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Abstract

We enumerate the numbers avkn(1324) of 1324-avoiding n-permutations with ex-
actly k inversions for all k and n ⩾ (k + 7)/2. The result depends on a struc-
tural characterization of such permutations in terms of a new notion of almost-
decomposability. In particular, our enumeration verifies half of a conjecture of
Claesson, Jelínek and Steingrímsson, according to which avkn(1324) ⩽ avkn+1(1324)
for all n and k. Proving also the other half would improve the best known upper
bound for the exponential growth rate of the number of 1324-avoiders from 13.5 to
approximately 13.002.
Mathematics Subject Classifications: 05A05, 05A15

1 Introduction

A permutation π ∈ Sn contains a pattern τ ∈ Sm if there exist indices i1 < . . . < im
such that π(ia) < π(ib) if and only if τ(a) < τ(b) for all a, b ∈ [m]. Otherwise, π avoids
τ . An inversion in π is a pair of indices (i, j) such that i < j and πi > πj. We denote by
Avn(τ) the set of all permutations of length n avoiding τ , and by Avkn(τ) ⊆ Avn(τ) those
with exactly k inversions. Furthermore, we set avn(τ) = |Avn(τ)| and avkn(τ) = |Avkn(τ)|.
Two patterns σ and τ are called Wilf equivalent if avn(σ) = avn(τ) for all n.

1.1 Avoiding 1324

It is a well-known that
avn(τ) = Cn =

1

n+ 1

(
2n

n

)
for all patterns τ of length three, but determining avn(τ) for patterns of length four is much
more difficult. The patterns of length four have three distinct Wilf equivalence classes
(see [3, 22]), usually represented by 1234, 1342 and 1324. Exact formulas for avn(1234)
and avn(1342) were found by Gessel in 1990 [17] and Bóna in 1997 [11], respectively,
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whereas 1324 has resisted all attempts at enumeration. The numbers avn(1324) have
been determined computationally up to n = 50 (sequence A061552 in the OEIS [21]), but
in general not even the asymptotics are well-understood. For a thorough exposition of
these topics, see Bóna [10], Kitaev [18] or Vatter [23]. The Stanley–Wilf limit

L(τ) = lim
n→∞

avn(τ)
1/n,

exists for all patterns τ due to the Marcus–Tardos theorem [2, 20], but when τ = 1324,
only loose bounds are known. Table 1 shows the timeline of the evolution of these bounds;
currently they are 10.27 < L(1324) < 13.5 [5]. Since L(1234) = 9 and L(1342) = 8, 1324
is significantly easier to avoid than the other patterns of length four. Conway, Guttmann
and Zinn-Justin have convincingly estimated that L(1324) ≈ 11.600± 0.003 [15, 16].

Lower Upper

2004. Bóna [9] 288
2005. Bóna [13] 9
2006. Albert et al. [1] 9.47
2012. Claesson, Jelínek and Steingrímsson [14] 16
2014. Bóna [8] 13.93
2015. Bóna [7] 13.74
2015. Bevan [4] 9.81
2020. Bevan et al. [5] 10.27 13.5

Table 1: Best known upper and lower bounds for L(1324) throughout history.

One possible avenue towards improvement is suggested by a conjecture of Claesson,
Jelínek and Steingrímsson.

Conjecture 1 (Conjecture 13 in [14]). For all nonnegative integers n and k,

avkn(1324) ⩽ avkn+1(1324).

As was demonstrated in [14], the conjecture implies a new upper bound L(1324) ⩽
exp

(
π
√

2/3
)
< 13.002, using the fact that avkn(1324) is constant when the number k of

inversions is fixed and n ⩾ k + 2. Our main result proves half of the conjecture.

Theorem 2. For all nonnegative integers k and n ⩾ k+7
2

,

avkn(1324) = a(k)− 4a(k − n+ 1)− 6
k−n∑
i=0

a(i),

where a(k) =
∑k

i=0 p(i)p(k − i) and p(k) is the number of integer partitions of k. In
particular,

avkn+1(1324)− avkn(1324) = 4a(k − n+ 1) + 2a(k − n) ⩾ 0,

and this difference has a combinatorial interpretation.
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Remark 3. In the language of generating functions, Theorem 2 states that

avkn(1324) = [xk]

(
P (x)2 − Rn(x)

1− x

)
whenever n ⩾ k+7

2
, where P (x) =

∑
i⩾0 p(i)x

i is the generating function for the partition
numbers and Rn(x) = 2(2 + x)xn−1P (x)2. In particular,

avkn+1(1324)− avkn(1324) = [xk]Rn(x).

This wording is more convenient for the proof, especially in Section 4.

The proof relies on a new notion of almost decomposable permutations. The following
subsection motivates this idea by defining decomposable permutations, and explains the
constants avkk+2(1324).

1.2 Direct sums and decomposability

For two permutations σ ∈ Sn and τ ∈ Sm, we define the direct sum σ ⊕ τ ∈ Sn+m by

(σ ⊕ τ)(i) =

{
σ(i) if i ⩽ n,

n+ τ(i− n) if i > n.

For example, 231⊕ 21 is obtained in the following way.

×

2

×

3

×
1

⊕ ×

2

×
1

=
×

2

×

3

×
1

×

5

×

4

If a permutation π is the direct sum of two nonempty permutations, we call π decom-
posable, and otherwise indecomposable. Notice that π can be written uniquely as a direct
sum

π = π(1) ⊕ π(2) ⊕ . . .⊕ π(c),

where each component π(i) is indecomposable. The formula (see [14, Lemma 8])

comp(π) + inv(π) ⩾ |π|,

where comp(π), inv(π) and |π| denote the number of components, the number of inversions
and the length of π, respectively, indicates that a permutation with few inversions should
have many components. In particular, if inv(π) ⩽ |π|−2, then comp(π) ⩾ |π|−inv(π) ⩾ 2.
It is easy to see that a decomposable permutation π avoids 1324 if and only if it is of the
form

π = π(1) ⊕ 1⊕ 1⊕ . . .⊕ 1⊕ π(2), (1)
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where π(1) avoids 132 and π(2) avoids 213. The inversion table b1b2 . . . bn of a 132-avoider
of length n, defined by bi = |{j > i : πj < πi}|, is weakly decreasing and therefore – with
the exclusion of trailing 0’s – a partition of inv(π). It follows that

avkn(132) = avkn(213) = p(k)

for all n ⩾ k + 1. Hence, (1) gives

avkn(1324) = a(k) =
k∑

i=0

p(i)p(k − i) = [xk]P (x)2

whenever n ⩾ k + 2, where P (x) =
∑

i⩾0 p(i)x
i [14, Proposition 15].

1.3 Interpreting the main result

The preceding discussion shows that Conjecture 1 holds trivially (with equality) for all
n ⩾ k + 2. Our main result, Theorem 2, improves this to n ⩾ k+7

2
, and therefore proves

half of the conjecture along with enumerating the corresponding values of avkn(1324). The
strategy is to find an injection Avkn(1324) → Avkn+1(1324) and analyze it in order to
enumerate the permutations not contained in its image. The injection relies on almost
decomposability, which is related to normal decomposability, so it is not surprising that
the partition numbers show up.

It is useful to keep in mind Table 2, in which the entry on row n and column k equals
avkn(1324). Conjecture 1 is equivalent to the statement that each column of the diagram
is weakly increasing as n increases. The blue cells indicate the constant parts of each
column; the sequence 1, 2, 5, 10, 20, . . . comes from the generating function P (x)2. The
red cells contain the new numbers enumerated by Theorem 2. Specifically, the entry in a
blue or red cell on row n and column k equals

a(k)− 4a(k − n+ 1)− 6
k−n∑
i=0

a(i).

The differences avkn+1(1324)− avkn(1324) are displayed in Table 3. The blue 0’s come
from the constant part of each column, and the numbers in the red cells are given by

4a(k − n+ 1) + 2a(k − n). (2)

The diagram also shows that n ⩾ k+7
2

is the best possible bound for our method: if
n < k+7

2
(and k is not too small), then avkn+1(1324)− avkn(1324) no longer equals (2). The

data of Table 2 was provided to us by Anders Claesson; an expanded version is available
at https://akc.is/inv-mono/ along with background on Conjecture 1.
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n\k 0 1 2 3 4 5 6 7 8 9 10 11 12

1 1

2 1 1

3 1 2 2 1

4 1 2 5 6 5 3 1

5 1 2 5 10 16 20 20 15 9 4 1

6 1 2 5 10 20 32 51 67 79 80 68 49 29 . . .

7 1 2 5 10 20 36 61 96 148 208 268 321 351 . . .

8 1 2 5 10 20 36 65 106 171 262 397 568 784 . . .

9 1 2 5 10 20 36 65 110 181 286 443 664 985 . . .

10 1 2 5 10 20 36 65 110 185 296 467 714 1077 . . .

11 1 2 5 10 20 36 65 110 185 300 477 738 1127 . . .

12 1 2 5 10 20 36 65 110 185 300 481 748 1151 . . .

Table 2: The numbers avkn(1324).

n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 1

2 0 1 2 1

3 0 0 3 5 5 3 1

4 0 0 0 4 11 17 19 15 9 4 1

5 0 0 0 0 4 12 31 52 70 76 67 49 29 14 . . .

6 0 0 0 0 0 4 10 29 69 128 200 272 322 333 . . .

7 0 0 0 0 0 0 4 10 23 54 129 247 433 672 . . .

8 0 0 0 0 0 0 0 4 10 24 46 96 201 397 . . .

9 0 0 0 0 0 0 0 0 4 10 24 50 92 166 . . .

10 0 0 0 0 0 0 0 0 0 4 10 24 50 100 . . .

11 0 0 0 0 0 0 0 0 0 0 4 10 24 50 . . .

12 0 0 0 0 0 0 0 0 0 0 0 4 10 24 . . .

Table 3: The numbers avkn+1(1324)− avkn(1324).
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1.4 Structure of the paper

This paper is organized as follows. In Section 2, we introduce almost-decomposability and
prove that all permutations in Avkn(1324) are either decomposable or almost decomposable
whenever n ⩾ k+7

2
. In Section 3, we construct an injection Avkn(1324) → Avkn+1(1324).

The enumeration of avkn+1(1324)−avkn(1324) based on the injection is performed in Section
4. Finally, Section 5 contains a discussion of ideas to extend our method to prove more
of Conjecture 1, reasons we have failed to do so, as well as possible improvements to the
upper bound for L(1324) given by the conjecture.

2 1324-avoiders with few inversions are almost decomposable

We will often utilize the plots {(i, πi) : i ∈ [n]} (in cartesian coordinates) of permutations
π ∈ Sn. Inverting π corresponds with reflecting its plot across the line y = x, and the
reverse-complement rc(π)i = n + 1 − πn+1−i rotates the plot by 180 degrees. Both π−1

and rc(π) preserve 1324-avoidance and the number of inversions of π, so these are useful
operations for us.

We also use the Rothe diagram of π, which is obtained from the plot of π by drawing
lines to north and east from each point (i, πi), and marking the empty coordinate points
– these points are the inversions of π. The following figure shows an example.

245169783 =

×

×
×

×

×

×

×
×

×

Definition 4. For π ∈ Sn and i ∈ [n], we denote by π ∖ πi the unique permutation in
Sn−1 that is order-isomorphic to π1 . . . πi−1πi+1 . . . πn. We say that π ∖ πi is obtained by
deleting entry πi from π. More generally, if S ⊆ [n], then π∖S is the unique permutation
that is order-isomorphic to the sequence obtained by removing all entries contained in S
from π.

Definition 5. A permutation π ∈ Sn is called almost decomposable if it is indecompos-
able, but

max{comp(π ∖ i) : i = 1, n, π1, πn} ⩾ 2.

Example 6. Consider the indecomposable permutation π = 245169783. Since π ∖ 1 =
13458672 = 1⊕ 2348671 is decomposable, π is almost decomposable. However, note that
π ∖ 3 = 23415867 = 2341⊕ 1⊕ 312 is also decomposable.

Almost-decomposability means that deleting one of the points from the ‘boundary’ of
the plot of the permutation makes it decomposable. Here are the plots of π∖1 and π∖3.
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×

×
×

×

×

×
×

×

×
π ∖ 1

×

×
×

×

×

×

×
×

×

π ∖ 3

An important detail in Section 3, where the injection Avkn(1324) → Avkn+1(1324) is
constructed, is that e.g. both π ∖ 1 and π ∖ n can be decomposable when π is almost
decomposable. However, not all combinations are possible, and this is critical.

Proposition 7. Let π ∈ Sn be indecomposable. If π ∖ 1 is decomposable then π ∖ π1 is
indecomposable, and similarly if π ∖ n is decomposable then π ∖ πn is indecomposable.

Proof. The two parts of the statement are symmetrical, so it suffices to prove the first
one. Suppose that π∖ 1 = π(1) ⊕ π′, with π(1) an indecomposable permutation. We must
have π−1

1 > |π(1)| + 1 and π1 ⩽ |π(1)| + 1, so that in particular π1 < π−1
1 . It is therefore

not possible that also π ∖ π1 is decomposable.

All other combinations are, however, possible. Example 6 shows an almost decompos-
able permutation π for which π ∖ 1 are π ∖ πn decomposable, which is one of the four
such combinations of two entries.

The goal of this section is to show that, up to the upper bound of 2n − 7 inversions,
every 1324-avoider of length n is either decomposable or almost decomposable. (We
will rewrite the bound n ⩾ k+7

2
as k ⩽ 2n − 7 from here on.) This is the structural

characterization that our proof of Theorem 2 relies on.

Theorem 8. Each indecomposable permutation π ∈ Avkn(1324) with k ⩽ 2n− 7 is almost
decomposable.

Proof. If π1 < πn and π−1
1 < π−1

n , then Lemmas 9 and 13 below show that π is almost
decomposable. Otherwise Lemma 14 applies.

All of the facts needed for the above proof are obtained by counting inversions in a
specific way, thus showing that all permutations with certain properties violate the bound
k ⩽ 2n − 7. We will need to refer to certain ‘regions’ in the plots of our permutations.
To start with, if a permutation π satisfies π1 < πn and π−1

1 < π−1
n , then any entry πi such

that
i < π−1

1 and πi > πn

is said to lie in the northwestern region of π, and if instead

i > π−1
n and πi < π1

then πi lies in the southeastern region of π. See Figure 1 for a visualization.
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×

×

×

×

π1

1

πn

n

Figure 1: The northwestern and southeast-
ern regions of a permutation π, colored blue
and red, respectively.

Lemma 9. Suppose π ∈ Avn(1324) satisfies π1 < πn and π−1
1 < π−1

n . If π is indecompos-
able, it must have a point in its northwestern or southeastern region.

Proof. Suppose this is not the case, and let m be the largest index such that πm < π1. We
will show that π1 . . . πm is a permutation, and therefore that π is decomposable. Indeed,
we must have πi < πm for all π−1

1 < i < m, as otherwise 1πiπmn forms a 1324-pattern. In
particular πi < πn for all i ⩽ m, and therefore πi < πj for all i ⩽ m and j > m; otherwise
π1πiπjπn is an occurrence of 1324.

A point in the northwestern or southeastern region intuitively causes many inversions.
Indeed, we will show that a 1324-avoider with at most 2n− 6 inversions can have points
in only one of the two regions.

For the remaining results, it will be convenient to make a distinction between inversions
of the form (j, i) and (i, j) for a given index i. The former will be called left-inversions
of index i, and the latter right-inversions. In the Rothe diagram of π, left-inversions are
located to the left of the point (i, πi), and right-inversions are below it.

Lemma 10. If π ∈ Avkn(1324) with k ⩽ 2n− 6, π1 < πn and π−1
1 < π−1

n , then either the
northwestern or the southeastern region of π contains no points.

Proof. Suppose π has points πi and πj in the northwestern and southeastern regions,
respectively. The index i has πi − i right-inversions, since if an index k < i has πk > πi

then π1πkπin forms a 1324-pattern. Furthermore, indices π−1
1 and n have π−1

1 − 1 and
n − πn left-inversions, respectively. Of these inversions, (i, π−1

1 ) and (i, n) were counted
twice, so adding them up we get at least

πi − i+ π−1
1 − 1 + n− πn − 2 = n+ π−1

1 − i︸ ︷︷ ︸
>0

+ πi − πn︸ ︷︷ ︸
>0

− 3 ⩾ n− 1.

Similarly, counting left-inversions of index 1, right-inversions of index j, and left-inversions
of index π−1

n gives another n − 1, out of which (1, π−1
1 ), (i, j) and (π−1

n , n) were counted
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twice. In total,
inv(π) ⩾ 2(n− 1)− 3 = 2n− 5.

The plot of π is illustrated in Figure 2. Points whose right-inversions are counted are
colored blue, and points whose left-inversions are counted are colored red. The vertical
blue rays indicate the possible positions of right-inversions of the corresponding point
in the Rothe diagram of π; horizontal red rays contain the left-inversions. Intersections
of red and blue rays correspond with double-counted inversions. The northwestern and
southeastern regions are colored gray.

×

×

×

×

×

×

π1

πi

n

1

πj

πn

Figure 2: Counting inversions in a permuta-
tion with points in both the nortwestern and
the southeastern region. Proof of Lemma 10.

Lemmas 9 and 10 together prove that if π ∈ Avkn(1324) is indecomposable, k ⩽ 2n−6,
π1 < πn and π−1

1 < π−1
n , then π has a point either in the northwestern or the southeastern

region, but not in both. Observe that πi lies in the northwestern region of π if and only
if i lies in the southeastern region of π−1, so it always suffices to examine only one of the
two cases.

Our following result will explain why k ⩽ 2n− 7 is the best possible upper bound for
our method. We introduce some more terminology based on Figure 3. Suppose π has a
point πi in the northwestern region. A point πj satisfying

i < j < π−1
n and 1 < πj < π1,

is said to lie in the southern region in relation to πi. If

π−1
n < j < n and π1 < πj < πn,

then we say that πj lies in the eastern region in relation to πi. The points 1 and πn are
excluded from these regions. Lastly, notice that if πj satisfies

i < j < π−1
n and π1 < πj < πn,

then π1πiπjn forms a 1324 pattern. This is why the central yellow region in Figure 3 must
be empty if π avoids 1324.
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×

×

×

×

×

π1

πi

n

1

πn

Figure 3: The southern region (in blue) and
eastern region (in red) in relation to the
northwestern point πi of a permutation π.
The central yellow region is empty if π avoids
1324.

Lemma 11. If π ∈ Avkn(1324), k ⩽ 2n − 7, with π1 < πn and π−1
1 < π−1

n has a point πi

in the northwestern region, then there cannot exist two points πj1 and πj2 that lie in the
southern and eastern regions in relation to πi, respectively.

×

×

×

×

×

×

×

∅

∅

π1

πi

n

1

πj1

πj2

πn

Figure 4: Counting inversions of a permu-
tation with points in both the southern and
eastern regions in relation to a point πi in the
northwestern region. Proof of Lemma 11.

Proof. Suppose that such indices j1 and j2 exist. See Figure 4 for the plot of π. There
can be no point in the southeastern region of π by Lemma 10, and, as discussed above,
the ‘central’ region in relation to πi must be empty. It follows that each right-inversion
of index i – except for (i, π−1

1 ) and (i, n) – is caused by a point in the southern or eastern
regions in relation to πi. By counting the maximal number of points that can lie in these
regions (and including 1 and πn), we find that the number πi − i of right-inversions of
index i is at most π1 − 1 + n− π−1

n .
Furthermore, index j1 has at least i left-inversions, since if j < i and πj < πj1 , then

πjπiπj1n forms a 1324-pattern. With a symmetrical argument, j2 has at least n− πi + 1
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left-inversions. Adding together the right-inversions of indices i, 1 and π−1
n with the left-

inversions of indices π−1
1 , j1, j2 and n, accounting for the double counting of (1, π−1

1 ),
(1, j1), (i, π−1

1 ), (i, j1), (j1, j2), (i, n), (π−1
n , j1) and (π−1

n , n), we finally get

inv(π) ⩾ πi − i + π1 − 1 + n− π−1
n︸ ︷︷ ︸

⩾πi−i

+ π−1
1 − 1︸ ︷︷ ︸

⩾i

+ i + n− πi + 1 + n− πn︸ ︷︷ ︸
⩾n−πi+1

− 8

⩾ 2(n+ i− πi + 1) + 2(πi − i)− 8

= 2n− 6.

The bound k ⩽ 2n− 7 is tight, since e.g.

π = 3612 7 . . . n 45

is 1324-avoiding with 2n− 6 inversions, and neither decomposable nor almost decompos-
able. Here is the plot of the first such permutation, π = 3612745.

3612745 =
×

×

×
×

×

×
×

Interestingly, the same permutation π has been used before to exemplify that two 1324-
avoiding permutations can have the same profile: π and π−1 have the same left-to-right
minima and right-to-left maxima in the same positions [12].

Lemma 11 is sufficient for permutations with only one point in the northwestern region,
but not strong enough to give almost-decomposability for permutations with several points
in the northwestern region. However, as the following result shows, such a condition is
even more limiting.

Lemma 12. Let π ∈ Avkn(1324) with k ⩽ 2n − 7, π1 < πn, π−1
1 < π−1

n , and two points
πi1 < πi2 in the northwestern region. There cannot exist two points πj1 and πj2 that lie in
the southern region in relation to πi1 and the eastern region in relation to πi2, respectively.

Proof. Lemma 11 shows that there are no points in the eastern region in relation to πi1 or
the southern region in relation to πi2 . It follows that the points causing right-inversions
for indices i1 and i2 (excluding 1 and πn) are contained in the southern and eastern gray
regions of Figure 5, respectively, and none of the points creates a right-inversion for both
i1 and i2. On the other hand, the points 1 and πn create right-inversions for both i1 and
i2, so the total number πi1 − i1 + πi2 − i2 of right-inversions of i1 and i2 satisfies

πi1 − i1 + πi2 − i2 ⩽ π1 − 1 + n− π−1
n + 2.
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Counting inversions of π as in the previous proof, we get

inv(π) ⩾ πi1 − i1 + πi2 − i2 + π1 − 1 + n− π−1
n︸ ︷︷ ︸

⩾πi1
−i1+πi2

−i2−2

+ π−1
1 − 1︸ ︷︷ ︸
⩾i2

+ i1 + n− πi2 + 1 + n− πn︸ ︷︷ ︸
⩾n−πi1

+1

− 10

⩾ 2(πi1 − i1 + πi2 − i2) + i2 + i1 + n− πi2 + n− πi1 − 10

= 2n+ πi1 − i1︸ ︷︷ ︸
⩾3

+ πi2 − i2︸ ︷︷ ︸
⩾3

− 10

⩾ 2n− 4.

Figure 5 shows the inversions we counted.

×

×

×

×

×

×

×

×

∅

∅

π1

πi1

πi2

n

1

πj1

πj2

πn

Figure 5: Counting inversions of a permuta-
tion with points in the southern and eastern
regions in relation to the points πi1 and πi2

in the northwestern region. Proof of Lemma
12.

We are now prepared to prove one of our central lemmas.

Lemma 13. If π ∈ Avkn(1324) with k ⩽ 2n − 7 and π1 < πn, π−1
1 < π−1

n has a point in
its northwestern region, then π ∖ 1 or π ∖ πn is decomposable.

Proof. Let i1 < i2 < . . . < im be the set of all indices whose points lie in the northwestern
region of π. First, assume that no point lies in the southern region in relation to πi1 and
denote σ = π∖ 1. We claim that σ1 . . . σi1−1 is a permutation, which in turn would imply
that σ is decomposable. Indeed, otherwise there exists indices j1 and j2 such that

j1 < i1 < j2 and πj1 > πj2 .

However, we assumed that the southern region in relation to i1 is empty, so πj2 > π1

and therefore π1πj1πj2πn forms a 1324 pattern. Figure 6 visualizes the argument: the red
points πj1 and πj2 are in impossible positions, implying that the red region in the bottom
right must be empty and therefore that the blue region to its left is a permutation in σ.
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If there is a point in the southern region in relation to πi1 , then Lemmas 11 and 12
prove that the eastern region in relation to πim is empty instead. This case is symmetrical
to the first one after reverse-complementation and inversion; more precisely, rc(π)−1 gets
us back to the first case and therefore

π ∖ πn = rc
(
rc(π)−1 ∖ 1

)−1

is decomposable.

×

×

×

×

×

×
×

×

∅
π1

πi1

πim

n

1

πn

πj1

πj2

Figure 6: A permutation π satisfying the as-
sumptions of Lemma 13 is almost decompos-
able, since π ∖ 1 or π ∖ πn is decomposable.
The points πj1 and πj2 cannot be placed as
they are in the picture, since they create a
1324 pattern.

So far, we have always assumed that π1 < πn and π−1
1 < π−1

n . We will now assume the
opposite, leading to the other half of Theorem 8. This turns out to be much easier, since
if e.g. π1 > πn, then deleting π1 and πn gets rid of a lot of inversions.

Lemma 14. If π ∈ Avkn(1324), k ⩽ 2n − 5 and π1 > πn, then π ∖ π1 or π ∖ πn is
decomposable.

Proof. Let δ = π1 − πn and σ = π ∖ {π1, πn}. The right-inversions of index 1 and
left-inversions of index n in π sum up to

π1 − 1 + n− πn − 1 = n− 2 + δ,

so
comp(σ) ⩾ |σ| − inv(σ) ⩾ n− 2− (2n− 5− n+ 2− δ) = δ + 1 ⩾ 2.

Write σ = σ(1) ⊕ 1⊕ . . .⊕ 1⊕ σ(2). We must have π1 < n− |σ(2)|+ 1 or πn > |σ(1)|, since
otherwise

π1 − πn ⩾ n− |σ(2)|+ 1− |σ(1)| = δ + 2.

If π1 < n − |σ(2)| + 1 then π ∖ πn is decomposable, and if πn > |σ(1)| then π ∖ π1 is
decomposable.
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3 The injection

Denote by Dk
n and Ak

n the sets of decomposable and almost decomposable permutations
in Avkn(1324), respectively. In this section we will construct injections

g : Dk
n −→ Avkn+1(1324) and f : Ak

n −→ Avkn+1(1324),

with disjoint images, for all n and k. If k ⩽ 2n − 7 then all permutations in Avkn(1324)
are decomposable or almost decomposable by Theorem 8, so our mappings combine to an
injection

Avkn(1324) −→ Avkn+1(1324).

In particular, this verifies Conjecture 1 for all k ⩽ 2n− 7.
First of all, any π ∈ Dk

n can be written in the form

π = π(1) ⊕ 1⊕ . . .⊕ 1︸ ︷︷ ︸
m times

⊕ π(2)

for some m ⩾ 0 by (1). This allows us to set

g(π) = π(1) ⊕ 1⊕ . . .⊕ 1︸ ︷︷ ︸
m+1 times

⊕ π(2) ∈ Dk
n+1.

The image g(Dk
n) is exactly the set of all permutations in Avkn+1(1324) with at least three

components, and g is clearly injective. Note that when n ⩾ k + 2, g is a bijection.
We will define f in a similar way. Let π ∈ Ak

n.

1. If π∖ π1 is decomposable, let f(π) be the permutation with f(π)1 = π1 and f(π)∖
π1 = g(π ∖ π1).

2. If π ∖ 1 is decomposable, let f(π) = f(π−1)−1.

3. Otherwise, let f(π) = (rc ◦ f ◦ rc)(π), where rc(π) is the reverse-complement.

Remark 15. Let π ∈ Ak
n.

(a) It is impossible for both π ∖ 1 and π ∖ π1 to be decomposable by Proposition 7, so
parts 1 and 2 of the definition are exclusive.

(b) If π∖1 and π∖π1 are indecomposable, then π∖n or π∖πn must be decomposable,
and it follows that rc(π)∖1 or rc(π)∖rc(π)1 is decomposable. This is why (f ◦rc)(π)
exists when it is used in part 3.

(c) If π ∖ π1 is decomposable then π1 > π2, and therefore f(π) avoids 1324. The 1324-
avoiders are closed under inversion and taking reverse-complements, so f(π) avoids
1324 also in parts 2 and 3.
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(d) The number of inversions is preserved: in part 1,

inv(f(π)) = inv(g(π ∖ π1)) + π1 − 1 = inv(π ∖ π1) + π1 − 1 = inv(π).

Taking the inverse or the reverse-complement preserves the number of inversions,
so this is true also for parts 2 and 3.

(e) f(π) has at most two components: in part 1, if f(π) = π(1)⊕1⊕π′ then π = π(1)⊕π′,
a contradiction. Taking the inverse or the reverse-complement preserves the number
of components, so this is true also for parts 2 and 3.

(f) In part 3, if π ∖ πn is decomposable then

f(π)n+1 = (rc ◦ f ◦ rc)(π)n+1 = n+ 2− (f ◦ rc)(π)n+2−n−1

= n+ 2− rc(π)1

= n+ 2− (n+ 1− πn+1−1) = πn + 1.

In part 2 it is clear that f(π)−1
1 = π−1

1 , so if instead π ∖ n is decomposable in part
3 then similarly f(π)−1

n+1 = π−1
n + 1.

Example 16. Consider the permutation π = 35126874 ∈ Av88(1324). Here are the plots
of π and rc(π).

×

×

×
×

×

×
×

×

π

×

×
×

×

×
×

×

×

rc(π)

We can see that π∖1 and π∖π1 are both indecomposable, whereas π∖πn is decomposable.
Therefore rc(π) ∖ rc(π)1 is decomposable. The following figure shows the permutations
rc(π)∖ rc(π)1, g(rc(π)∖ rc(π1)) and (f ◦ rc)(π).

×
×

×

×
×

×
×

rc(π)∖ rc(π)1

×
×

×
×

×
×

×
×

g(rc(π)∖ rc(π)1)

×

×
×

×
×

×
×

×
×

(f ◦ rc)(π)

Finally, we get the following.
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f(π) = (rc ◦ f ◦ rc)(π) = 341267985 =

×
×

×
×

×
×

×
×

×

In order to show that f is injective, we will construct its inverse. The natural way to
obtain π from f(π) =: σ is by reversing the steps used to construct σ: first delete a well-
chosen entry in {1, n + 1, σ1, σn+1} from σ, then apply g−1 on the resulting permutation
(which has at least three components), and finally insert back the deleted entry. The
choice of entry to delete should mirror the definition of f : deleting 1 or σ1 is always
prioritized over deleting n or σn.

However, it is not obvious that this works. Suppose, for example, that π∖1 and π∖π1

are indecomposable, and π∖n is decomposable. This means that σ∖ (n+1) has at least
three components, and deleting n + 1 is indeed correct. But is it possible that σ ∖ 1 or
σ∖ σ1 also have at least three components? If, say, σ∖ 1 had at least three components,
we would prioritize deleting 1 over deleting n + 1, and (after applying g−1 and inserting
back the entry 1) obtain some permutation τ ∈ Ak

n such that τ ∖ 1 is decomposable. In
particular τ ̸= π, so our supposed inverse of f would not work.

To show that f is injective, it is therefore crucial to show that the situation we de-
scribed never happens. In other words, if π∖π1 is indecomposable, then f(π)∖f(π)1 must
have at most two components. We prove this in Lemma 18, after a simple intermediate
result.

Lemma 17. Let π ∈ Ak
n and i ∈ [n].

(a) If π ∖ π1 is decomposable and πi > π1, then f(π)i+1 = πi + 1.

(b) If π ∖ π1 and π ∖ 1 are indecomposable, π ∖ πn is decomposable, and πi < πn, then
f(π)i = πi.

Proof. For (a) we have (π ∖ π1)i−1 = πi − 1. The length of the first component of π ∖ π1

is strictly less than π1, so (f(π)∖ π1)i = πi and f(π)i+1 = πi + 1.
For part (b), f(π) = (rc ◦ f ◦ rc)(π) by definition of f , where rc(π)∖ rc(π)1 is decom-

posable. Since rc(π)1 = n+ 1− πn and

rc(π)n+1−i = n+ 1− πn+1−(n+1−i) = n+ 1− πi,

our assumption implies that rc(π)n+1−i > rc(π)1. Part (a) gives

(f ◦ rc)(π)n+2−i = rc(π)n+1−i + 1 = n+ 2− πi,

and therefore

f(π)i = (rc ◦ f ◦ rc)(π)i = n+ 2− (f ◦ rc)(π)n+2−i = πi.
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Lemma 18. Let π ∈ Ak
n. If π∖ π1 is indecomposable, then f(π)∖ f(π)1 has at most two

components.

Proof. Denote σ = f(π) and τ = σ ∖ σ1. First, if π ∖ 1 is decomposable then σ ∖ 1 has
at least three components and the claims follows from Proposition 7.

Suppose instead that π∖πn is decomposable, and assume for the sake of a contradiction
that τ has at least three components. Denote the length of the first component of τ by
m. Since the last n − τn + 1 entries of τ must be contained in one component we have
τn > m + 1, which implies that σn+1 > m + 1 and therefore that πn > m by Remark
15 (f). Lemma 17 (a) shows that σi = πi for all i for which πi ⩽ m, and we know that
σ2 . . . σm+1 = τ1 . . . τm is a permutation, so we get π2 . . . πm+1 = τ1 . . . τm. Therefore π∖π1

is decomposable, contradicting our original assumption.
Lastly, suppose that π∖n is decomposable, and assume again that τ has at least three

components, the first of which has length m. In this case we have τ−1
n > m + 1 which

implies that σ−1
n+1 > m + 2 (since an entry is added to the beginning) and therefore that

π−1
n > m+1 by Remark 15 (f). Applying Lemma 17 (b) to π−1 shows that σ−1

i = π−1
i for

all i such that π−1
i ⩽ m+1. Since σ2 . . . σm+1 is a permutation, the condition σ−1

i ⩽ m+1
holds for all i ∈ [m] and hence π−1

1 . . . π−1
m = σ−1

1 . . . σ−1
m . We conclude that π2 . . . πm+1 =

τ1 . . . τm is a permutation, and thus π ∖ π1 is decomposable.

Theorem 19. The function f : Ak
n → Avkn+1(1324) is injective for all n and k. Further-

more, avkn(1324) ⩽ avkn+1(1324) whenever k ⩽ 2n− 7.

Proof. We will define a function h : f(Ak
n) → Ak

n by reversing the steps used to define f ,
and afterwards prove that h is the inverse of f . Suppose that σ ∈ f(Ak

n).

• If σ∖σ1 has at least three components, let h(σ) be the permutation with h(σ)1 = σ1

and h(σ)∖ σ1 = g−1(σ ∖ σ1).

• If σ ∖ 1 has at least three components, let h(σ) = h(σ−1)−1.

• Otherwise, let h(σ) = (rc ◦ h ◦ rc)(σ).

Since at least one of the permutations σ ∖ 1, σ ∖ σ1, σ ∖ (n+ 1) or σ ∖ σn+1 has at least
three components, we can always construct h(σ) according to the rules above. We will
now prove that h is the inverse of f . Let π ∈ Ak

n.

• If π ∖ π1 is decomposable then f(π) ∖ f(π)1 has at least three components by the
definition of f , and it is easy to see that (h ◦ f)(π) = π.

• If π∖1 is decomposable then f(π)∖1 has at least three components, and f(π)∖f(π)1
has at most two components by Lemma 18, so

(h ◦ f)(π) = h
(
f(π)−1

)−1
= h

(
f
(
π−1

))−1
= π.

• If π ∖ 1 and π ∖ π1 are indecomposable, then both f(π)∖ 1 and f(π)∖ f(π)1 have
at most two components by Lemma 18. It follows that

(h ◦ f)(π) = (rc ◦ h ◦ rc ◦ rc ◦ f ◦ rc)(π) = π.
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We conclude that f has a left-inverse, and is therefore injective. All permutations
in its image have at most two components by Remark 15 (e), whereas the permutations
in the image of g all have at least three components. Hence the images of f and g are
disjoint, and the mapping

Dk
n ∪ Ak

n −→ Avkn+1(1324)

given by combining f and g is injective. If k ⩽ 2n − 7 then Dk
n ∪ Ak

n = Avkn(1324) by
Theorem 8, so avkn(1324) ⩽ avkn+1(1324).

4 Enumerating the difference

The goal of this section is to describe the set of permutations

Rk
n+1 := Avkn+1(1324) \

(
g(Dk

n) ∪ f(Ak
n)
)

for all k ⩽ 2n−7. One obvious set of permutations in Rk
n+1 are all σ ∈ Avkn+1(1324) with

σ1 = n+1 or σn+1 = 1. To understand the remaining, first recall that g is a bijection from
Dk

n to permutations in Avkn+1(1324) with at least three components. Key to the discussion
is a natural extension of f−1. Let Bk

n+1 denote the set of permutations σ ∈ Avkn+1(1324)
such that comp(σ) ⩽ 2, σ1 ̸= n+ 1, σn+1 ̸= 1, and

max{comp(σ ∖ i) : i = 1, n+ 1, σ1, σn+1} ⩾ 3. (3)

Then, as for f−1, we can define h : Bk
n+1 → Ak

n as follows:

• If comp(σ ∖ σ1) ⩾ 3, let h(σ) be the permutation with h(σ)1 = σ1 and h(σ)∖ σ1 =
g−1(σ ∖ σ1).

• If comp(σ ∖ 1) ⩾ 3, let h(σ) = h(σ−1)−1.

• Otherwise, let h(σ) = (rc ◦ h ◦ rc)(σ).

Clearly h|f(Ak
n)

= f−1. Furthermore, Proposition 24 will show that whenever k ⩽
2n− 7, all permutations σ ∈ Avkn+1(1324) with comp(σ) ⩽ 2 satisfy condition (3). Hence

f(Ak
n) ∪ {σ ∈ Rk

n+1 : σ1 ̸= n+ 1 and σn+1 ̸= 1} = Bk
n+1,

and we get

{σ ∈ Rk
n+1 : σ1 ̸= n+ 1 and σn+1 ̸= 1} = {σ ∈ Bk

n+1 : f(h(σ)) ̸= σ}. (4)

Determining the permutations in the right-hand side of (4) is a manageable task.
We will assume that k ⩽ 2n − 7 throughout the remainder of this section. With the

preceding discussion in mind, we reiterate that Rk
n+1 consists of the following collections.
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R1 Permutations σ ∈ Avkn+1(1324) with σ1 = n+ 1 or σn+1 = 1. In the first case

inv(σ ∖ σ1) = k − n ⩽ n− 7,

i.e. σ∖σ1 is decomposable, and the other case is symmetrical, so these permutations
are enumerated by

[xk]
(
2xnP (x)2

)
,

where P (x) =
∑

i⩾0 p(i)x
i is the generating function for the partition numbers.

R2 Permutations σ ∈ Avkn+1(1324) with comp(σ) ⩽ 2, σ1 ̸= n + 1, σn+1 ̸= 1, and
f(h(σ)) ̸= σ. Again, h(σ) is always well-defined by Proposition 24.

We will further split class R2 into two subcollections to make its treatment easier:
R2a Permutations σ ∈ Avkn+1(1324) with σ2 = n + 1 or σn+1 = 2. In the first case

comp(σ\n+ 1) ⩾ 3, so h(σ)1 = n, implying that h(σ)∖ h(σ)1 is decomposable and
thus f(h(σ))1 = n. This means that f(h(σ)) ̸= σ, because if σ1 = n then σ∖ (n+1)
can not be decomposable. The other case is symmetrical. Similarly to R1, this class
is enumerated by

[xk]
(
2xn−1P (x)2

)
.

R2b Permutations σ ∈ Avkn+1(1324) with comp(σ) ⩽ 2 and σ1, σ2 ̸= n + 1, σn+1 ̸=
1, 2, such that f(h(σ)) ̸= σ. These permutations are described below, and their
enumeration

[xk]
(
2xn−1P (x)2

)
is obtained in Proposition 21.

We will start with an example of a class R2b permutation.

σ = 423167985 =
×

×
×

×

×
×

×
×

×

Using the definitions of f , with comp(σ\σ9) ⩾ 3 and h, with comp(h(σ)\h(σ)1) ⩾ 3, we
obtain the following permutations.

×

×
×

×

×

×
×

×

h(σ)

×

×
×

×

×

×

×
×

×

f(h(σ))
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Clearly f(h(σ)) ̸= σ. Observe the structure of σ: σ1 is placed precisely above the first
component of σ ∖ {σ1, σn+1}, and σn+1 = σ1 + 1. This is not a coincidence, as it turns
out that up to taking inverses, all class R2b permutations have this structure.

Lemma 20. If σ ∈ Avkn+1(1324) is a class R2b permutation, then

(a) comp(σ ∖ σn+1) ⩾ 3, σ1 = m + 1 and σn+1 = m + 2, where m is the length of the
first component of σ ∖ σn+1, or

(b) comp(σ ∖ (n + 1)) ⩾ 3, σ−1
1 = m + 1 and σ−1

n+1 = m + 2, where m is the length of
the first component of σ ∖ (n+ 1).

Proof. Let σ ∈ Avkn+1(1324) be a class R2b permutation and denote π = h(σ). First
observe that if σ ∖ σ1 (resp. σ ∖ 1) has at least three components, then π ∖ π1 (resp.
π ∖ 1) is decomposable and f(π) = σ, i.e. σ is not a class R2b permutation – this is easy
to see from the definitions of f and h. We will therefore assume throughout the proof
that σ ∖ σ1 and σ ∖ 1 have at most two components.

Therefore σ∖ σn+1 or σ∖ (n+ 1) has at least three components. Assume the former.
Observe that if both π ∖ π1 and π ∖ 1 are indecomposable then f(π) = σ, so one of the
two must be decomposable.

• Suppose first that π∖π1 is decomposable. Consider the permutation τ = π∖{π1, πn}
and write τ = τ (1) ⊕ 1 ⊕ . . . ⊕ 1 ⊕ τ (2) for its decomposition into components,
m = |τ (1)| and ℓ = |τ (2)|. We must have π1 > πn in order for both π ∖ π1 and
π ∖ πn to be decomposable. Furthermore, if π1 ⩽ m + 1 then πn ⩽ m and π ∖ π1

cannot be decomposable. Therefore π1 ⩾ m+ 2, and with a symmetrical argument
πn ⩽ n − ℓ − 1. Figure 7 visualizes the structure of π. Using the definition of h,
if b ⩾ 1 (resp. b = 0) then σ is of the form described in Figure 8 (resp. Figure 9),
where b = π1 − πn − 1.

If b ⩾ 1, the increasing sequence after τ (1) in σ is of length a+ 1 ⩾ 1, which means
that σ∖σ1 has at least three components, contradicting our assumption. Therefore
b = 0. Similarly in this case, if a ⩾ 1 then σ ∖ σ1 has at least three components.
Hence a = 0, giving us condition (a).

• One can show that π∖1 cannot be decomposable with a similar structural analysis.

If instead comp(σ ∖ (n + 1)) ⩾ 3, condition (b) follows from a symmetrical argument,
concluding the proof.

Proposition 21. If k ⩽ 2n − 7, the number of class R2b permutations in Avkn+1(1324)
equals

[xk]
(
2xn−1P (x)2

)
.
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×
×

×
×

×
×

×

×

τ (1)

τ (2)

a

b

c

π Figure 7: A permutation π = h(σ) satisfy-
ing assumptions from the proof of Lemma
20. We know that πn lies above τ (1), π1 lies
below τ (2) and π1 > πn. The lengths of the
increasing subsequences located (in height)
from τ (1) to πn, πn to π1 and π1 to τ (2) are
denoted a, b and c, respectively.

×
×

×
×

×
×

×

×

τ (1)

τ (2)

a+ 1

b− 1

c+ 1

σ Figure 8: The permutation σ corresponding
to π from Figure 7. If b ⩾ 1, the lengths
of the increasing sequences change from a, b
and c in π to a + 1, b − 1 and c + 1 in σ,
respectively.

×
×

×
×

×
×

τ (1)

τ (2)

a

c+ 1

σ Figure 9: The permutation σ corresponding
to π from Figure 7, in the case b = 0.

Proof. Let σ ∈ Avkn+1(1324) be a class R2b permutation satisfying Lemma 20 (a) and let
τ = σ ∖ {σ1, σn+1}. Then inv(τ) = k − n+ 1 ⩽ n− 6, so τ ∈ Avk−n+1

n−1 (1324) and

avk−n+1
n−1 (1324) = [xk−n+1]P (x)2 = [xk]

(
xn−1P (x)2

)
.

Conversely, for any permutation τ ∈ Avk−n+1
n−1 (1324), we can construct a unique class

R2b permutation σ ∈ Avkn+1(1324) satisfying Lemma 20 (a) by placing σ1 and σn+1

appropriately. The case of Lemma 20 (b) is symmetrical, and the result follows.

We still need to show that condition (3) holds for all permutations in Avkn+1(1324)
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whenever k ⩽ 2n−7 in order to justify (4). This is the last part of the proof of Theorem 2.
We first show two lemmas we need.

Lemma 22. If π ∈ Avkn(132) is indecomposable and k ⩽ 2n− 5, then π1 = n and π ∖ n
is decomposable; or πn = 1 and π ∖ 1 is decomposable.

Proof. Suppose that π1 ̸= n and πn ̸= 1. Since π is indecomposable, πn ̸= n. It follows
that π1 > πn, since π1nπn forms a 132-pattern otherwise. Similarly π−1

1 > π−1
n to avoid

the 132-pattern 1nπn. Counting inversions like in Section 2 gives

inv(π) ⩾ π1 − 1 + n− πn + π−1
1 − 1 + n− π−1

n − 2 ⩾ 2n− 4.

If π1 = n, then inv(π∖ n) ⩽ n− 6 and and π∖ n must be decomposable. The other case
is symmetrical.

Lemma 23. If σ ∈ Avkm(1324) is indecomposable, k ⩽ 2m − 9, and σ ∖ σ1 has exactly
two components, then σ ∖ σm or σ ∖m has at least five components.

Proof. Write σ ∖ σ1 = σ(1) ⊕ σ(2) and let δ = σ1 − |σ(1)|. Since σ(1) is indecomposable we
have inv

(
σ(1)

)
⩾ |σ(1)| − 1, and therefore

inv
(
σ(2)

)
= k − (σ1 − 1)− inv

(
σ(1)

)
⩽ 2m− 9− |σ(1)| − δ + 1− |σ(1)|+ 1

= 2
(
m− |σ(1)|

)
− 7− δ

= 2|σ(2)| − 5− δ.

Since σ(2) is 213-avoiding, σ(2)
1 = |σ(2)| or σ

(2)

|σ(2)| = 1 by Lemma 22, using the fact 213 =

rc(132). In the first case

comp
(
σ(2) ∖ σ

(2)
1

)
⩾ |σ(2) ∖ σ

(2)
1 | − inv

(
σ(2) ∖ σ

(2)
1

)
⩾ |σ(2)| − 1−

(
2|σ(2)| − 5− δ − |σ(2)|+ 1

)
= δ + 3.

Denoting τ = σ∖ σ1, this shows that τ ∖ (m− 1) has at least δ+4 components, the first
of which is σ(1). Since σ1 = |σ(1)|+ δ, ‘placing back’ σ1 in front of τ ∖ (m− 1) combines δ
components into one, so we conclude that σ ∖m has at least five components. The case
σ
(2)

|σ(2)| = 1 is similar.

Proposition 24. If σ ∈ Avkm(1324) has at most two components and k ⩽ 2m− 9, then

max{comp(σ ∖ i) : i = 1,m, σ1, σm} ⩾ 3.

Proof. If σ = σ(1)⊕σ(2), then inv
(
σ(i)

)
⩽ 2n−5 for i = 1 or i = 2, and Lemma 22 proves

the claim. If σ is indecomposable, then it is almost decomposable, i.e. one of the entries
i ∈ {1,m, σ1, σm} satisfies comp(σ ∖ i) ⩾ 2. If σ ∖ i has exactly two components, then
(taking the inverse and reverse-complement if necessary) Lemma 23 proves that another
entry j ∈ {1,m, σ1, σm} satisfies the claim.
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Proof of Theorem 2. Summing together the enumerations for classes R1, R2a and R2b
yields

|Rk
n+1| = avkn+1(1324)− avkn(1324) = [xk]

(
2(2 + x)xn−1P (x)2

)
=: [xk]Rn(x)

whenever k ⩽ 2n− 7. It follows that

avkn(1324) = [xk]
(
P (x)2

)
−
∑
i⩽k

[xi]Rn(x)

= [xk]

(
P (x)2 − Rn(x)

1− x

)
,

and extracting the coefficient yields the result.

5 Further directions and conjectures

This section contains discussion of three separate topics: extending our method; repeated
differences of the numbers avkn(1324); and the unimodality of the sequences

av0n(1324), av1n(1324), . . . , av
(n2)
n (1324).

Unimodality could improve the upper bound for L(1324) that Conjecture 1 gives.

5.1 Extending almost-decomposability

A natural idea is to delete more than one point from the boundary of the plot of a
permutation to make it decomposable. For example, one could imagine handling our
earlier counterexample π = 3612745 by deleting entries 1 and 2. However, the critical
Proposition 7 does not appear to have a counterpart, since e.g. π = 3412 satisfies both

comp(π ∖ {1, 2}) = 2 and comp(π ∖ {π1, π2}) = 2

Furthermore, some permutations with as few as 2n−5 have no natural point combination
to remove. Consider the permutation

π = 34 . . . (n− 4) (n− 2)1n2(n− 1)(n− 3).

Here is the first such permutation.

×

×

×

×

×

×

×3517264 =
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It is difficult to see which entries should be deleted. The permutation π ∖ {1, 2} is
certainly decomposable, but applying g to it and inserting back the entries 1 and 2 yields
a permutation containing 1324. One could instead try to delete different pairs of points,
such as n and πn, but it is hard to imagine that the resulting mapping could be injective.

It should, still, be possible to improve the upper bound from k ⩽ 2n− 7 to k ⩽ 2n− 6
by analyzing the permutations in Av2n−6

n (1324) that are neither decomposable nor almost
decomposable. These permutations are essentially characterized in the proof of Lemma
11; all other intermediate results in Section 2 yield higher bounds for k. There are not
many such permutations, and they can probably be counted.

5.2 Repeated differences

One way to prove Conjecture 1 would be understanding the numbers avnk(1324) also for
k > 2n−7. Studying the numbers when k ⩽ 3n−15 we have found a tantalising pattern.
We here extend the study of differences from Theorem 2 to repeated differences. In what
follows we will write avkn for avkn(1324). For n ⩾ 10 it seems for example to always be the
case that

(av2n−3
n+3 − av2n−3

n+2 )− (av2n−4
n+2 − av2n−4

n+1 )−
(
(av2n−5

n+2 − av2n−5
n+1 )− (av2n−6

n+1 − av2n−6
n )

)
= 4.

In fact, for a fixed r ⩾ 0, the following always seems to be constant for n ⩾ 10 + r:

br,n := (av2n+r−3
n+3 − av2n+r−3

n+2 )− (av2n+r−4
n+2 − av2n+r−4

n+1 )

−
(
(av2n+r−5

n+2 − av2n+r−5
n+1 )− (av2n+r−6

n+1 − av2n+r−6
n )

)
.

Anders Claesson has kindly provided us with data of avkn for k, n ⩽ 45 and with these
we may compute numbers br,n up to r = 9 as 4, 8, 14, 28, 52, 88, 150, 244, 390, 612 and we
offer the following conjecture.

Conjecture 25. The numbers br,n are equal for a fixed r with n ⩾ 10 + r (call them br)
and they satisfy ∑

r⩾0

brx
r = 2

(
1− x2

) (
2− x2

)
P (x)2,

where P (x) is again the generating function for the partition numbers.

Remark 26. To guess the formula in the conjecture one really only needs five numbers
b0, b1, b2, b3, b4 since the polynomial is of degree four, but it is true for all ten numbers we
have.

Remark 27. If the conjecture is proven we could still not determine the numbers avkn
for all k ⩽ 3n − 15 since we also would need starting values when n = 10 + r of
(av2n+r−5

n+2 − av2n+r−5
n+1 )− (av2n+r−6

n+1 − av2n+r−6
n ). That sequence starts

12, 24, 41, 120, 274, 553, 1098, 2055

but we have no conjecture for what they are in general.
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To add an extra level of intrigue there seems to be a pattern also for fourth differences
when trying to understand how the third differences br,n deviate for n < 10 + r. More
precisely, br,r+9 and br,r+8 seem to be 4(r−2) and 16(r−5)+32 larger than in Conjecture
25 for r ⩾ 3 and 6, respectively.

5.3 Improved bounds and unimodality

Let c ⩽ 1 be a constant such that the maximal value of each sequence
(
avkn(1324)

)
k

occurs
with k ⩽ c ·

(
n
2

)
, and assume that Conjecture 1 is true. Denote mn =

(
n
2

)
, cn = ⌊c ·mn⌋

and ρ = exp
(
π
√
2/3

)
. Then, using the same technique as in [14, Theorem 17],

avn(1324) =
∑
k

avkn(1324) ⩽ (mn + 1)max
k

avkn(1324)

⩽ (mn + 1)[xcn ]P (x)2

⩽ (mn + 1)(cn + 1)ρ
√
2cn

⩽ (mn + 1)(cn + 1)ρ
√
cn
√

1−1/n.

Taking the nth root and the limit as n → ∞,

L(1324) ⩽ ρ
√
c = exp

(
π
√
2c/3

)
.

Incidentally, c = 21/23 ≈ 0.913 gives L(1324) ⩽ 11.6004, which is in the range of the
estimation L(1324) = 11.600±0.003 from [15, 16]. We do not believe that an improvement
this drastic will be possible with this approach, since the sequences

(
avkn(1324)

)
k

should
be very top-heavy. It is possible to produce large random 1324-avoiders using the Monte
Carlo method in [19], and they seem to support this intuition.

The method of estimation should, furthermore, be too rough to get an upper bound
very close to the actual value of L(1324). Note that c > 0.813, since c = 0.813 gives
L(1324) ⩽ 10.263, contradicting the known lower bound 10.27 – again, assuming Conjec-
ture 1.

Question 28. Is there a constant c < 1 such that the maximal value of each sequence(
avkn(1324)

)
k

occurs with k ⩽ c ·
(
n
2

)
?

This line of thinking leads to another natural question: are the sequences (avkn(1324)
)
k

unimodal? It is well-known (see [6] for a nice proof) that
(
skn
)
k

is log-concave, where skn
denotes the number of all permutations (not required to avoid any pattern) of length n
with k inversions. As far as we know, there are no similar nontrivial results for the pattern
avoiding case.

Log-concavity does not hold for (avkn(1324)
)
k
, since e.g. 22 < 1 · 5. On the other hand,

if we remove the first n − 1 entries of each sequence, they do seem to be log-concave.
Unimodality holds for the full sequences in the data we have, but we have not found a
proof. Of special interest would be the position of the ‘tops’ of the unimodal sequences,
due to the discussion above.

Conjecture 29. The sequence
(
avkn(1324)

)(n2)
k=0

is unimodal for each n.
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