
Shotgun Assembly of the Linial–Meshulam model

Kartick Adhikaria Sukrit Chakrabortyb

Submitted: Nov 28, 2023; Accepted: Aug 8, 2025; Published: Sep 5, 2025

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

In a recent paper, J. Gaudio and E. Mossel studied the shotgun assembly of
the Erdős-Rényi graph G(n, p) with p = n−α, and showed that the graph is recon-
structable from its 1-neighbourhoods with high probability if 0 < α < 1/3 and not
reconstructable from its 1-neighbourhoods with high probability if 1/2 < α < 1. In
this article, we generalise the notion of reconstruction of graphs to the reconstruc-
tion of simplicial complexes. We show that the Linial–Meshulam model Yd(n, p)
on n vertices with p = n−α is reconstructable from its 1-neighbourhoods with high
probability when 0 < α < 1/3 and is not reconstructable from its 1-neighbourhoods
with high probability when 1/2 < α < 1.

Mathematics Subject Classifications: 05C80, 60C05

1 Introduction

In [21], Mossel and Ross introduced the shotgun assembly of graphs. The shotgun assem-
bly of a graph means reconstructing the graph from a collection of vertex neighbourhoods.
The motivation comes from DNA shotgun assembly (determining a DNA sequence from
multiple short nucleobase chains), reconstruction of neural networks (reconstructing a big
neural network from subnetworks), and the random jigsaw puzzle problem. See [20] and
references therein.

The recent development of random jigsaw puzzles can be found in [1] and [18]. The
graph shotgun assembly for various models was studied extensively. For example, random
regular graphs and labelled graphs were considered in [21] and [20], respectively. The
reconstruction of the Erdős–Rényi graph is well studied.

The Erdős–Rényi graph [3] [4], denoted by G(n, p), is a random graph on n vertices,
where each edge is added independently with probability p ∈ [0, 1]. In [6], Gaudio and
Mossel showed that G(n, p) with p = n−α is reconstructable with high probability if
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0 < α < 1/3 and not reconstructable from its 1-neighbourhoods with high probability
if 1/2 < α < 1. Later, Huang and Tikhomirov showed that G(n, p) with p = n−α is
reconstructable with high probability if 0 < α < 1/2 and not reconstructable from its 1-
neighbourhoods with high probability if 1/2 < α < 1 [11]. The reconstructions of G(n, p)
from its 3 and 2-neighbourhoods are considered in [20, Theorem 4.5] and [6, Theorem
4] respectively. In [12], the authors have recently determined the exact thresholds for
r-reconstructibility for r 󰃍 3, which also improves and generalises the known results for
r = 3.

In this article, by generalising the notion of graph shotgun assembly, we introduce the
notion of shotgun assembly of simplicial complexes. See Section 2 for a precise definition.
The problem of shotgun assembly essentially tells us whether the local structure contains
all the information about its global structure. Here we only consider the shotgun assembly
problem for the Linial–Meshulam model. However, our notion of shotgun assembly of
simplicial complexes can potentially be used for other simplicial complexes, for example,
the multi-parameter random simplicial complexes [2, 5].

The Linial–Meshulam model [14], denoted by Yd(n, p), is a random d-dimensional sim-
plicial complex on n vertices with a complete (d−1)-skeleton, in which each d-dimensional
simplex is added independently with probability p ∈ [0, 1]. See Section 2 for details. In
[14], Linial and Meshulam introduced this model for d = 2. Later, it was extended for
d 󰃍 3 by Meshulam and Wallach [19]. After that this model has been studied extensively,
for example see [10, 7, 15, 13, 9, 22, 16, 8, 17]. Observe that Y1(n, p) = G(n, p). In other
words, d = 1 gives the Erdős–Rényi graph.

We show that Yd(n, p) for any d ∈ N with p = n−α is reconstructable with high
probability if 0 < α < 1/3 and not reconstructable with high probability if 1/2 < α < 1
from its 1-neighbourhoods. See Theorems 1 and 3. The meaning of reconstruction of
a simplicial complex from its 1-neighbourhoods is given in Section 2. We believe that
the range 0 < α < 1/3 of reconstruction is not optimal, the optimal range should be
0 < α < 1/2. See Conjecture 2.

The outline of the proof in the graph case and the one presented here for the Linial–
Meshulam case are largely similar, but there are several important differences, particularly
in terms of computational complexities and new insights. For instance, in the proof of
Theorem 1, Lemma 6 plays a crucial role, and the idea of conditioning on the support of
the simplicial complex represents a novel approach. Additionally, the proof of Lemma 6
is both new and non-trivial. Similarly, the proof of Lemma 9, which is used in the proof
of Theorem 3, differs slightly in its computational approach from the version employed in
the graph case by Gaudio and Mossel.

The rest of the article is organized as follows. In Section 2 we introduce the definition
of the reconstruction of simplicial complexes, and relevant notation. The main two results
are stated in Section 3. The proofs of Theorems 1 and 3 are given in Sections 4 and 5
respectively.
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2 Preliminaries

Let X0 be a finite set. A finite abstract simplicial complex X on X0 is a collection of
nonempty subsets of X0 such that

1. {x} ∈ X for all x ∈ X0, and

2. if τ ⊂ σ and σ ∈ X then τ ∈ X.

For example, X = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}} is an abstract simplicial
complex on {1, 2, 3}. Note that, throughout this paper, the empty set is always excluded
from the definition of a simplicial complex. We call a set σ ∈ X with |σ| = k + 1 a
k-dimensional simplex (or simply k-simplex). For any finite set A, the notation |A| will
denote the number of elements in A. For ease of writing, we write complex instead of
abstract simplicial complex in the rest of the article. The maximum of the dimensions of
all simplices in X is called the dimension of complex X, denoted by dim(X). That is,

dim(X) := max{dim(σ) : σ ∈ X},

where dim(σ) = |σ|− 1. Note if dim(X) = 1 then X can be viewed as a graph.
For 0 󰃑 j 󰃑 dim(X), the set of all j-simplices of X is denoted by

Xj := {σ ∈ X : dim(σ) = j}.

Note that, with abuse of notation, X0 denotes the collection of 0-simplices as well as the
set of vertices. We say σ, σ′ ∈ Xj are neighbour if σ ∪ σ′ ∈ Xj+1. Then we write σ ∼ σ′.
A similar notion was introduced in [22]. We say the distance of σ, σ′ ∈ Xj is k ∈ N ∪ {0}
if k is the least possible number such that there exist σ0, σ1 . . . , σk ∈ Xj with σ = σ0 and
σk = σ′ such that σi ∼ σi+1 for 0 󰃑 i 󰃑 k− 1. Then we write dist(σ, σ′) = k. For σ ∈ Xj,
we define

Xσ,k := {σ′ ∈ Xj : dist(σ, σ′) 󰃑 k},

the set of all j-simplices which are within distance at most k from σ. For example see
Figure 1. Clearly σ ∈ Xσ,k for all k 󰃍 0. Note that if k = 0 or dim(σ) = dim(X)
then Xσ,k = {σ}, as there is no σ′( ∕= σ) ∈ X such that σ′ ∼ σ. Thus k = 0 and
dim(σ) = dim(X) are two trivial cases.

Let k 󰃍 1 and j < dim(X). The k-neighbourhood of σ ∈ Xj is the (j +1)-subcomplex
induced by Xσ,k, denoted by Nk,X(σ). That is,

Nk,X(σ) := {τ ∈ X : τ ⊆ σ′ ∪ σ′′ for some σ′, σ′′ ∈ Xσ,k}.

For example see Figure 1. In particular, if dim(X) = 1 and v ∈ X0 then N1,X(v) refers
to the sub-graph induced by v and its neighbours {w ∈ X0 : v ∼ w}. Note that
Nk,X(σ) may contain j-simplices that are not contained in any (j +1)-simplices and may
be disconnected under the relation ∼.
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Figure 1: Here d = 2. For σ = (2, 3), for k = 1, 2,
Xσ,1 = {(2, 3), (1, 2), (2, 4), (2, 7), (1, 3), (3, 4), (3, 7), (3, 8)},
Xσ,2 = {(2, 3), (1, 2), (2, 4), (2, 6), (2, 7), (1, 3), (3, 4), (3, 7), (3, 8), (4, 6), (4, 8)},
N1,X(σ) = {all subsets of simplices (1, 2, 3), (2, 3, 4), (2, 3, 7)} and
N2,X(σ) = {all subsets of simplices (1, 2, 3), (2, 3, 4), (2, 3, 7), (2, 4, 6), (3, 4, 8)}

We say two complexes X and Y (on X0 and Y0 respectively) are isomorphic (denoted
by X ≃ Y ) if there exists a bijective function f : X0 → Y0 such that

{x0, x1, . . . , xk} ∈ X ⇐⇒ {f(x0), f(x1), . . . , f(xk)} ∈ Y,

for 0 󰃑 k 󰃑 dim(X) and for all x0, x1, . . . , xk ∈ X0. It is clear that if X ≃ Y then
|X0| = |Y0| and dim(X) = dim(Y ). If dim(X) = 1 then X ≃ Y means the two graphs X
and Y are isomorphic.

We say two complexes X and 󰁨X on X0, with σ ∈ X if and only if σ ∈ X̃, have same
k-neighbourhoods if

Nk,X(σ) ≃ Nk, 󰁨X(σ) for all σ ∈ X, (1)

that is, the k-neighbourhoods of all simplices in both complexes are isomorphic. In this
case we write X ≃k

󰁨X. Observe that if dim(σ) = dim(X) then (1) holds trivially. In

particular, if dim(X) = 1 then X ≃k
󰁨X implies that the k-neighbourhoods of v ∈ X0 in

X and 󰁨X are isomorphic as graphs.
A complex X on X0 is said to be k-reconstructable (in short, reconstructable) up to

isomorphism from its k-neighbourhoods if X ≃k
󰁨X implies X ≃ 󰁨X, for all complexes 󰁨X

on X0. Further, we say X is exactly reconstructable if X ≃ 󰁨X implies X = 󰁨X. We study
whether the Linial–Meshulam model is reconstructable from its 1-neighbourhoods. The
Linial–Meshulam model is a random complex of the form (2) (see below).

In the rest of the article, for d ∈ N, the complex will be of the form

X :=

󰀣
d−1󰁞

k=0

Xk

󰀤
∪Xd, (2)
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where X0 := {1, 2, . . . , n}, Xk := {{i0, . . . , ik} : 1 󰃑 i0 < · · · < ik 󰃑 n}, for 1 󰃑 k 󰃑 d,
and Xd ⊆ Xd. Note that Xk denotes the set of all k-simplices on X0. In this model, X
is a complex with complete d− 1 dimensional skeleton. Observe that X is a graph when
d = 1.

Note that if two complexes X and 󰁨X on X0 are of the form (2) then

Nk,X(σ) = Nk, 󰁨X(σ), whenever dim(σ) 󰃑 d− 2.

The neighbourhoods can differ only if dim(σ) = d − 1. Thus, in this case, the collection
of k-neighbourhoods of X will be denoted by

Nk(X) := {Nk,X(σ) : σ ∈ Xd−1}. (3)

We say a complex X of the form (2) is reconstructable from its k-neighbourhoods if, for

all 󰁨X of the form (2),

X ≃ 󰁨X whenever Nk,X(σ) ≃ Nk, 󰁨X(σ) for all σ ∈ Xd−1.

Similarly, we say X is exactly reconstructable from its k-neighbourhoods if X = 󰁨X
whenever Nk,X(σ) ≃ Nk, 󰁨X(σ) for all σ ∈ Xd−1. Figure 2 gives an example of a complex
which is reconstructable but not exactly reconstructable.

Figure 2: Here X is reconstructable from its 1-neighbourhoods but not exactly recon-
structable because X ≃ Y but X ∕= Y .

The degree of a simplex σ ∈ Xd−1 is denoted by

deg(σ) = degX(σ) :=
󰁛

τ∈Xd

1{σ⊂τ},

the number of d-simplices containing σ. Observe that a τ ∈ Xd will contribute non-zero
value in the last equation if τ = σ ∪ {v} for some v ∈ X0\σ. The set of neighbours of
σ ∈ Xd−1 is denoted by Sσ, that is,

Sσ = {σ′ ∈ Xd−1 : σ′ ∼ σ}.
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Note that the number of elements in Sσ is d times deg(σ), that is,

|Sσ| = d deg(σ).

For an example see Figure 3.

Figure 3: Here d = 2, degX(1, 2) = 3 and |Sσ| = 6

Next we recall the Linial–Meshulam model, which is a random simplicial complex
Yd(n, p) on vertex set {1, 2, . . . , n} with complete (d− 1)-dimensional skeleton, and where
each d-face appears independently with probability p.

It is easy to see that the degree of σ ∈ Xd−1 in Yd(n, p) is a Binomial random variable
with parameters (n− d, p), that is, degYd(n,p)

(σ) ∼ Bin(n− d, p). The use of the notation
“∼” will always be clear from the context as the same is also used for two neighbouring
simplices.

3 Main Results

In this section we state our main results, and give the key idea of the proofs. Let us define
the high probability events. We say a sequence of events An occurs with high probability
if

P(Ac
n) = o

󰀕
1

ns

󰀖
,

for some s > 0. We write an = o(bn) for two sequence of numbers {an}∞n=1 and {bn}∞n=1 if
|an/bn| → 0 as n → ∞.

In [6], it was shown that the Erdős-Rényi graph Y1(n, p) with p = n−α can be exactly
reconstructed from its 1-neighbourhoods with high probability when 0 < α < 1/3. We
extend this result to d ∈ N.

Theorem 1. The Linial–Meshulam model Yd(n, p) where p = n−α for 0 < α < 1/3, is
exactly reconstructable from its 1-neighbourhoods with high probability.

A rough idea of the proof of Theorem 1 is the following. The Fingerprint Lemma
(Lemma 4) establishes a sufficient condition for reconstructability. A union bound is
taken over all events that cause the sufficient condition to fail. A failing event in our case
is one subcomplex being embeddable in another. In particular, for the graph case (for

the electronic journal of combinatorics 32(3) (2025), #P3.41 6



d = 1), a failing event is one subgraph being embeddable in another graph. We don’t
think the range 0 < α < 1/3 is optimal for the reconstruction of Yd(n, p). We have the
following conjecture.

Conjecture 2. The Linial–Meshulam model Yd(n, p) with p = n−α is exactly recon-
structable from its 1-neighbourhoods with high probability if 0 < α < 1/2.

One can try to prove Conjecture 2 using the method used in [11]. Another direction of
work would be considering the reconstruction problem from its 2-neighbourhoods using
the method used in [6]. These remain for future works.

The next result is about non-reconstructibility of Yd(n, p). For d = 1, the graph
G(n, p) ≡ Y1(n, p) is non-reconstructible from its 1-neighbourhoods with high probability
when 1/2 < α < 1. We show that the same result holds for all d 󰃍 1.

Theorem 3. The Linial–Meshulam model Yd(n, p) where p = n−α for 1/2 < α < 1,
cannot be reconstructed from its 1-neighbourhoods with high probability.

The failure of reconstructability in the above mentioned regime of p is established by a
counting argument. The counting argument treats the collection of neighborhoods as the
input to a given algorithm. Intuitively, the argument shows that the number of inputs
is far smaller than the number of graphs generating those inputs. Some care is taken to
account for the fact that the inputs are not uniformly distributed, although conditioning
on the number of random simplices yields a uniform distribution. The fact that there are
many more inputs than possible outputs implies that the probability that the algorithm
outputs the correct complex vanishes asymptotically.

4 Proof of Theorem 1

In this section we prove Theorem 1. The following lemmas will be used in the proof.
Throughout we use p = n−α, where 0 < α < 1.

We first state a generalization of the fingerprint lemma [6, Lemma 2]. Let σ1, σ2 ∈
Xd−1. We say there is an edge between σ1 and σ2 in X, denoted by (σ1, σ2), if σ1 ∼ σ2 in
X. For σ1 ∼ σ2, Hσ1,σ2(X) denotes the subcomplex induced by the simplices of Sσ1 ∩Sσ2 ,
that is,

Hσ1,σ2 = Hσ1,σ2(X) := {τ ∈ X : τ ⊆ σ ∪ σ′ for some σ, σ′ ∈ Sσ1 ∩ Sσ2}.

See Figure 4 for an example. If dim(X) = 1 and v1, v2 ∈ X0 such that v1 ∼ v2 then Hv1,v2

is the subgraph induced by the common neighbours of v1 and v2. Two unordered edges
(σ1, σ2) and (σ3, σ4) are said to be equal, denoted by (σ1, σ2) = (σ3, σ4), if either σ1 =
σ3, σ2 = σ4 or σ1 = σ4, σ2 = σ3. It is clear that if (σ1, σ2) = (σ3, σ4) then Hσ1,σ2 ≃ Hσ3,σ4 .

Lemma 4 (Fingerprint Lemma). Let X be a complex with complete d − 1-dimensional
skeleton. If two edges (σ1, σ2) and (σ3, σ4) are equal whenever Hσ1,σ2 and Hσ3,σ4 are
isomorphic then X can be exactly reconstructed from the collection of its 1-neighbourhoods.
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In the next lemma, we give an upper bound (with high probability) on the number of
simplices that are connected with both σ1, σ2 ∈ Xd−1.

Lemma 5. Let σ1, σ2 ∈ Xd−1 such that σ1 ∪ σ2 ∈ Xd,p, that is, σ1 ∼ σ2 in Yd(n, p). The
number of common neighbours of σ1 and σ2 is denoted by

Wσ1,σ2 := |{σ ∈ Xd−1 : σ ∼ σ1, σ ∼ σ2 in Yd(n, p)}|.

Then there exists a positive constant C such that

P(Wσ1,σ2 󰃍 d− 1 + nc(n− d− 1)p2) 󰃑 exp(−Cn1+c−2α). (4)

In particular, if c > 2α− 1, we obtain Wσ1,σ2 − d+ 1 󰃑 n1+c−2α with high probability.

Figure 4: W(1,2),(1,3) = |{(1, 4), (1, 5), (1, 6), (2, 3)}| = 4.

In the next lemma, for σ1 ∼ σ2 and σ3 ∼ σ4, we derive a lower bound (with high
probability) on the number of simplices that are connected only with σ1, σ2 ∈ Xd−1, not
with σ3, σ4. We write an = Θ(bn) if there exist C1, C2 > 0 such that C1bn 󰃑 an 󰃑 C2bn
for all large n.

Lemma 6. Let σ1, σ2, σ3, σ4 ∈ Xd−1 such that σ1 ∼ σ2 and σ3 ∼ σ4. Define

S = Sσ1,σ2,σ3,σ4 := {σ ∈ Xd−1 : σ ∼ σi for i = 1, 2, 3, 4},
Z = Zσ1,σ2,σ3,σ4 := 1{σ1 ∼ σ3, σ1 ∼ σ4}+ 1{σ2 ∼ σ3, σ2 ∼ σ4}.

If (1− 2α) > 0 then there exists c > 0 such that, for large n,

P

󰀕
Wσ1,σ2 − |S|− Z 󰃑 1

2
np2

󰀖
󰃑 exp(−cn1−2α). (5)

The proofs of Lemmas 5 and 6 are given at the end of this section. We note down [6,
Lemma 3, Lemma 4] which will be used in the proofs.
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Lemma 7. [Chernoff ’s bound] Let T1, T2, . . . , Tn be independent indicator random vari-
ables and call T =

󰁓n
i=1 Ti. Then for any δ > 0,

P(T 󰃑 (1− δ)E(T )) 󰃑 exp

󰀕
−δ2

2
E(T )

󰀖
and

P(T 󰃍 (1 + δ)E(T )) 󰃑 exp

󰀕
− δ2

2 + δ
E(T )

󰀖
.

Lemma 8 (Gaudio and Mossel). [6, Lemma 1.11] Let X and Y be random variables such
that conditioned on Y , X ∼ Bin(Y, p). Let Z(m) ∼ Bin(m, p). Then

P
󰀓
X 󰃑 t1

󰀏󰀏󰀏Y 󰃍 t2) 󰃑 P(Z(t2) 󰃑 t1

󰀔
and P

󰀓
X 󰃍 t1

󰀏󰀏󰀏Y 󰃑 t2) 󰃑 P(Z(t2) 󰃍 t1

󰀔
.

Now we proceed to prove Theorem 1.

Proof of Theorem 1. Let σ1, σ2 ∈ Xd−1 such that σ1 ∼ σ2. Recall that Hσ1,σ2 denotes the
subcomplex induced by the vertices of Sσ1 ∩ Sσ2 in Yd(n, p). Note that the subcomplex
Hσ1,σ2 is random. For σ1, σ2, σ3, σ4 ∈ Xd−1 such that σ1 ∼ σ2, σ3 ∼ σ4, we show that, for
some s > 0,

P(Hσ1,σ2 ≃ Hσ3,σ4) = o(e−ns

) whenever (σ1, σ2) ∕= (σ3, σ4). (6)

Then the result follows by combining Lemma 4, (6) followed by an union bound argument.
It remains to prove (6).

Let S be as defined in Lemma 6 and Y1 be the subcomplex induced by the simplices
of Sσ1 ∩Sσ2\(S ∪{σ3, σ4}), the shared neighbours of σ1 and σ2 (excluding σ3 and σ4) that
are not neighbours of both σ3 and σ4. Let Y2 be the subcomplex induced by the simplices
of Sσ3 ∩ Sσ4 . Note that Y1 and Y2 are disjoint by construction.

Observe that if Hσ1,σ2 ≃ Hσ3,σ4 then Wσ1,σ2 = Wσ3,σ4 and Y1 can be embedded into Y2

as a subcomplex of Y2 (we write Y1 ⊂ Y2 with the abuse of notation). Thus

P(Hσ1,σ2 ≃ Hσ3,σ4) 󰃑 P(Y1 ⊂ Y2).

We claim that there exists max{0, 2α− 1} < c < 1− 3α and a, b, C > 0 such that

P (Y1 ⊂ Y2) 󰃑 n4(nan1+c−2α−bn2−5α

+ exp(−Cn1+c−2α)). (7)

The right hand side of the above equation will go to zero if 2 − 5α > 1 + c − 2α, which
is equivalent to say that c < 1− 3α. This is a consistent condition if α < 1

3
. Applying a

union bound,

P (∃σ1 ∼ σ2, σ3 ∼ σ4 : Hσ1,σ2 ≃ Hσ3,σ4)

󰃑 n4dP (Hσ1,σ2 ≃ Hσ3,σ4)

󰃑 n4(d+1)(nan1+c−2α−bn2−5α

+ exp(−Cn1+c−2α))

= o(n−s),
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for any s > 0 as α < 1/3. Thus, for any (σ1, σ2) ∕= (σ3, σ4), we have Hσ1,σ2 ∕≃ Hσ3,σ4 with
high probability if α < 1/3. This proves result.

The rest of the proof is dedicated to prove the claim stated in (7). We have

P(Y1 ⊂ Y2)

󰃑
󰁛

λ,µ,k

P(
󰀋
Y1 ⊂ Y2 : Wσ1,σ2 = Wσ3,σ4 = λ+ Z, |S| = µ, | Suppd(Y

d−1
1 )| = k

󰀌
),

where λ is the number of elements in the set Sσ1 ∩ Sσ2 \ {σ3, σ4}, Z as in Lemma 6 and
Suppd(A) = {σ1 ∪ σ2 ∈ Xd,p|σ1, σ2 ∈ A} for A ⊆ Xd−1. Note that, given |S| = µ, at most
2µ + 1 d-simplices are revealed in Xd,p because σ1 and σ2 are connected and each σ ∈ S
is connected with both σ1 and σ2. Therefore

P
󰀃
Y1 ⊂ Y2 : Wσ1,σ2 = Wσ3,σ4 = λ+ Z, |S| = µ, | Suppd(Y

d−1
1 |) = k

󰀄

󰃑
󰀕
λ+ 2

λ− µ

󰀖
(λ− µ)!pk−2µ−1

󰃑(λ+ 2)λ−µ
󰀃
n−α

󰀄k−2λ−1
,

as µ 󰃑 λ and p = n−α. The first inequality follows from the fact that λ + Z 󰃑 λ + 2, so
we can choose (λ − µ) simplices in at most

󰀃
λ+2
λ−µ

󰀄
ways and their numbering is possible

in at most (λ − µ)! ways. The factor pk−2µ−1 appears because we need to add at least
(k − 2µ− 1) many d-simplices in the complex. Since λ− µ 󰃑 λ we have

P
󰀃
Y1 ⊂ Y2 : Wσ1,σ2 = Wσ3,σ4 = λ+ Z, |S| = µ, | Suppd(Y

d−1
1 |) = k

󰀄

󰃑 exp (λ log(n)− α(k − 2λ− 1) log(n))

󰃑 exp{((2α + 1)λ+ α− αk) log n}
= n(2α+1)λ+α−αk. (8)

Next we complete the proof of (7) using the following two claims, which estimate λ and
k respectively,

P(|Sσ1 ∩ Sσ2 \ {σ3, σ4}| 󰃑 n1+c−2α) 󰃍 1− exp(−Cn1+c−2α). (9)

P(| Suppd(Y
d−1
1 )| 󰃍 C1n

2−5α) 󰃍 1− exp(−C2n
2−5α), (10)

where C,C1 and C2 are positive constants. Using (9) and (10) from (8) we get

P (Y1 ⊂ Y2) 󰃑 n4 · nan1+c−2α−bn2−5α

+ n4 exp(−Cn1+c−2α),

as λ, µ 󰃑 n and k 󰃑 n2. This completes the proof of (7). It remains to prove (9) and
(10).

Proof of (9): Observe that (9) follows from Lemma 5.

Proof of (10): Clearly, given Wσ,σ′ − |S| − Z, | Suppd(Y
d−1
1 )| ∼ Bin(Wσ,σ′ − |S| − Z, p).

From Lemma 6, for some c > 0, we have

P(Wσ,σ′ − |S|− Z 󰃍 1

2
np2) 󰃍 1− e−cn1−2α

.
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The right hand side goes to 1 if 1− 2α > 0. Lemma 8 and Lemma 7 imply that

P

󰀕
| Suppd(Y

d−1
1 )| 󰃑 (1− 󰂃)p

󰀕
1
2
np2

2

󰀖 󰀏󰀏󰀏 (Wσ,σ′ − |S|− Z) 󰃍 1

2
np2

󰀖

󰃑 P

󰀕
Bin(

1

2
np2, p) 󰃑 (1− 󰂃)p

󰀕
1
2
np2

2

󰀖󰀖

󰃑 exp

󰀕
−󰂃2

2
p

󰀕
1
2
np2

2

󰀖󰀖

= exp(−C2n
2−5α),

for some positive constant C2. Thus we have

P(| Suppd(Y
d−1
1 )| 󰃍 C1n

2−5α) 󰃍 1− exp(−C2n
2−5α),

for some positive constant C1. This complete the proof. 󰃈

Next we give the proofs of Lemmas 4, 5 and 6. The proof of Lemma 4 can be derived
from [6, Lemma 2], for sake of completeness we give a proof.

Proof of Lemma 4. Since X has complete (d − 1)-dimensional skeleton, in order to re-
construct X it is enough to check whether any two simplices σ1, σ2 ∈ Xd−1 (σ1 ∕= σ2)
are connected in X. To determine that, we examine the neighbourhoods of σ1, σ2 by
observing the subcomplexes Hσ1,σ3 and Hσ2,σ4 for neighbours σ1 ∼ σ3 and σ2 ∼ σ4. The
reconstruction algorithm is as follows: We conclude that σ1 ∼ σ2 in X if there exist
σ3, σ4 ∈ Xd−1 such that σ1 ∼ σ3, σ2 ∼ σ4 and Hσ1,σ3 is isomorphic with Hσ2,σ4 .

Suppose σ1 ∼ σ2 in X. We choose σ4 = σ1 and σ3 = σ2. Then, Hσ1,σ3 = Hσ2,σ4 =
Hσ1,σ2 . Conversely, suppose there are some σ3, σ4 ∈ Xd−1 such that σ1 ∼ σ3, σ2 ∼ σ4 and
Hσ1,σ3 is isomorphic with Hσ2,σ4 . Then, the hypothesis of the lemma says that (σ1, σ3) =
(σ2, σ4). Therefore, σ1 = σ4 and σ3 = σ2 because σ1 ∕= σ2. Hence, (σ1, σ2) is an edge in
X or in other words σ1 ∼ σ2. So, continuing the process described in the algorithm, we
recover the complex. 󰃈

Proof of Lemma 5. For σ1 ∼ σ2, define Sσ1,σ2 = S ′
σ1,σ2

∪ S ′′
σ1,σ2

where

S ′
σ1,σ2

= {σ ∈ Xd−1 : σ ∼ σ1, σ ∼ σ2, σ ⊂ σ1 ∪ σ2}
S ′′
σ1,σ2

= {σ ∈ Xd−1 : σ ∼ σ1, σ ∼ σ2, σ ⊈ σ1 ∪ σ2}

Clearly, Wσ1,σ2 = |S ′
σ1,σ2

|+|S ′′
σ1,σ2

|. Observe that if σ1, σ2 ∕= σ ∈ Xd−1 such that σ ⊂ σ1∪σ2

then σ ∼ σ1 and σ ∼ σ2. Therefore

|S ′
σ1,σ2

| = d− 1. (11)

Again σ1 ∼ σ2 implies that σ1 ∩ σ2 ∈ Xd−2. Therefore if σ ∼ σ1, σ2 but σ ⊈ σ1 ∪ σ2 then
σ will be of the form (σ1 ∩ σ2) ∪ {v} for some v ∈ X0\(σ1 ∪ σ2). See Figure 5.
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Figure 5: simplices (1, 5) and (1, 3) are connected with both (1, 4), (1, 2), as
(125), (145), (134), (123) simplices are included in the complex.

Therefore S ′′
σ1,σ2

can be written as

S ′′
σ1,σ2

= {(σ1 ∩ σ2) ∪ {v} : v ∈ X0\{σ1 ∪ σ2}, (σ1 ∩ σ2) ∪ {v} ∈ Xd,p}.

Which implies that |S ′′
σ1,σ2

| ∼ Bin(n− d− 1, p2), as we need to add two simplices to get
an element in S ′′

σ1,σ2
. See Figure 5. Let c > 0. Using Lemma 7, we have

P(|S ′′
σ1,σ2

| 󰃍 nc(n− d− 1)p2) 󰃑 exp

󰀕
−(nc − 1)2

1 + nc
(n− d− 1)n−2α

󰀖

󰃑 exp(−Cn1+c−2α), (12)

for some constant C > 0. We get the result by combining (11) and (12). Clearly, the
right hand side goes to zero if c > 2α− 1. 󰃈

Proof of Lemma 6. Let σ ∈ S. Then σ ∼ σ1, σ2 and σ ∼ σ3, σ4. Therefore

σ = (σ1 ∩ σ2) ∪ {v} and σ = (σ3 ∩ σ4) ∪ {v′}

for some v, v′ ∈ X0. Thus we get the following identity

(σ1 ∩ σ2) ∪ {v} = (σ3 ∩ σ4) ∪ {v′}. (13)

Case-I: Suppose | ∩4
i=1 σi| = d − 1, that is, (σ1 ∩ σ2) = (σ3 ∩ σ4). Then any v = v′ ∈

X0\(∪4
i=1σi) satisfies (13). Thus

P((σ1 ∩ σ2) ∪ {v} ∈ S ′′
σ1,σ2

\S) = p2(1− p2),

where S is as defined in Lemma 6. Therefore we get |S ′′
σ1,σ2

| − |S| − Z ∼ Bin(n − d −
3, p2(1− p2)). Fix 0 < 󰂃 < 1/2. Lemma 7 implies that

P(|S ′′
σ1,σ2

|− |S|− Z 󰃑 󰂃(n− d− 3)p2(1− p2)) 󰃑 exp(−󰂃2

2
(n− d− 3)p2(1− p2)).

If 1− 2α > 0, then the last equation implies that

P(Wσ1,σ2 − |S|− Z 󰃑 1

2
np2) 󰃑 exp(−Θ(n1−2α)), (14)
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as |S ′
σ1,σ2

| = d− 1.

Case-II: Suppose | ∩4
i=1 σi| = d− 2. Then there is only one choice of v, v′ which satisfies

(13), namely, v = (σ1∩σ2)\(σ3∩σ4) and v′ = (σ3∩σ4)\(σ1∩σ2). Thus |S| 󰃑 1. We have

Wσ1,σ2 − |S|− Z 󰃑 Wσ1,σ2 .

Next we give bound on Wσ1,σ2 . We have

Wσ1,σ2 = |S ′
σ1,σ2

|+ |S ′′
σ1,σ2

|,

where S ′
σ1,σ2

and S ′′
σ1,σ2

are as defined in the proof of Lemma 5. Since |S ′′
σ1,σ2

| ∼ Bin(n−
d− 1, p2), by Chernoff’s bound (Lemma 7), for 0 < 󰂃 < 1/2,

P(|S ′′
σ1,σ2

| 󰃑 󰂃(n− d− 1)p2) 󰃑 exp(−󰂃2

2
(n− d− 1)p2).

If 1− 2α > 0 then the last equation implies that

P(Wσ1,σ2 󰃑
1

2
np2) 󰃑 exp(−Θ(n1−2α)),

as |S ′
σ1,σ2

| = d− 1, |S| 󰃑 1, |Z| 󰃑 2. Thus we get, for large n,

P

󰀕
Wσ1,σ2 − |S|− Z 󰃑 1

2
np2

󰀖
󰃑 exp(−Θ(n1−2α)). (15)

Case-III: Suppose | ∩4
i=1 σi| 󰃑 d − 3. Then there is no v, v′ ∈ X0 which satisfies (13).

Thus |S| = 0. Hence the result follows as in Case II.

Similar analysis can be done when the edges are of the form (σ1, σ2) and (σ2, σ3). It
can be shown that |S ′′

σ1,σ2
| − |S| − Z ∼ Bin(n − d − 3, p2(1 − p)) if | ∩3

i=1 σi| = d − 1.
Otherwise, |S| 󰃑 1. Thus, following the calculation as in Case-I,II, if 1− 2α > 0 we get

P

󰀕
Wσ1,σ2 − |S|− Z 󰃑 1

2
np2

󰀖
󰃑 exp(−Θ(n1−2α)).

We skip the details here. Hence the result. 󰃈

5 Proof of Theorem 3

This section is dedicated for the proof of Theorem 3. Let X be a complex, where

X := {X0, . . . , Xd−1, X
d},

and Xd ⊆ Xd. Recall Sσ denotes the the set of neighbours of σ ∈ Xd−1. Define

Dσ = Dσ(Sσ) := {σ ∪ σ′ : σ′ ∈ Sσ} and Suppd(Sσ) := {σ1 ∪ σ2 : σ1, σ2 ∈ Sσ}.
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Observe that each simplex inDσ(Sσ) contains σ. However, not every simplex in Suppd(Sσ)
contains σ. The set of d-simplices which do not contain σ is denoted by

D∗
σ = D∗

σ(Sσ) := Suppd(Sσ)\Dσ(Sσ).

Observe that |Dσ| = deg(σ). The 1-neighbourhood of σ in X can be written as

N1,X(σ) = (Sσ, Dσ, D
∗
σ).

An illustration of N1,X(σ), Dσ, D
∗
σ is given in Figure 6.

Figure 6: An illustration for N1,X(σ), Dσ, D
∗
σ.

Fix 0 < 󰂃 < 1 and qn = (1 + 󰂃)p. For c > 0, suppose tn = (1 + nc)p. Define

S =

󰀝
{N1,X(σ), σ ∈ Xd−1} : |Dσ| < nqn, |D∗

σ| <
1

2
n2q2ntn, ∀σ ∈ Xd−1

󰀞
, (16)

the set of all possible 1-neighbourhood collections where the degree of each central vertex
is less than nqn and each neighbourhood has fewer than 1

2
n2q2ntn neighbouring d-faces

those are not counted in deg(σ).

Lemma 9. Let N1(X) and S be as defined in (3) and (16) respectively. Let X ∈ Yd(n, p)
with p = n−α and 0 < α < 1. If c > 3α− 2 then

P(N1(X) ∈ S) 󰃍 1− e−anb

for some positive constants a and b.

Lemma 10. Let I :=
󰀋
m ∈ N :

󰀏󰀏m−
󰀃

n
d+1

󰀄
p
󰀏󰀏 < 󰂃

󰀃
n

d+1

󰀄
p
󰀌
, where p = n−α. Then

P(|Xd,p| ∈ I) 󰃍 1− e−nd

,

where |Xd,p| denotes the number of d-simplices in Yd(n, p).

the electronic journal of combinatorics 32(3) (2025), #P3.41 14



Lemma 11. Let S be as defined in (16). If c < 2α− 1 then

max
m∈I

nd|S|
󰀃( n

d+1)
m

󰀄 = o(e−ns

),

for some s > 0.

Proof of Theorem 3. We consider a particular complex reconstruction algorithm which
outputs a complex when a collection of 1-neighbourhoods is given. Let S be a collection
of 1 neighbourhoods as defined in (16). The algorithm maps each element of S to an
isomorphism class, which corresponds to at most nd! labelled complexes. The algorithm
fails if X ∈ Yd(n, p) such that N1(X) ∈ S but the output of the algorithm of N1(X) is
not isomorphic to X.

We condition on the event |Xd,p| = m for some m ∈ N. Given this information,

there are
󰀃( n

d+1)
m

󰀄
possible labelled d-simplices which may be chosen with equal probability.

Therefore, conditioned on |Xd,p| = m, the algorithm fails when any complex X is not
achieved by the algorithm output. Let pm denote the probability of failure given |Xd,p| =
m. Thus,

pm = P( algorithm fails
󰀏󰀏󰀏 |Xd,p| = m)

󰃍 P (N1(X) ∈ S||Xd,p| = m)− nd!|S|
󰀃( n

d+1)
m

󰀄

=

󰀃( n
d+1)
m

󰀄
− nd!|S|

󰀃( n
d+1)
m

󰀄 − P (N1(X) /∈ S||Xd,p| = m) .

Let I ⊆
󰀋
1, 2, . . . ,

󰀃
n

d+1

󰀄󰀌
be as defined in Lemma 10. Let p∗ denote the overall failure

probability of the algorithm. Then

p∗ 󰃍
󰁛

m∈I

pm

󰃍
󰁛

m∈I

󰀃( n
d+1)
m

󰀄
− nd!|S|

󰀃( n
d+1)
m

󰀄 P(|Xd,p| = m)− P ({N1(X) /∈ S} ∩ {|Xd,p| ∈ I})

󰃍 P(|Xd,p| ∈ I)min
m∈I

󰀃( n
d+1)
m

󰀄
− nd!|S|

󰀃( n
d+1)
m

󰀄 −P(N1(X) /∈ S).

Therefore Lemmas 9, 10 and 11 implies that

p∗ 󰃍 (1− e−nd

)(1− e−ns

)− e−anb 󰃍 1− e−a′nb′
,

for some s, a, b, a′, b′ > 0, if the constant c satisfies

max{0, 3α− 2} < c < min{α, 2α− 1}.

The above is satisfied when 1/2 < α < 1 as required. The proof is then completed by
choosing c = 1/2(max 0, 3α− 2 + 2α− 1) since min{α, 2α− 1} = 2α− 1. 󰃈
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The rest of the section is dedicated to prove Lemmas 9, 10 and 11.

Proof of Lemma 9. Recall Sσ denotes the set of neighbours of σ ∈ Xd−1 in Yd(n, p).
Consequently we define Dσ and D∗

σ as defined above. Note that Sσ is a random set, hence
Dσ and D∗

σ are random. We show that if c > 3α− 2 then

P

󰀳

󰁃
󰁟

σ∈Xd−1

󰀓
{|Dσ| < nqn} ∩ {|D∗

σ| <
1

2
n2q2ntn}

󰀔
󰀴

󰁄 󰃍 1− e−anb

, (17)

for some positive constants a and b. Clearly (17) gives the result.

Proof of (17): Observe that |Dσ| = deg(σ) ∼ Bin(n− d, p). Recall qn = (1 + 󰂃)p. Then
Lemma 7 gives

P (|Dσ| < nqn) 󰃍 P (|Dσ| < (n− d)qn)

= 1−P (|Dσ| 󰃍 (1 + 󰂃)(n− d)qn)

󰃍 1− exp

󰀕
−󰂃2p(n− d)

3

󰀖
. (18)

Next we derive a bound of |D∗
σ| with high probability. We have

P

󰀕
|D∗

σ| 󰃍
1

2
n2q2ntn)

󰀖

󰃑 P

󰀕
|D∗

σ| 󰃍
1

2
n2q2ntn

󰀏󰀏󰀏|Dσ| < nqn)

󰀖
+P(|Dσ| 󰃍 nqn). (19)

Note that, conditioned on |Dσ|, |D∗
σ| ∼ Bin(

󰀃|Dσ |
2

󰀄
, p). Lemmas 7 and 8 imply

P

󰀕
|D∗

σ| 󰃍
1

2
n2q2ntn

󰀏󰀏󰀏 |Dσ| 󰃑 nqn)

󰀖
󰃑 P

󰀕
|D∗

σ| 󰃍
1

2
n2q2ntn

󰀏󰀏󰀏 |Dσ| = nqn)

󰀖

󰃑 exp

󰀕
− n2c

2 + nc

󰀕
nqn
2

󰀖
p

󰀖
. (20)

Combining the bounds from (18) and (20) and substituting in (19), we obtain

P

󰀕
|D∗

σ| 󰃍
1

2
n2q2ntn)

󰀖
󰃑 exp

󰀕
− n2c

2 + nc

󰀕
nqn
2

󰀖
p

󰀖
+ exp

󰀕
−󰂃2p(n− d)

3

󰀖
.

By the union bound, the required probability is given by

P

󰀳

󰁃
󰁟

σ∈Xd−1

󰀓
{|Dσ| < nqn} ∩ {|D∗

σ| <
1

2
n2q2ntn}

󰀔
󰀴

󰁄

󰃍 1−
󰀕
n

d

󰀖
exp

󰀕
− n2cd

2 + nc

󰀕
nqn
2

󰀖
p

󰀖
+

󰀕
n

d

󰀖
exp

󰀕
−󰂃2p(n− 1)

3

󰀖

󰃍 1− nd exp
󰀃
−C3n

2+c−3α
󰀄
− nd exp

󰀃
−C4n

1−α
󰀄
,

for some positive constants C3, C4. The above will give us a high probability bound when
2 + c− 3α > 0. Hence the result if c > 3α− 2, as α < 1. 󰃈
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Proof of Lemma 10. Note that |Xd,p| ∼ Bin
󰀃󰀃

n
d+1

󰀄
, p
󰀄
. Then Lemma 7 gives

P(|Xd,p| /∈ I) = P

󰀕󰀏󰀏󰀏󰀏|Xd,p|−
󰀕

n

d+ 1

󰀖
p

󰀏󰀏󰀏󰀏 󰃍 󰂃

󰀕
n

d+ 1

󰀖
p

󰀖
󰃑 2 exp

󰀕
−󰂃2

3

󰀕
n

d+ 1

󰀖
p

󰀖
.

Using p = n−α and
󰀃

n
d+1

󰀄
󰃑 nd+1, we get the result. 󰃈

Proof of Lemma 11. By the definition of S, we have |Dσ| ∈ {1, . . . , nqn} and |D∗
σ| ∈

{1, . . . , 1
2
n2q2ntn} for all σ ∈ Xd−1. Again the choices for the number of neighbouring

d-simplices is upper bounded by
󰀃 (nqn

2 )
1
2
n2q2ntn

󰀄
for each σ. Therefore

|S| 󰃑
󰀕
nqn ·

1

2
n2q2ntn ·

󰀕 󰀃
nqn
2

󰀄

1
2
n2q2ntn

󰀖󰀖(nd)
󰃑

󰀣
1

2
n3q3ntn

󰀕
e

tn

󰀖 1
2
n2q2ntn

󰀤(nd)

, (21)

in the last inequality we use the fact that
󰀃
n
k

󰀄k 󰃑
󰀃
n
k

󰀄
󰃑

󰀃
en
k

󰀄k
for positive integers n and

k with 1 󰃑 k 󰃑 n. Now,

min
m∈I

󰀕󰀃 n
d+1

󰀄

m

󰀖
=

󰀕 󰀃
n

d+1

󰀄

(1− 󰂃)
󰀃

n
d+1

󰀄
p

󰀖
󰃍

󰀕
1

(1− 󰂃)p

󰀖(1−󰂃)( n
d+1)p

. (22)

Therefore, using (21), (22) and the fact that nd! 󰃑 exp
󰀃
dnd log(n)

󰀄
, we get

max
m∈I

nd!|S|
󰀃( n

d+1)
m

󰀄 󰃑
exp

󰀃
dnd log(n)

󰀄󰀕
1
2
n3q3ntn

󰀓
e
tn

󰀔 1
2
n2q2ntn

󰀖(nd)

󰀓
1

(1−󰂃)p

󰀔(1−󰂃)( n
d+1)p

= exp

󰀝
dnd log(n) +

󰀕
n

d

󰀖
log(

1

2
n3q3ntn) +

󰀕
n

d

󰀖
1

2
n2q2ntn log

󰀕
e

tn

󰀖
)

− (1− 󰂃)

󰀕
n

d+ 1

󰀖
p log

󰀕
1

(1− 󰂃)p

󰀖󰀞

󰃑 exp

󰀝
dnd log(n) + C5n

d log(n3+c−4α) + C6n
c−3α+d+2 log(n) (23)

− C7n
1+d−α log(n)

󰀞
,

for some positive constants C5, C6, C7. The right hand side of (23) goes to zero exponen-
tially when d < d+1−α (which is always true since α < 1) and c−3α+d+2 < 1+d−α.
In other words, the required condition is c < 2α− 1. 󰃈
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