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Abstract

Agreement forests continue to play a central role in the comparison of phylo-
genetic trees since their introduction more than 25 years ago. More specifically,
they are used to characterise several distances that are based on tree rearrangement
operations and related quantifiers of dissimilarity between phylogenetic trees. In
addition, the concept of agreement forests continues to underlie most advancements
in the development of algorithms that exactly compute the aforementioned mea-
sures. In this paper, we introduce agreement digraphs, a concept that generalises
agreement forests for two phylogenetic trees to two phylogenetic networks. Analo-
gous to the way in which agreement forests compute the subtree prune and regraft
distance between two phylogenetic trees but inherently more complex, we then use
agreement digraphs to bound the subnet prune and regraft distance between two
tree-child networks from above and below and show that our bounds are tight.

Mathematics Subject Classifications: 05C20, 92D15

1 Introduction

Phylogenetic trees and networks play an important role in areas of biology that inves-
tigate the relationships between biological entities such as species, viruses, and cells. A
central task in the analysis of phylogenetic trees and networks is the quantification of the
dissimilarity between them. Distances between phylogenetic trees that provide a measure
of dissimilarity can be broadly classified into distances that are based on tree vector rep-
resentations and those based on tree rearrangement operations [39]. While many of the
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former distances can be computed in polynomial time, the latter distances are typically
NP-hard to compute. On the positive side and as summarised in Semple and Steel [40],
tree distances that are based on rearrangement operations provide a framework to ex-
plore and traverse spaces of phylogenetic trees since any tree in a given space can be
transformed into any other tree of the same space by a finite number of operations such
as nearest neighbour interchange (NNI), subtree prune and regraft (SPR), rooted subtree
prune and regraft (rSPR), and tree bisection and reconnection (TBR). In particular, the
length of a shortest path between two phylogenetic trees in a given space of trees equals
the distance between the two trees under the rearrangement operation that underlies the
space.

Computing distances that are based on tree rearrangement operations and related
dissimilarity measures such as the minimum hybridisation number for two phylogenetic
trees [5] remains an active area of research (e.g. [26, 38, 41]) despite the NP-hardness of
the associated optimisation problems. Indeed, recent algorithmic progress facilitates com-
putations that exactly calculate the aforementioned measures for data sets of remarkable
size [43, 44]. Notably, the concept of agreement forests, which was first introduced by
Hein et al. [16], underpins almost all mathematical and algorithmic advances in this area
of research. Intuitively, an agreement forest of two binary phylogenetic trees 7 and 77 is a
decomposition of 7 and 7" into smaller and non-overlapping subtrees that have the same
topology in 7 and 7. Since the introduction of agreement forests almost 30 years ago,
different variants of agreement forests have been used to characterise the rSPR distance
between two rooted binary phylogenetic trees, the TBR distance between two unrooted
binary phylogenetic trees, and the minimum hybridisation number of two rooted binary
phylogenetic trees, as well as to establish related NP-hardness results [1, 5, 6]. Subsequent
work has focussed on generalising agreement forests to collections of phylogenetic trees of
arbitrary size that are not necessarily binary and on the development of fixed-parameter
tractable and approximation algorithms [9, 25, 33, 38, 45]. Additional developments in
the context of agreement forests include a generalisation of agreement forests to relaxed
agreement forests [3] and the exploitation of agreement forests to establish extremal results
on the SPR, rSPR, and TBR distances [4, 11]. Part of the success of agreement forests is
due to the fact that they replace the computation of a measure of dissimilarity between
two phylogenetic trees 7 and T’ with the more static computation of an agreement forest
such that the sought-after measure equates to the size of an optimal agreement forest
for 7 and T’. Moreover, agreement forests enable rigorous mathematical arguments that
operate only on 7 and 7’ without knowing the topology of any intermediate tree that
lies on a shortest path between 7 and 7’ in an associated space of trees.

Since phylogenetic trees are somewhat limited in the type of biological processes that
they can represent, rooted phylogenetic networks are increasingly being adopted to rep-
resent evolutionary relationships between biological entities whose past does not only in-
clude divergence events such as speciation but also convergence events such as lateral gene
transfer or hybridisation. Inspired by tree rearrangement operations, several network rear-
rangement operations have recently been developed. For example, the subnet prune and
regraft (SNPR) operation generalises rSPR to two rooted binary phylogenetic networks [7].
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An SNPR operation either adds or deletes a reticulation edge (i.e., an edge that is directed
into a vertex of in-degree two), or prunes and regrafts a subnetwork in the spirit of rSPR.
Since the introduction of SNPR, the operation has been implemented in the Python
package PhyloX [20], used in studies that, for example, reconstruct reassortment net-
works and involve a search through the space of rooted phylogenetic networks [35, 36, 37],
and analysed mathematically with regards to the neighbourhood size [27] and properties
of shortest length SNPR paths between two rooted phylogenetic networks [31]. Other
network rearrangement operations for rooted phylogenetic networks [13, 15, 19, 21], un-
rooted phylogenetic networks [14, 17, 18, 22], and semi-directed networks [2, 34] have
also been developed and analysed. Like SNPR, all such operations generalise a rearrange-
ment operation for phylogenetic trees to phylogenetic networks. For excellent summaries
of rearrangement operations for phylogenetic networks, we refer the reader to two PhD
theses [23, 30]. Although a slightly modified framework of agreement forests can be used
to compute the SNPR distance between a rooted binary phylogenetic tree and a rooted
binary phylogenetic network [31], the question of how to compute the distances that re-
sult from network rearrangement operations between two arbitrary binary phylogenetic
networks remains open.

In this paper, we generalise agreement forests for two rooted binary phylogenetic trees
to agreement digraphs for two rooted binary phylogenetic networks A" and N/’ that capture
the commonalities between them. Focussing on the class of tree-child networks [8] and
using this novel framework of agreement digraphs and their extensions (formal definitions
are given Section 2), we bound the SNPR distance di.(N,N’) between two tree-child
networks A and N’ from above and below, where not only ' and A/ are tree-child but
also each intermediate network in an associated sequence. Both bounds are tight and
within small constant factors of the minimum number m. (N, N’) of edges in A/ and N’
that are not contained in an embedding of the agreement digraph and an extension, where
the minimum is taken over all agreement digraphs for N' and N’ and their extensions.
More specifically, the main result of this paper is the following theorem.

Theorem 1. Let N and N be two binary tree-child networks on X. Then
1
émtc(/\/’w/\/’/) g dtc(N>Nl) g mtc(NaN,)-

The problem of finding an extension of an agreement digraph that optimally cap-
tures the commonalities between two rooted binary phylogenetic networks A and N’
may, at first sight, appear to be related to the problem of finding a maximum agree-
ment subnetwork that A/ and N’ have in common [10, 24, 42]. However, upon further
inspection, it becomes clear that the two problems are fundamentally different since a
maximum agreement subnetwork for N and N is not necessarily a component of an op-
timal agreement digraph for A" and N’. On the other hand, our work is related to that of
Klawitter [28, 29], who has developed an alternative generalisation of agreement forests
for two rooted binary phylogenetic networks and for two unrooted binary phylogenetic
networks. His generalisation for rooted networks gives rise to collections of agreement
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subgraphs that, in comparison with our generalisation, may have unlabelled leaves of in-
degree one or two and that consequently do not resemble phylogenetic networks. In the
same paper, Klawitter established bounds on the SNPR distance diypr (N, N’) between
two rooted binary phylogenetic networks A/ and N’ in terms of collections of agreement
subgraphs whose number of unlabelled vertices of degree one is minimised. Without going
into detail, this minimum number is referred to as dap(N,N’). In particular, Klawitter
established the following theorem.

Theorem 2. [28, Corollary 5.5] Let N and N be two rooted binary phylogenetic networks
on X. Then
dap(N,N') < dsxprNV, N') < 6dap(N, N7).

While Theorem 2 applies to all rooted binary phylogenetic networks, it remains un-
known whether or not the bounds are tight. Comparing Theorems 1 and 2, we note
that diypr (N, N’) in Theorem 2 refers to the minimum number of SNPR operations that
are necessary to transform N into A, while the quantity di.(N, N’) in Theorem 1 does
not only count SNPR operations but, additionally, weights them. More precisely, each
SNPR operation that adds or deletes a reticulation edge is weighted one and each SNPR
operation that prunes and regrafts a subnetwork is weighted two. Hence, di.(N,N”)
equates to the minimum sum of weights of SNPR operations that are needed to trans-
form N into N’. We discuss this further in the last section of the paper. Lastly, we
note that although Klawitter’s generalisation and our definition of an agreement digraph
differ, both definitions generalise agreement forests in the sense that, when applied to
two rooted binary phylogenetic trees, they can be used to exactly compute their rSPR
distance ([28, Proposition 4.2] and Proposition 15 of the present paper).

The paper is organised as follows. In Section 2, we present basic notation and termi-
nology for rooted phylogenetic networks. This is followed by an introduction of the new
concepts of phylogenetic digraphs, which is the main definition building up to agreement
digraphs, and their extensions in Section 3. Section 4 establishes several basic properties
of extensions. Subsequently, in Section 5, we introduce the tree-child SNPR distance be-
tween two tree-child networks N' and N’ and a maximum agreement tree-child digraph
for N and N. In Section 6, we establish Theorem 1 and show that our bounds are tight
before we finish with some concluding remarks in Section 7.

2 Preliminaries

This section provides notation and terminology that is used in the remainder of this
paper. Throughout the paper, X denotes a non-empty finite set. It is also worth
noting that, except for rooted phylogenetic networks, the graphs that we consider
in this paper are not necessarily connected. We start by introducing a broad class
of directed acyclic graphs and several definitions that apply to this class. Subsequent
definitions in this and the next section consider subclasses of these directed acyclic graphs.
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Directed acyclic graphs. Let D be a directed acyclic graph. We allow parallel edges
in D and note that D may have several vertices with in-degree zero. Furthermore, the
undirected graph that underlies D may contain more than one connected component.
Let Vp denote the vertex set of D, and let Ep denote the edge set of D. We say that
a vertex v in Vp is a tree verter if v has in-degree one and out-degree one or two, and
that v is a reticulation if v has in-degree two and out-degree one. Furthermore, an edge
(u,v) in D is a reticulation edge if v is a reticulation and, otherwise, (u,v) is a tree edge.
Lastly, for two vertices v and v in D, we say that u is a parent of v and v is a child of u
precisely if there is an edge (u,v) in D.

Phylogenetic networks. Rooted phylogenetic networks generalise rooted phylogenetic
trees to digraphs with underlying (but no directed) cycles. They allow vertices with in-
degree greater than one, which represent non-treelike events such as hybridisation, lateral
gene transfer, or recombination. Formally, a rooted binary phylogenetic network on X is
a connected directed acyclic graph with a single vertex of in-degree zero that satisfies the
following properties:

(i) the unique root p has in-degree zero and out-degree one,

(ii) vertices with out-degree zero have in-degree one, and the set of vertices with out-
degree zero is X, and

(iii) all other vertices have either in-degree one and out-degree two, or in-degree two and
out-degree one.

The vertices of N of out-degree zero are called leaves, and so X is referred to as the
leaf set L(N) of N. In keeping with the literature on distances between two phyloge-
netic networks, we allow parallel edges in rooted binary phylogenetic networks. Since all
phylogenetic networks in this paper are rooted and binary, we simply refer to a rooted
binary phylogenetic network on X as a phylogenetic network on X. Now, let N be a
phylogenetic network on X. The vertices of out-degree zero, that is the elements in X,
are called leaves and X is referred to as the leaf set of . If a phylogenetic network N
has no reticulations, we call N a phylogenetic X -tree. Moreover, if N is a phylogenetic
X-tree and X contains exactly three elements, say X = {a,b,c}, then we refer to N as
a triple if the underlying path joining the root of N and ¢ is vertex-disjoint from that
joining a and b in which case, (a,b, ¢) or, equivalently, (b, a, c) denotes this triple.

Now, let N and N’ be two phylogenetic networks on X with vertex and edge sets
V and F, and V' and E’, respectively. We say that N is isomorphic to N if there is a
bijection ¢ : V' — V' such that p(z) = z for all x € X, and (u,v) € E if and only if
(p(u), (v)) € E' for all u,v € V. If N and N are isomorphic, then we write N' = N".

Tree-child networks. Let N be a phylogenetic network on X. We say that N is tree-
child if each non-leaf vertex has a child that is a tree vertex or a leaf. Moreover, we say
that N contains a stack if there exist two reticulations that are joined by an edge and
that N contains a pair of sibling reticulations if there exist two reticulations that have a
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Figure 1: A phylogenetic network on X = {1,2, 3,4} that is not tree-child because u and
v form a stack, and v and v" are a pair of sibling reticulations.

common parent. A phylogenetic network that is not tree-child is shown in Figure 1. In
studying the mathematics that underlies phylogenetic networks, tree-child networks have
been proven to be particularly successful because of their combinatorial properties that
are often exploited to gain traction in establishing mathematical results. At the same time,
these properties are not overly restrictive from a structural perspective in comparison to
level-1 networks for example whose underlying cycles are pairwise vertex disjoint. For an
overview of classes of phylogenetic networks, we refer the reader to Kong et al. [32].

The following well-known equivalence follows from the definition of a tree-child network
and will be freely used throughout the remainder of the paper.

Lemma 3. Let N be a phylogenetic network. Then N is tree-child if and only if it has
no stack, no pair of sibling reticulations, and no pair of parallel edges.

The next lemma was established by Docker et al. [12, Lemma 7] and shows that the
deletion of a reticulation edge of a tree-child network results in another tree-child network.

Lemma 4. Let N be a tree-child network on X, and let e = (u,v) be a reticulation edge
of N'. Then the network obtained from N by deleting e and suppressing v and v is a
tree-child network on X.

3 Phylogenetic digraphs and their extensions

In this section, we provide formal definitions of the concepts of phylogenetic digraphs
and their extensions. As we will see in Section 5, these definitions generalise agreement
forests for two phylogenetic trees to two phylogenetic networks. We start by providing
some high-level ideas that may guide the reader in developing some intuition before
providing formal definitions. Essentially, a phylogenetic digraph D of a phylogenetic
network N on X and with root p is a collection of directed acyclic graphs that each
contain at least one element in X with the exception that p may be a singleton in D,
whose vertices of out-degree zero are bijectively labelled with the elements in X, and for
which there is a vertex-disjoint embedding of its components in A. Let M be such an
embedding of D in N, and let v be a vertex of M that either has in-degree zero, or is
a reticulation of N and has in-degree one and out-degree one. We obtain an extension
R of M by starting at v and extending M towards the root by adding edges of N in a
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certain algorithmic way and then repeating this process for all such vertices of M. As
suggested by the phrase extension of M, R contains all edges of M. Although D may
have several embeddings in N, each embedding is anchored at the leaves of A/ due to the
requirement that the leaves of D bijectively map to the elements in X. As we will see
in Section 4, for the purpose of computing the minimum number of edges in N that are
not contained in an extension relative to a given phylogenetic digraph D of N, where the
minimum is taken over all embeddings of D in N and their extensions, it is sufficient to
consider only a single extension of D.

Phylogenetic digraphs. Let D be a connected directed acyclic graph, and let Y be a
finite set. We say that D is a leaf-labelled acyclic digraph on Y if one of the following
applies:

(i) |Y] =0 and D is the isolated vertex p,
(ii) |Y| =1 and D is the isolated vertex labelled with the element in Y, or

(iii) |Y] > 1, D has at most one vertex of in-degree zero and out-degree one, in which
case this vertex is p, the leaves of D have in-degree one and out-degree zero and
are bijectively labelled with the elements in Y, and all other vertices of D have
in-degree zero and out-degree two, in-degree one and out-degree two, or in-degree
two and out-degree one.

Similar to the leaf set of a phylogenetic network, we refer to Y as the leaf set of D.
Furthermore, £(D) denotes the leaf set of D. In contrast to a phylogenetic network,
a leaf-labelled acyclic digraph D may have more than one vertex with in-degree zero.
Moreover, for a vertex w in D that has two parents v and v/, there does not necessarily
exist a vertex u such that there are edge-disjoint directed paths from u to v and from u
to v in D.

Let AV be a phylogenetic network on X with root p, and let D be a leaf-labelled acyclic
digraph on Y with Y C X. Recall that D may or may not contain a vertex p with in-
degree zero and out-degree one. We say that N displays D if there exists a subgraph of N/
that is isomorphic to D up to suppressing vertices with in-degree one and out-degree one,
in which case we call the subgraph an embedding M of D in N and view the edge set of
M as a subset of the edge set of N'. More generally, for a collection D = { Dy, Dy, ..., D;}
of leaf-labelled acyclic digraphs, we say that N displays D if there exists an embedding
M; of D; in N for each i € {1,2,...,k} such that M; and M are vertex disjoint for
all distinct j, 7" € {1,2,...,k}, in which case we refer to M = {M;, My, ..., M} as an
embedding of D in N. Now let M be an embedding of D in N. Recalling that we allow
tree vertices in M to have in-degree and out-degree one, we say that M is tree-child if
each non-leaf vertex of M has a child that is a tree vertex or a leaf.

Let N be a phylogenetic network on X with root p. Let D = {D,, Dy, Ds, ..., Dy} be
a collection of leaf-labelled acyclic digraphs. Then D is called a phylogenetic digraph of
N if the following three properties are satisfied:

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(3) (2025), #P3.46 7



(i) theleafsets £(D,), L(Dy),L(Ds),...,L(Dy) partition X and D, is the only element
in D that contains p,

(i) pis either an isolated vertex in D or the unique vertex in D with in-degree zero and
out-degree one, and

(iii) there exists an embedding M = {M,, My, My, ..., M} of D in N

Lastly, a phylogenetic digraph D of N is called a tree-child digraph of N if each non-leaf
vertex of D has a child that is a leaf or a tree vertex.

Extensions and root extensions. Let N be a phylogenetic network on X. Fur-
thermore, let M = {M,, My, M,, ..., My} be an embedding of a phylogenetic digraph
D ={D,,Dy,D,,...,D;} of N. We obtain an extension R of D in N from M by ini-
tially setting R = M and then repeatedly applying one of the following two operations
until no further such operation is possible:

(E1) For a vertex v of R with in-degree zero, add (u,v) to R if u ¢ R.

(E2) For a vertex v of R with in-degree one and out-degree one and v being a reticulation
in NV, add (u,v) to R if u ¢ R.

By construction, observe that R contains exactly k + 1 connected components and that
there is a natural bijection between these components and the components in D. We
therefore set R = {R,, Ri, R,..., Ry} and call R; an extension of D; in N for each
i € {p,1,2,...,k}. It follows from the construction of R that there is no vertex of
out-degree two in R that is not also a vertex of out-degree two in M. Moreover, by
construction, any underlying cycle in R is also an underlying cycle in M. Lastly, we
define R to be tree-child precisely if M is tree-child, and refer to M as the embedding of
D that underlies R.

We next introduce a special type of extension. We call an extension R of D in N a
root extension of D in N if it can be obtained from M by initially setting R = M and
then repeatedly applying (E1) only until no further such operation is possible. Now let
R ={R,, R, Rs,..., Ry} be a root extension of D in . Similar to the terminology for
an extension, we call R; a root extension of D; in N for each i € {p,1,2,...,k}. Let r
be a vertex of in-degree zero and out-degree zero or two in D, and let P be the unique
maximal length directed path in R that starts at a vertex w of in-degree zero and ends
at r. We refer to P as the root path of r. Note that P may have no edge in which case
u =r. If u # r, then u has in-degree zero and out-degree one in R. Figure 2 illustrates
the concepts of phylogenetic digraphs, extensions, and root extensions.

To ease reading throughout the remainder of the paper, we often consider a phylo-
genetic network N, a phylogenetic digraph D of N, and an extension R of D in N. In
this case, we view the vertex and edge set of R (as well as the vertex and edge set of any
embedding of D in V) as a subset of the vertex and edge set of N, respectively. Further-
more, for clarity, the in-degree (resp. out-degree) of a vertex v in R refers to the number
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Figure 2: Two phylogenetic networks AV and N’ and three phylogenetic digraphs Dy, Do,
and D3 for N and N'. For each i € {1,2,3}, R; is an extension of D; in N and R/ is an
extension of D; in N/, where the edges and vertices of the extensions are indicated in red.
Note that R3 is not a root extension of D3 in N.

of edges in R that are directed into (resp. out of) v. Lastly, let D = {D,, D1, D, ..., Dy}
be a phylogenetic digraph of a phylogenetic network A. Then there exists an embedding
M = {M,, My, M,,... , M} of Din N such that M; and M; are vertex disjoint for all
distinct 4,7 € {p,1,2,...,k} and an extension R = {R,, Ry, Ry, ..., Rx} of D in N such
that R; and R, are vertex disjoint for all distinct i,5 € {p,1,2,...,k}. It follows that
each edge in D corresponds to a unique directed path in M (resp. R) whose non-terminal
vertices all have in-degree one and out-degree one in M (resp. R), and each vertex in D
corresponds to a unique vertex in M (resp. R). Reversely, each edge in M corresponds
to a unique edge in D. We will freely use this correspondence throughout the paper.
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(E1) or (E2)

(B1) [
N

) (1D

Figure 3: Assuming that v ¢ R, the setup as described in the proof of Lemma 5(ii) for
when (I) w is a tree vertex or a leaf, and (II) w is a reticulation in /. In both cases, an
application of (E1) or (E2) can be used to extend R; by an additional edge so that the
resulting extension contains v. Red solid lines indicate vertices and edges of R;. Black
(resp. red) dashed lines indicate vertices and edges of N (resp. R;) that may or may not
be vertices and edges of N (resp. R;).

4 Properties of extensions

In this section we establish several results for extensions that will be useful in the sub-
sequent sections. Let D be a phylogenetic digraph of a phylogenetic network N. Given
the algorithmic definition of an extension, different orderings of the elements in D may
result in different extensions even for a fixed underlying embedding. Also, if R and R’ are
extensions of D in A with distinct underlying embeddings, then R and R’ are different.

Lemma 5. Let D be a phylogenetic digraph of a phylogenetic network N on X with root
p, and let R be an extension of D in N'. Then the following hold:

(i) If v is a vertex in N that is not in X U {p}, then there is an edge (v,w) in N that
s 1m R.

(ii) Each vertex in N is contained in R.

Proof. Let D = {D,, Dy, Ds,...,Dy}, and let R = {R,, R1, R, ..., Rr}. To see that
(i) holds, recall that R does not contain any vertex with out-degree zero that is not in
X U{p}. To complete the proof, we establish (ii). This part of the proof is illustrated
in Figure 3. By definition of D, the root and each leaf of N is contained in R. Towards
a contradiction, we may therefore assume that there is a tree vertex or a reticulation
in NV that is not contained in R. Let v be a vertex of A/ that is not in R such that
every vertex that is distinct from v and lies on a directed path from v to a leaf in N
is in R. Furthermore, let w be a child of v. If w is a tree vertex or leaf in A, then
there exists a component R; with i € {p,1,2,...,k} such that w has in-degree zero in R;,
thereby contradicting that R; is an extension of D; as we can apply (E1). Otherwise, if
w is a reticulation in A, then it follows from (i) that there exists a component R; with
i €{p,1,2,...,k} such that w has in-degree zero, or in-degree one and out-degree one in
R;, thereby again contradicting that R; is an extension of D; as we can apply either (E1)
or (E2), respectively. O
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(i) )

(ii

Figure 4: Setup as described in the proof of parts (i) and (ii) of Lemma 6. The red solid
line in (i) (resp. (ii)) indicates that (v, w) is an edge of M (resp. R), and the red dashed
line in (i) indicates that (v,w’) may or may not be an edge of M.

Lemma 6. Let N be a phylogenetic network on X . Furthermore, let M be an embedding
of a phylogenetic digraph D of N, and let R be an extension of D such that M underlies
R. Then the following hold for each tree vertex v in N.

(i) If v is in M, then no edge directed out of v is in R and not in M.

(ii) If v is not in M, then exactly one of the two edges directed out of v is contained in
R.

Proof. Let u be the parent of v, and let w and w’ be the two children of v in N. Fur-
thermore, let R = {R,, R1, Rs, ..., Ry}. We first show that (i) holds. Since M does not
contain any vertex of out-degree zero that is not in X U {p}, it follows that at least one of
(v,w) and (v,w’) is in M. Without loss of generality, we may assume that (v,w) € M.
The setup of the proof is shown in Figure 4(i). If (v,w’) € M, then the result clearly
holds. On the other hand, if (v, w') ¢ M, then it follows from the definition of an exten-
sion that (v,w’) ¢ R, thereby establishing (i). We now turn to (ii) which is illustrated
in Figure 4(ii). It follows from Lemma 5(ii) that v € R. Since R does not contain any
vertex with out-degree zero that is not in X U {p}, at least one of (v,w) and (v,w’) is
contained in R. Moreover, again by the definition of an extension, at most one of (v, w)
and (v,w') is contained in R. The lemma now follows. O

Let D be a phylogenetic digraph of a phylogenetic network N on X. The next propo-
sition shows that the number of edges that are in A/ but not in an extension of D does
not depend on the extension.

Proposition 7. Let N be a phylogenetic network on X, and let R and R’ be two exten-
sions of a phylogenetic digraph D of N'. Then

Proof. Let M and M’ be the embeddings of D in N that underlie R and R’, respectively.
First assume that M = M’. Since |Ex — Enpm| = |En — Ear| and each iteration of (E1)
or (E2) in the construction of R and R’ either adds a new edge (v,w) such that w is
already in R and v is not already in R or a new edge (v/,w’) such that w’ is already in
R’ and v’ is not already in R’, the result follows from Lemma 5(ii). Second assume that
M # M. Consider an edge e = (v,w) of N. If v = p, then, as p has out-degree one in
N, either e € R and e € R, or e ¢ R and e ¢ R'. Furthermore, if v is a reticulation in
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N, then it follows from Lemma 5(i) that e € R and e € R’. We next consider all edges in
N that are directed out of a tree vertex. Let v be a tree vertex of N, and let e = (v, w)
and ¢’ = (v,w’) be the two edges directed out of v. We next consider four cases that will
subsequently be used for a counting argument.

(1) Suppose that both of e and ¢’ are contained in one of M and M/’, and neither e nor €
is contained in the other embedding. Without loss of generality, we may assume that
both of e and ¢’ are contained in M and, therefore, in R. As M’ does not contain a
vertex with out-degree zero that is not in X U {p}, it follows that v ¢ M’. Thus, by
Lemma 6(ii), exactly one of e and €’ is in R’.

(2) Suppose that exactly one of e and €’ is contained in one of M and M’ and neither
e nor € is contained in the other embedding. Without loss of generality, we may
assume that M contains e and does not contain €', and that M’ contains neither e
nor €. Evidently e € R and, by the definition of an extension, ¢ ¢ R. Moreover, as
v ¢ M’ it follows from Lemma 6(ii) that exactly one of e and €’ is in R'.

(3) Suppose that exactly one of e and € is contained in each of M and M’. Again by
Lemma 6(i), exactly one of e and €’ is contained in each of R and R'.

(4) Suppose that both of e and €’ are contained in one of M and M’, and exactly one
of e and €’ is contained in the other embedding. Without loss of generality, we may
assume that both of e and €’ are contained in M and, therefore, in R. Then, by
Lemma 6(i), exactly one of e and ¢’ is contained in R'.

It follows that, if Case (2) or (3) applies to v, then exactly one of e and ¢’ is an element in
E\ — Ex and exactly one of e and €’ is an element in Ey — Fr,. We next turn to Cases
(1) and (4). Let V (resp. V') denote the set that contains precisely each tree vertex of N
whose two outgoing edges are both in M (resp. M’). Since M and M’ are embeddings of
D in N, we have |V| = |V'| and, consequently, |V —V’| = |V’ —V|. Hence, the number of
tree vertices in N for which both outgoing edges are in R and exactly one outgoing edge is
in R’ is equal to the number of tree vertices in N for which both outgoing edges are in R’/
and exactly one outgoing edge is in R. This completes the proof of the proposition. [

The last proposition motivates the following terminology. Let D be a phylogenetic
digraph of a phylogenetic network N on X, and let R be an extension of D in N. We set
cp = |Ex — Ex| and refer to cp as the cut size of D in N. By Proposition 7, ¢p is well
defined.

The next two results consider cut sizes of root extensions in tree-child networks.

Lemma 8. Let D be a phylogenetic digraph of a tree-child network N* on X, and let R
be an extension of D in N with cut size cp. Then there also exists a root extension of D
in N with cut size cp.

Proof. Let M be the embedding of D in N that underlies R. If R is not a root extension
of D in N, then there exists a reticulation edge (u,v) in N such that (u,v) € R and
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Figure 5: A phylogenetic network N, a phylogenetic digraph D of N, and two root
extensions R and R’ (indicated by red lines) of D in N with |Ey — Eg| = 6 # 5 =

(u,v) ¢ M. Since N is tree-child, u is a tree vertex. Let v’ be the child of v in N
with v # v/, Clearly, v’ is a tree vertex or a leaf in A/, and (u,v’) ¢ R. Let R, be the
component in R that contains v, and let R,, be the component in R that contains v'. If
R, and R, are distinct, obtain R! from R, by deleting each vertex s for which there exists
a directed path from s to u, and obtain R!, from R, by adding (u,v’) and each edge of R,
that is contained in a directed path ending at v and, if R, and R, are not distinct, obtain
R from R, by deleting (u,v) and adding (u,v’). Then R’ = (R — {R,, R, }) U{R,, R, }
is an extension of D in N with cut size cp. It is straightforward to check that M is the
embedding of D in N that underlies R’ and that R’ has one reticulation edge less than
R. If R is not a root extension of D in N, then repeat the construction for a reticulation
edge in NV that is in R’ but not in M until no such edge remains. This completes the
proof of the lemma. O

We end this section by noting that Proposition 7 does not hold for two root extensions of
arbitrary phylogenetic networks (see Figure 5 for an example). Nevertheless, we have the
following result for tree-child networks. Its proof is similar to that of Proposition 7 and
is omitted.

Proposition 9. Let N be a tree-child network on X, and let R and R’ be two root
extensions of a phylogenetic digraph D of N'. Then

|Ex — Eg| = |Ex — Ex.

5 Measures of dissimilarity between two tree-child networks

In this short section, we formally define the tree-child SNPR distance between two tree-
child networks and a measure that is associated with an extension of a phylogenetic
digraph common to two tree-child networks. This measure bounds the SNPR distance
between two tree-child networks from above and below.

Let A and N’ be two tree-child networks on X. Let D = {D,, Dy, Ds, ..., Dy} be a
collection of leaf-labelled acyclic digraphs. If D is a phylogenetic digraph of AV and N,
we refer to D as an agreement digraph of N'and N. Now let D be an agreement digraph
for NV and N’. If D is tree-child, we say that D is an agreement tree-child digraph for
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N and N’. In the remainder of this paper, we are particularly interested in agreement
digraphs of AV and A" whose cut size is minimum. To this end, let D be an agreement
tree-child digraph for N" and N’, and let ¢p and ¢, be the cut size of D in N and N,
respectively. Then D is called a mazimum agreement tree-child digraph for N and N if
the sum cp + %y, is minimum over all agreement tree-child digraphs for A" and A, in which
case m.(N, N’) denotes this minimum number. To calculate my. (N, N7), it follows from
Proposition 7 that it is sufficient to consider a single extension of each agreement digraph
for N and N’. Referring back to Figure 2, observe that each of the three phylogenetic
digraphs Dy, D, and Dj is in fact an agreement digraph for the two tree-child networks
N and N that are shown in the same figure.

Let N and N’ be two tree-child networks, let D be an agreement tree-child digraph
for N and N, and let R and R’ be an extension of D in N/ and N, respectively. We note
that, similar to the elements of an agreement forest, the elements in D can be embedded
in N and N’. Intuitively, they can be thought of as subnetworks that are common to
N and N’. On the other hand, the digraphs induced by the edges in Fr — E and
Er — Eny, where M and M’ is the embedding that underlies R and R’, respectively,
are not necessarily the same. Although each connected component in such a digraph is a
rooted tree whose (unique) root is a vertex of M and M/, respectively, and whose edges
are directed towards the root, one digraph may contain directed rooted trees with a small
total number of unlabelled leaves and the other one may contain directed rooted trees
with a much larger total number of unlabelled leaves.

Now, let N be a phylogenetic network on X, and let e = (u,v) be an edge in N'. We
consider the following three operations applied to N:

SNPR* If u is a tree vertex, then delete e, suppress u, subdivide an edge that is not a
descendant of v with a new vertex v/, and add the new edge (u/,v).

SNPR™ If u is a tree vertex and v is a reticulation, then delete e, and suppress v and
v.

SNPRT Subdivide e with a new vertex v’, subdivide an edge in the resulting network
that is not a descendant of v" with a new vertex «/, and add the new edge (u/,v’).

By definition of a tree vertex, u # p if we apply an SNPR*. If it is not important which
of SNPR™, SNPR*, and SNPR* has been applied to A" we simply refer to it as an SNPR.
As observed by Bordewich et al. [7, Proposition 3.1], the operation is reversible, i.e. if
N is a phylogenetic network on X that can be obtained from A by a single SNPR, then
N can also be obtained from N’ by a single SNPR. Lastly, we note that the well-known
rSPR operation is an application of SNPR™* to a phylogenetic tree.

Let AV and N be two phylogenetic networks on X. An SNPR sequence o for N and
N is a sequence

g = (N:N07N1,N2,~-7MIN/)

of phylogenetic networks on X such that, for all i € {1,2,... ¢}, we have N is obtained
from N;_; by a single SNPR in which case, we say that o connects N and N’. We refer to
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t as the length of o. Let t* be the number of phylogenetic networks in {N7, Na, ..., N;}
that have been obtained by an SNPR* and, similarly, let t~ and ¢t* be the number of
phylogenetic networks in {Nj, Na,...,N;} that have been obtained by an SNPR™ and
SNPR™, respectively. Clearly, t* +¢~ +t* =t. We set

w(o) =25+t + "

and refer to w(co) as the weight of o. Intuitively, each deletion or addition of an edge
contributes one to w(c). Thus, since an SNPR* deletes an edge and, subsequently adds
a new edge, such an operation adds two to w(c). It was shown by Bordewich et al. [7,
Proposition 3.2] that any two phylogenetic networks N' and A’ on the same leaf set
are connected by an SNPR sequence. If NV and N’ are tree-child, then, by the same
proposition, there also exists an SNPR sequence that connects N and N’ such that
each network in the sequence is tree-child. We refer to such an SNPR sequence as a
tree-child SNPR sequence. Moreover, we define the tree-child SNPR, distance dy.(N,N")
between two tree-child networks A/ and N’ as the minimum weight of any tree-child
SNPR sequence connecting N and N’. If NV and N’ are two phylogenetic X-trees, then
dispr(N, N') denotes the minimum number of rSPR operations needed to transform A

into N”.

Global assumption. Let o = (Ny, N1, Ns, ..., N;) be an SNPR sequence that connects
the two phylogenetic networks Ay and N; on X. Throughout the remainder of the paper,
we assume that there exists no i € {1,2,...,t}, such that A; can be obtained from N;_;
by an SNPR* that deletes a reticulation edge in A;_;. Indeed, if such an i exists, then
there exists an SNPR sequence

o = (No, N1, Ns, . ,/\[171,/\@/,./\/;,./\/@1, o N

such that N/ can be obtained from N;_; by an SNPR™ and N can be obtained from
N! by an SNPR™. Since we are interested in SNPR sequences of minimum weight and
w(o’) = w(o), no generality is lost.

6 Bounding the tree-child SNPR distance

In this section, we establish Theorem 1 and show that the bounds are tight. Let A" and
N’ be two tree-child networks, and let R be an extension of a tree-child digraph D of
N. We first show that, if A/, N7, and R satisfy certain properties, then there exists an
extension of D in N such that the cut sizes of D in N" and N’ differ by at most one.

Lemma 10. Let N and N be two tree-child networks on X, let D be a tree-child digraph
of N, and let R be an extension of D in N.

(i) Let (u,v) be a reticulation edge of N such that (u,v) ¢ R. If N" can be obtained from
N by an SNPR™ that deletes (u,v) and suppresses u and v, then D is a tree-child
digraph of N and there exists an extension R' of D in N such that
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Figure 6: Setup of parts (i) and (iii) in the proof of Lemma 10. Red lines indicate vertices
and edges in R and R'. In (i), observe that u has in-degree zero and out-degree one, and
v has in-degree one and out-degree one in R whereas, in (iii), observe that u has in-degree
one and out-degree one, (p,,c,) ¢ R, and v may or may not be a leaf in N. Vertex
labels 41, v, y3, and gy, are only used to clarify the figure.

(i) Let e = (u,w) and ¢ = (v, w') be two distinct tree edges of N. If N' can be
obtained from N' by an SNPR™T that subdivides e and € with a new vertex v and v,
respectively, and adds the new reticulation edge (v',v), then D is a tree-child digraph
of N' and there exists an extension R’ of D in N such that

|Ex — Er|+ 1 =[Eyx — Er/|.

(iii) Let e = (u,v) be a tree edge of N such that e ¢ R, and let f = (pu,cw) be an
edge in N that is distinct from e. If N can be obtained from N by an SNPR* that
deletes e, suppresses u, subdivides f with a new vertex u', and adds the new edge
(u',v), then D is a tree-child digraph of N’ and there exists an extension R' of D in
N such that

|Ex — Er| = |Exv — Er/l.

Proof. The setup used to establish parts (i) and (iii) is illustrated in Figure 6. We first
establish (i). Since (u,v) ¢ R and D is a tree-child digraph of N, it follows that D is
also such a digraph of A”. Now, let R’ be the digraph obtained from R by applying the
following operation to each vertex w € {u,v}. If w has in-degree zero and out-degree one
in R, then delete w and, if w has in-degree one and out-degree one in R, then suppress
w. As (u,v) € R, it follows by Lemma 5 that each of u and v has either in-degree
zero and out-degree one, or in-degree one and out-degree one in R. Thus, R’ is well
defined. It now follows from the construction that R’ is an extension of D in N’ with
|Ex — Er| —1=[Ex — Eri|.

To see that (ii) holds, observe first that since D is a tree-child digraph of N it follows
from the construction of N’ from A that D is also such a digraph of N’. Reversing the
construction of R’ in (i), let R’ be the digraph obtained from R by applying the following
operations. If e ¢ R, then add (v,w) and, if e € R, then subdivide e with v. Similarly, if
¢’ ¢ R, then add (v/,w’) and, if ¢’ € R, then subdivide ¢’ with v’. It is now straightforward
to check that R’ is an extension of D in N’ with |Ey — Eg| + 1 = |Exv — Eg/|.
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We now turn to (iii). Let p, be the parent of u, and let ¢, be the child of u that is
not v. Since wu is a tree vertex, p, and ¢, are well defined. Furthermore, let M be the
embedding of D in A that underlies R. By Lemma 5(i), (u,¢,) € R. If (pu,u) ¢ R, then
the degree constraints of the vertices in D imply that (u,¢,) ¢ M. On the other hand, if
(pu,u) € R, then (u,c,) € R and, in turn, either both of (p,,u) and (u,c,) are in M or
neither. Now obtain M’ from M by replacing (p,,u) and (u,c,) with (p,,c,) if (py,u)
and (u,¢,) are in M, and replacing f with (p.,u’) and (v, c,) if f € M. Thus, as M is
the embedding of D in N that underlies R, it follows from the construction of N’ from
N that M’ is also an embedding of D in N’. Hence, D is a tree-child digraph of N’.
To complete the proof, let R’ be the digraph obtained from R by applying the following
operations. If u has in-degree zero in R, then delete u and, if u has in-degree one in R,
then suppress u. Moreover, if f ¢ R, then add (v, c,) and, if f € R, then subdivide
(pw, c) with /. Again, by Lemma 5, u has either in-degree zero and out-degree one, or
in-degree one and out-degree one in R and, so, R’ is well defined. As R is an extension
of D in N with e ¢ R and (uv/,v) ¢ R/, it now follows that R’ is an extension of D in N’
with |EN - ER| = |E/\/’/ - ER/| ]

The next lemma and corollary show that there always exists a tree-child SNPR se-
quence connecting two tree-child networks with certain desirable properties. These prop-
erties will be leveraged later to establish one of the two inequalities of Theorem 1.

Lemma 11. Let (No, N1, N, ..., N;) be a tree-child SNPR, sequence connecting two tree-
child networks Ny and Ny on X. If there exists an i € {0,1,2,...,t — 2} such that N;,
is obtained from N by an SNPR™ (resp. SNPR* ) and Nii, is obtained from Niyi by an
SNPR™, then one of the following holds:

(i) (Mo, N1, Noy oo\ Ny Niis, Niway - s Noo1, Nb) is a tree-child SNPR. sequence con-
necting Ny and N; of length t — 2,

(i) (Moy N1, Nay ooy Ny N, Nivs,y o, Ni_1, Ny) is a tree-child SNPR. sequence con-
necting Ny and Ny of length t — 1 such that Ni,o is obtained from Nj by an SNPR*,

(iii) (Mo, N1, No, .oy Niu Niva, Nivs, ooy N1, o) is a tree-child SNPR. sequence con-
necting No and N of length t — 1 such that N, is obtained from N; by an SNPR™,

or

(iv) there exists a tree-child SNPR sequence
(MavaMu"'7M7 i/+17~/\/'i+27-/\/'i+37"'7'/\/’t*17~/\/;>

connecting Ny and N, of length t such that N, is obtained from N; by an SNPR™
and N is obtained from N?,; by an SNPR™ (resp. SNPR*).

Proof. Suppose that there exists an element i € {0,1,2,...,t — 2} such that N;; is
obtained from N; by an SNPR* and N, is obtained from N;,; by an SNPR™. Let
e = (u,v) be the reticulation edge of AN;,; that is added in obtaining N;;; from N;.
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Figure 7: The three cases in the last case analysis in the proof of Lemma 11, where N;; is
obtained from N; by an SNPR*, N, is obtained from N;,; by an SNPR™, and p,s # p,
or ¢y # ¢,. The three cases are (I) € = (py,c,), (II) € = (¢, cw), and (II1) € # (pu, cu)
and e’ # (v, ¢,r). Vertex labels y1, y2, and ys are only used to clarify the figure.

Furthermore, let ¢/ = (u’,v’) be the reticulation edge in N, that is deleted in obtaining
N from Ny . If e = €/, then N; = N 5, and so (i) holds. We may therefore assume
that e # €. If v = v/, let w be the child of v in N;,;, and let ¢, and p, be the child and
parent, respectively, of v in N, such that ¢, # v. Since u is a tree vertex, ¢, and p,
are well defined. Observe that (v, w) and (pu,c,) are tree edges in N;. It now follows
that N o can be obtained from A; by the SNPR* that deletes (u',w), suppresses u’,
subdivides (p,, ¢,) with a new vertex u, and adds the edge (u,w), and so (ii) holds. So
assume that e # ¢ and v # v'. As N, is tree-child, it follows that ¢’ is not incident
with u or v. Thus, €’ is a reticulation edge of N;. Let N}, be the phylogenetic network
obtained from A; by deleting e’ and suppressing v’ and v'. By Lemma 4, N7, is tree-child.
It is now straightforward to check that N, can be obtained from N/,; by an SNPR™,
and so (iv) holds.

Next suppose that there exists an element ¢ € {0,1,2,...,t — 2} such that N, is
obtained from A; by an SNPR* and N;,, is obtained from A;,; by an SNPR™. Let
e = (u,v) be the edge of N; that is deleted in the process of obtaining N;, ;. Furthermore,
let p, be the parent of v and let ¢, be the child of w that is not v in Nj. Since u is
a tree vertex, p, and ¢, are well defined. Let f = (pu,cy) be the edge of the digraph
resulting from N; by deleting e and suppressing u that is subdivided with a new vertex
u’ such that (v/,v) is an edge in Njy1. If py = p, and ¢ = ¢, then N; = Ny, and
so (iii) holds. Hence, we may assume that p, # p, or ¢, # ¢, and so (py,c,) is an
edge in NV;; ;. Let ¢ be the edge that is deleted in obtaining N;;s from N;,,. There are
three cases to consider, which are illustrated in Figure 7. First assume that e’ = (py, ¢,).
Then (u,c,) is a reticulation edge in N;. Let w be the parent of ¢, that is not u in N;.
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Obtain N, by deleting (u, ¢,) and suppressing the two resulting degree-two vertices. By
Lemma 4, N/, is tree-child. Moreover, noting that (p,,v) is an edge in N, , it follows
that /\/HQ can be obtained from A, ; by an SNPR* that deletes (p,,v), suppresses p,,
subdivides (py/, ¢y) if ¢, # pw (resp. subdivides (w, ¢,/) if ¢, = p,s) with a new vertex u/,
and adds the edge (v/,v), and so (iv) holds. Second assume that ¢/ = (v/,¢,/). Then f
is a reticulation edge in N;. Noting that p, is a tree vertex in M, let s be the parent
of py, and let ¢ be the child of p,s that is not ¢,,. Now obtain N/ ; from N by deleting
f and suppressing the two resulting degree-two vertices, one of Wthh is ps. Again by
Lemma 4, N/, is tree-child. Furthermore, (s,t) is an edge in A, ;. Then obtain N,
from N/,, by an SNPR* that deletes (u, v) suppresses u, subdivides (s,t) with a new
vertex p,/, and adds the edge (p,,v). Again (iv) holds Third assume that € # (py, cy)
and € # (v, c,). Then € is an edge of NV;. Let N/ ; be the tree-child network obtained
from N; by deleting e’ and suppressing the two resulting degree-two vertices. Since e and
f are edges of N ;, it now follows that N can be obtained from N, by an SNPR*
that deletes e, suppresses u, subdivides f with a new vertex v, and adds the edge (u/,v).
Again, (iv) holds, thereby completing the proof of the lemma. ]

Corollary 12. Let N and N be two tree-child networks on X. Then there exists a tree-
child SNPR, sequence (N = No, N1, Na, ..., Ny = N7) that connects N' and N such that
either Ny is obtained from N,_1 by an SNPRT or SNPR*, or N; is obtained from Nj_;
by an SNPR™ for each i € {1,2,... t}.

Proof. The corollary follows from repeated applications of Lemma 11. O
The proof of Theorem 1 is an amalgamation of the next two lemmas.

Lemma 13. Let N and N’ be two tree-child networks on X. Then
die (NN < mye (N, NT).

Proof. Let D ={D,, Dy, D,,...,D;} be an agreement tree-child digraph for N" and N,
and let R = {R,, R, Rs, .. Rk} and R' = {R), 5 ..., R} be an extension of D in
N and N, respectively. Furthermore let c¢p = ]EN Er| and ¢ = |Ex» — Eg/| be the
cut size of D in N and N, respectively. By Lemma 8, we may assume that R and R’
is a root extension of D in N and N’, respectively. We show by induction on c¢p + ¢
that di.(N,N’) < ¢p + . The lemma then follows by choosing D to be an agreement
tree-child digraph for N" and N’ such that cp + ¢p = my (N, N7).

If ¢p + ¢ = 0, then NV =2 N’ and consequently di.(N,N’) = 0. Hence, the result
follows. Now assume that ¢p + ¢, > 1 and that the result holds for all pairs of tree-child
networks N7 and A] on the same leaf set that have an agreement tree-child digraph D;
with cut size cp, and ¢, of Dy in Ny and N7, respectively, such that cp, + ¢, < ¢p+ ).

We first establish the lemma for a case that is easy to deal with. To this end, assume
that there exists a reticulation edge e = (u, v) in N or N’ that is not contained in R or R/,
respectively. Without loss of generality, we may assume that e € N'. As A is tree-child,
u is a tree vertex. Let N be the phylogenetic network obtained from A by an SNPR™
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that deletes e and suppresses the two resulting degree-two vertices. By Lemma 4, N
is tree-child. Furthermore, by Lemma 10(i), D is a tree-child digraph for N and there
exists a root extension R” of D in N such that c¢p — 1 = ¢, where ¢, = |Exn — Egu|.
Since ¢, + ¢p < ¢p + ¢, it now follows from the induction assumption that

de (N N") < b+ &,

Hence, there exists a tree-child SNPR sequence o connecting N/ and N’ with w(o) <
b + . Moreover, since N/ can be obtained from A by a single SNPR™, we have

die N N') <1+ ¢+ ¢p = cp + ¢p,

thereby establishing the lemma under the assumption that such an edge e exists.
To complete the proof, we may now assume that

(A) each reticulation edge of ' and N is contained in R and R’, respectively.

Hence, by symmetry, there exists a tree edge e = (u,w) in N that is not in R. Choose
e such that each directed path from w to a leaf in N only consists of edges in R. Since
N is acyclic such an edge exists. Let D; be the element in D with i € {p,1,2,...,k}
such that the root extension R; of D; in N contains w. By the choice of e, R; exists and
each edge in AV that lies on a directed path from w to a leaf is an element of R;. Thus, if
u = p, then N/ = N’ and the result follows as d.(N,N’) = 0. We may therefore assume
that u # p. The next statement follows from Lemma 5(i), the additional assumption that
u # p, and assumption (A).

13.1. In N, the vertex u is a tree vertex, and w is either a tree vertex or a leaf.

By the choice of e, observe that the root path of w consists only of w. In turn, w has
in-degree zero and out-degree zero or two in R;. Hence, w corresponds to a unique vertex,
say wp, of D;. Let 1, be the vertex in N’ that wp corresponds to. Now consider the root
extension R} of D; in N’. Let w’ be the first vertex of the root path of r,,. In contrast
to the root path of w in R;, observe that the root path of r,, may consist of more than a
single vertex in which case there is a directed path of length at least one from w’ to 7.
Since p € D and wp # p, it follows that w' # p. Hence, by (A), we have that w' is a
leaf, or has in-degree one and out-degree two in N’. Let v’ be the parent of w’ in N7. As
(v, w') ¢ R', the next statement follows from Lemma 5(i).

13.2. In N, the edge € = (v',w') is a tree edge, and v' is either p or a tree vertex in N.

Let D; be the element in D with j € {p,1,2,...,k} such that the root extension R’ of
Dj in N' contains ¢'. By Lemma 5(ii), R} exists. We may have i = j. We next construct
a digraph D’ from D and a network N from N. After detailing the construction, we
show that N is a tree-child network that can be obtained from A by a single SNPR™,
and that D’ is an agreement tree-child digraph for N7/ and N’. Guided by the second
part of (13.2) and noting that, if v = p, then p is a singleton component in D, there are
three cases to consider, which are illustrated in Figure 8:
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Figure 8: The three Cases (C1)-(C3) as described in the proof of Lemma 13. Blue in N/
and N indicates edges and vertices in R; and R}, and green in N and N indicates edges
and vertices in R; and R. Vertex labels y; and y, are only used to clarify the figure.
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Suppose that v is not a vertex of a root path of a vertex in R'. Clearly v' # p.
Then v" has in-degree one and out-degree one in R}. Recall that each edge in D
corresponds to a unique directed path in R} that connects the two end vertices of
that edge. Let (sp,tp) be the edge in D; that corresponds to a directed path in
R} that contains the two edges incident with ¢'. Obtain Dj; from D; and D; by
subdividing (sp,tp) with a new vertex pp and adding the edge (pp,wp). Turning
to N, let f be an edge that lies on the directed path in R; that corresponds to the
edge (sp,tp) in D;. Obtain N from N by deleting e, suppressing u, subdividing
f with a new vertex p, and adding the edge (p, w).

Suppose that v # p and that v’ is a vertex of a root path P of R'. Let r,, be the last
vertex of P in N’. Noting that r,, corresponds to a vertex vp of in-degree zero in D,
obtain Dj; from D; and D; by adding the two edges (pp,vp) and (pp, wp), where
pp is a new vertex. Turning to NV, let r,, be the vertex in R; that vp corresponds to,
and let v be the first vertex of the root path of r,. As v’ # p and D is an agreement
digraph for N" and N’ we have v # p. Moreover, it follows from (A) that v is not a
reticulation in A. Thus, v has a unique parent, say ¢, in N. Then, obtain N from
N by deleting e, suppressing u, subdividing the edge f = (¢, v) with a new vertex p,
and adding the edge (p, w).

Suppose that v" = p. As p has out-degree one in N and N, each of D; and R;
consist of the isolated vertex p only. Then obtain Dj; from D; and D; by adding
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a new edge (p,wp). Moreover, obtain N from N by deleting e, suppressing u,
subdividing the edge f that is directed out of p with a new vertex p, and adding
the edge (p, w).

As N does not contain a directed cycle, it follows from the construction that D) ; 1s acyclic
in all three cases. Hence, as D is a phylogenetic digraph for N”,

D' = (D —{D;, D;}) U{D;;}

is a phylogenetic digraph of . Let Ej and Ej be the edge set of I?; and R respectively,
and let R;; be the subgraph of N induced by the edge set Ej U Ej U {{v',w'}}. Since R/
is a root extension of D in N’ it again follows from the construction that

(R'—{R;, Rj}) U{R};}

is a root extension of D" in N.

We next turn to D’ and show that D’ is tree-child. Since D is tree-child, it follows
from the definition that R’ is tree-child. Moreover, since w’ has in-degree zero in R, it
follows that w’ has in-degree one in R;;. It is now straightforward to check that (R’ —
{R}, R}}) U{R;;} is tree-child. Hence, again by definition, D’ is also tree-child.

The following statement is now an immediate consequence of the construction.

13.3. The cut size of D' in N is ¢y — 1.
Next, we establish that N is a tree-child network on X.
13.4. The network N is acyclic.

Proof. Using the same notation as in the construction of N from N, recall that e = (u, w)
is the edge in N that is deleted and that f is the edge in N that is subdivided with p
in the process of obtaining N. To ease reading, let f = (p,,c,) regardless of which of
(C1)-(C3) applies. Since N is acyclic, any directed cycle in N/ contains p. If N has
been obtained from A as described in (C3), then N is acyclic because p has in-degree
one and out-degree two in N’ and is adjacent to p. Hence, we may assume that N has
been obtained as described in (C1) or (C2). Towards a contradiction, assume that A"
contains a directed cycle. Then there exists a directed path P from w to ¢, in N whose
last edge is f. If N has been obtained from N as described in (C2), then f € N and
f ¢ R, a contradiction because P contains an edge not in R, which is not possible by the
choice of e as described in the paragraph following the statement of assumption (A). On
the other hand, if N”” has been obtained from A as described in (C1), then, again by the
choice of e and the existence of P, we have R, = R;. Since D is an agreement digraph
for N and N, it follows that the edge (sp,tp) in D; can be reached from wp, thereby
contradicting that Dj; is acyclic. ]

It now follows from the construction of N from N and (13.4) that N is a phylogenetic
network on X. For the remainder of the proof, let D, be the element in D with u €
{p,1,2,...,k} such that the root extension R, of D, in N contains u. By Lemma 5(ii),
R, exists.
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13.5. The phylogenetic network N is tree-child.

Proof. Again using the same notation as in the construction of N from N, it follows
from (13.1) that the newly added edge (p, w) in N is a tree edge. Noting that u is a tree
vertex by (13.1) in NV, let p, be the parent of u, and let ¢, be the child of u that is not
w in N. Observe that (p,,c,) is an edge in N. Now assume that N/ is not tree-child.

First suppose that A" contains a pair of parallel edges. Then (py,c,), (pu,u), and
(u, c,) are edges of an underlying three-cycle in /. Assumption (A) and Lemma 5(i) imply
that all three edges incident with ¢, are edges in R,. If (py,u) ¢ Ry, then u has in-degree
zero and out-degree one in R,. It follows that u is a vertex of R but not a vertex of the
embedding of D in A that underlies R. Hence, the unique child of u in R, has in-degree
one in R, because R is a root extension of D, a contradiction as ¢, has in-degree two in
R,. Thus, (p,,u) € R,. It follow that D,, contains a pair of parallel edges because e ¢ R,
a contradiction to D being tree-child.

Second suppose that N/ contains an edge that is incident with two reticulations. Then
pu and ¢, are reticulations in N. It follows from (A) and Lemma 5(i), that R, contains
the three edges incident with ¢, and the three edges incident with p,. Thus, D, contains
an edge that is incident with two reticulations because e ¢ R, another contradiction.

Third suppose that N/ contains a pair of sibling reticulations. Then ¢, is a reticulation
and p, is a tree vertex whose child that is not u, say s,, is a reticulation in A/. Again
by (A) and Lemma 5(i), R, contains all three edges that are incident with ¢, and there
exists an element R, € R with v’ € {p,1,2,...,k} such that R, contains all three edges
incident with s,. If u # «/, then (p,,u) ¢ R and, thus, u has in-degree zero and out-
degree one in R,. It follows that u is a vertex of R but not a vertex of the embedding
of D in N that underlies R. Hence, the unique child of w in R, has in-degree one in R,,
a contradiction as ¢, has in-degree two in R,. We may therefore assume that u = u’.
But then R, contains a pair of sibling reticulations s, and ¢, because e ¢ R, a final
contradiction. O]

It now follows from (13.4) and (13.5) and the construction as detailed in (C1)—(C3) that
N is a tree-child network on X that can be obtained from N by a single SNPR*. We
next show that D’ is a phylogenetic digraph for N/. To this end, we construct a root
extension of D" in N

If N7 has been obtained from N as described in (C1), obtain a root extension Rj;
of Dj; from R; and R; by subdividing f in R; with a new vertex p and adding the edge
(p,w). Otherwise, if N has been obtained from A as described in (C2) or (C3), obtain
R;; from R; and R; by adding the edge (p,v), where p is a new vertex, and adding the
edges (p,v) and (p,w). Then, as R is a root extension of D in N and u is a tree vertex
in A by (13.1), it follows that the digraph obtained from

R" = (R —A{Ri,R;}) U{R;;}

by suppressing (resp. deleting) w if it has in-degree one (resp. zero) in R” is a root extension
of D' in N”. Thus, D’ is an agreement tree-child digraph for N and A/.
The next statement is again an immediate consequence of the construction of R”.
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Figure 9: An example of two tree-child networks AV and N’ and an agreement tree-child
digraph D for N" and N’ for which 6 = di.(N,N') but m.(N,N’) = 8. An extension of
D in N and N’ is indicated by red lines.

13.6. The cut size of D' in N" is cp — 1.

By combining (13.3) and (13.6), it now follows from the induction assumption that
dieN"N') <ep—1+cp—1.

Hence, there exists a tree-child SNPR sequence o connecting N and N’ with w(o) <
cp — 1+ dp — 1. Since N can be obtained from N by a single SNPR*, we have

die N N) <2+ cp—1+dp—1=cp+cp.
The lemma now follows. O]

Figure 9 shows two tree-child networks for which the inequality established in
Lemma 13 is strict. However, the next lemma shows that, for two tree-child networks
N and N, the difference my.(N,N') — di.(N,N') cannot be arbitrary large. In prepa-
ration for the lemma, we need an additional definition. Let D be a phylogenetic digraph
of a phylogenetic network N on X. Furthermore, let R be an extension of D in N, and
let M be the embedding that underlies R. Now consider a directed path P in M. Let
V = {v1,v,...,v,} be the subset of reticulations in A that lie on P. Then the path
extension of P contains precisely all edges of P and, additionally, each edge of a maximal
length directed path in N that only consists of edges in Er — Eyq and ends at a vertex
in V. Note that the path extension of P may contain each edge of P and no additional
edge, even if V = ().

Lemma 14. Let N and N be two tree-child networks on X. Then

1

éth(N,NI) < dtc(NaN/>'
Proof. Let 0 = (N = Ny, N1, Ns, ..., N; = N) be a tree-child SNPR sequence connecting
N and N’ such that N;_; and N; are non-isomorphic for each i € {1,2,...,t}. It follows
from Bordewich et al. [7, Proposition 3.2] that o exists. By Corollary 12, we may assume
that A; can be obtained from A;_; by an SNPR* or an SNPR*, or N; can be obtained
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from N;_; by an SNPR™ for each i € {1,2,...,t}. If the latter holds, then, by the
reversibility of SNPR,
(N/ :M7"'7N27N’17N0 :N)

is a tree-child SNPR sequence connecting N and N and N is obtained from N, ; by
an SNPR™ for each i € {t — 1,t —2,...,0}. Hence, we may assume without loss of
generality that A; can be obtained from A;_; by either an SNPR* or an SNPR*. We
show by induction on ¢ that there exist an agreement tree-child digraph D for NV and N’
and extensions R and R’ of D in N and N”, respectively, such that m(N, N') < w(o).
The lemma then follows by choosing o such that w(o) = dy.(N,N).

If t = 1, then there are two cases to consider. First assume that N’ can be obtained
from A by an SNPR*. Then w(c) =1, and N is an agreement tree-child digraph for A/
and N’. Trivially, there is an extension R of N in N and an extension R’ of N in N’
such that |Ey — Ex| + |Ex» — Ex/| = 1 and, thus, $me(N,N’) < 11 < w(o). Second
assume that N’ can be obtained from N by an SNPR* in which case w(c) = 2. Recalling
the global assumption stated at the end of Section 5, let e = (u,v) be the tree edge in
N that is deleted in the process of obtaining N’ from N. Let p, be the parent of u, and
let ¢, be the child of v in A that is not v. Since u is a tree vertex, p, and ¢, are well
defined. If p, is a tree vertex, let s be the child of p, in N that is not u. Furthermore,
if ¢, is a reticulation, let s’ be the parent of ¢, in N that is not u. If s and ¢, are both
reticulations, let D be the leaf-labelled acyclic digraph D obtained from N by deleting e
and (¢, ¢,), and suppressing u, ¢,, and s’. Otherwise, if at least one of s and ¢, is not
a reticulation, let D be the leaf-labelled acyclic digraph D obtained from A by deleting
e and suppressing u. In both cases, D is an agreement digraph of A and N’. We next
show that D is tree-child. If D contains a pair of parallel edges or a stack, then N' = A/,
a contradiction to the choice of ¢. On the other hand, if D contains a pair of sibling
reticulations, then s and ¢, are reticulations in N. By construction, it follows that there
is no reticulation in D that corresponds to ¢,. Hence, D is tree-child. Moreover, there are
extensions R of D in N and R’ of D in N’ such that |Ex — Eg|+ |Ex» — Er/| < 242 = 4,
where the first inequality becomes an equality only if s and ¢, are both reticulations in
N Tt now follows that $m.(N,N') < 3 -4 = w(c). This completes the proof of the base
case.

Now suppose that ¢ > 1 and that the lemma holds for all pairs of tree-child networks
for which there exists a tree-child SNPR sequence connecting the two networks of length
less than ¢. Let

01 = (No,Nl,Nm s ,/\/;5—1) and oy = (M—bM)-
By Corollary 12, we may again assume that N;_; can be obtained from N,_, by an SNPR*

or an SNPR*, or V; can be obtained from N;_; by an SNPR™ for each i € {1,2,...,t—1}.
Observe that w(o) = w(oy) + w(oz). By the induction assumption, we have

1
§mtc(N0;M—1) < w(oy).
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Hence, there exist a maximum agreement tree-child digraph D’ for N, and N,_; and
extensions Ry and R}_; of D' in Ny and N;_1, respectively, such that

1 1
5MieWNo, Nier) = S (1B — Bry| + [Eniy — Bry_, [) < w(on). (1)

Let M{, (resp. M;_;) be the embedding of D" in N (resp. N;_1) that underlies R}, (resp.
).

Assume that N; can be obtained from A;_; by an SNPR™, in which case w(oy) = 1.
Let (u,w) and (u/,w") be the two edges in N;_; that are subdivided with a new vertex
v and V', respectively, in obtaining N;. Since N is tree-child, (u,w) and (u/,w’) are tree
edges. Furthermore, either (v,v’) or (¢v/,v) is a reticulation edge in N;. Without loss of
generality, we may assume that (v',v) is a reticulation edge in N;. It now follows from
Lemma 10(ii) that D’ is also a tree-child digraph for A; and there exists an extension R}
of D' in N, such that

|En,_y — Bry_ | +1=|EN, — Eryl.

Hence, we have

1 1
SN N < S, — Ergl +1Bxi — By

1
= 5(‘EN’0 - ER{;‘ + |ENt—1 - E”R;,l‘ + 1)
< w(oy) +w(og) = w(o),

where the last inequality follows from Equation (1) and the fact that w(oy) = 1.

For the remainder of the proof, we may therefore assume that N is obtained from N;_;
by an SNPR* in which case w(oy) = 2. Let e = (u,v) be the edge in N;_; that is deleted
in obtaining N, from A;_;. By the definition of SNPR* and the global assumption, u and
v are both tree vertices. Let p, be the parent of u, and let ¢, be the child of u with ¢, # v
in AV;_;. Observe that (p,,c,) is an edge in N;. Furthermore, let (p,,c,) be the edge in
N;_1 that is subdivided with a new vertex u’ in obtaining N;. Then (v, v), (p.,u’), and
(', ) are edges in N;.

First assume that e ¢ R;_;. It follows from Lemma 10(iii) that D’ is also a tree-child
digraph for NV, and there exists an extension R} of D" in N such that

|En,_, — Ery_ | = |En, — Er|
and, therefore, again by Equation (1),
1 1
Eme W) < LB~ Byl + By, — Ery)
1
= E(IENO - ERE)‘ + |ENt—1 - ER;,J)
< w(oy) +w(oz) = w(o).

Hence, we may assume that e € R;_;. Let R! be the element in R}_; that contains
e, let R, be the element in R;_; that contains c,, and let R;,  be the element in R;_,
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Figure 10: The two cases in the construction of R, , from R . Blue indicates vertices

and edges of R, , and R,

that contains ¢,,. Recall that I, R, , and R, , are not necessarily pairwise distinct. If
(Pu,cw) € R, then set R, , to be the directed graph obtained from R’ , by subdividing
(Purs Cur) with'a new vertex u'. Otherwise, if (py,cy) ¢ R, ,, then set R.,, to be the
directed graph obtained from R! by adding (u/,c.). The constructlon is shown in
Figure 10. Intuitively, R, , is an extension of a component of a phylogenetic digraph in
N;. Lastly, if R, = R, then set R, = R, , and, if R, = R, , then set R, = R, , to
account for the modlﬁcatlon in obtaining Rc , from R’ '

Assume that e ¢ M;_;. Then (u,c,) ¢ 72 - It agaln follows from the construction of
N; from N;_; that D’ is a phylogenetic digraph of N;. Guided by R}_;, we next construct
an extension of D’ in N;. Let W be the subset of vertices of NV;_; that lie on a directed

path from a vertex with in-degree zero to u in R,,.

(R1) If u is the only element in W and R;, # R, , then obtain R, from R;, by deleting u,
and set R., = R, .

(R2) If W contains u and |W| > 2, and R!, # R. , then obtain R, from R! by deleting
each vertex in W, and obtain R,, from R, by adding (p., ¢,) and each edge of R
that joins two vertices in W — {u}.

(R3) If wis the only element in W and R;, = R, , then obtain R, from R by deleting w.

(R4) If W contains u and |W| > 2, and R;, = R, , then obtain R, from R; by deleting
u and adding (py, ¢y)-

As an aside, recall that we are dealing with extensions (and not with the more restricted
root extensions). Indeed, if ¢, is a reticulation in N, ; and a vertex with in-degree one

and out-degree one in R, , then R., is an extension and not a root extension. Now,
regardless of which of (R1)-(R4) applies, let

R, = (R, —{R,, R, R’Cu/}) U{Ru, R, R}
It is easily checked that R is an extension of D’ in N; with
|En,_y — Ery_ | = |En; — Eryl,
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Figure 11: The setup of D' and D in all five cases (D1)-(D5) in the construction of D
from D’ as detailed in the proof of Lemma 14. Dashed edges may or may not exist in D’
and D. Vertex labels vy, yo, and y3 are only used to clarify the figure.

and thus,

1 1
Eth(NaN/) < §UEN0 - ER{)‘ + |En; — ER;D

1
= §(|E/\f0 — Ery| +|En,_, — Er_|)

< w(oy) +w(og) = w(o).

We complete the proof of the lemma by assuming that e € M}_,. Let epr = (upr, vpr)
be the unique edge in D’ that e corresponds to. If up has in-degree two in D', let pp
and p7, be the two parents of up. Furthermore, if up has out-degree two, let v7,, be the
child of up that is not vp and, if v7, is a reticulation, let p7, be the parent of v}, that
is not upr. Since D' is tree-child, observe that each of pp/, pp, and p%, has, if it exists,
in-degree at most one, and that there exists a directed path from each of pp/, pp,, and
pp to aleaf in D’ that does not traverse a reticulation. Lastly, since D’ is tree-child, at
most one of up/, vp, and v}, is a reticulation. Noting that up # p, because u # p by
the definition of SNPR*, we next obtain a digraph D from D’ in one of the following five
ways, which are illustrated in Figure 11.

(D1) Suppose that up has in-degree zero and out-degree two (resp. in-degree one and
out-degree two), and that neither vp nor v, is a reticulation. Then obtain D from
D' by deleting ep and deleting (resp. suppressing) up:.

(D2) Suppose that up has in-degree zero and out-degree two (resp. in-degree one and
out-degree two), and that vp is a reticulation. Then obtain D from D’ by deleting
epr, suppressing vps, and deleting (resp. suppressing) upr.

(D3) Suppose that ups is a reticulation. Then obtain D from D’ by applying the following
three steps in order. First, delete (pp/, up ), suppress up/, and delete the resulting
edge (pp/, vpr). Second, if ppr has in-degree zero and out-degree two (resp. in-degree
one and out-degree two) in D', delete (resp. suppress) pp. Third, if pf,, has in-degree
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zero and out-degree two (resp. in-degree one and out-degree two) in D', delete (resp.
suppress) php.

(D4) Suppose that up has in-degree zero and out-degree two, and that v, is a reticula-
tion. Then obtain D from D’ by deleting ep and ups, and suppressing v,.

(D5) Suppose that up has in-degree one and out-degree two, and that v}, is a reticula-
tion. Then obtain D from D’ by deleting epr, suppressing up/, deleting (ph, v} ),
suppressing v5,, and if pf, has in-degree zero and out-degree two (resp. in-degree
one and out-degree two) in D', deleting (resp. suppressing) p,.

By construction, it follows that D neither contains any vertex with in-degree zero and
out-degree one except for p nor a vertex with in-degree one and out-degree one. Hence,
D is a collection of leaf-labelled acyclic digraphs whose union of leaf sets is X. We next
show that D is an agreement tree-child digraph for Ny and MN,.

14.1. D is an agreement digraph for Ny and N.

Proof. Since D is a collection of leaf-labelled acyclic digraphs whose union of leaf sets
is X, Properties (i) and (ii) in the definition of a phylogenetic digraph are satisfied.
Observe that in each of (D1)-(D5), D is obtained from D’ by an ordered sequence S of
edge deletions, and vertex suppressions and deletions. Furthermore, by construction, a
vertex is only suppressed (resp. deleted) if it has in-degree one and out-degree one (resp.
in-degree zero and out-degree one) after an incident edge has been deleted. Following the
order of operations in S, obtain an embedding My of D in N, from M as follows. For
each edge fp that is deleted in obtaining D from D', delete each non-terminal vertex of
the directed path in Mj that corresponds to fp and, for each vertex that is deleted in
obtaining D from D', delete the corresponding vertex in M and each resulting vertex
that has in-degree zero and out-degree one (relative to the embedding) until no such
vertex exists. As D' is a phylogenetic digraph of Ny, it follows from the construction that
M, is an embedding of D in N and that the elements in M are pairwise vertex disjoint
in Ny. Thus, Property (iii) in the definition of a phylogenetic digraph is satisfied and D
is a phylogenetic digraph of Nj.

We complete the proof by showing that there also exists an embedding M, of D in N,.
Obtain M; from M;_, by applying the following two steps. First, if there exists an edge
fin M;_; that corresponds to the edge (p.,cy) in N;_1, then subdivide f with a new
vertex u’. Second, following again the order of operations in S, for each edge fp that is
deleted in obtaining D from D’, delete each non-terminal vertex of the directed path in
M, that corresponds to fp and, for each vertex that is deleted in obtaining D from
D', delete the corresponding vertex in M;_; and each resulting vertex that has in-degree
zero and out-degree one (relative to the embedding) until no such vertex exists. To see
that M, is indeed an embedding of D in N, recall that N; can be obtained from N;_;
by deleting e, suppressing u, subdividing (p,, c,/) with a new vertex u/, and adding a
new edge (u/,v). Since eps is deleted and ups is either suppressed or deleted in each of
(D1)—(D5), it now follows from the construction and the fact that M;_; satisfies Property
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(iii) in the definition of a phylogenetic digraph that M, is an embedding of D in N; and
that the elements of M; are also pairwise vertex disjoint in N;. Thus, Property (iii) in
the definition of a phylogenetic digraph is satisfied, and D is a phylogenetic digraph of

N;. O]
14.2. D is tree-child.

Proof. Assume D is not tree-child. Since D’ is tree-child, it follows from the construction
of D that v}, is a reticulation in D' and D. However, if v, is a reticulation in D', then
(D4) or (D5) applies and in each case one of the reticulation edges that are directed into
v, is deleted. Thus, v, is not a reticulation in D, a contradiction. ]

It now follows from (14.1) and (14.2) that D is an agreement tree-child digraph for N
and N,.

14.3. There exists an extension Ry of D in N such that
|En; — ERr,| < [En,_, — Ery_ | +2.

Proof. To ease reading, we view R}_; as a collection of edges in N;_; and describe the
construction of R; from R;_; by edge deletions and additions only. Let P be the directed
path in NV,_; that ep corresponds to. Clearly e is an edge of P. Furthermore, let (s, )
be the first edge on P, and let E, be the path extension of the subpath of P from s to v.
Observe that, if s = u, then s is a tree vertex in A;_;. Hence, in this case, R, = R, and
(u,c,) € Ry, On the other hand, if s # u, then (u,c,) is an edge in Ey, , — Er;_ .

We next obtain R; from R;}_;. Intuitively, we construct digraphs R, and R., from
R;, and R, , respectively, such that R, and R., are extensions of elements in D in M.
As we will see, some of the edges in R;, and R that are edges of M;_; become edges
of R, and R.,, respectively, that are not edges of the embedding that underlies R;. Now
suppose that D has been obtained from D’ by applying the construction as detailed in
(D1) or (D2). Obtain R, and R., from R, and R, , respectively, in one of the following

four ways:

(R1") Suppose that s = u and (p,,u) € R,,. Obtain R, from R, by deleting (p,, u), (u, ¢,),
and e, and adding (py, ¢y).

(R2") Suppose that s = u and (p,,u) ¢ R,,. Obtain R, from R! by deleting e and (u, c,).

(R3") Suppose that s # v and R, = R, . Obtain R, from R;, by deleting (s,t), (pu,u),
and e, and if ¢ # u, adding (p, cy)-

(R4") Suppose that s # u and R;, # R, . First obtain R, from R; by deleting each edge
in E,. Second if t = u, set R., = R, . Otherwise if ¢t # u, obtain R, from R, by
adding (py, ¢,) and adding each edge in Fy except for (s,t), (py,u), and e.
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Figure 12: An illustration of (R4’) and (R6') as described in the proof of (14.3). Blue
indicates edges and vertices of R, and R,, and green indicates edges and vertices of R},
and R, .

While (R3’) and (R4’) are similar in flavour, they are different in the sense that, if R/, #
R, , then certain edges in I, that lie on a path extension of a subpath of P are not edges
of R, and instead get added to R.,. For an illustration of (R4), see the left-hand side of
Figure 12.

Next, suppose that D has been obtained from D’ by applying the construction as
detailed in (D3). As up has in-degree two and corresponds to s in N;_;, observe that
s # u. Let P, (resp. Pj) be the directed path in N;_; that the edge (pp,up:) (resp.
(P, upr)) in D' corresponds to. Furthermore, let (s1,t1) (resp. (s},%))) be the first edge
on P; (resp. P{). Since D' is tree-child, neither s; nor s is a reticulation in NV;_;. Similar
to the definition of F, let F; (resp. EY) be the path extension of P; (resp. P{). Finally,
obtain R, and R, from R, and R, , respectively, in one of the following two ways:

(R5') Suppose that R, = R; . Obtain R, from R, by deleting (s1,t1), (s7,%}), (Pu,u),
and e, and adding (py, ¢y).

(R6") Suppose that R; # R, . First obtain R, from R; by deleting each edge in E;, E7,
and F. Second obtain R, from R| by adding each edge in E; except for (s,t;),
adding each edge in E except for (s,t}), adding each edge in E except for (p,,u)
and e, and adding (py,c,). The construction is shown on the right-hand side of
Figure 12.

Lastly, suppose that D has been obtained from D’ by applying the construction as
detailed in (D4) or (D5). Let @1 (resp. @) be the directed path in N;_; that the edge
(upr, V) (resp. (P, vps)) in D’ corresponds to. Furthermore, let (sq,t) (resp. (s},t)))
be the first edge on @7 (resp. ;). Note that s; = s and, if s = u, then ¢, = t;. Say first
that D has been obtained from D’ by applying the construction as detailed in (D4). Let
F be the subset of edges of NV;_; that lie on a directed path of R/, that ends at s. Observe
that each edge in F'is contained in Fr; — Fug . Now obtain R, and R, from R, and
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(R8") (R11)

Figure 13: An illustration of (R8') and (R11’) as described in the proof of (14.3). Blue
indicates edges and vertices of R, and R,, and green indicates edges and vertices of Ry,
and R.,.

R, , respectively, by applying one of (R1’) and (R2’) if s = u, or by applying one of the
following two ways if s # w:

(R7') Suppose that s # v and R, = R, . Obtain R, from R; by deleting (s1,%1), (pu,u),
and e, and adding the edge (py, c.).

(R8') Suppose that s # u and R, # R, . First obtain R, from R, by deleting each edge
in F; and F, and deleting (s1,?;). Second obtain R, from R;, by adding each edge
in E, except for (p,,u) and e, adding (p,, ¢,), and adding each edge in F'. See the
left-hand side of Figure 13 for an illustration.

On the other hand, if D has been obtained from D’ by applying the construction as
detailed in (D5), then obtain R, and R, from R; and R , respectively, in one of the
following three ways:

(RY") Suppose that s = u. Obtain R, from R! by deleting (s},}), (pu,u), (u,c,), and e,
and adding (py, ¢y)-

(R10") Suppose that s # u and R, = R, . Obtain R, from R; by deleting (s},t}), (s,1),
(pu,u), and e, and, if t # u, then adding (py, c,)-

(R11") Suppose that s # u and R; # R, . First obtain R, from R by deleting (s/,1})
and each edge in F,. Second, if t = u, set R., = R, . Otherwise, if t # u obtain
R., from R], by adding each edge in E, except for (s,1), (py,u), and e, and adding
(Pu, cy). See the right-hand side of Figure 13 for an illustration.

Finally, let R, = (R;_, —{R,, R, , R, ,})U{Ru., R.,, R, ,}. Since R;_, is an extension

of D' in N;_1, a careful check shows thatuRt is an extension of D in N,.
Now, let C" = Ey,_, — Er;_, and let C' = Ej;, — Er,. To complete the proof of (14.3),
we compare the number of edges in C” with the number of edges in C. First, observe
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that, if (py, cw) € C', then (p,,u') € C and (v, ¢, ) ¢ C. Furthermore, if (p,/,c,) ¢ C,
then neither (p,/, ') nor (u/,c,s) is in C. We next list the edges that are in C’” but not in
C' and vice versa for each of (R1')-(R11’). While C’ — C' contains edges in N;_; that are
not edges in N;, the set C' — C" contains edges in N; that are not edges in N;_;. Thus,
edges that are common to N;_; and N; and common to C’ and C are not considered in
the following table. Moreover, regardless of which of (R1)—(R11’) applies, we note that
(" — C may or may not contain (p,/,c,) and C' — C” may or may not contain (p,,u’).
However, C" — C' contains (p,,c,) if and only if C'— C” contains (p,,u’), and so we
have also omitted in the table the possibility that C" — C' may contain (p,, ¢,s) and the
possibility that C'— C” may contain (p,, u’).

(€ =C)={(pu, cwr)} | (C=C") ={(pur, )}
(R1) empty (u',v)
(R2) (Pu, ) (Pus €u), (u',v)
(R3) and t =u | (u,cy) (Pu, Cu), (U, 0)
(R3) and t #u | (u,cy) (s,t), (v, )
(R4)and t =u | (u,c,) (Pu, Cu), (W, 0)
(R4) and t #u | (u,cy) (s,1), (v, v)
(R5) and (R6") | (u,cy) (s1,t1), (s4,t1), (v, v)
(R7") and (R8") | (u,cy) (s1,t1), (u/,v)
(R9') empty (s1,81), (', 0)
(R10) and t = u | (u,¢y) (s1,t1)s (Pu, €u)s (W, 0)
(R10") and t # u | (u,cy) (s1,t)), (s,t), (v, v)
(R11") and t = u | (u,c,) (s1,t1), (Pu,cu), (W, v)
(R11") and ¢t # u | (u,c,) (s1,t), (s,t), (v, v)

Since |C'— C'"| < |C" — C| 4 2 in all cases, this completes the proof of (14.3). O

14.4. There exists an extension Ry of D in Ny such that
|EN0 - ER0| < |EN0 - ER6| +2.

Proof. Again, to ease reading, we view R} simply as a collection of edges in Ny and
describe the construction of Ry from R| by edge deletions only. Let P be the directed
path in ANy that ep corresponds to, and let (s,t) be the first edge on P. Let R’ be the
element in R}, that contains s. We next construct an extension Ry of D in Ny by modifying
R’.. This construction is similar to the constructions described in proof of (14.3), but much
less involved. First, suppose that D has been obtained from D’ by applying (D1), (D2),
or (D4). Then

(R1”) obtain Ry from R by deleting (s,1).
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Second, suppose that D has been obtained from D’ by applying (D3). Recall that s is a
reticulation. Let Py (resp. P) be the directed path in A that the edge (ppr, up:) (resp.
(P, upr)) in D’ corresponds to. Furthermore, let (s1,t1) (resp. (s},t])) be the first edge
on Py (resp. P{). Then

(R2") obtain Ry from R by deleting (sq,¢;) and (s},)).

Third, suppose that D has been obtained from D’ by applying (D5). Let P; be the
directed path in A that the edge (ph,, v5) in D’ corresponds to. Furthermore, let (sq, )
be the first edge on P;. Then

(R3") obtain Ry from R/ by deleting (s,t) and (s, 7).

Now, let Ry = (Rfy — {R.}) U{Rs}. Since R} is an extension of D’ in Ny, a careful check
shows that Ry is an extension of D in Ny. Moreover, since each of (R1”)—(R3") deletes
at most two edges in obtaining R, from R, it follows that (14.4) holds. O

Finally, by combining Equation (1) with (14.1)and (14.4), we get

1 1
éth(NvN,) < §<|EN0 - ER0| + |E/\/t - ERtD
1
< 5(\EN0 — Ery| +2+|En;_, — Ery_ | +2)
1 1
< §<|E/\/0 - ER6| + |E-/\/t—1 - ER,’S,1|) + 5 -4
< w(oy) + w(og)
= w(o).
This completes the proof of the lemma. n
Proof of Theorem 1. The theorem follows from Lemmas 13 and 14. O]

The following result shows how the rSPR distance between two phylogenetic trees can
be computed exactly within the framework of agreement digraphs. In particular, it shows
that agreement digraphs generalise agreement forest.

Proposition 15. Let T and T' be two phylogenetic X -trees. Then

1 1
drSPR(Ta 7-/) = §dtc(7-7 7-/) = §mtc(7-7 T/)

Proof. The first equality follows from Bordewich et al. [7, Proposition 7.1] and the fact
that each SNPR* contributes two to the weight of any SNPR sequence connecting 7~ and
T'. Moreover, to establish the second equality, let

o=(T=T0T,T2.... Te=T)

be an SNPR sequence connecting 7 and 7'. Then it follows from Lemma 13 and a careful
inspection of the proof of Lemma 14 when applied to two phylogenetic X-trees that (D1)
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Figure 14: Two phylogenetic networks N; and N on n = 3¢ leaves with ¢ > 1, an
agreement tree-child digraph D, for Ny and N/, an extension of D, in N, and an extension
of Dy in N/ indicated in red. This example shows that the bound given in Lemma 14 is
essentially tight. For details, see the proof of Proposition 16.

and, consequently, (R1")—(R4’) and (R1’) always apply. Hence, the last set of inequalities
in the proof of Lemma 14 can be replaced with

mie(T,T') < |Er — Ery| + |E7; — Eg,|
< |Bp—Eryl +1+|E7,_, — BEr_ | +1
< w(oy) + w(og)
= w(a),
where o1 = (7o, T1, T2, - .., Ti—1) and 02 = (T—1, Ty). O

The next proposition shows that the bound given in Lemma 14 is essentially tight.

Proposition 16. For any integer £ with { > 1, there exist two tree-child networks Ny and
N on 30 leaves such that $m (N, N}) + 1 = deo(Ny, N}).

Proof. Let ¢ be an integer with £ > 1. Consider the two tree-child networks A, and N/
that are shown in Figure 14. Each of A, and N has 3/ leaves. Moreover, the agreement
tree-child digraph D, for A, and N that is also shown in Figure 14 has cut size 2¢ — 1 in
each of Ny and ;. Thus, m.(N,N’) < 4¢ — 2. We now show that m.(N,N') =40 — 2.
Assume that my.(N,N’) < 4¢ — 2. Then there exists an agreement tree-child digraph
D; ={D,, Dy, Ds,..., Dy} whose cut size in N, or NV} is strictly less than 2¢—1. Since, for
each j € {1,2,...,0—1}, N, displays the two triples (37,3541, 3j+2) and (3j+1, 3j+2, 35)
whereas N/ only displays the triple (37,35 + 2,35 + 1) and no other triple involving 37,
37 + 1, and 35 + 2, a careful check shows that Dj; contains an element that is not a
phylogenetic tree. To see this, note that if D; only consists of phylogenetic trees, then
each j € {1,2,...,0—1}, Ny contributes two to the cut size of D} in N, and two to the cut
size of Dj in Nj. Thus, there exists an element D; in Dj for some i € {p,1,2,..., k} that
contains a vertex v of in-degree two and out-degree one. Moreover, as Dj is an agreement
digraph of N, and N/}, the child of v is j for some j € {4,7,...,3¢ — 5}. First, assume
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that there exists a vertex u in D; and two edge-disjoint directed paths P and P’ from u
to v. Since D;j is tree-child, at least one of P and P’ contains a vertex w such that the
edge (w,v) with w # u exists. Furthermore, as D; can be embedded in A, and P and
P’ are edge disjoint, we may assume, that the child of w that is not v is j — 1 or j + 1.
In either case, it is easily seen that there is no embedding of D; in N}, a contradiction.
Thus, we may assume that there exist two vertices u and v’ with in-degree zero in D; and
directed paths from each of v and u’ to v whose only common vertex is v. As D; can be
embedded in Ny, we may assume without loss of generality that the child of w is j 4+ 1 or
jJ — 1 which leads us to the same contradiction as in the previous case because there is no
such embedding of D; in N,. Hence, there exists no agreement tree-child digraph whose
cut size in N, or N is strictly less than 2¢ — 1. It now follows that

my(N,N') =40 — 2. (2)

Turning to dy.(Ng, N)), observe that there exists a tree-child SNPR sequence connect-
ing Ny and N/ that prunes and regrafts the leaves 1,4,7,...,3¢ — 2 in order. Hence,

die(Ne, Nj) < 20 (3)

By combining Lemma 14 with Equations (2) and (3), we have
1
2‘€ - 1 = ith(M"/\/Z) < dtc(M;M) < 2€

which, in turn, implies that di.(Ny, Ny) € {2¢ —1,2¢}. Since each of Ny, and N/ has £ — 1
reticulations, the weight of any SNPR sequence connecting N, and N is even. Thus,
die(Ny, Nij) = 2¢, thereby establishing the proposition. ]

7 Concluding remarks

In this paper, we have taken a step towards approximating the tree-child SNPR distance
die(N,N') between two tree-child networks A/ and N’. By introducing phylogenetic
digraphs and their extensions, thereby generalising agreement forests for two phylogenetic
trees to two phylogenetic networks, we have shown that di.(N,N”) is tightly bounded
from above and below within small constant factors of m.(N, N”). A possible next step
is the development of an algorithm to compute m.(N,N’). Due to the intricacies of
phylogenetic digraphs and their embeddings, this is a major challenge. In addition, it
immediately follows from Proposition 15 and the NP-hardness of computing the rSPR
distance between two phylogenetic trees T and T’ [6] that computing my. (N, N”) is also
NP-hard. Since it seems natural to assume that any algorithm for computing my. (N, N7)
needs to repeatedly compute cut sizes, it would be interesting to investigate if the cut size
of a given phylogenetic digraph for a phylogenetic network N can be computed efficiently.
In a different direction, the development of reductions and divide-and-conquer strategies
for computing m.(N,N’) is another avenue for future research. For example, in the
context of phylogenetic trees, the introduction of the subtree and chain reduction has led

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(3) (2025), #P3.46 36



to fixed-parameter tractable algorithms for computing the rSPR distance [6]. Do similar
reductions exist for phylogenetic networks?

As mentioned in the introduction, we use two different weights for SNPR operations
to make our approach work. Specifically, each SNPR™ and SNPR™ is weighted one and
each SNPR* is weighted two. While these weights differ from the uniform weights that
are used for computing the rSPR distance between two phylogenetic trees, they are a
consequence of how our generalisation from agreement forests to agreement digraphs and
their embeddings works. Without going into detail, given two phylogenetic trees 7 and
T’ with dispr(T,T') = k, there exists an agreement forest F for 7 and 7' with &k + 1
components. Moreover, one can obtain F from T (resp. 7') by deleting k edges in T
(resp. T') and suppressing vertices with in-degree one and out-degree one after each edge
deletion. Intuitively, each rSPR operation is witnessed by an edge in 7 and by an edge in
T’. In the language of this paper, any agreement forest F for 7 and 7 has the property
that its cut size in T is equal to its cut size in T’ and, thus, d,spr(7T,7T’) simply equates
to the cut size of F in one of the two trees. Now consider two tree-child networks N and
N’ such that N can be obtained from N by a sequence o of only SNPR* operations.
Suppose that the length of o is k. In this case, N is an agreement tree-child digraph D for
N and N’, the cut size of D in N is zero, and the cut size of D in N’ is k. More generally,
for an arbitrary tree-child SNPR sequence that connects two tree-child networks N and
N, each SNPR* contributes to the cut sizes of both trees, whereas each SNPR* and
SNPR™ only contributes to the cut size of one tree. Thus any approach for computing
die(N,N') that is based on cut sizes as defined in this paper (probably) needs to apply
non-uniform weights to the different types of SNPR operations. Ultimately, it would be
interesting to investigate whether or not an approach exists for computing di.(N, N”) that
allows for any combination of weights.
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