiction of Claim 53. This ends the
proof. ♦

In a similar way, we can show that yi is not an ancestor of yj for all i ∈ [k] and j ∈ [2k].
To complete the proof, let α1 (resp. α2) be the vertex of T [r, yk] (resp. T [r, zk]) such that
T [α1, yk] ∩ T1 = {α1} (resp. T [α2, zk] ∩ T1 = {α2}) if x1 ∈ T [r, yk] (resp. x1 ∈ T [r, zk])
and α1 = l.c.a{x1, yk} (resp. α2 = l.c.a{x1, zk}) otherwise.
Assertion 57. y0 ∈ {α1,α2}.

Proof of Assertion 57. Assume the contrary is true. This, together with Assertion 50
and Assertion 54, implies that (T [α1, yk] ∪ T [α2, zk]) ∩ (Q1[y0, yk] ∪ Q2[y0, zk]) = ∅, since
otherwise, without loss of generality, there would exist 0 󰃑 i 󰃑 k such that zi ∈ (T [α1, yk]∪
T [α2, zk])∩(Q1[y0, yk]∪Q2[y0, zk]). In that case, if i ∈ [k], zi would be an ancestor of either
yk or zk, which would contradict Assertion 50 and Assertion 54 respectively. Else if i = 0,
z0 would belong to {α1,α2}, a contradiction to our assumption. Set α3 = l.c.a{yk, zk}
and α4 = minT{α1,α2} if α1 and α2 are ancestors and α4 = l.c.a{α1,α2} otherwise.
Assume that α3 = α4, then l(T [α1, yk]) 󰃍 k and l(T [α2, zk]) 󰃍 k unless α1 ∈ T ]x3, z1]
and α2 ∈ T ]x3, y1]. In the later case, α3 = x3 and so l(T [x3, zk]) 󰃍 k and l(T [x3, yk]) 󰃍
k. Then the union of T [α3, zk], T [α3, yk], Q1[y0, yk] and Q2[y0, zk] is a S-C(k, 1, k, 1), a
contradiction. This implies that α3 ∕= α4 and thus α1 = α2 = α4 and α3 ∈ T [α1, zk].
Clearly, T [α3, yk] and T [α3, zk] have length at most k − 1, since otherwise the union of
T [α3, yk], T [α3, zk], Q2[y0, zk] and Q1[y0, yk] is a S-C(k, 1, k, 1), a contradiction. This gives
that l(T [α1,α3]) 󰃍 k, since at least one of T [α1, yk] and T [α1, zk] has length at least 2k.
Let α5 be the vertex of T [r, zk+1] such that T [α1, zk+1]∩(T1∪T [α1, yk]∪T [α1, zk]) = {α5} if
x1 ∈ T [r, zk+1] and α5 = l.c.a{x1, zk+1} otherwise. Due to Assertion 50 and Assertion 54, it
follows that T [α5, zk+1]∩(Q1[y1, yk]∪Q2[z1, zk]) = ∅. If α5 = y0, let β = α1 if α1 󰃑T β1 and
β = l.c.a{α1, z1} otherwise. Then the union of Q1[y0, yk], T [y0, zk+1], T [β, z1]∪Q2[z1, zk+1]
and T [β, yk] is a S-C(k, 1, k, 1), a contradiction. Hence, α5 ∕= y0. Let β = α5 if α5 󰃑T yk
and β = l.c.a{α5, yk} otherwise. Then l(T [β, zk+1]) 󰃍 k if α5 ∈ Tα1 and l(T [β, yk]) 󰃍 k
otherwise. This implies that the union of Q1[y0, yk], Q2[y0, zk+1], T [β, zk+1] and T [β, yk] is
a S-C(k, 1, k, 1), a contradiction. This ends the proof. ♦

To reach the final contradiction, we consider two principle cases: If α1 = α2 = y0, then the
union of T [y0, zk], T [y0, yk], T [x3, y1]∪Q1[y1, yk] and T [x3, z1]∪Q2[z1, zk]is a S-C(k, 1, k, 1),
a contradiction. Otherwise, due to symmetry, assume that α1 = y0 and α2 ∕= y0. If
α2 /∈ T [x3, z1]∪T [x3, y1], let β = α2 if α2 󰃑T y0 and β = l.c.a{α2, y0} otherwise. Then the
union of T [β, yk], T [β, zk], T [x3, z1]∪Q2[z1, zk] and T [x3, y1]∪Q1[y1, yk] is a S-C(k, 1, k, 1),
a contradiction. Hence, α2 ∈ T [x3, z1] ∪ T [x3, y1]. Let β = α2 if α2 󰃑T y1 and β = x3

otherwise. Then the union of T [β, y1] ∪ Q1[y1, yk], T [β, zk], Q2[y0, zk] and T [y0, yk] is a
S-C(k, 1, k, 1), a contradiction. This finishes the proof.
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3.4 Main Theorem

Now we are ready to prove Theorem 12 that we restate:

Theorem 58. Let D be a strongly connected digraph having no subdivisions of C(k1, 1, k3,
1) and let k = max{k1, k3}, then the chromatic number of D is at most 36 · (2k) · (4k+2).

Proof. Let T be a spanning out-tree of D. Indeed, the existence of T is guaranteed
due to the fact that D is strongly connected digraph. According to Proposition 16, we
may assume that T is final. Define Di

j as before for i ∈ [2k] and j ∈ [3]. Due to
Lemma 15 together with Proposition 40, Proposition 48 and Proposition 49, we get that
χ(Di) 󰃑 36 · (4k + 2) for all i ∈ [2k]. As V (D) =

󰁖2k
i=1 V (Di), by assigning 36(4k − 2)

distinct colors to each Di, we obtain a proper coloring of D with 36 · (2k) · (4k + 2)
colors.

4 The existence of S-C(k1, 1, k3, 1) in Hamiltonian digraphs

The previous bound can be strongly improved in case that the digraph contains a Hamilto-
nian directed cycle. In this section, we provide a tighter bound for the chromatic number
of Hamiltonian digraphs containing no subdivisions of C(k, 1, k, 1). Before proving The-
orem 13, we need the following lemma:

Lemma 59. Let k be a positive integer and let D be a C(k, 1, k, 1)-subdivision-free digraph
with a Hamiltonian directed cycle C. Assume that u, v, w, x, x′ are five vertices of D such
that uv ∈ E(G(D)) \ E(C), w ∈ C]u, v[ and x, x′ ∈ C]v, u[ in a way that v(C[v, x]) = k
and v(C[x′, u]) = k. If (v, u) ∈ E(D), then |NG(D)(w) ∩ C]x, x′[| 󰃑 2.

Proof. We are going to prove first that w has at most one out-neighbor in V (C]x, x′[). If
w has two out-neighbors in V (C]x, x′[), say vi, vj with i < j, then the union of (w, vj) ∪
C[vj, u], (w, vi), C[v, vi] and (v, u) forms a S-C(k, 1, k, 1) in D, a contradiction. Thus,

|N+
D (w) ∩ C]x, x′[| 󰃑 1. (1)

Now we will prove that w has at most one in-neighbor in V (C]x, x′[). If w has two in-
neighbors in V (C]x, x′[), say vi, vj with i < j, then the union of C[v, vi] ∪ (vi, w), (v, u),
C[vj, u] and (vj, w) is a S-C(k, 1, k, 1), a contradiction. Thus,

|N−
D (w) ∩ C]x, x′[| 󰃑 1. (2)

Hence, according to the inequalities 1 and 2, we get that |NG(D)(w) ∩ C]x, x′[| 󰃑 2. This
ends the proof.

Now we are ready to prove Theorem 13, that we restate:
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Theorem 60. Let D be a Hamiltonian digraph having no subdivisions of C(k1, 1, k3, 1)
and let k = max{k1, k3}. Then D is (6k − 1)-degenerate and thus χ(D) 󰃑 6k.

Proof. Let G be a subgraph of G(D) and let H be the subdigraph of D whose underlying
graph is G. If δ(G) 󰃑 6k − 1, then we are done. Otherwise, we will prove that D
contains a S-C(k, 1, k, 1), which means that the case where δ(G) > 6k − 1 does not
hold. Thus it suffices now to prove that if δ(G) 󰃍 6k for a subgraph G of G(D), then
D contains a S-C(k, 1, k, 1). Suppose the contrary is true and let C = v1v2 · · · vn be a
Hamiltonian directed cycle of D, where n = |V (D)| 󰃍 |V (G)| 󰃍 δ(G) + 1 󰃍 6k + 1.
Since δ(G) 󰃍 6k, then there exist two vertices u, v of G such that uv ∈ E(G) \E(C) and
|V (C[u, v])∩V (G)| 󰃍 3k+1. Assume that u, v are chosen such that |V (C[u, v])∩V (G)| is
minimal but at least 3k+1. This implies that |NG(u)∩V (C[u, v])| = 3k. Hence, |NG(u)∩
V (C]v, u[)| 󰃍 3k, since otherwise we get that dG(u) 󰃑 6k − 1 < δ(G), a contradiction.
Thus, we guarantee the existence of two distinct vertices t and t′ of C]v, u[ such that
l(C[v, t]) = k − 1 and l(C[t′, u]) = k − 1. Now we will consider the possible directions
of the edge uv in H. If (v, u) ∈ E(H), we define v′ to be the vertex of G such that
C[v′, v] ∩ V (G) = {v′, v}. By the choice of the edge uv, note that v′ has at most 3k − 1
neighbors in C[u, v′]∩ V (G) and thus |NG(v

′)∩C[u, v]| 󰃑 3k. Moreover, Lemma 59 gives
that |NG(v

′) ∩ C]t, t′[| 󰃑 2. Combining all these together, we get

dG(v
′) = |NG(v

′) ∩ C[u, v]|+ |NG(v
′) ∩ C]v, t]|+ |NG(v

′) ∩ C]t, t′[|+ |NG(v) ∩ C[t′, u[|
󰃑 3k + (k − 1) + 2 + (k − 1)

= 5k,

contradicting the fact that δ(G) 󰃍 6k. Therefore, (v, u) /∈ E(H) and so (u, v) ∈ E(H).

Now we consider the vertices w and w′ of G with |V (C[u, w]) ∩ V (G)| = k + 1 and
|V (C[w′, v]) ∩ V (G)| = k + 1. Due to the fact that |V (C[u, v]) ∩ V (G)| 󰃍 3k + 1, it is
clear that w ∕= w′ and |V (C[w,w′])∩ V (G)| 󰃍 k+ 1. To reach the final contradiction, we
need to prove a series of claims as follows.

Claim 61. If N+
G (w

′) ∩ C]t, t′[ ∕= ∅, then NG(w) ∩ C]t, t′[= ∅.

Proof of Claim 61. Let vi be the out-neighbor of w′ in G ∩C]t, t′[ such that i is minimal.
We are going to show now that |N+

G (w)∩C]t, t′[| = 0. Suppose not and let vj ∈ |N+
G (w)∩

C]t, t′[. If i 󰃑 j, then the union of C[w′, v], (w′, vi) ∪ C[vi, vj], C[u, w] ∪ (w, vj) and
(u, v) is a S-C(k, 1, k, 1) in D, a contradiction. Otherwise, the union of C[w′, v], (w′, vi),
C[u, w]∪ (w, vj)∪C[vj, vi] and (u, v) is a S-C(k, 1, k, 1), a contradiction. This proves that
N+

G (w) ∩ C]t, t′[= φ. Now we shall show that |N−
G (w) ∩ C]t, t′[| = 0. Suppose not and let

vj ∈ |N−
G (w) ∩ C]t, t′[. If i 󰃑 j, then the union of C[w′, v], (w′, vi) ∪ C[vi, vj] ∪ (vj, w),

C[u, w] and (u, v) is a S-C(k, 1, k, 1), a contradiction. Otherwise, we are going to argue
on the neighbors of w′ in G. First, consider the directed cycle C[w, vj] ∪ (vj, w). Since
|V (C[vj, w])| 󰃍 |V (C[vj, vi])|+ |V (C[t′, u[)|+ |V (C[u, w])| 󰃍 1+(k−1)+(k+1) = 2k+1,
then w′ has at most 2 neighbors in C]vj+k−1, u[∩G, due to Lemma 59. Consequently, it
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follows that w′ has at most k+1 neighbors in C]vj, u[∩G. Moreover, w′ has no neighbors
in C]t, vj] ∩ G. In fact, by the choice of the out-neighbor vi of w

′, it is clear to see that
w′ has no out-neighbors in C]t, vj] ∩ G. Also, w′ has no in-neighbors in C]t, vj] ∩ G,
since otherwise the union of (z, w′) ∪ C[w′, v], C[z, vj] ∪ (vj, w), C[u, w] and (u, v) is a
S-C(k, 1, k, 1) in D, with z is an in-neighbor of w′ in C]t, vj] ∩G. This is a contradiction
to the fact that D is C(k, 1, k, 1)-subdivision-free. Furthermore, by the choice of the edge
uv, note that w′ has at most 3k − 1 neighbors in C[u, w′] ∩ G. This together with the
fact that |V (C[w′, v]) ∩ V (G)| = k + 1 imply that w′ has at most 4k − 1 neighbors in
C[u, v] ∩G. Therefore, according of all what precedes, we get

dG(w
′) = |NG(w

′)∩C[u, v]|+ |NG(w
′)∩C]v, t]|+ |NG(w

′)∩C]t, vj]|+ |NG(w
′)∩C]vj +u[|

󰃑 (4k − 1) + (k − 1) + 0 + (k + 1)
= 6k − 1,

a contradiction to the fact that δ(G) 󰃍 6k, affirming our claim. 󰃆
Claim 62. |N+

G (w
′) ∩ C]t, t′[| = 0.

Proof of Claim 62. Suppose to the contrary that w′ has an out-neighbor in G ∩ C]t, t′[.
Thus, according to Claim 61, we get that |N+

G (w) ∩ C]t, t′[| = 0. Hence,

dG(w) = |NG(w) ∩ C[u, w[|+ |NG(w) ∩ C]w, v]|+ |NG(w) ∩ C]v, t]|+ |NG(w) ∩ C]t, t′[|+
|NG(v) ∩ C[t′, u[|
󰃑 k + (3k − 1) + (k − 1) + 0 + (k − 1)
= 6k − 3,

a contradiction to the fact that δ(G) 󰃍 6k. This proves our claim. 󰃆
Claim 63. If N−

H (w
′) ∩ C]t, t′[ ∕= ∅, then N−

H (w) ∩ C]t, t′[= ∅.

Proof of Claim 63. Suppose the contrary is true and let vi ∈ |N−
H (w) ∩ C]t, t′[ such

that i is minimal. Let vj be an in-neighbor of w′ in H ∩ C]t, t′[. If i 󰃑 j, then the
union of C[vi, vj] ∪ (vj, w

′) ∪ C[w′, v], (vi, w), C[u, w] and (u, v) is a S-C(k, 1, k, 1) in D,
a contradiction. Otherwise, the union of (vj, w

′)∪C[w′, v], C[vj, vi]∪ (vi, w), C[u, w] and
(u, v) is a S-C(k, 1, k, 1) in D, a contradiction. This confirms Claim 63. 󰃆
Claim 64. If |N−

H (w
′) ∩ C]t, t′[| 󰃍 2, then N+

H (w) ∩ C]t, t′[= ∅.

Proof of Claim 64. Since |N−
H (w

′) ∩ C]t, t′[| 󰃍 2, then there exist two distinct vertices
z and z′ in N−

H (w
′) ∩ C]t, t′[. Assume that z, z′ are chosen so that z = vi such that i is

minimal and z′ = vj for some j > i. Suppose now that N+
H (w) ∩ C]t, t′[ ∕= ∅ and let vp be

an out-neighbor of w in C]t, t′[∩H. If p 󰃍 j, then the union of (vi, w
′)∪C[w′, v], C[vi, vp],

C[u, w]∪ (w, vp) and (u, v) is a S-C(k, 1, k, 1) in D, a contradiction. Otherwise, the union
of (vj, w

′)∪C[w′, v], C[vj, u]∪ (u, v)∪C[v, vp], C[w,w′] and (w, vp) forms a S-C(k, 1, k, 1),
a contradiction. This proves Claim 64. 󰃆

To complete the proof, we are going to prove that w′ has at most one in-neighbor in
C]t, t′[∩H. Suppose not, then Claim 63 and Claim 64 imply that w has no neighbors in
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C]t, t′[∩G. Hence,

dG(w) = |NG(w) ∩ C[u, w[|+ |NG(w) ∩ C]w, v]|+ |NG(w) ∩ C]v, t]|+ |NG(w) ∩ C]t, t′[|+
|NG(v) ∩ C[t′, u[|
󰃑 k + (3k − 1) + (k − 1) + 0 + (k − 1)
= 6k − 3,

a contradiction to the fact that δ(G) 󰃍 6k. Thus, |N−
H (w

′) ∩ C]t, t′[| 󰃑 1. Consequently,
according to Claim 63, |NG(w

′) ∩ C]t, t′[| 󰃑 1. Therefore,

dG(w
′) = |NG(w

′) ∩ C[u, v]|+ |NG(w
′) ∩ C]v, t]|+ |NG(w

′) ∩ C]t, t′[|+ |NG(w
′) ∩ C[t′, u[|

󰃑 (4k − 1) + (k − 1) + 1 + (k − 1)

= 6k − 2,

a contradiction to the fact that δ(G) 󰃍 6k. This completes the proof.
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[13] T. Kaiser, O. Rucký, and R. Skrekovski. Graphs with odd cycle lengths 5 and 7 are
3-colorable. SIAM J. Discrete Math., 25: 1069–1088, 2011.

[14] R. Kim, SJ. Kim, J. Ma, and B. Park. Cycles with two blocks in k-chromatic digraphs.
J. Graph Theory, 00: 1–14, 2017.
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