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Abstract

We relate star colouring of even-degree regular graphs to the notions of locally
constrained graph homomorphisms to the oriented line graph L⃗(Kq) of the complete
graph Kq and to its underlying undirected graph L∗(Kq). Our results have conse-
quences for locally constrained graph homomorphisms and oriented line graphs in
addition to star colouring. We show that L∗(H) is a 2-lift of the line graph L(H)
for every graph H. Dvořák, Mohar and Šámal (J. Graph Theory, 2013) proved that
for every 3-regular graph G, the line graph of G is 4-star colourable if and only
if G admits a locally bijective homomorphism to the cube Q3. We generalise this
result as follows: for p ⩾ 2, a K1,p+1-free 2p-regular graph G admits a (p+ 2)-star
colouring if and only if G admits a locally bijective homomorphism to L∗(Kp+2). As
a result, if a Kp+1-free 2p-regular graph G with p ⩾ 2 is (p+ 2)-star colourable, then
−2 and p − 2 are eigenvalues of G. We also prove the following: (i) for p ⩾ 2, a
2p-regular graph G admits a (p+2)-star colouring if and only if G has an orientation
that admits an out-neighbourhood bijective homomorphism to L⃗(Kp+2); (ii) the
line graph of a 3-regular graph G is 4-star colourable if and only if G is bipartite
and distance-two 4-colourable; and (iii) it is NP-complete to check whether a planar
4-regular 3-connected graph is 4-star colourable.
Mathematics Subject Classifications: 05C15, 05C60

1 Introduction

Star colouring is an extensively studied colouring variant [1–13], and there is an exclusive
survey [14] on star colouring of line graphs. A star colouring is a proper vertex colouring
without any bicoloured 4-vertex path. Our focus in this paper is on star colouring of regular
graphs and related notions, such as graph orientations and homomorphisms. Albertson et
al. [2] and independently Nešetřil and Mendez [3] found that star colourings of a graph
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G are associated with certain orientations of G, called in-orientations. The number of
colours required to star colour a d-regular graph is at least ⌈(d+ 3)/2⌉ [15], and at least
⌈(d+4)/2⌉ for d ⩾ 3 [16]. Even-degree regular graphs attaining this bound (i.e., 2p-regular
(p+2)-star colourable graphs) are characterised in terms of a special case of in-orientations
in [16]. We show that the structure of 2p-regular (p+ 2)-star colourable graphs is closely
related to locally constrained graph homomorphisms and a graph operation called oriented
line graph operation (which is in turn related to the notions of line graph of a graph and
line digraph of a digraph).

The locally constrained graph homomorphisms which are central to this paper are the
well-known Locally Bijective Homomorphism (LBH), and an oriented version we introduce
called Out-neighbourhood Bijective Homomorphism (OBH). An LBH from a graph G to a
graph H is a mapping ψ : V (G) → V (H) such that for every vertex v of G, the restriction
of ψ to the neighbourhood NG(v) is a bijection from NG(v) onto NH(ψ(v)) [17]. An OBH
from an oriented graph G⃗ to an oriented graph H⃗ is a mapping ψ : V (G⃗) → V (H⃗) such
that for every vertex v of G⃗, the restriction of ψ to the out-neighbourhood N+

G⃗
(v) is a

bijection from N+

G⃗
(v) to N+

H⃗
(ψ(v)).

The oriented line graph of (an undirected) graph G is the oriented graph with vertex
set

⋃
uv∈E(G){(u, v), (v, u)} and there is an arc from a vertex (u, v) to a vertex (v, w) in

it when u ̸= w [18]. We denote the oriented line graph of a graph G by L⃗(G), and its
underlying undirected graph by L∗(G). We show that L∗(G) is always a 2-lift of the line
graph L(G), which means that L∗(G) has double the number of vertices of L(G) and it
admits an LBH to L(G). Dvořák, Mohar and Šámal [19] proved that for every 3-regular
graph H, the line graph of H is 4-star colourable if and only if H admits an LBH to the
cube Q3. Thanks to the properties of locally bijective homomorphisms (see Theorem 7),
this result is equivalent to the following: for every 3-regular graph H, the line graph L(H)
is 4-star colourable if and only if L(H) admits an LBH to L(Q3). Clearly, the following
statement is stronger: a K1,3-free 4-regular graph G is 4-star colourable if and only if G
admits an LBH to L(Q3). Since L(Q3) ∼= L∗(K4), it follows that a K1,3-free 4-regular
graph G is 4-star colourable if and only if G admits an LBH to L∗(K4). We prove the
following generalisation of the statement.

• A K1,p+1-free 2p-regular graph G with p ⩾ 2 admits a (p+ 2)-star colouring if and
only if G admits an LBH to L∗(Kp+2) (see Theorem 29).

Other main contributions of the paper are as follows.

• A 2p-regular graph G with p ⩾ 2 admits a (p + 2)-star colouring if and only if G
admits an OBH to L⃗(Kp+2) (see Theorem 22).

• For every 3-regular graph G, the line graph of G is 4-star colourable if and only if G
is bipartite and distance-two 4-colourable (see Theorem 27).

• It is NP-complete to check whether a planar 4-regular graph is 4-star colourable (see
Corollary 35).
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• K1,p+1-free 2p-regular (p+ 2)-star colourable graphs G have the following properties
for p ⩾ 2:

– Eigenvalues of adjacency matrix of G include −2 and p− 2 (see Theorem 30).

– G has an intersection model, namely a clique graph (see Theorem 34).

– if p = 2, then G is a line graph (see Theorem 31).

This is an extension of the work in [16], but can be read independently. Parts of this
work appeared in [20] and [21]. This paper is organised as follows. Section 2 provides the
definitions. Section 3 presents some preliminaries and results on the tools we employ. The
main results and proofs appear in Section 4. We conclude with Section 5 devoted to open
problems.

2 Definitions

We denote the set of positive integers by N. All graphs considered in this paper are finite
and simple, and undirected unless otherwise specified. We follow West [22] for graph
theory terminology and notation. A q-clique in a graph G is a set of q pairwise adjacent
vertices of G. We assume that Zq is the vertex set of the complete graph Kq. The graph
K1.3 is also called a claw, and the graph K4 − e is also called a diamond. For a fixed
graph H, a graph is said to be H-free if no induced subgraph of G is isomorphic to H. A
graph G is said to be odd-hole-free if G is C2q+3-free for every q ∈ N. The bipartite double
G×K2 of G is a graph with vertex set V (G)× Z2, and two vertices (u, i) and (v, j) in it
are adjacent if uv ∈ E(G) and i ̸= j.

For k ∈ N, a k-colouring of a graph G is a function f : V (G) → Zk such that f(u) ̸= f(v)
for every edge uv of G. A coloured graph is an ordered pair (G, f) where G is a graph and
f is a colouring of G. A coloured graph (G, f) is said to be a k-coloured graph if f is a
k-colouring of G. A bicoloured component of a k-coloured graph (G, f) is a component of
the subgraph of G induced by some pair of colour classes (i.e., a component of G[Vi ∪ Vj],
where Vℓ = f−1(ℓ) for each ℓ ∈ Zk). A k-colouring f of G is a k-star colouring of G if
every bicoloured component of (G, f) is a star (i.e., K1,q, where q ⩾ 0). A k-colouring f of
G is a distance-two k-colouring of G if every bicoloured component of (G, f) is K1 or K2.
The line graph of a graph G, denoted by L(G), is the graph with vertex set E(G), and two
vertices in L(G) are adjacent if the corresponding edges in G are incident on a common
vertex in G. The clique graph of a graph G, denoted by K(G), is the intersection graph of
maximal cliques in G. That is, the vertex set of K(G) is the set of all maximal cliques in G,
and two vertices in K(G) are adjacent if the corresponding cliques in G intersect. A graph
G is said to be a clique graph if there exists a graph H such that G ∼= K(H). A graph
G is locally linear if every edge in G is in exactly one triangle in G [23]. A locally linear
graph G is an even-degree graph, and for each vertex v of G, the neighbourhood of v in G
induces a matching in G (hence, a locally linear graph is also called a locally matching
graph). For a fixed graph H, a graph G is said to be locally-H if the neighbourhood of
each vertex of G induces H (i.e., G[NG(v)] ∼= H for all v ∈ V (G)). For every pair of
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positive integers q and r, let F (q, r) denote the family of connected qr-regular graphs G
such that the neighbourhood of each vertex of G induces qKr [24]. That is, F (q, r) is the
family of connected locally-qKr graphs. The next observation follows from the definitions.

Observation 1. For p ⩾ 2, a connected 2p-regular graph G is a locally linear graph (i.e.,
locally matching graph) if and only if G ∈ F (p, 2).

Devillers et al. proved that for every q ⩾ 2, r ⩾ 1 and G ∈ F (q, r), we have
K(G) ∈ F (r + 1, q − 1) and K(K(G)) ∼= G [24, Theorem 1.4].

An orientation G⃗ of a graph G is the directed graph obtained by assigning a direction
on each edge of G; that is, if uv is an edge in G, then exactly one of (u, v) or (v, u) is an
arc in G⃗. An orientation G⃗ is Eulerian if the in-degree equals the out-degree for every
vertex. A orientation G⃗ is strongly connected if for every pair of vertices u and v, there is
a directed u, v-path in G⃗.

A homomorphism from a graph G to a graph H is a mapping ψ : V (G) → V (H) such
that ψ(u)ψ(v) is an edge in H whenever uv is an edge in G. If ψ is a homomorphism
from G to H and ψ(v) = w, then we say that v is a copy of w in G (under ψ). Let G and
H be two graphs with orientations G⃗ and H⃗, respectively. A homomorphism from the
orientation G⃗ to the orientation H⃗ is a mapping ψ : V (G⃗) → V (H⃗) such that (ψ(u), ψ(v))

is an arc in H⃗ whenever (u, v) is an arc in G⃗. If ψ is a homomorphism from G⃗ to H⃗ and
ψ(v) = w, then we say that v is a copy of w in G⃗ (under ψ). We say that a homomorphism
from G to H (or from G⃗ to H⃗) is degree-preserving if degG(v) = degH(ψ(v)) for every
v ∈ V (G).

A locally bijective homomorphism (in short, LBH ) from G to H is a mapping
ψ : V (G) → V (H) such that for every vertex v of G, the restriction of ψ to the neighbour-
hood NG(v) is a bijection from NG(v) onto NH(ψ(v)) [17] (see Figure 1 for an example;
observe that such a mapping ψ is always a homomorphism from G to H). A homomorphism
ψ from G to H is locally injective if for every vertex v of G, the restriction of ψ to the
neighbourhood NG(v) is an injection from NG(v) to NH(ψ(v)) [17]. In other words, a
homomorphism ψ from G to H is locally bijective (resp. injective) if for each vertex w of
H and each neighbour x of w in H, each copy of w in G has exactly one (resp. at most
one) copy of x in G as its neighbour.

Similar to the notion of locally constrained homomorphisms between (undirected)
graphs, one can define locally constrained homomorphisms between orientations (i.e.,
oriented graphs) and between directed graphs. Such notions can be defined in a variety
of ways [25]. A notion of locally injective homomorphism between directed graphs is
defined and studied by MacGillivray and Swarts [26]. We are interested in a similar notion
of locally constrained homomorphisms between orientations. Let G and H be graphs
with orientations G⃗ and H⃗, respectively. Recall that a homomorphism from G⃗ to H⃗ is
a mapping ψ : V (G⃗) → V (H⃗) such that (ψ(u), ψ(v)) is an arc in H⃗ whenever (u, v) is
an arc in G⃗. We define an out-neighbourhood bijective homomorphism from G⃗ to H⃗ as
a mapping ψ : V (G⃗) → V (H⃗) such that for every vertex v of G⃗, the restriction of ψ to
the out-neighbourhood N+

G⃗
(v) is a bijection from N+

G⃗
(v) to N+

H⃗
(ψ(v)). Observe that out-

neighbourhood bijective homomorphisms from G⃗ to H⃗ are indeed homomorphisms from G⃗
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Figure 1: A locally bijective homomorphism from a graph G to a graph H. The vertices
in H are labelled distinct and are drawn by distinct shapes. For each vertex w of H, each
copy of w in G is drawn in the same shape as w (and labelled the same).
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Figure 2: An out-neighbourhood bijective homomorphism from an oriented graph G⃗ to
an oriented graph H⃗. The vertices in H⃗ are labelled distinct and are drawn by distinct
shapes. For each vertex w of H⃗, each copy of w in G⃗ is drawn in the same shape as w
(and labelled the same).

to H⃗. A homomorphism ψ from G⃗ to H⃗ is out-neighbourhood injective is if for every vertex
v of G⃗, the restriction of ψ to the out-neighbourhood N+

G⃗
(v) is an injection from N+

G⃗
(v)

to N+

H⃗
(ψ(v)). In other words, a homomorphism ψ from G⃗ to H⃗ is out-neighbourhood

bijective (resp. injective) if for each vertex w of H⃗ and each out-neighbour x of w in H⃗,
each copy of w in G⃗ has exactly one (resp. at most one) copy of x in G⃗ as its out-neighbour.

Bard et al. [25] defined various notions of locally injective homomorphisms between
oriented graphs. A homomorphism ψ from a oriented graph G⃗ to a oriented graph H⃗
is called a locally bijective homomorphism if the following hold for every vertex v of G⃗:
(i) ψ maps the in-neighbours of v bijectively to in-neighbours of ψ(v), and (ii) ψ maps the
out-neighbours of v bijectively to out-neighbours of ψ(v) (in the terminology of Bard et
al. [25], it is an ios-bijective homomorphism, where ‘ios’ is short for ‘in and out separately’).
In contrast, an iot-bijective homomorphism between two oriented graphs (where ‘iot’
stands for ‘in and out together’) is precisely a locally bijective homomomorphism between
the underlying undirected graphs. It is a folklore result that for two graphs G and H, a
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mapping ψ : V (G) → V (H) is an LBH from G to H if and only if ψ is an LBH from an
orientation of G to an orientation of H. Nešetřil and Mendez [27] introduced d-folding, a
version of homomorphism between directed graphs which is a much stronger notion than
in-neighbourhood injective homomorphism.

It is well-known that if there is an LBH from a graph G to a graph H, then every
eigenvalue of (adjacency matrix of) H with geometric multiplicity t is an eigenvalues of G
with geometric multiplicity at least t [28], and as a result the characteristic polynomial of
(adjacency matrix of) H divides the characteristic polynomial of G (because adjacency
matrices of G and H are diagonalizable); see [29] for an alternate proof. Observe that,
in general, a locally bijective homomorphism need not preserve subgraphs (or induced
subgraphs for that matter). Nevertheless, they preserve subgraphs of diameter 2.

Observation 2. Let J be a graph of diameter 2, and let G be a graph that contains J as
a subgraph. If G admits an LBH to a graph H, then H contains J as a subgraph.

Proof. Suppose that G admits an LBH to a graph H. Since ψ is a homomorphism from
G to H,
ψ(x)ψ(y) is an edge in H for every edge xy of J . Hence, H[ψ(V (J))] contains J as
subgraph, provided that ψ maps distinct vertices of J to distinct vertices in H. Thus, to
prove that H contains J as subgraph, it suffices to show that ψ maps distinct vertices of
J to distinct vertices in H. On the contrary, assume that u, v ∈ V (J) and ψ(u) = ψ(v).
Hence, uv /∈ E(G) (because ψ is a homomorphism from G to H). Since J is a graph of
diameter 2, the vertices u and v of J have a common neighbour x. Since ψ is an LBH from
G to H, the restriction of ψ to NG(x) is a bijection from NG(x) onto NH(ψ(x)). Since u
and v are distinct members of NG(x), the mapping ψ maps u and v to distinct vertices in
H. This is a contradiction to ψ(u) = ψ(v).

2.1 Star Colourings and Orientations

Star colourings are known to be closely related with a particular type of graph orientations
called in-orientations. In this section, we define a special type of in-orientations. Let G be
an (undirected) graph. A coloured orientation of G is an ordered pair (G⃗, f) such that G⃗
is an orientation of G and f is a colouring of G. A coloured orientation (G⃗, f) is called a
coloured in-orientation if the edges in each bicoloured 3-vertex path in (G⃗, f) are oriented
towards the middle vertex [30]. If (G⃗, f) is a coloured in-orientation of a G, then f is
a star colouring of G. On the other hand, if f is a star colouring of G, then (G⃗, f) is a
coloured in-orientation of G, where G⃗ is obtained by orienting edges in each bicoloured
3-vertex path in (G, f) towards the middle vertex, and then orienting the remaining edges
arbitrarily; let us call G⃗ an in-orientation of G induced by f .

Observation 3 ([2]). (G⃗, f) is a coloured in-orientation of a graph G if and only if f is a
star colouring of G and G⃗ an in-orientation of G induced by f .

In-orientation of G induced by f is unique if and only if no bicoloured component of
(G, f) is (isomorphic to) K1,1.
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An coloured orientation (G⃗, f) of G is a q-coloured in-orientation if f is a q-colouring
of G⃗ and the following hold for every vertex v of (G⃗, f):
(i) no out-neighbour of v has the same colour as an in-neighbour of v, and
(ii) out-neighbours of v have pairwise distinct colours.
A coloured in-orientation of G is a q-coloured in-orientation of G for some q ∈ N. Clearly,
a graph G admits a q-star colouring if and only if G admits a q-coloured in-orientation.
This gives a characterization of the star chromatic number of G which is equivalent to the
characterization of Nešetřil and Mendez [3]: the star chromatic number of G is equal to
the least integer q such that G admits a q-coloured in-orientation.

We say that a coloured orientation (G⃗, f) of G is a q-coloured Monochromatic In-
Neighbourhood In-orientation (in short, q-coloured MINI-orientation) if f is a q-colouring
of G⃗ and the following hold for every vertex v of (G⃗, f):
(i) no out-neighbour of v has the same colour as an in-neighbour of v,
(ii) out-neighbours of v have pairwise distinct colours, and
(iii) all in-neighbours of v have the same colour.

Observe that compared to q-coloured in-orientation, the only new condition is Condi-
tion (iii), which says that the in-neighbourhood of v is monochromatic (hence the name
monochromatic in-neighbourhood in-orientation). Note that every graph G admits a
q-coloured in-orientation with q = |V (G)| (assign pairwise distinct colours on vertices). In
contrast, due to the addition of Condition (iii), there exist graphs that do not admit a
q-coloured MINI-orientation for any q (for instance, see Theorem 42).

0

0

0

1

1

1

3

3

3

2

2

2

Figure 3: A 4-coloured MINI-orientation of L(Q3) (the cuboctahedral graph).

A 4-coloured MINI-orientation of the cuboctahedral graph is shown in Figure 3. For
each q ∈ N, admitting a q-coloured MINI-orientation is a hereditary property: if a graph
G admits a q-coloured MINI-orientation (G⃗, f), then every subgraph H of G admits a
q-coloured MINI-orientation (of the form (H⃗, f↾V (H))).

2.2 Oriented line graph

Oriented line graphs were introduced by Kotani and Sunada [31] to study the Ihara-Zeta
functions of graphs, and they are also used to study Ramanujan graphs [32] and Ramanujan
digraphs [18]. For instance, it is known that a regular graph is a Ramanujan graph if and

the electronic journal of combinatorics 32(3) (2025), #P3.43 7



(a) G (b) D⃗(G)

(c) L⃗(G) (d) L⃗(G) drawn on top of D⃗(G)

Figure 4: An example of the oriented line graph operation.

only if its oriented line graph is a Ramanujan digraph [18]. Let G be a (simple undirected)
graph, and let D⃗(G) be the simple directed graph obtained from G by replacing each edge
uv of G by two arcs (u, v) and (v, u). The oriented line graph of G is the oriented graph
with the set of arcs of D⃗(G) as its vertex set, and there is an arc in it from a vertex (u, v)
to a vertex (v, w) when u ̸= w (see Figure 4). Another way to obtain the oriented line
graph of G is to take the line digraph of D⃗(G) as defined in [33], and then remove all
parallel edges in that graph (i.e, if t ⩾ 2 edges exist between two vertices, then remove all
those t edges). Note that this definition is not artificial since two parallel edges in opposite
directions ‘cancel each other’ in some related contexts such as signed graphs. We denote
the oriented line graph of G by L⃗(G) and its underlying undirected graph by L∗(G).

3 Tools

3.1 Oriented line graph

In this subsection, we show that L∗(H) is a 2-lift of L(H) for every H (i.e., L∗(H) has
double the number of vertices and admits an LBH to L(H)).

Theorem 4. For every graph H, there is an LBH from L∗(H) to L(H).

Proof. Let H be a graph. Note that the vertex set of L∗(H) is ∪uv∈E(H){(u, v), (v, u)}.
Define ψ : V (L∗(H)) → E(H) as ψ((u, v)) = {u, v} for every (u, v) ∈ V (L∗(H)). For
each edge {(u, v), (v, w)} of L∗(H) where u, v, w ∈ V (H), we have {ψ((u, v)), ψ((v, w))} =
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{uv, vw} is an edge in L(H). Hence, ψ is a homomorphism from L∗(H) to L(H). It
remains to prove that ψ is locally bijective. To prove this, it suffices to show that for
an arbitrary vertex x of L(H), and an arbitrary copy w of x in L∗(H) under ψ (i.e.,
ψ(w) = x), the members of NL∗(H)(w) are precisely copies of members of NL(H)(x) in
L∗(H) in a bijective fashion. To this end, consider an arbitrary vertex u1v1 of L(H), where
u1, v1 ∈ V (H). Let u1, u2, . . . , uk be the neighbours of v1 in H, and let v1, v2, . . . , vℓ be the
neighbours of u1 in H (where k, ℓ ∈ N). The neighbours of u1v1 in L(H) are u1v2, . . . , u1vℓ
(provided ℓ > 1) and v1u2, . . . , v1uk (provided k > 1). By the definition of ψ, for each
vertex yz in L(H) (where y, z ∈ V (H)), the copies of yz in L∗(H) (under ψ) are (y, z) and
(z, y). In particular, the copies of u1v1 in L∗(H) are (u1, v1) and (v1, u1). The neighbours
of (u1, v1) in L∗(H) are (v1, u2), . . . , (v1, uk),(v2, u1), . . . , (vℓ, u1), which are precisely copies
of v1u2, . . . , v1uk,u1v2, . . . , u1vℓ in L∗(H) respectively in a bijective fashion. Similarly,
the neighbours of (v1, u1) in L∗(H) are (u1, v2), . . . , (u1, vℓ),(u2, v1), . . . , (uk, v1), which are
precisely copies of u1v2, . . . , u1vℓ,v1u2, . . . , v1uk in L∗(H) respectively in a bijective fashion.
That is, for each copy w of u1v1 in L∗(H), the members of NL∗(H)(w) are precisely copies
of members of NL(H)(u1v1) in L∗(H) in a bijective fashion. Since u1v1 ∈ V (L(H)) is
arbitrary, ψ in an LBH from L∗(H) to L(H).

3.2 Locally Bijective Homomorphisms and the line graph operation

In this subsection, we prove that locally bijective homomorphisms between 3-regular
graphs, in a sense, behave well with respect to the line graph operation.

Lemma 5. Let ψ be a locally bijective homomorphism from a graph G to a graph H. Then,
the mapping ψ′ : E(G) → E(H) defined as ψ′(uv) = ψ(u)ψ(v) for all uv ∈ E(G) (where
u, v ∈ V (G)) is a locally bijective homomorphism from L(G) to L(H).

Proof. Consider an arbitrary edge u1v1 of G, where u1, v1 ∈ V (G). To prove that ψ′ is an
LBH, it suffices to establish the following claim (since u1v1 ∈ E(G) is arbitrary).
Claim 1. The restriction of ψ′ to the set NL(G)(u1v1) is a bijection from NL(G)(u1v1) onto
NL(H)(ψ

′(u1v1))
(
i.e., NL(H)(ψ(u1)ψ(v1))

)
.

Let u1, u2, . . . , uk be the neighbours of v1 in G, and let v1, v2, . . . , vℓ be the neighbours of
u1 in G, where k, ℓ ∈ N. The neighbours of u1v1 in L(G) are u1v2, . . . , u1vℓ, u2v1, . . . , ukv1.
Since ψ is an LBH from G to H, the restriction of ψ to NG(u1) is a bijection from
NG(u1) onto NH(ψ(u1)). Hence, ψ(v1), ψ(v2), . . . , ψ(vℓ) are pairwise distinct. Similarly,
ψ(u1), ψ(u2), . . . , ψ(uk) are pairwise distinct.

Since ψ is a homomorphism from G to H, the vertices ψ(u1), ψ(u2), . . . , ψ(uk) are
neighbours of ψ(v1) in H. Similarly, ψ(v1), ψ(v2), . . . , ψ(vℓ) are neighbours of ψ(u1)
in H. Hence, ψ(u2)ψ(v1), . . . ψ(uk)ψ(v1), ψ(u1)ψ(v2), . . . , ψ(u1)ψ(vℓ) are neighbours of
ψ(u1)ψ(v1) in L(H). Since ψ′(uiv1) = ψ(ui)ψ(v1) for 2 ⩽ i ⩽ k and ψ′(u1vj) = ψ(u1)ψ(vj)
for 2 ⩽ j ⩽ ℓ, the mapping ψ′ maps each member of NL(G)(u1v1) to a member of
NL(H)(ψ(u1)ψ(v1)). Hence, to prove Claim 1, it suffices to show that no two members of
NL(G)(u1v1) are mapped to the same vertex in L(H) by ψ′. To produce a contradiction,
assume on the contrary that one of the following holds:
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(Case 1) ψ′(uiv1) = ψ′(ujv1) for some distinct i, j ∈ {2, . . . , k};
(Case 2) ψ′(uiv1) = ψ′(u1vj) for some i ∈ {2, . . . , k} and j ∈ {2, . . . , ℓ}; or
(Case 3) ψ′(u1vi) = ψ′(u1vj) for some distinct i, j ∈ {2, . . . , ℓ}.

Case 1: ψ′(uiv1) = ψ′(ujv1) for some distinct i, j ∈ {2, . . . , k}, say i = 2 and j = 3.
Since ψ′(u2v1) = ψ′(u3v1), we have ψ(u2)ψ(v1) = ψ(u3)ψ(v1) (as edges in L(H)). That is,
{ψ(u2), ψ(v1)} = {ψ(u3), ψ(v1)}, or in other words, ψ(u2) = ψ(u3). This is a contradiction
since ψ(u2), ψ(u3), . . . , ψ(uk) are pairwise distinct.

Case 2: ψ′(uiv1) = ψ′(u1vj) for some i ∈ {2, . . . , k} andj ∈ {2, . . . , ℓ}, say i = j = 2.
Since ψ′(u2v1) = ψ(u1v2), we have ψ(u2)ψ(v1) = ψ(u1)ψ(v2) (as edges in L(H)). That
is, {ψ(u2), ψ(v1)} = {ψ(u1), ψ(v2)}. But, ψ(v1) /∈ {ψ(u1), ψ(v2)} because ψ(v1) ̸= ψ(u1)
(since ψ is a homomorphism) and ψ(v1) ̸= ψ(v2) (since ψ(v1), ψ(v2), . . . , ψ(vℓ) are pairwise
distinct); a contradiction.

By symmetry, Case 3 leads to a contradiction like Case 1. Since all three cases lead to
contradictions, Claim 1 is proved.

Lemma 6. Let q ∈ N, and let G and H be two graphs such that all maximal cliques in G
and H are q-cliques. If G admits an LBH to H, then K(G) admits an LBH to K(H).

Proof. Suppose that ψ is an LBH from G to H. Recall that for each S ⊆ V (G), the
set-image ψ(S) = {ψ(x) : x ∈ S}. Since ψ is a homomorphism from G to H, for each
clique K of G, the set-image ψ(K) is a clique of H. Since maximal cliques of H are
q-cliques, for each maximal clique K of G, the set-image ψ(K) is a maximal clique of
H. Define ψ∗ : V (K(G)) → V (K(H)) as ψ∗(K) = ψ(K) for each maximal clique K of G
(here, ψ∗(K) is the image of ψ∗ at K, whereas ψ(K) is a set-image). Observe that ψ∗ is
well-defined.
Claim 2. ψ∗ is a homomorphism from K(G) to K(H).
Consider an arbitrary edge c1c2 of K(G), where c1 and c2 are maximal cliques in G. We
need to show that ψ∗(c1)ψ

∗(c2) is an edge in K(H)
(
i.e., ψ(c1)ψ(c2) ∈ E(K(H))

)
. Since

c1c2 is an edge in K(G), we have c1 ∩ c2 ̸= ∅. Let v ∈ c1 ∩ c2 (where v ∈ V (G)). Clearly,
ψ(v) ∈ ψ(c1) and ψ(v) ∈ ψ(c2). Since ψ(v) ∈ ψ(c1)∩ψ(c2), it follows that ψ(c1)∩ψ(c2) ̸= ∅.
Since ψ(c1) and ψ(c2) are maximal cliques in H that intersect, ψ(c1)ψ(c2) is an edge in
K(H). This proves Claim 2; that is, ψ∗ is a homomorphism from K(G) to K(H).
Claim 3. ψ∗ is an LBH from K(G) to K(H).

Consider an arbitrary vertex K of K(G) (i.e., K is a maximal clique in G). Since K is
arbitrary, to prove Claim 3, it suffices to show that the restriction of ψ∗ to NK(G)(K) is
a bijection from NK(G)(K) onto NK(H)(ψ

∗(K)) (i.e, NK(H)(ψ(K))). Neighbours of K in
K(G) are maximal cliques of G that intersect with K. Each such clique K̃ of G satisfies
ψ(K) ∩ ψ(K̃) ̸= ∅ since K ∩ K̃ ≠ ∅ and ψ(v) ∈ ψ(K) ∩ ψ(K̃) for all v ∈ K ∩ K̃. Hence,
for each neighbour K̃ of K in K(G), its image ψ∗(K̃) (=ψ(K̃)) is a neighbour of ψ(K) in
K(H). That is, ψ∗ maps each member of NK(G)(K) to a member of NK(H)(ψ(K)). Hence
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to prove Claim 3, it suffices to show that ψ∗ maps distinct members of NK(G)(K) to distinct
members of NK(H)(ψ(K)). On the contrary, assume that ψ∗ maps distinct members c1
and c2 of NK(G)(K) to the same member of NK(H)(ψ(K)); that is, c1, c2 ∈ NK(G)(K) and
ψ∗(c1) = ψ∗(c2) (i.e., ψ(c1) = ψ(c2)). Let x ∈ c1 ∩K.

Case 1: x ∈ c2.
Since c1 and c2 are distinct q-cliques in G, there exists a vertex y ∈ c1 \ c2. Note that
ψ(u) ̸= ψ(v) for each u ∈ c1 \ {x} and v ∈ c2 \ {x} because ψ restricted to NG(x) is
a bijection from NG(x) onto NH(ψ(x)) (and u, v ∈ NG(x)). Hence, ψ(y) /∈ ψ(c2), a
contradiction to ψ(c1) = ψ(c2).

Case 2: x /∈ c2.
Since ψ(c1) = ψ(c2), there exists a vertex u ∈ c2 such that ψ(x) = ψ(u). Since c2 and K
intersect, there exists a vertex y ∈ K ∩ c2. Since ψ restricted to NG(y) is a bijection from
NG(y) onto NH(ψ(y)), the LBH ψ maps the distinct neighbours x and u of y to distinct
neighbours of ψ(y). That is, ψ(x) ̸= ψ(u); a contradiction.

Since we have a contradiction in both cases, ψ∗ maps distinct members of NK(G)(K)
to distinct members of NK(H)(ψ(K)). This proves Claim 3.

Thanks to the above lemmas, we have the following theorem.

Theorem 7. Let G be a 3-regular graph, and let H be a triangle-free 3-regular graph.
Then, there exists an LBH from G to H if and only if there exists an LBH from L(G) to
L(H).

Proof. If there is an LBH from G to H, then there is an LBH from L(G) to L(H) by
Lemma 5.

Conversely, suppose that there is an LBH from L(G) to L(H). Since H is a triangle-free
3-regular graph, L(H) is K4-free and K(H) = L(H). Since H is a triangle-free 3-regular
graph, H is a locally-3K1 graph. Hence, K(H) (= L(H)) is a locally-2K2 graph [24,
Theorem 1.4]. Thus, L(H) is a K4-free locally-2K2 graph. Hence, every maximal clique
in L(H) is a 3-clique. Since L(H) is K4-free and L(G) admits an LBH to L(H), by
Observation 2, L(G) is K4-free. Since G is 3-regular, every edge of L(G) lies in a triangle.
Also, there are no isolated vertices in G. Hence, every maximal clique in L(G) is a 3-clique.
Thus, by Lemma 6, there exists an LBH from K(L(G)) to K(L(H)).
Claim 4. G is triangle-free.
On the contrary, assume that G contains a triangle. Then, L(G) contains diamond (as
subgraph). Hence, L(H) contains diamond by Observation 2. But, L(H) does not contain
diamond since it is locally-2K2. This contradiction proves Claim 4.

Since G and H are triangle-free 3-regular graphs, K(G) = L(G) and K(H) = L(H).
Due to the same reason, G and H are locally-3K1. Hence, K(L(G)) = K(K(G)) ∼= G and
K(L(H)) = K(K(H)) ∼= H[24, Theorem 1.4]. Moreover, there is an LBH from K(L(G))
to K(L(H)) by Lemma 6. Therefore, there is an LBH from G to H.
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3.3 Homomorphisms That Carry Back Star Colouring

It is well-known that homomorphisms carry k-colourability of target graphs backwards in
the following sense: if there is a homomorphism ψ from a graphG to a k-colourable graphH,
then G is k-colourable as well [34]. In this subsection, we show that out-neighbourhood
injective homomorphisms carry k-star colourability of target graphs backwards. We prove
that if (H⃗, h) is a q-coloured in-orientation (resp. q-coloured MINI-orientation) of H and
ψ is an out-neighbourhood injective homomorphism from G⃗ to H⃗, then (G⃗, h ◦ ψ) is a
q-coloured in-orientation (resp. q-coloured MINI-orientation) of G.

Theorem 8. Let (H⃗, h) be a q-coloured in-orientation of a graph H, where q ∈ N. Let G⃗
be an orientation of a graph G, and let ψ be is an OBH from G⃗ to H⃗. Then, (G⃗, h ◦ ψ) is
a q-coloured in-orientation of G.

Proof. Recall that an out-neighbourhood injective homomorphism from G⃗ to H⃗ is a homo-
morphism from G⃗ to H⃗. Hence, for every arc (u, v) in G⃗, we know that

(
ψ(u), ψ(v)

)
is an

arc in H⃗, and thus h(ψ(u)) ̸= h(ψ(v)). Thus, h◦ψ is a q-colouring of G⃗. We need to prove
that (G⃗, h ◦ψ) is a q-coloured in-orientation of G. That is, we need to prove the following:
(i) for each vertex v of G⃗ with an in-neighbour w and an out-neighbour x, we have
h(ψ(w)) ̸= h(ψ(x)) (i.e., each in-neighbour and each out-neighbour of v have different
colours under h ◦ ψ); and
(ii) for each vertex v of G⃗ with two out-neighbours x1 and x2, we have h(ψ(x1)) ̸= h(ψ(x2))
(i.e., no two out-neighbours of v have the same colour under h ◦ ψ).

To prove (i), assume that v is a vertex in G⃗ with an in-neighbour w and an out-neighbour
x. That is, (w, v) and (v, x) are arcs in G⃗. Since ψ is a homomorphism from G⃗ to H⃗, it
follows that (ψ(w), ψ(v)) and (ψ(v), ψ(x)) are arcs in H⃗. That is, ψ(v) is a vertex in H⃗
with ψ(w) as an in-neighbour and ψ(x) as an out-neighbour. Hence, h(ψ(w)) ̸= h(ψ(x))

since (H⃗, h) is a q-coloured in-orientation. This proves (i).
To prove (ii), assume that v is a vertex in G⃗ with two out-neighbours x1 and x2. Since

ψ is a homomorphism from G⃗ to H⃗, vertex ψ(xi) is an out-neighbour of ψ(v) for i ∈ {1, 2}.
By definition, v is a copy of ψ(v) in G⃗, and xi is a copy of ψ(xi) in G⃗ for i ∈ {1, 2}. Since
ψ is an out-neighbourhood injective homomorphism, the copy v of ψ(v) in G⃗ has at most
one copy of ψ(x1) in G⃗ as its out-neighbour (in G⃗). Thus, x2 is not a copy of ψ(x1) in G⃗.
That is, ψ(x2) ̸= ψ(x1). Hence, ψ(x1) and ψ(x2) are distinct out-neighbours of ψ(v) in H⃗.
since (H⃗, h) is a q-coloured in-orientation, h(ψ(x1)) ̸= h(ψ(x2)). This proves (ii).

Theorem 9. Let ψ be a locally injective homomorphism from a graph G to a graph H,
and let h be a q-star colouring of H. Then, h ◦ ψ is a q-star colouring of G.

Proof. Let H⃗ be an in-orientation of H induced by the q-star colouring h. Since ψ is a
locally injective homomorphism from G to H, there exists an orientation G⃗ of G such
that ψ is an out-neighbourhood injective homomorphism from G⃗ to H⃗. Since (H⃗, h) is a
q-coloured in-orientation of H, it follows from Theorem 8 that (G⃗, h ◦ ψ) is a q-coloured
in-orientation of G. By Observation 3, h ◦ ψ is a q-star colouring of G.
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Theorem 10. Let (H⃗, h) be a q-coloured MINI-orientation of a graph H, where q ∈
N. Let G⃗ be an orientation of a graph G, and let ψ be an out-neighbourhood injective
homomorphism from G⃗ to H⃗. Then, (G⃗, h ◦ ψ) is a q-coloured MINI-orientation of G.

Proof. Clearly, (H⃗, h) be a q-coloured in-orientation of H. Since ψ is an out-neighbourhood
injective homomorphism from G⃗ to H⃗, it follows from Theorem 8 that (G⃗, h ◦ ψ) is a
q-coloured in-orientation of G. To complete the proof of the theorem, it suffices to show
that for each vertex v of G⃗ with two in-neighbours w1 and w2, we have h(ψ(w1)) = h(ψ(w2))
(i.e., all in-neighbours of v have the same colour under h ◦ ψ).

Suppose that v is a vertex in G⃗ with two in-neighbours w1 and w2. Since ψ is a
homomorphism from G⃗ to H⃗, it follows that ψ(wi) is an in-neighbour of ψ(v) in H⃗ for
i ∈ {1, 2}. Since (H⃗, h) is a coloured MINI-orientation of H, all in-neighbours of ψ(v)
have the same colour in (H⃗, h). Thus, h(ψ(w1)) = h(ψ(w2)). This completes the proof
since v, w1 and w2 are arbitrary.

3.4 Out-neighbourhood Bijective Homomorphism

For some properties of locally bijective homomorphism (LBH), analogous properties hold
for out-neighbourhood bijective homomorphism (OBH). But, there are a few notable
differences between LBH and OBH.

An LBH ψ from a graph G to a graph H preserves degrees; that is, degG(v) =
degH(ψ(v)) for every vertex v of G. Similarly, every OBH preserves out-degrees. However,
an OBH need not preserve degrees. For instance, if G⃗ admits an OBH φ to H⃗ and u, v, w
are vertices in G⃗ with (u, v) ∈ E(G⃗) and φ(v) = φ(w), then deleting the arc (u, v) of G⃗
and adding an arc (u,w) results in an oriented graph J⃗ such that φ itself is an OBH from
J⃗ to H⃗. Note that when G⃗ and H⃗ are regular graphs, J⃗ will not be a regular graph.

The following property of LBH is apparent. If uv is an edge in H, then |ψ−1(u)| =
|ψ−1(v)|. In constrast, OBH does not have this property. If φ is an OBH from an oriented
graph G⃗ to an oriented graph H⃗, the existence of an arc (u, v) in H⃗ does not establish
a relationship between |φ−1(u)| and |φ−1(v)|; although each copy of u has exactly one
copy of v as an out-neighbour, a copy of v can have 0, 1 or more copies of u as its
in-neighbour. For LBH to a connected graph H, it follows from the cardinality relationship
that |ψ−1(u)| = |ψ−1(v)| for all u, v ∈ V (H), thereby giving an alternative definition of
LBH in terms of the notion of ‘lifts’. For q ∈ N, a q-lift of a graph H is a graph G with q
copies of H forming its vertex set and for each edge uv of H, the subgraph of G induced
by copies of u and v in G forming a matching (where each edge is from a copy of u to a
copy of v). For a connected graph H, graphs G admitting LBH to H are precisely q-lifts
of H for some q ∈ N (clearly, q = |V (G)|/|V (H)|).

There is no lift-like definition for OBH. Neverthless, if cardinalities of pre-images of
vertices under an OBH are the same, then a construction approach similar to lift is indeed
possible. For an oriented graph G⃗ and four vertices u, v, x, y of G⃗ with exactly two arcs
(u, v) and (x, y) in G[{u, v, x, y}], let us define an arc 2-switch operation of arcs (u, v)

and (x, y) in G⃗ as the graph operation of removing arcs (u, v) and (x, y), and adding
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arcs (u, y) and (x, v). For the context, it is worthwhile to first look at locally bijective
homomorphisms between oriented graphs.

Observation 11. Let φ be an LBH from an orientated graph G⃗ to an oriented graph H⃗.
Let (u, v) and (x, y) be two arcs in G⃗ with φ(u) = φ(x) and φ(v) = φ(y). Let J⃗ be the
oriented graph obtained from G⃗ by doing arc 2-switch operation on the arcs (u, v) and
(x, y). Then, φ itself is an LBH from J⃗ to H⃗.

Observation 12. Let φ be an OBH from an orientated graph G⃗ to an oriented graph
H⃗. Let (u, v) and (x, y) be two arcs in G⃗ with φ(v) = φ(y). Let J⃗ be the oriented graph
obtained from G⃗ by doing arc 2-switch operation on the arcs (u, v) and (x, y). Then, φ
itself is an OBH from J⃗ to H⃗.

Note that in Observations 11 and 12, the reverse of the arc 2-switch operation is also
an arc 2-switch operation of the same type.

Observation 13. Let ψ be an LBH from a orientation G⃗ of a graph G to an orientation
H⃗ of a graph H such that |ψ−1(u)| = |ψ−1(v)| for all u, v ∈ V (H) (e.g., H is connected).
Then, |V (G)| = q|V (H)| for some q ∈ N, and G⃗ can be constructed by (i) starting with
qH⃗ and an LBH φ from q H⃗ to H⃗, and (ii) repeating arc 2-switch operations on arcs
of the form (u, v) and (x, y) with φ(u) = φ(x) and φ(v) = φ(y) an arbitrary number of
times.

Corollary 14. An oriented graph G⃗ admits LBH to an orientation H⃗ of a connected graph
if and only if |V (G⃗)| = q|V (H⃗)| for some q ∈ N and G⃗ can be constructed by (i) starting
with qH⃗ and an LBH φ from q H⃗ to H⃗, and (ii) repeating arc 2-switch operations on arcs
of the form (u, v) and (x, y) with φ(u) = φ(x) and φ(v) = φ(y) an arbitrary number of
times.

A similar result indeed holds for OBH, by the same reasoning.

Lemma 15. Let G and H be two graphs with orientations G⃗ and H⃗, respectively. Let
ψ be an OBH from G⃗ to H⃗ such that |ψ−1(u)| = |ψ−1(v)| for all u, v ∈ V (H). Then,
|V (G)| = q|V (H)| for some q ∈ N, and G⃗ can be constructed by (i) starting with qH⃗ and
an LBH φ from q H⃗ to H⃗, and (ii) repeating arc 2-switch operations on arcs of the form
(u, v) and (x, y) with φ(v) = φ(y) an arbitrary number of times.

There are some special cases where an OBH will be an LBH.

Observation 16. Let G⃗ be an oriented graph that admits an OBH ψ to a directed cycle
graph H⃗. Then, ψ is an LBH from G⃗ to H⃗.

Observation 17. Let G⃗ be an oriented graph that admits an OBH ψ to a strongly connected
oriented graph H⃗. If |V (G⃗)| = |V (H⃗)|, then ψ is an isomorphism from G⃗ to H⃗ (thus, ψ is
an automorphism).
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Next, we show that the cardinalities of pre-images of vertices are the same under a
degree-preserving OBH to a strongly connected oriented graph.
Theorem 18. Let G⃗ be an oriented graph that admits a degree-preserving OBH ψ to a
strongly connected oriented graph H⃗. Then, |ψ−1(u)| = |ψ−1(v)| for all u, v ∈ V (H⃗).

We prove this theorem with the help of the following lemma.
Lemma 19. Let G⃗ be an oriented graph that admits a degree-preserving OBH ψ to a
strongly connected oriented graph H⃗. Then, G⃗ can be constructed by (i) starting with qH⃗
and an LBH φ from q H⃗ to H⃗, and (ii) repeating arc 2-switch operations on arcs of the
form (u, v) and (x, y) with φ(v) = φ(y) an arbitrary number of times.

Proof. Let n = |V (H⃗)|. By Observation 12, it is possible to start with G⃗ and perform arc
2-switch operation on arcs of the form (u, v) and (x, y) with ψ(v) = ψ(y), and thereby
obtain oriented graphs such that ψ itself is a (degree-preserving) OBH from it to H⃗. Let q
be the highest integer such that an oriented graph constructed this way contains qH⃗. It
suffices to show that q = |V (G⃗)|/n to prove the lemma (because the reverse of such an arc
2-switch operation is an arc 2-switch operation of the same type). On the contrary, assume
that q < |V (G⃗)|/n. Consider an oriented graph D⃗ containing qH⃗ constructed this way,
and let J⃗ be the oriented graph obtained from D⃗ by removing the subgraph qH⃗. Clearly,
the restriction of ψ to V (J⃗) is an OBH from J⃗ to H⃗; let us call it ψ0. The oriented graph
J⃗ cannot be empty since q < |V (G⃗)|/n. Since H⃗ is strongly connected and ψ0 is an OBH
from J⃗ to H⃗, each vertex of H⃗ has at least one copy in J⃗ . For each vertex z of H⃗, choose
a copy of z in J⃗ , and call it z0. For each arc uv of H⃗, the vertex u0 has a copy v′ of
v as its out-neighbour in J⃗ . If v′ ̸= v0, check whether v0 has at least one copy of u as
its in-neighbour in J⃗ . If yes, call one those in-neighbours y∗. Otherwise, there exists an
in-neighbour w of v in H⃗ such that at least two copies of w appear as in-neighbours of v0 in
J⃗ (because ψ0 is degree-preserving), and call of one those in-neighbours as y∗. Perform arc
2-switch operation on the arcs (u0, v

′) and (y∗, v0). It is easy to see that after completing
such arc 2-switch operations considering every arc of H⃗, the set {z0 : z ∈ V (H⃗)} induces a
copy of H⃗ in the resultant oriented graph. This means that starting with G⃗ and performing
the sequence of arc 2-switch operations used to construct D⃗ and then performing the
above sequence of arc 2-switch operations gives an oriented graph that contains (q + 1)H⃗.
This contradicts the choice of q, and thus completes the proof.
Corollary 20. An oriented graph G⃗ admits a degree-preserving OBH to a strongly con-
nected orientated graph H⃗ if and only if |V (G⃗)| = q|V (H⃗)| for some q ∈ N and G⃗ can be
constructed by (i) starting with qH⃗ and an LBH φ from q H⃗ to H⃗, and (ii) repeating arc
2-switch operations on arcs of the form (u, v) and (x, y) with φ(v) = φ(y) an arbitrary
number of times.

4 2p-Regular (p + 2)-Star Colourable Graphs

We start with a simple, but important observation. Refer to Section 2.2 for the definitions
of L⃗(Kq) and L∗(Kq). In this section, we write proj2 to denote of the 2nd projection map
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on R2 (i.e., (x, y) 7→ y) domain and co-domain restricted suitably.

Observation 21. For q ⩾ 2, (L⃗(Kq), proj2) is a q-coloured MINI-orientation of L∗(Kq),
where proj2 is the 2nd projection map restricted to the domain V (L⃗(Kq)) and the co-
domain Zq.

Proof. Consider an arbitrary vertex (i, j) of L⃗(Kq). Clearly, {(k, i) ∈ Z2
q : k ≠ i, k ̸= j} is

the set of in-neighbours of (i, j) and {(j, ℓ) ∈ Z2
q : ℓ ̸= i, ℓ ̸= j} is the set of out-neighbours

of (i, j) in L⃗(Kq). Hence, proj2 assigns colour i on in-neighbours of (i, j) and pairwise
distinct colours from Zq \ {i} on (i, j) and its out-neigbours in L⃗(Kq). This completes the
proof since all three conditions in the definition of coloured MINI-orientation are satisfied,
and (i, j) is arbitrary.

Theorem 22. For p ⩾ 2, the following are equivalent for every 2p-regular graph G.
I. G admits a (p+ 2)-star colouring.

II. G admits a (p+ 2)-coloured MINI-orientation.

III. G has an orientation that admits an OBH to L⃗(Kp+2).

IV. G admits a (p + 2)-colouring f such that every bicoloured component of (G, f) is
K1,p.

We prove the theorem with the help of the following lemma.

Lemma 23. Let (G⃗, f) be a (p+ 2)-coloured orientation of a 2p-regular graph G, where
p ⩾ 2. Then, f is a star colouring of G if and only if every bicoloured component of (G, f)
is K1,p. Moreover, the following are equivalent, where proj2 is the 2nd projection map
restricted to the domain V (L⃗(Kp+2)) and the co-domain Zp+2.

I. f is a star colouring of G, and G⃗ is the in-orientation of G induced by f .

II. (G⃗, f) is a (p+ 2)-coloured MINI-orientation of G.

III. G⃗ admits an OBH ψ to L⃗(Kp+2) such that proj2 ◦ ψ = f .

Proof. If every bicoloured component of (G, f) is K1,p, then f is evidently a star colouring.
Suppose that f is a star colouring of G. Let G⃗ be an in-orientation of G induced by f .

Obviously, (G⃗, f) is a (p+2)-coloured in-orientation. To prove that it is a (p+2)-coloured
MINI-orientation, it suffices to show that for each vertex of (G⃗, f), all in-neighbours have
the same colour. Let v be a vertex in G⃗, and let q denote the out-degree of v in G⃗. Clearly,
v has at least one in-neighbour since all 2p neighbours of v cannot be out-neighbours
(else, v and its out-neighours need 2p+ 1 colours, but we have only p+ 2). In (G⃗, f), the
number of colours in the closed neighbourhood of v is at least q + 2 (i.e., q colours for
out-neighbours of v, an extra colour for v, and an extra colour for some in-neighbour of v),
and equality holds if and only if all in-neighbours of v have the same colour. Since at most
p+2 colours are available, q ⩽ p. Hence, the out-degree of v is at most p, and therefore the
in-degree of v is at least p. Since the sum of out-degrees of all vertices equals the sum of

the electronic journal of combinatorics 32(3) (2025), #P3.43 16



in-degrees, every vertex of G⃗ has out-degree and in-degree exactly p (i.e., G⃗ is an Eulerian
orientation), and in particular, q = p. This proves that every bicoloured component of
(G, f) is K1,p. Hence, G⃗ is the unique in-orientation of G induced by f . Since all q + 2
colours are needed to colour the closed neighbourhood of v, all in-neighbours of v have
the same colour. Since v is arbitrary, (G⃗, f) is a (p+ 2)-coloured MINI-orientation. This
proves I =⇒ II. It is also established that (i) f is a star colouring of G if and only if
every bicoloured component of (G, f) is K1,p, and (ii) if f is a star colouring of G and G⃗
is the in-orientation of G induced by f , then G⃗ is an Eulerian orientation.

To prove II =⇒ I, assume II. Since (G⃗, f) is a (p+ 2)-coloured MINI-orientation of
G, it is a (p+2)-coloured in-orientation of G. By Observation 3, f is a star colouring of G
and G⃗ is an in-orientation of G induced by f . Since f is a star colouring, every bicoloured
component of (G, f) is K1,p. Hence, G⃗ is the unique in-orientation of G induced by f .

Finally, we prove II ⇐⇒ III. To prove II =⇒ III, assume II. Each vertex v of
G⃗ has at least one in-neighbour (in fact, exactly p in-neighbours since every bicoloured
component of (G⃗, f) is K1,p). Define a function h : V (G⃗) → Zp+2 that assigns the colour
of in-neighbours of v on each vertex v of G⃗. Define a function ψ : V (G⃗) → V (L⃗(Kp+2)) as
ψ(v) = (h(v), f(v)) for all v ∈ V (G⃗). By definition of ψ, we have proj2 ◦ ψ = f .

To prove that ψ is a homomorphism from G⃗ to L⃗(Kp+2), consider an arbitrary arc (u, v)

of G⃗. Let ψ(u) = (i, j) and ψ(v) = (k, ℓ), where i, j, k, ℓ ∈ Zp+2. Let w be an in-neighbour
of u in G⃗. We know that u is an in-neighbour of v in G⃗. Note that f(w) ̸= f(v) since (G⃗, f)
is a colourful MINI-orientation. Also, h(v) = f(u) and h(u) = f(w) by the definition of h.
That is, k = j, and i = h(u) = f(w) ̸= f(v) = ℓ. Thus, k = j and i ̸= ℓ, there is an arc in
L⃗(Kp+2) from (i, j) to (k, ℓ). Since there is an arc from ψ(u) to ψ(v) in L⃗(Kp+2) for an
arbitrary arc (u, v) of G⃗, indeed ψ is a homomorphism from G⃗ to L⃗(Kp+2).

We know that G⃗ and L⃗(Kp+2) are both Eulerian orientations. Hence, every vertex in G⃗
and L⃗(Kp+2) has exactly p out-neighbours. To prove that the homomorphism ψ from G⃗ to
L⃗(Kp+2) is an OBH, it suffices to show that for each vertex v of G⃗, no two out-neighbours
of v have the same image under ψ. Let v be a vertex in G⃗ with distinct out-neighbours w1

and w2. Then, f(w1) ̸= f(w2), and hence ψ(w1) ̸= ψ(w2). This proves that ψ is an OBH
from G⃗ to L⃗(Kp+2) with proj2 ◦ ψ = f since v, w1 and w2 are arbitrary.

To prove III =⇒ II, assume III. By Observation 21, (L⃗(Kp+2), proj2) is a (p+ 2)-
coloured MINI-orientation of L∗(Kp+2). Hence, by Theorem 10, (G⃗, proj2 ◦ ψ) is a (p+ 2)-
coloured MINI-orientation of G; and it is the same as (G⃗, f). This proves II.

The next theorem follows from Theorem 18 since L⃗(Kp+2) is strongly connected (for
p ⩾ 2).

Theorem 24. Let G be a 2p-regular graph with p ⩾ 2. Let G⃗ be an orientation of G that
admits an OBH ψ to L⃗(Kp+2). Then, |V (G)| = q(p+ 1)(p+ 2) for some positive integer q,
and G⃗ can be constructed by (i) starting with q L⃗(Kp+2) and an LBH φ from qL⃗(Kp+2) to
L⃗(Kp+2), and (ii) repeating arc 2-switch operations on arcs of the form (u, v) and (x, y)
with φ(v) = φ(y) an arbitrary number of times.
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Before proceeding further, we restate a few results in [16] which are closely related to
the notions we discuss here, but were expressed with different terminology and notation.
After this point, we never use those terminology or notation from [16]. Let p ⩾ 2. The
oriented graph L⃗(Kp+2) and the graph L∗(Kp+2) were introduced in [16] under the names
−→
G2p and G2p, respectively. It is easy observe that L⃗(Kp+2) is isomorphic to

−→
G2p (the map

(x, y) 7→ (y, x) is an isomorphism).

Theorem 25 ([16]). L∗(Kq) is vertex-transitive and edge-transitive for q ∈ N and Hamil-
tonian for q ⩾ 4.

Due to Observation 17, for each p ⩾ 2, L∗(Kp+2) is the unique 2p-regular (p+ 2)-star
colourable graph on (p+ 1)(p+ 2) vertices (see [16] for an alternate proof).

In Notes 1 and 2 below, We mention some terminology and notation from [16] to
facilitate comparison with proofs in [16], in case a reader wishes to do so.
Note 1: Let G be a 2p-regular graph with an orientation G⃗. In [16], G⃗ is called a (p+ 2)-
Colourful Eulerian Orientation (abbr. (p+ 2)-CEO) if there exists a (p+ 2)-colouring f
of G such that (G⃗, f) is a (p + 2)-colourful MINI-orientation, and G⃗ is Eulerian. From
Lemma 23, it follows that any orientation of a 2p-regular graph that admits an OBH to
L⃗(Kp+2) must be Eulerian. Hence, the condition “G⃗ is Eulerian” in the definition of CEO
is redundant for (p+ 2)-CEOs of 2p-regular graphs.
Note 2: Let f be a (p+ 2)-star colouring of a 2p-regular graph G. In [16], V j

i denotes the
set of vertices with colour i whose in-neighbours are coloured j by f ; with the notation in
the proof of Lemma 23, V j

i = {v ∈ V (G) : f(v) = i and h(v) = j} = ψ−1((j, i)).

Some properties of 2p-regular (p+2)-star colourable graphs appear in [16, Corollary 2],
and we explore more properties here.

Theorem 26 ([16]). For p ⩾ 2, every 2p-regular (p + 2)-star colourable graph has the
following properties: (i) G is (diamond, K4)-free (i.e., diamond-subgraph-free), (ii) the
independence number of G is greater than |V (G)|/4, and (iii) the chromatic number of G
is O(log p).

Dvořák et al. [19] proved that for every 3-regular graph G, the line graph of G is
4-star colourable if and only if G admits a locally bijective homomorphism to Q3. In
Theorem 27 below, we show that for every 3-regular graph G, the line graph of G is 4-star
colourable if and only if G is bipartite and distance-two 4-colourable. In Theorem 29 below,
we prove that for every integer p ⩾ 2, a K1,p+1-free 2p-regular graph G is (p + 2)-star
colourable if and only if G admits a locally bijective homomorphism to G2p. In particular,
a claw-free 4-regular graph G is 4-star colourable if and only if G admits a locally bijective
homomorphism to the line graph of Q3 (recall that G4 = L(Q3)).

Theorem 27. For every 3-regular graph G, the line graph of G is 4-star colourable if and
only if G is bipartite and distance-two 4-colourable.

Proof. Let G be a 3-regular graph. By the characterisation of Dvořák et al. [19], the line
graph of G is 4-star colourable if and only if G admits a locally bijective homomorphism
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to Q3. For a fixed graph H, a graph G admits a locally bijective homomorphism to the
bipartite double H × K2 if and only if G is bipartite and G admits a locally bijective
homomorphism to H [35]. We know that Q3 is the bipartite double of K4; that is
Q3

∼= K4 × K2. Hence, the line graph of G is 4-star colourable if and only if G is
bipartite and G admits a locally bijective homomorphism to K4. A 3-regular graph G
admits a locally bijective homomorphism to K4 if and only if G admits a locally injective
homomorphism to K4 [35, Theorem 2.4]. Besides, a 3-regular graph G admits a locally
injective homomorphism to K4 if and only if G admits a distance-two 4-colouring [36, 37].
Thus, G admits a locally bijective homomorphism to K4 if and only if G admits a distance-
two 4-colouring. Therefore, the line graph of G is 4-star colourable if and only if G is
bipartite and distance-two 4-colourable.

By Theorem 27, for every 3-regular graph G, the line graph of G is 4-star colourable if
and only if G is bipartite and distance-two 4-colourable. Feder et al. proved that if all
faces of a plane 3-regular graph G are of length divisible by 4, then G is distance-two
4-colourable [38, Corollary 2.4]. Since such graphs G are bipartite as well, L(G) is 4-star
colourable by Theorem 27. As a special case, L(CL4r) is 4-star colourable for each r ∈ N
(where CLt denotes the circular ladder graph on 2t vertices, which is the Cartesian product
of Ct with K2); as a result, L(CL4r) has an orientation that admits an out-neighbourhood
bijective homomorphism to G⃗4 by Theorem 22. It is easy to show that for every r ∈ N,
the graph L(CL4r) admits a locally bijective homomorphism to L(CL4) (we prove a more
general statement below). Since Q3

∼= CL4 and L∗(K4) ∼= L(Q3), the above statement
is equivalent to “L(CL4r) admits a locally bijective homomorphism to L∗(K4) for every
r ∈ N”. We show that a K1,3-free 4-regular graph G has an orientation that admits an out-
neighbourhood bijective homomorphism ψ to L⃗(K4) if and only if ψ is a locally bijective
homomorphism from G to L∗(K4). The next theorem proves a more general statement:
for a Kp+1-free 2p-regular graph G with p ⩾ 2, a mapping ψ : V (G) → V (L∗(Kp+2)) is
an OBH from some orientation of G to L⃗(Kp+2) if and only if ψ is an LBH from G to
L∗(Kp+2).

Theorem 28. Let G be a K1,p+1-free 2p-regular graph with p ⩾ 2. Let G⃗ be an orientation
of G that admits an OBH ψ to L⃗(Kp+2). Then, ψ is an LBH from G⃗ to L⃗(Kp+2). In
particular, ψ is an LBH from G to L∗(Kp+2).

Remark: If ψ is an LBH from an aribtrary graph G to L∗(Kp+2), then ψ is obviously an
LBH from an orientation of G to L⃗(Kp+2).

Proof. We know that G⃗ is an Eulerian orientation. Hence, each vertex of G has excatly
p in-neighbours. To prove that the OBH ψ is an LBH from G⃗ to L⃗(Kp+2), it suffices to
show that for each vertex v of G⃗, no two in-neighbours of v have the same image under ψ.

Define a function f : V (G⃗) → Zp+2 as f(v) = proj2(ψ(v)) for each vertex v of G. Since
ψ is a homomorphism from G⃗ to L⃗(Kp+2), for each arc (u, v) of G⃗, we have ψ(u) = (i, j)
and ψ(v) = (j, k) for some i, j, k ∈ Zp+2. Hence, f(u) ̸= f(v) for every edge uv of G. That
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is, f is a (p+2)-colouring of G. By Lemma 23, (G⃗, f) is a (p+2)-coloured MINI-orientation
of G (note that proj2 ◦ ψ = f).

Let v be an arbitrary vertex in G⃗. Without loss of generality, let ψ(v) = (p + 1, 0).
Clearly, the homomorphism ψ from G⃗ to L⃗(Kp+2) maps each in-neighbour of v to (i, p+1)
for some i ∈ Zp+2 \ {0, p+ 1} (i.e., i ∈ {1, 2, . . . , p}). Let W = {w1, w2, . . . , wp} be the set
of in-neighbours and X = {x1, x2, . . . , xp} be the set of out-neighbours of v (in G⃗). Clearly,
f(w1) = f(w2) = · · · = f(wp) = p+ 1. Hence, W is an independent set in G. As it is an
OBH, ψ maps the set X of out-neighbours of v to {(0, 1), (0, 2), . . . , (0, p)}. Without loss
of generality, let ψ(xj) = (0, j) for 1 ⩽ j ⩽ p. Since G is K1,p+1-free and W ⊆ NG(v) is
an independent set of size p, each out-neighbour xj of v is adjacent to some in-neighbour
wk ∈ W of v. Thus, there is a function σ : {1, 2, . . . , p} → {1, 2, . . . , p} such that wσ(j) is
a neighbour of xj for 1 ⩽ j ⩽ p.

The homomorphism ψ from G⃗ to L⃗(Kp+2) is apparently a homomorphism from G to
L∗(Kp+2). For 1 ⩽ j ⩽ p, since (v, xj, wσ(j)) is a triangle in G, the homomorphism ψ
from G to L∗(Kp+2) maps (v, xj, wσ(j)) to

(
(p+ 1, 0), (0, j), (j, p+ 1)

)
, the only triangle

in L∗(Kp+2) that contains both vertices (p+ 1, 0) and (0, j). Hence, ψ(wσ(j)) = (j, p+ 1)
for each j. Therefore, ψ maps w1, w2, . . . , wp to (1, p+ 1), (2, p+ 1), . . . , (p, p+ 1) in some
order. In particular, the images of distinct in-neighbours of v under ψ are distinct. Since
v is arbitrary, this proves that ψ is an LBH from G⃗ to L⃗(Kp+2).

By Theorem 22, for all p ⩾ 2, a 2p-regular graph G is (p+ 2)-star colourable if and
only if G has an orientation G⃗ that admits an OBH ψ to L⃗(Kp+2). Hence, Theorem 28
implies the following.

Theorem 29. Let p ⩾ 2, and let G be a K1,p+1-free 2p-regular graph. Then, G is
(p+ 2)-star colourable if and only if G admits an LBH to L∗(Kp+2).

Let G be a graph that admits an LBH to L∗(Kp+2), where p ⩾ 2. By Theorem 4,
L∗(Kp+2) admits an LBH to L(Kp+2), and thus G admits an LBH to L(Kp+2) (since a
function composition of LBHs is an LBH). As a result, the characteristic polynomial of
(adjacency matrix of) G is divisible by that of L(Kp+2) [17]. Hence, the characteristic
polynomial of L(Kp+2) in x, that is (x− 2p)(x− p+2)p+1(x+2)(p−1)(p+2)/2 [33, Table 4.1],
divides the characteristic polynomial of G in x. Since each K1,p+1-free 2p-regular (p+2)-star
colourable graph admits an LBH to L∗(Kp+2) (by Theorem 29), we have the following.

Theorem 30. Let G be a K1,p+1-free 2p-regular graph with p ⩾ 2. If G is (p + 2)-star
colourable, then −2 and p−2 are eigenvalues of G with multiplicities at least (p−1)(p+2)/2
and p+ 1, respectively.

Next, we show that the structure of K1,p+1-free 2p-regular (p+2)-star colourable graphs
is even more limited when p = 2.

Theorem 31. Let G be a claw-free 4-regular 4-star colourable graph. Then, G is the line
graph of a bipartite graph, and in particular, G is odd-hole-free.
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Proof. Since G is 4-regular and 4-star colourable, G is (diamond, K4)-free [16, Corollary 2].
Hence, G is (claw, diamond, K4)-free. But, (claw, diamond)-free graphs are line graphs [39]
(in fact, they are precisely the line graphs of triangle-free graphs [33]). Since G is a K4-free
line graph, G is the line graph of a 3-regular graph H. Since H is 3-regular and its line
graph G is 4-star colourable, H is bipartite by Theorem 27. Hence, G is the line graph of
a bipartite graph. That is, G is (claw, diamond, odd-hole)-free [33].

For p ∈ N, the friendship graph Fp is the graph obtained from pC3 by ‘gluing’ the
p triangles together at a single vertex. For p ⩾ 2, the friendship graph Fp has a unique
universal vertex. For p ⩾ 2, let F−

p denote the graph obtained from Fp by removing an
edge not incident on the universal vertex of Fp. For each vertex v of a diamond-free
2p-regular graph G with p ⩾ 2, the neighbourhood NG(v) induces one of the graphs
pK2, (p− 1)K2 + 2K1, (p− 2)K2 + 4K1, . . . , 2pK1. Thus, we have the following corollary.

Corollary 32. Let G be a (K1,p+2, F
−
p )-free 2p-regular graph with p ⩾ 2. Then, G is

(p+ 2)-star colourable if and only if G admits an LBH to L∗(Kp+2).

For integers p, q ∈ N with 2 ⩽ q ⩽ p, the same result holds for 2p-regular graphs that
are K1,p+q-free as well as (F−r

p )-free for all r ∈ {1, 2, . . . , q − 1}, where F−r
p denotes the

graph obtained from Fp by removing r edges not incident on the universal vertex of Fp.
Observe that for each p ⩾ 2, the set of neighbours of (0, 1) in L∗(Kp+2) is {(1, 2), . . . ,

(1, p + 1), (2, 0), . . . , (p + 1, 0)} and the subgraph of L∗(Kp+2) induced by this set is
isomorphic to pK2, where the edges in the subgraph are {(1, 2), (2, 0)}, . . . , {(1, p+ 1),
(p + 1, 0)}. Similarly, for each p ⩾ 2 and each vertex v of L∗(Kp+2), the subgraph of
L∗(Kp+2) induced by the neighbourhood of v is pK2. For p ⩾ 2, since L∗(Kp+2) is a
connected graph (in fact, Hamiltonian by Theorem 25), L∗(Kp+2) ∈ F (p, 2). Hence, for
each p ⩾ 2, L∗(Kp+2) ∈ F (p, 2) and thus it is locally linear by Observation 1.

Lemma 33. Let p ⩾ 2, and let G be a connected 2p-regular graph. Then, G is locally
linear if and only if G is (diamond, K4, K1,p+1)-free.

Proof. Suppose that G is locally linear. Since each edge in G is in exactly one triangle in
G, we know that G is (diamond, K4)-free. Since G is a connected locally linear 2p-regular
graph, G ∈ F (p, 2) by Observation 1. Consider an arbitrary vertex v in G. We know
that G[NG(v)] ∼= pK2. Hence, the independence number of G[NG(v)] is exactly p. That
is, v has at most p neighbours in G that are pairwise non-adjacent. Thus, there is no
induced subgraph H of G such that (i) H ∼= K1,p+1 and (ii) v is the centre of H. Since v is
arbitrary, there is no induced subgraph of G isomorphic to K1,p+1. Hence, G is (diamond,
K4, K1,p+1)-free.

Conversely, suppose that G is (diamond, K4, K1,p+1)-free. Consider an arbitrary vertex
v of G. We know that G[NG(v)] contains exactly 2p vertices. Since G is (diamond, K4)-free,
each component of G[NG(v)] contains at most one edge. Suppose that G[NG(v)] contains
exactly q edges, where q ⩽ p. Clearly, G[NG(v)] contains exactly 2p− 2q isolated vertices,
and thus G[NG(v)] ∼= qK2 + (2p− 2q)K1. Hence, the independence number of G[NG(v)]
is exactly q + (2p− 2q) = 2p− q. Thus, v has 2p− q neighbours in G that are pairwise
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non-adjacent. Since G is K1,p+1-free, we have 2p− q ⩽ p; that is, p ⩽ q. Since q ⩽ p and
p ⩽ q, we have q = p. That is, G[NG(v)] ∼= pK2. Since v is arbitrary and G is connected,
G ∈ F (p, 2). Hence, G is locally linear by Observation 1.

Theorem 34. Let p ⩾ 2, and let G be a connected K1,p+1-free 2p-regular graph. If G
is (p+ 2)-star colourable, then G is a locally linear graph as well as a clique graph, and
K(K(G)) ∼= G.

Proof. Suppose that G is (p + 2)-star colourable. Then, G is (diamond, K4)-free by
[16, Corollary 2]. Since G is a (diamond, K4, K1,p+1)-free graph, G is locally linear by
Lemma 33. Since G is a connected graph as well, G ∈ F (p, 2) by Observation 1. Thus,
K(K(G)) ∼= G by [24, Theorem 1.4], and hence G itself is a clique graph.

Theorem 27 proved that for every 3-regular graph G, the line graph of G is 4-star
colourable if and only if G is bipartite and distance-two 4-colourable. Feder et al. [38]
proved that given a planar 3-regular 3-connected bipartite graph G, it is NP-complete
to check whether G is distance-two 4-colourable. Thus, the following is a corollary of
Theorem 27.

Corollary 35. Given a planar 3-regular 3-connected bipartite graph G, it is NP-complete
to check whether the line graph of G is 4-star colourable. In particular, (i) it is NP-complete
to check whether a planar 4-regular 3-connected graph is 4-star colourable, and (ii) it is
NP-complete to check whether a K1,3-free 4-regular graph is 4-star colourable.

If a K1,3-free 4-regular graph G is 4-star colourable, then G is a locally-2K2 graph by
Theorem 34. Given a graph G, one can test in polynomial time whether G is locally-2K2.
Moreover, locally-2K2 graphs are clique graphs [24, Theorem 1.4]. Thus, we have the
following.

Corollary 36. It is NP-complete to check whether a planar locally-2K2 graph is 4-star
colourable. Hence, it is NP-complete to check whether a planar 4-regular clique graph is
4-star colourable.

Thanks to Theorem 22, we also have the following corollary.

Corollary 37. Given a (planar bipartite) graph G and a (strongly connected) oriented
graph H⃗, it is NP-complete to check whether G has an orientation that admits a (degree-
preserving) OBH to H⃗.

Corollary 2 in [16] proved that for p ⩾ 2, a 2p-regular (p + 2)-star colourable graph
does not contain diamond as a subgraph. With the help of the the following lemmas,
we show that diamond graph and circular ladder graphs CL2r+1 do not admit q-coloured
MINI-orientations for any q ∈ N; as a result, 2p-regular (p+ 2)-star colourable graphs do
not contain them as subgraphs.

Lemma 38. Let G be a graph, and let (G⃗, f) be a q-coloured MINI-orientation of G for
some q ∈ N. Then, G⃗ orients each triangle in G as a directed cycle.
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Proof. Let (u, v, w) be an arbitrary triangle in G. Either (u, v) or (v, u) is an arc in G⃗.
We show that if (u, v) is an arc in G⃗, then (u, v, w) is oriented by G⃗ as u→ v → w → u.
Suppose that (u, v) is an arc in G⃗.
Claim 5. (v, w) is an arc in G⃗.
If not, then u and w are in-neighbours of v and thus they must get the same colour under f ,
which is a contradiction since uw is an edge of G and f is a colouring of G. This proves
Claim 5.

Similarly, if (u,w) is an arc in G⃗, then the in-neighbours u and v of w must get the
same colour under f , a contradiction. Hence, (w, u) is an arc in G⃗. Hence, (u, v, w) is
oriented by G⃗ as u → v → w → u. Therefore, if (u, v) is an arc in G⃗, then (u, v, w) is
oriented by G⃗ as u → v → w → u. Similarly, we can show that if (v, u) is an arc in G⃗,
then (u, v, w) is oriented by G⃗ as v → u→ w → v.

Lemma 39. Let G be a graph, and let (G⃗, f) be a q-coloured MINI-orientation of G for
some q ∈ N. Then, for every 4-vertex cycle in G, not necessarily induced, edges in the cycle
are oriented by G⃗ either as a directed cycle (as in Figure 5a) or as a direction-alternating
cycle (as in Figure 5b).

(a) (b)

Figure 5: Possible orientations of a C4 in a coloured MINI-orientation of G.

Proof. Let (u, v, w, x) be an arbitrary C4 in G. Without loss of generality, assume that
(u, v) is an arc in G⃗. Let us consider the possible orientations of the edge vw as two cases.

Case 1: (v, w) is an arc in G⃗.

We know that u is an in-neighbour of v and w is an out-neighbour of v. Since (G⃗, f) is a
coloured MINI-orientation, we have f(u) ̸= f(w).
Claim 6 (of Case 1). (w, x) is an arc in G⃗.

On the contrary, assume that (x,w) is an arc in G⃗. Since (G⃗, f) is a coloured MINI-
orientation, the in-neighbours v and x of w should get the same colour under f . That is,
f(v) = f(x). Since v and x are neighbours of u, the only possibility of v and x getting the
same colour is that v and x are in-neighbours of u. This is a contradiction since v is an
out-neighbour of u. This proves Claim 6.

By Claim 1, (w, x) is an arc in G⃗. Since f(u) ̸= f(w), it follows that (u, x) is not an
arc in G⃗ (if not, the in-neighbours u and w of x should get the same colour under f ; a
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contradiction). Therefore, the orientation on (u, v, w, x) in G⃗ is u → v → w → x → u;
that is, as in Figure 5a.

Case 2: (w, v) is an arc in G⃗.

Then, the in-neighbours u and w of v should get the same colour under f . That is,
f(u) = f(w). Since u and w are neighbours of x, the only possibility of u and w getting
the same colour is that u and w are in-neighbours of x. Therefore, the orientation on
(u, v, w, x) in G⃗ is u→ v, w → v, u→ x and w → x; that is, as in Figure 5b.

In both Case 1 and Case 2, the orientation on (u, v, w, x) is as shown in Figure 5. This
completes the proof since the 4-vertex cycle (u, v, w, x) is arbitrary.

Corollary 40. Let G be a graph with a 4-vertex cycle (u, v, w, x), and let (G⃗, f) be a
q-coloured MINI-orientation of G. If (u, v) ∈ E(G⃗), then (w, x) ∈ E(G⃗).

Proof. Suppose that (u, v) ∈ E(G⃗); that is, G⃗ orients edge uv as u→ v. Then, G⃗ orients
(u, v, w, x) as either (i) u → v → w → x → u, or (ii) u → v, w → v, u → x,w → x. In
both cases, G⃗ orients the edge wx as w → x; that is, (w, x) ∈ E(G⃗).

a

x

b

y

(a)

u1 v1u0

v0

u2r
v2r

. . .

. . .

(b)

u1 v1
u0

v0

u4

v4

u2

v2

u3

v3

(c)

Figure 6: (a) Diamond, (b) circular ladder graph CL2r+1, and (c) CL5.

Theorem 41. The diamond graph does not admit a q-coloured MINI-orientation for any
q ∈ N.

Proof. Let G be the diamond graph with vertex set {x, y, a, b} and edge set {ax, xb, by,
ya, xy}. Contrary to the theorem, suppose that G admits a q-coloured MINI-orientation
(G⃗, f) for some q ∈ N. Without loss of generality, assume that G⃗ orients the edge xy as
x→ y. By Lemma 38, G⃗ orients the triangle (x, y, a) in G as x→ y → a→ x. Similarly,
G⃗ orients the triangle (x, y, b) in G as x→ y → b→ x. Since G⃗ orients the 4-vertex cycle
(a, x, b, y) as y → a→ x, y → b→ x, the 4-vertex cycle is not oriented by G⃗ as in Figure 5;
a contradiction to Lemma 39.

Theorem 42. For r ∈ N, the circular ladder graph CL2r+1 does not admit a q-coloured
MINI-orientation for any q ∈ N. Thus, for p ⩾ 2, a 2p-regular (p + 2)-star colourable
graph does not contain CL2r+1 as a subgraph.
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Proof. LetG be the circular ladder graph CL2r+1 with vertex set {u0, u1, . . . , u2r, v0, v1, . . . ,
v2r} and edge set {uiui+1 : i ∈ Z2r+1} ∪ {vivi+1 : i ∈ Z2r+1} ∪ {uivi : i ∈ Z2r+1}, where
subscript i+1 is modulo 2r+1. Contrary to the theorem, suppose thatG admits a q-coloured
MINI-orientation (G⃗, f) for some q ∈ N. Due to Corollary 40, there exists i ∈ Z2r+1 such
that (ui, vi) ∈ E(G⃗) (if (v0, u0) ∈ E(G⃗), then applying Corollary 40 on (v0, u0, u1, v1) yields
(u1, v1) ∈ E(G⃗)). Without loss of generality, assume that (u0, v0) ∈ E(G⃗). Then, applying
Corollary 40 on (u0, v0, v1, u1) yields (v1, u1) ∈ E(G⃗). Hence, applying Corollary 40 on
(v1, u1, u2, v2) yields (u2, v2) ∈ E(G⃗), and thus applying Corollary 40 on (u2, v2, v3, u3)

yields (v3, u3) ∈ E(G⃗). By repeated application, we get (u2i, v2i) ∈ E(G⃗) for 0 ⩽ i ⩽ r,
and (v2i+1, u2i+1) ∈ E(G⃗) for 0 ⩽ i ⩽ r − 1. In particular, (u2r, v2r) ∈ E(G⃗). Hence,
applying Corollary 40 on (u2r, v2r, v0, u0) yields (v0, u0) ∈ E(G⃗). This is a contradiction
since we started with (u0, v0) ∈ E(G⃗).

Finally, we point out that given an orientation G⃗ of a graph G, one can test in
polynomial-time whether G⃗ is a MINI-orientation of G.

Theorem 43. Given an orientation G⃗ of a graph G, we can test in polynomial time
whether there exist an integer q and a q-colouring f of G such that (G⃗, f) is a q-coloured
MINI-orientation of G.

Proof. Let G⃗ be an orientation of G. We define an equivalence relation R on V (G) as
follows: (x, y) ∈ R if there exists an x, y-path u0, u1, . . . , u2t in G⃗ with t ⩾ 0, x = u0 and
y = u2t such that u2j, u2j+2 are in-neighbours of u2j+1 for 0 ⩽ j < t.

Let V0, V1, . . . , Vq−1 be the equivalence classes under R, and let f : V (G) → Zq be the
function defined as f(v) = i for all v ∈ Vi (0 ⩽ i ⩽ q − 1). Clearly, we can compute f in
polynomial time, and test in polynomial time whether f is a q-colouring of G and (G⃗, f)

is a q-coloured MINI-orientation. We claim that (G⃗, f ∗) is a q∗-coloured MINI-orientation
of G for some integer q∗ and some q∗-colouring f ∗ of G if and only if (G⃗, f) is a q-coloured
MINI-orientation of G. To prove this claim, it suffices to show the only if direction.
Suppose that (G⃗, f ∗) is a q∗-coloured MINI-orientation of G.

To prove that f is q-colouring of G, it suffices to establish the following claim.
Claim 7. Vi is an independent set for 0 ⩽ i ⩽ q − 1.

We prove Claim 1 for i = 0 (the proof is similar for other values of i). To produce a
contradiction, assume that V0 is not an independent set, say xy is an edge in G where
x, y ∈ V0. Since x and y belong to the same equivalence class under R (namely V0),
there exists an x, y-path u0, u1, . . . , u2t in G⃗ with t ⩾ 0, x = u0, y = u2t, and u2j, u2j+2

are in-neighbours of u2j+1 for 0 ⩽ j < t. By definition of q∗-coloured MINI-orientation,
f ∗(u2j) = f ∗(u2j+2) for 0 ⩽ j < t (because u2j and u2j+2 are in-neighbours of u2j+1).
Hence f ∗(u0) = f ∗(u2) = · · · = f ∗(u2t); thus, f ∗(x) = f ∗(y). This is a contradiction
since f ∗ is a colouring of G and xy ∈ E(G). This proves Claim 7. So, f is a q-colouring of G.

It remains to show that (G⃗, f) is a q-coloured MINI-orientation of G. Let v be an
arbitrary vertex of G. Let w1, . . . , wp be the in-neighbours of v, and let x1, . . . , xr be the
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out-neighbours of v in G⃗. We need to show that all three conditions in the definition of
q-coloured MINI-orientation are satisfied. That is, we need to show that the following hold
in (G⃗, f): (i) no out-neighbour of v has the same colour as an in-neighbour of v, (ii) no
two out-neighbours of v have the same colour, and (iii) all in-neighbours of v have the
same colour.

First, we prove (i); that is, f(wk) ̸= f(xℓ) for 1 ⩽ k ⩽ p and 1 ⩽ ℓ ⩽ r. To
produce a contradiction, assume the contrary; that is, there exist k ∈ {1, . . . , p} and
ℓ ∈ {1, . . . , r} such that f(wk) = f(xℓ). Since f(wk) = f(xℓ), wk and xℓ belong to the
same equivalence class under R. That is, there exists an wk, xℓ-path u0, u1, . . . , u2t in G⃗
with t ⩾ 0, wk = u0, xℓ = u2t, and u2j, u2j+2 are in-neighbours of u2j+1 for 0 ⩽ j < t.
For 0 ⩽ j < t, u2j and u2j+2 are in-neighbours of u2j+1 and thus f ∗(u2j) = f ∗(u2j+2).
Therefore, f ∗(u0) = f ∗(u2) = · · · = f ∗(u2t); thus, f ∗(wk) = f ∗(xℓ). But, since wk is an
in-neighbour of v and xℓ is an out-neighbour of v, f ∗(wk) ̸= f ∗(xℓ). This contradiction
proves (i).

Next, we prove (ii); that is, f(xk) ̸= f(xℓ) for 1 ⩽ k < ℓ ⩽ r. To produce a
contradiction, assume the contrary; that is, there exist k, ℓ ∈ {1, . . . , r} with k < ℓ such
that f(xk) = f(xℓ). Since f(xk) = f(xℓ), xk and xℓ belong to the same equivalence class
under R. That is, there exists an xk, xℓ-path u0, u1, . . . , u2t in G⃗ with t ⩾ 0, xk = u0,
xℓ = u2t, and u2j, u2j+2 are in-neighbours of u2j+1 for 0 ⩽ j < t. For 0 ⩽ j < t, u2j
and u2j+2 are in-neighbours of u2j+1 and thus f ∗(u2j) = f ∗(u2j+2). Therefore, f ∗(u0) =
f ∗(u2) = · · · = f ∗(u2t); thus, f ∗(xk) = f ∗(xℓ). But, since xk and xℓ are out-neighbours of
v, f ∗(xk) ̸= f ∗(xℓ). This contradiction proves (ii).

Finally, we prove (iii). For 1 ⩽ k < ℓ ⩽ p, (wk, wℓ) ∈ R since wk and wℓ are in-
neighbours of v, and thus f(wk) = f(wℓ). Hence, f(w1) = · · · = f(wp). This proves (iii).

Since (i), (ii) and (iii) hold for an arbitrary vertex v of G⃗, it follows that (G⃗, f) is a
q-coloured MINI-orientation.

5 Conclusion and Open Problems

For d ⩾ 3, at least ⌈(d+ 4)/2⌉ colours are required to star colour a d-regular graph [16].
In particular, at least (p+ 2) colours are required to star colour 2p-regular graphs G with
p ⩾ 2, and graphs G for which (p+ 2) colours suffice are characterised in terms of graph
orientations in [16] and in terms of graph homomorphisms in the current paper. The
following is a natural follow-up question since at least (p+ 2) colours are required to star
colour (2p− 1)-regular graphs with p ⩾ 2.

Problem 1. For p ⩾ 2, characterise (2p− 1)-regular (p+ 2)-star colourable graphs.

For a fixed k ∈ N, the problem k-Star Colourability takes a graph G as input and
asks whether G is k-star colourable. The problem 4-Star Colourability is NP-complete
even when restricted to K1,3-free (planar) 4-regular graphs by Corollary 35.

Problem 2 ([16]). For p ⩾ 3, is (p + 2)-Star Colourability restricted to 2p-regular
graphs NP-complete?
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Observe that this problem is indeed open. By Theorem 22, a 2p-regular graph G is
(p+ 2)-star colourable if and only if G admits an OBH to L∗(Kp+2). But, the complexity
of deciding whether an input graph G admits an OBH to L∗(Kp+2) is open. By Lemma 23,
every OBH from an orientation of a K1,p+1-free 2p-regular graph to L⃗(Kp+2) is an LBH.
For each d-regular graph H with d ⩾ 3, it is NP-complete to test whether an input
(d-regular) graph G admits an LBH to H. In particular, it is NP-complete to test whether
a 2p-regular graph G admits an LBH to L∗(Kp+2). Neverthless, the complexity status is
unknown when G is guaranteed to be K1,p+1-free (even though L∗(Kp+2) is K1,p+1-free, a
graph admitting LBH to L∗(Kp+2) need not be K1,p+1-free).

Problem 3. For p ⩾ 3, is (p+2)-Star Colourability restricted to K1,p+1-free 2p-regular
graphs NP-complete?

If the answer to Problem 3 is ‘yes’, then (p + 2)-Star Colourability restricted to
locally-pK2 graphs is NP-complete (by the same arguments as in Corollary 36).

By Theorem 42, diamond and circular ladder graph CL2r+1 (r ∈ N) does not admit a
q-coloured MINI-orientation for any q ∈ N.

Problem 4. Characterise graphs that do not admit a q-coloured MINI-orientation for any
q ∈ N.

Theorem 27 proved that for every 3-regular graph G, the line graph of G is 4-star
colourable if and only if G is bipartite and distance-two 4-colourable. Generalisation of this
result to larger graph classes is an interesting future direction. Determining the spectrum
of L∗(G) for each graph G is another future direction we are interested in. Theorem 4
revealed some information on the spectrum of L∗(G).
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