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Abstract

We consider the descent and flag major index statistics on the colored permuta-
tion groups, which are wreath products of the form Sn,r = Zr oSn. We show that
the k-th moments of these statistics on Sn,r will coincide with the corresponding
moments on all conjugacy classes without cycles of lengths 1, 2, . . . , 2k. Using this,
we establish the asymptotic normality of the descent and flag major index statistics
on conjugacy classes of Sn,r with sufficiently long cycles. Our results generalize
prior work of Fulman involving the descent and major index statistics on the sym-
metric group Sn. Our methods involve an intricate extension of Fulman’s work on
Sn combined with the theory of the degree for a colored permutation statistic, as
introduced by Campion Loth, Levet, Liu, Sundaram, and Yin.

Mathematics Subject Classifications: 05A05, 05E16, 60C05

1 Introduction

Statistics on the symmetric group Sn are a major area of study in combinatorics, and
three commonly studied statistics are the descent, inversion, and major index statistics.
Descents appear in the study of card shuffling [6], carries when adding numbers [14, 27],
and flag varieties [19]. Inversions appear in the study of sorting objects [30] and testing
randomness [37]. The major index statistic was originally introduced by MacMahon [32],
who showed that it is equidistributed with the inversion statistic on Sn. Since then,
the major index and its variations appeared in the study of random tableau [41], flag
manifolds [21], and symmetric functions [39, Section 7.19]. The descent and inversion
statistics on Sn also generalize to descent and length statistics on any Coxeter group [8],
which contain the signed symmetric groups Bn as special cases. Many results on these
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statistics are known. See [5, 34, 22] for some examples on Sn and [3, 1, 33, 35] for some
examples on Bn.

In this paper, we consider statistics defined over the colored permutation groups,
which are wreath products of the form Sn,r = Zr oSn. Colored permutation groups play
an essential role in the classification of complex reflection groups [38], and they contain
the symmetric groups Sn

∼= Sn,1 and the signed symmetric groups Bn
∼= Sn,2 as special

cases. Similar to how elements of Bn can be viewed as certain bijections on {±1, . . . ,±n},
elements in Sn,r can be viewed as certain bijections on r copies of {1, . . . , n}, each indexed
with an element in Zr.

Many statistics on Sn,r have been studied, and many of these generalize ones on Sn

and Bn. See [40] and [17] for numerous examples. We will focus on the descent and flag
major index statistics on Sn,r, which respectively generalize the descent and major index
statistics on Sn. The descent statistic desn,r on Sn,r was introduced by Steingŕımsson
[40], who showed that desn,r is equidistributed with the excedance statistic on Sn,r, and
its generating function satisfies

1

(1− q)n+1

∑
(ω,τ)∈Sn,r

qdesn,r(ω,τ) =
∞∑
i=0

(ir + 1)nqi. (1)

The flag major index statistic fmajn,r was introduced by Adin and Roichman [2], who
showed that fmajn,2 on the signed symmetric group Bn

∼= Sn,2 is equidistributed with the
length statistic on Bn. This is an analog of MacMahon’s result involving equidistribution
of the major index and inversion statistics on Sn. Subsequent work by Haglund, Loehr,
and Remmel [25] established that the distribution of fmajn,r for general r is given by∑

(ω,τ)∈Sn,r

qfmajn,r(ω,τ) = [r]q[2r]q · · · [nr]q, (2)

where [ir]q = 1+q+q2 + · · ·+qir−1 is the q-integer of ir. This coincides with the Poincáre
polynomial of Sn,r as a complex reflection group [23, Theorem 1.4 and Table 1], but does
not in general coincide with the generating function for the length statistic on Sn,r [4,
Theorem 4.4].

Main results

We study the statistics desn,r and fmajn,r on conjugacy classes of Sn,r with sufficiently
long cycles. Recall that a conjugacy class in Sn is uniquely determined by the common
cycle type of the permutations in the class. Elements in Sn,r can also be expressed in cycle
notation, and this leads to a generalized notion of cycle type that determines conjugacy
classes of Sn,r. The precise definition is somewhat technical, so we will reserve a careful
treatment for Section 2. Similar to the use of Cλ for conjugacy classes of Sn, we use Cλ

to denote the conjugacy classes of Sn,r indexed by λ.
Though there is some prior work involving statistics on conjugacy classes of Sn [18, 24,

9, 13] andBn
∼= Sn,2 [36, 20], statistics on conjugacy classes of general colored permutation
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groups have not been explored heavily. The main theoretical advance appears in recent
work by Campion Loth, Levet, Liu, Sundaram, and Yin, where they showed in [11,
Theorem 1.1] that any fixed moment of a colored permutation statistic will coincide on
all conjugacy classes of Sn,r with sufficiently long cycles. Our main result strengthens
this for the special cases of desn,r and fmajn,r.

Theorem 1. Let Cλ be a conjugacy class of Sn,r. If Cλ has no cycles of lengths
1, 2, . . . , 2k, then the k-th moments of desn,r and fmajn,r on Cλ match the respective k-th
moments on Sn,r.

The descent and flag major index statistics are known to be asymptotically normal on
Sn,r [12]. Combining this fact with the Method of Moments and Theorem 1, we obtain the
following corollary, which shows asymptotic normality of desn,r and fmajn,r on conjugacy
classes with sufficiently long cycles.

Corollary 2. For every n > 1, let Cλn be a conjugacy class of Sn,r such that for all i,
the number of cycles of length i in λn approaches 0 as n → ∞. Let statn for n > 1 be
either the descent or flag major index statistic on Cλn with mean µn and variance σ2

n.
Then as n → ∞, the random variable statn−µn

σn
converges in distribution to the standard

normal distribution.

Related Work

Theorem 1 and Corollary 2 were inspired by prior work of Fulman [18], who proved the
analogous results for the descent and major index statistics on conjugacy classes of Sn

satisfying appropriate conditions on cycle lengths. Our method of proving Theorem 1 for
desn,r is based on Fulman’s original approach. For fmajn,r, we combine our work for desn,r
with the theory of degree for a colored permutation statistic, as introduced in [11]. Since
the descent and flag major index statistics on Sn,1 coincide with the classical descent and
major index statistics on Sn, specializing Theorem 1 and Corollary 2 to Sn recovers the
original results of Fulman.

In the case of r = 2, the descent statistic desn,2 on Sn,2 does not coincide with the
descent statistic desBn on Bn as a Coxeter group under the usual isomorphism between
Sn,2 and Bn. See [8, Section 8.1] for a thorough discussion of desBn . Though desn,2 and
desBn do not coincide, [10, Theorem 3.4] and (1) show that these statistics share the same
distribution on Bn

∼= Sn,2. However, one can find conjugacy classes where desn,2 and
desBn do not share the same distribution. Consequently, Theorem 1 and Corollary 2 do
not apply to desBn , though analogs of these results for desBn were previously established
in [11], where the authors also derived explicit formulas for the distribution of desBn on
conjugacy classes of Bn.

Outline of Paper

We start in Section 2 by outlining preliminary information involving colored permutation
groups and statistics. We then establish Theorem 1 and Corollary 2 for the descent and
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flag major index statistics in Section 3 and Section 4, respectively. We conclude with
potential future directions in Section 5.

2 Preliminaries

We begin with preliminaries on the colored permutation groups Sn,r, their conjugacy
classes, and the specific statistics considered in this paper. Our definitions are primarily
based on what is given in [40] and [12]. For properties of the conjugacy classes of Sn,r,
we use [28] as a reference, which contains a more general treatment of wreath products.

2.1 Colored permutation groups and statistics

Let Zr be the group of integers modulo r and Sn be the symmetric group on [n] =
{1, 2, . . . , n}. The colored permutation group Sn,r is the wreath product Zr o Sn, which
is the semidirect product Znr o Sn formed from the permutation action of Sn on Znr .
An element in Sn,r is called a colored permutation, and it will be denoted (ω, τ), where
ω ∈ Sn and τ : [n] → Zr is a function referred to as a coloring. For brevity, we will
usually express τ in the form (τ(1), . . . τ(n)). From its construction as a wreath product,
the group operation is defined as

(ω1, τ1)(ω2, τ2) = (ω1ω2, (τ1 ◦ ω2) + τ2).

The colored permutation group Sn,r can be embedded as a subgroup of the symmetric
group Srn, which we describe explicitly as follows. Let [n]r denote the set of rn elements

{ic : i ∈ [n], c ∈ Zr},

where the superscript indicates the color of an element in [n]. One can view the colored
permutation (ω, τ) as a bijection on [n]r. We abuse notation and also denote this bijection
(ω, τ), and it is defined by (ω, τ)(ic) = ω(i)τ(i)+c for all i ∈ [n] and c ∈ Zr. Observe that
for all i ∈ [n], we have that

(ω1, τ1)(ω2, τ2)(i0) = (ω1, τ1)(ω2(i)τ2(i))

= ω1ω2(i)τ1(ω2(i))+τ2(i)

= (ω1ω2, (τ1 ◦ ω2) + τ2)(i0),

(3)

so this identification is a group homomorphism that identifies Sn,r as a subgroup of Snr.
Since the images of i0 for i ∈ [n] are sufficient for determining (ω, τ) ∈ Sn,r, one can use

these to form the two-line and one-line notations of (ω, τ). The two-line notation of (ω, τ)
is a 2× n array with 10, 20, . . . n0 in the first line and (ω, τ)(10), (ω, τ)(20), . . . , (ω, τ)(n0)
in the second line. The one-line notation of (ω, τ) results from deleting the first line of
the two-line notation. We illustrate these with an example below.
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Example 3. Consider ω = [3, 8, 5, 6, 2, 1, 4, 7] ∈ S8 expressed in one-line notation and the
coloring τ = (1, 0, 0, 1, 2, 2, 0, 1) ∈ Z8

3. This defines an element in S8,3 whose corresponding
bijection is determined by

(ω, τ)(10) = 31, (ω, τ)(20) = 80, (ω, τ)(30) = 50, (ω, τ)(40) = 61

(ω, τ)(50) = 22, (ω, τ)(60) = 12, (ω, τ)(70) = 40, (ω, τ)(80) = 71.

This can be expressed in the two-line and one-line notations as

(ω, τ) =

[
10 20 30 40 50 60 70 80

31 80 50 61 22 12 40 71

]
=
[
31 80 50 61 22 12 40 71

]
.

(4)

We will primarily focus on three statistics on Sn,r: descents, major index, and flag
major index. For any (ω, τ) ∈ Sn,r, an index i ∈ [n] is a descent of (ω, τ) if τ(i) > τ(i+1),
or τ(i) = τ(i + 1) and ω(i) > ω(i + 1), where we use the convention τ(n + 1) = 0 and
ω(n+ 1) = n+ 1. One can alternatively fix the total order on [n]r

10 < 20 < 30 < · · · < 11 < 21 < 31 < · · · < 1r−1 < 2r−1 < 3r−1 < · · · (5)

and define a descent to be any i ∈ [n] such that (ω, τ)(i0) > (ω, τ)((i + 1)0), with the
convention that (ω, τ)((n+ 1)0) = (n+ 1)0.

Letting Desn,r(ω, τ) denote the set of descents of (ω, τ) ∈ Sn,r, the descent and major
index statistics on Sn,r are respectively defined as

desn,r(ω, τ) = |Desn,r(ω, τ)| and majn,r(ω, τ) =
∑

i∈Desn,r(ω,τ)∩[n−1]

i.

Observe that when r = 1, these reduce to the usual descent and major index statistics
on Sn. In this case, we will omit r from the subscript and denote these statistics as desn
and majn.

The color and flag major index statistics on Sn,r are the nonnegative integers defined
by

coln,r(ω, τ) =
n∑
i=1

τ(i) and fmajn,r(ω, τ) = r ·majn,r(ω, τ) + coln,r(ω, τ).

Note that the coln,r statistic uses {0, 1, . . . , r − 1} as representative elements in Zr and
adds them as elements in Z. In the case when r = 1, the color statistic is identically 0,
so the flag major index coincides with the usual major index on Sn.

Example 4. Consider the permutation (ω, τ) ∈ S8,3 with one-line notation

(ω, τ) = [31, 80, 50, 61, 22, 12, 40, 71]

The descent set of (ω, τ) is {1, 2, 5, 6, 8}, and the sum of the colors that appear is 7. Using
this, we calculate

des8,3(ω, τ) = 5, maj8,3(ω, τ) = 14, and fmaj8,3(ω, τ) = 3 · 14 + 7 = 49.
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For any statistic X : Sn,r → R, we can consider it as a random variable by equipping
Sn,r with the uniform distribution. The corresponding probability distribution is defined
by

PrSn,r [X = i] = |X−1(i)|/|Sn,r|.

For each positive integer k, the k-th moment of X will be denoted ESn,r [X
k]. For the

descent and flag major index statistics, Chow and Mansour established the following
results involving their asymptotic distributions.

Theorem 5. [12, Theorem 3.1 & Theorem 3.4] For any positive integers n and r, desn,r
has mean µn,r = rn+r−2

2r
and variance σ2

n,r = n+1
12

, and as n→∞, the standardized random

variable desn,r −µn,r

σn,r
converges to a standard normal distribution.

Theorem 6. [12, Theorem 4.1 & Theorem 4.3] For any positive integers n and r, fmajn,r
has mean µn,r = n(rn+r−2)

4
and variance σ2

n,r = 2r2n3+3r2n2+(r2−6)n
72

, and as n → ∞, the

standardized random variable
fmajn,r −µn,r

σn,r
converges to a standard normal distribution.

For our results on the asymptotic distributions of desn,r and fmajn,r, we will need
additional tools from probability theory. In general, two different probability distributions
can share the same moments. We will be primarily interested in normal distributions,
which are uniquely determined by their moments, so once we have that the moments of
a random variable X coincide with those of a normal distribution, we can conclude that
the distribution of X coincides with a normal distribution. We will use this property for
normal distributions in conjunction with a tool called the Method of Moments. See [7,
Section 30] for further details of this result.

Theorem 7 (Method of Moments). Suppose {Xn}n>1 and Y are real-valued random
variables with finite k-th moments for all k. If Y is uniquely determined by its moments
and

lim
n→∞

E[Xk
n] = E[Y k],

for all k, then Xn converges in distribution to Y .

2.2 Conjugacy classes of colored permutation groups

Our work will focus on conjugacy classes of Sn,r, which we now describe. Similar to
permutations in Sn, colored permutations also have a cycle notation. Starting with
(ω, τ), one can express ω in the usual cycle notation with color 0 on all elements and then
insert ω(i)τ(i) under i0 for each i ∈ [n]. We will refer to this as the two-line cycle notation.
Removing the first row in every cycle then results in the cycle notation for (ω, τ). An
example is shown below.

Example 8. Consider the permutation

(ω, τ) = [31, 80, 50, 61, 22, 12, 40, 71] ∈ S8,3
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given in Example 3. The two-line cycle notation is given by

(ω, τ) =

(
10 30 50 20 80 70 40 60

31 50 22 80 71 40 61 12

)
.

Deleting the first line results in the cycle notation

(ω, τ) = (3150228071406112).

As in Sn, the cycle notation for elements in Sn,r is not unique.

Similar to permutations in Sn, colored permutations have a notion of cycle type
derived from the cycle notation. An r-partition of n ∈ Z+ is an r-tuple of partitions λ =
(λj)r−1

j=0 where each λj is a partition of some nonnegative integer nj such that
∑r−1

j=0 nj = n.
For any cycle in the cycle notation of (ω, τ) ∈ Sn,r, its length is the number of elements
in it, and its color is the sum of the colors that appear (as an element in Zr). The cycle
type of (ω, τ) ∈ Sn,r is the r-partition λ where λj records the cycle lengths for the cycles
with color j.

Example 9. The permutation from Example 8 has a single cycle of length 8 with color
7 ≡ 1 mod 3. Hence, its cycle type is λ = (∅, (8), ∅).

Example 10. For a larger example, consider the following colored permutation in S9,3:

(ω, τ) = (10327160)(21)(4250)(80)(91).

Since r = 3, the cycle type of this colored permutation is

λ = (λ0, λ1, λ2) = ((1, 4), (12), (2)),

where each partition has been expressed in multiplicative notion (1a1 , 2a2 , . . . , nan).

As in Sn, the conjugacy classes of Sn,r are determined by cycle type.

Proposition 11. [28, Theorem 4.2.8 & Lemmas 4.2.9-4.2.10] Elements (ω, τ), (ω′, τ ′) ∈
Sn,r are conjugate if and only if they share the same cycle type. Hence, each conjugacy
class of Sn,r is indexed by an r-partition.

Throughout, we use Cλ for the conjugacy class corresponding to colored permutations
with cycle type λ. For a statistic X on Sn,r, we can restrict X to Cλ and equip Cλ

with the uniform distribution to consider X as a random variable. X then has a discrete
probability distribution given by

PrCλ
[X = i] = |X−1(i) ∩ Cλ|/|Cλ|.

Note that this is equivalent to the conditional distribution PrSn,r [X = i | Cλ], and the
above notation is introduced for brevity. We will also sometimes consider more general
sets Ω ⊆ Sn,r, and we similarly use the notation PrΩ[X = i] for the distribution of X on
Ω equipped with the uniform distribution.

the electronic journal of combinatorics 32(3) (2025), #P3.47 7



2.3 Statistics on conjugacy classes with sufficiently long cycles

[11] analyzes moments of statistics on conjugacy classes of Sn,r with sufficiently long
cycles. We will describe the parts of this work relevant to our results and refer the reader
to [11] for a detailed account. See also [26] for further details specific to the symmetric
group Sn.

A partial colored permutation on Sn,r is a pair (K,κ) where K = {(ih, jh)}mh=1 consists
of distinct ordered pairs of elements in [n] and κ : {i1, . . . , im} → Zr is any function,
which we can represent as ordered pairs {(ih, κ(ih))}mh=1. We call m the size of (K,κ),
and also denote this as |(K,κ)|. For brevity, we will also express (K,κ) using a single set
of ordered pairs of elements in [n]r as

(K,κ) =
{(
i0h, j

κ(ih)
h

)}m
h=1

.

Indeed, the correspondence between these notations is clear.

Remark 12. In [11], the authors use the convention that (ω, τ)(i0) = ω(i)τ(ω(i)) rather
than (ω, τ)(i0) = ω(i)τ(i). Our alternative convention in this paper simplifies our proofs
significantly. We have adapted [11] appropriately to account for this differing convention.
In particular, [11] uses the convention that κ is a function on {j1, . . . , jm}, while we instead
define κ on {i1, . . . , im}.

A permutation ω ∈ Sn satisfies K if ω(ih) = jh for all h ∈ [m]. A coloring τ : [n]→ Zr
satisfies κ if τ(ih) = κ(ih) for all h ∈ [m]. A colored permutation (ω, τ) ∈ Sn,r satisfies
(K,κ) if ω satisfies K and τ satisfies κ. Viewing (ω, τ) as a bijection on [n]r, this is

equivalent to (ω, τ) mapping i0h to j
κ(ih)
h for all h ∈ [m]. We use I(K,κ) : Sn,r → {0, 1}

to denote the indicator function for a colored permutation satisfying (K,κ). In general,
the probability of satisfying (K,κ) on a conjugacy class Cλ ⊆ Sn,r can be difficult to
compute. However, when Cλ has all cycles of sufficiently long length, this probability is
well-understood.

Lemma 13. [11, Lemma 3.11 & Corollary 3.12] Let (K,κ) be a partial colored permuta-
tion statistic on Sn,r of size m, and let Cλ be a conjugacy class of Sn,r without cycles of
lengths 1, 2, . . . ,m. Then

PrCλ
[ω satisfies K] =

1

(n− 1)(n− 2) · · · (n−m)
,

PrCλ
[τ satisfies κ] =

1

rm
,

PrCλ
[(ω, τ) satisfies (K,κ)] =

1

(n− 1)(n− 2) · · · (n−m)
· 1

rm
.

In particular, satisfying K and κ are independent.

One key insight of [11] is that the indicator functions I(K,κ) for a partial colored per-
mutations can be viewed as building blocks for colored permutation statistics. Formally,
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a colored permutation statistic X : Sn,r → R has degree m if it is in the R-vector
space spanned by {I(K,κ) : |(K,κ)| 6 m} and not in the R-vector space spanned by
{I(K,κ) : |(K,κ)| 6 m − 1}. We give examples below using the statistics relevant to this
paper.

Example 14. The descent, major index, and flag major index statistics on Sn,r have
degrees at most 2, as

desn,r =
n−1∑
i=1

∑
j
c1
1 <j

c2
2

I{(i0, jc22 ),((i+1)0, j
c1
1 )} +

n∑
j=1

r−1∑
c=1

I{(n0, jc)},

majn,r =
n−1∑
i=1

∑
j
c1
1 <j

c2
2

i · I{(i0, jc22 ),((i+1)0, j
c1
1 )},

fmajn,r = r ·
n−1∑
i=1

∑
j
c1
1 <j

c2
2

i · I{(i0, jc22 ),((i+1)0, j
c1
1 )} +

n∑
i=1

n∑
j=1

r−1∑
c=0

c · I{(i0, jc)}.

Note that the condition jc11 < jc22 is with respect to the total order given in (5). One can
show that for n > 3, these statistics have degrees exactly 2, e.g., see the approach in [11,
Theorem 4.20]. However, we will not need this exact value for their degrees.

It is clear that if two statistics have degree at most m1 and m2, respectively, then their
sum has degree at most max{m1,m2}. The corresponding property for products is given
below.

Lemma 15. [11, Corollary 3.16] Suppose X1 and X2 are statistics on Sn,r with degree at
most m1 and m2, respectively. Then X1 ·X2 has degree at most m1 + m2. In particular,
for any integer k > 1 such that m1k 6 n, we have that Xk

1 has degree at most km1.

Lemma 13 with Lemma 15 can then be used to show the following result. Note that
we will primarily be interested in the application of these results to desn,r, majn,r, and
fmajn,r, and Example 14 showed that these have degree at most 2.

Theorem 16. [11, Theorem 1.1] Suppose X : Sn,r → R has degree at most m. For any
k > 1, the kth moment ECλ

[Xk] coincides on all conjugacy classes Cλ of Sn,r without
cycles of lengths 1, 2, . . . ,mk.

3 Descents

In this section, we prove Theorem 1 and Corollary 2 for desn,r. Our methods also apply
to majn,r, so we include results for this statistic as well. Throughout, we define Xi to be
the indicator function for a descent at position i,

Xi(ω, τ) =

{
1 if i ∈ Desn,r(ω, τ)

0 otherwise.
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The descent and major index statistics can then be expressed as

desn,r =
n∑
i=1

Xi and majn,r =
n−1∑
i=1

i ·Xi.

Observe that the above decompositions also allow us to decompose the k-th powers of
the descent and major index statistics in terms of X1, . . . , Xn as

deskn,r =
∑

a1,...,ak∈[n]

Xa1 · · ·Xak and majkn,r =
∑

a1,··· ,ak∈[n−1]

a1 · · · akXa1 · · ·Xak .

Note that the a1, . . . , ak need not be distinct. Since expectation is linear, an understanding
of the mean of Xa1 · · ·Xak on Sn,r or Cλ informs us of the k-th moments of desn,r and
majn,r on these sets.

3.1 Moments on colored permutation groups

We begin by deriving explicit formulas for the expectation of Xa1 . . . Xak on Sn,r. We start
with the following definitions based on [18]. Our modifications account for the possibility
of a descent at position n in Sn,r, which cannot occur in Sn.

Definition 17. The Young subgroup generated by a1, . . . , ak ∈ [n] is the subgroup of Sn

generated by the adjacent transpositions

{(ai, ai + 1) : ai ∈ {a1, . . . , an} \ {n}}.

Definition 18. Let J be the Young subgroup of Sn generated by a1, . . . , ak ∈ [n]. The
blocks induced by a1, . . . , ak ∈ [n] are the equivalence classes B1, . . . ,Bt ⊆ [n] generated
by the following property: i, j ∈ [n] are in the same equivalence class if some ω ∈ J maps
i to j. Observe that one can equivalently express

J = SB1 × · · · ×SBt ,

where SBi
is the group of permutations on the elements in Bi.

Example 19. The blocks induced by 1, 2, 4, 7 ∈ [8] are B1 = {1, 2, 3}, B2 = {4, 5},
B3 = {6}, and B4 = {7, 8}. Note that the blocks induced by 1, 2, 4, 7, 8 ∈ [8] will be the
same.

Fulman shows in [18, Proof of Theorem 3] that when the blocks induced by a1, . . . , ak ∈
[n− 1] are B1, . . . ,Bt,

ESn [Xa1Xa2 · · ·Xak ] =
t∏
i=1

1

|Bi|!
. (6)

In Sn,r, we will derive the corresponding formulas for ESn,r [Xa1Xa2 · · ·Xak ], and there
will be two cases depending on whether or not a1, . . . , ak contains n. When a1, . . . , ak
does not contain n, we show that Equation (6) translates directly to Sn,r.
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Lemma 20. Let a1, . . . , ak ∈ [n− 1] with induced blocks B1, . . . ,Bt. Then

ESn,r [Xa1Xa2 · · ·Xak ] = ESn [Xa1Xa2 · · ·Xak ] =
t∏
i=1

1

|Bi|!
. (7)

Proof. Let Sn act on Sn,r by permuting entries in the one-line notation. This partitions
Sn,r into orbits based on the elements that appear in the one-line notation. Each orbit
Ωc can be indexed by c = (c1, . . . , cn), where ci ∈ Zr is the color of element i in the
one-line notation. Let fc : {ici}ni=1 → [n] be the unique order-preserving bijection that
maps {ici}ni=1 with the ordering in (5) to [n] with the usual ordering.

This induces a bijection Fc : Ωc → Sn that applies fc on each element in the one-line
notation. For example, in the permutation from Example 3 where c = (1, 0, 0, 1, 2, 2, 0, 1),
we have that

Fc([3
180506122124071]) = [43258716].

Since fc is order-preserving, Fc preserves descents at positions 1, 2, . . . , n− 1. Therefore,
for all (ω, τ) ∈ Ωc, we have that

Xa1Xa2 · · ·Xak(ω, τ) = Xa1Xa2 · · ·Xak(Fc(ω, τ)).

As Fc is a bijection, this implies that

ESn,r [Xa1Xa2 · · ·Xak | Ωc] = ESn [Xa1Xa2 · · ·Xak ]. (8)

Equation (8) holds for every Ωc, so the Law of Total Expectation implies

ESn,r [Xa1Xa2 · · ·Xak ] =
∑
c

PrSn,r [Ωc] · ESn,r [Xa1Xa2 · · ·Xak | Ωc]

=
∑
c

PrSn,r [Ωc] · ESn [Xa1Xa2 · · ·Xak ]

= ESn [Xa1Xa2 · · ·Xak ].

The result now follows from (6).

It remains now to consider products involving Xn. We start with the case of random
variables corresponding to consecutive indices Xm+1 · · ·Xn containing n. Based on the
ordering used to define descents in (5), observe that the subset

{(ω, τ) ∈ Sn,r | Xm+1 · · ·Xn(ω, τ) = 1}

is equivalent to

{(ω, τ) ∈ Sn,r | Xm+1 · · ·Xn−1(ω, τ) = 1 and τ(i) 6= 0∀ i > m}.

Using this equivalence, we compute the expectation of Xm+1 · · ·Xn on Sn,r
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Lemma 21. For any 1 6 m < n, the following holds:

ESn,r [Xm+1 · · ·Xn] =

(
r − 1

r

)n−m
· 1

(n−m)!
. (9)

Proof. We first express

ESn,r [Xm+1 · · ·Xn]

= PrSn,r [Xm+1 · · ·Xn = 1]

= PrSn,r [{τ(i) 6= 0∀ i > m} ∩ {Xm+1 · · ·Xn−1 = 1}]
= PrSn,r [τ(i) 6= 0∀ i > m] · PrSn,r [Xm+1 · · ·Xn−1 = 1 | τ(i) 6= 0∀ i > m].

The first term is equal to ((r−1)/r)n−m, so it suffices to show the second term is 1/(n−m)!.
For this, we let Sn−m act on the set {(ω, τ) ∈ Sn,r : τ(i) 6= 0 ∀ i > m} by permuting the
last n−m entries in the one-line notation. Under this action, each orbit has size (n−m)!,
and exactly one element in each orbit has these last n−m elements in descending order.
The same argument as in Lemma 20 shows then that

PrSn,r [Xm+1 · · ·Xn−1 = 1 | τ(i) 6= 0∀ i > m] =
1

(n−m)!
.

Corollary 22. For any positive integers m and n,

ESn,r [X1X2 · · ·Xn] = ESm+n,r [Xm+1Xm+2 · · ·Xm+n].

Finally, we consider the expectation of arbitrary products of the Xi statistics that
contain Xn. Our approach is to again use an action by a symmetric group of appropriate
size.

Lemma 23. For any a1, . . . , aj ∈ [m− 1] ⊆ [n],

ESn,r [Xa1 · · ·XajXm+1Xm+2 · · ·Xn]

=ESn,r [Xa1 · · ·Xaj ] · ESn,r [Xm+1Xm+2 · · ·Xn].
(10)

Proof. Express

ESn,r [Xa1 · · ·XajXm+1Xm+2 · · ·Xn]

= PrSn,r [Xa1 · · ·XajXm+1Xm+2 · · ·Xn = 1]

= PrSn,r [Xa1 · · ·Xaj = 1] · PrSn,r [Xm+1 · · ·Xn = 1 | Xa1 · · ·Xaj = 1]

(11)

The first term is ESn,r [Xa1 · · ·Xaj ], and the group action argument from Lemma 21 shows
that

PrSn,r [Xm+1 · · ·Xn = 1 | Xa1 · · ·Xaj = 1] =

(
r − 1

r

)n−m
· 1

(n−m)!
.

the electronic journal of combinatorics 32(3) (2025), #P3.47 12



Corollary 24. Consider any a1, . . . , ak ∈ [n] with induced blocks B1, . . . ,Bt, where Bt

contains n. If n ∈ {a1, . . . , ak}, then

ESn,r [Xa1 · · ·Xak ] =

(
r − 1

r

)|Bt|

·
t∏
i=1

1

|Bi|!
.

Proof. Since n ∈ {a1, . . . , ak}, we can express Xa1 · · ·Xak equivalently as

Xa1 · · ·XajXm+1Xm+2 · · ·Xn,

where a1, . . . , aj ∈ [m− 1]. By Lemma 23,

ESn,r [Xa1 · · ·Xak ] = ESn,r [Xa1 · · ·Xaj ] · ESn,r [Xm+1 · · ·Xn].

The result follows by applying Lemma 20 and Lemma 21.

3.2 Moments on conjugacy classes without short cycles

We now consider the expectation of Xa1 · · ·Xak on Cλ without cycles of lengths 1, 2, . . . , 2k
and establish analogs of Lemma 20 and Corollary 24. Our arguments for Lemma 20 and
Corollary 24 involved group actions where orbits have exactly one element with

Xa1 · · ·Xak(ω, τ) = 1,

and we will define an appropriate action on Cλ with the same property.
Fix a1, . . . , ak ∈ [n], let B1, . . . ,Bt ⊆ [n] be the blocks induced by a1, . . . , ak, and let

J = SB1 × · · · × SBt be the Young subgroup of Sn generated by a1, . . . , ak. Define an
action of J on Sn,r as follows: for all π ∈ J and (ω, τ) ∈ Sn,r,

π · (ω, τ) = (π,0)(ω, τ)(π,0)−1, (12)

where 0 is the zero coloring. Alternatively, this is the conjugation action of J on Sn,r

after identifying J with the subgroup J × 0. The following result describes orbits under
the action given in (12).

Lemma 25. Let (ω, τ) ∈ Sn,r. Let π ∈ Sn and 0 be the zero coloring. If (ic11 , i
c2
2 , . . . , i

c`
` )

is a cycle in (ω, τ), then

(π,0)(ic11 , i
c2
2 , . . . , i

c`
` )(π,0)−1 = (π(i1)c1 , π(i2)c2 , . . . , π(i`)

c`)

is a cycle in (π,0)(ω, τ)(π,0)−1.

Proof. First, observe that (π,0)−1 = (π−1,0). Now for any ij, we consider the image of
π(ij)

0 under (π,0)(ω, τ)(π,0)−1:

(π,0)(ω, τ)(π,0)−1(π(ij)
0) = (π,0)(ω, τ)(i0j)

= (π,0)(i
cj+1

j+1 )

= π(ij+1)cj+1 ,

where in the case of j = `, we replace j + 1 with 1. Hence, π(ij+1)cj+1 follows π(ij)
cj in

the cycle notation as claimed.
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Lemma 25 implies that the orbit of any (ω, τ) ∈ Sn,r under the action in (12) consists
of colored permutations that can be obtained by fixing a cycle notation of (ω, τ) and
permuting elements within each block B1, . . . ,Bt without changing the location of colors.
On conjugacy classes Cλ without cycles of lengths 1, 2, . . . , 2k, we will show that these
orbits are particularly well-behaved.

Lemma 26. Let a1, . . . , ak ∈ [n− 1] with induced blocks B1, . . . ,Bt, and let J = SB1 ×
· · ·×SBt act on a conjugacy class Cλ of Sn,r by (12). If Cλ contains no cycles of lengths
1, 2, . . . , 2k, then each orbit under this action has size |J | =

∏t
i=1 |Bi|!. Furthermore,

there is a unique element in each orbit that has descents at a1, . . . , ak.

To prove Lemma 26, we will define an algorithm that identifies necessary conditions
for descents at a1, . . . , ak to appear and replaces elements in each block B1, . . . ,Bt ap-
propriately. This algorithm will generalize one used by Fulman in [18, Proof of Theorem
3]. Since our algorithm is very technical, we will start with an example.

Example 27. Consider indices 1, 2, 4, 5 ∈ [9] and the 9-cycle with color 2

(ω, τ) = (103182522070419062) ∈ S9,3.

The blocks induced by 1, 2, 4, 5 are

B1 = {1, 2, 3}, B2 = {4, 5, 6}, B3 = {7}, B4 = {8} and B5 = {9}.

We wish to find an element in the orbit of (ω, τ) under the action in (12) that has descents
at positions 1, 2, 4, and 5, so we start by replacing elements in the cycle notation with the
smallest number in its corresponding block, resulting in

(101182421070419042). (13)

We must now find an appropriate way to replace the instances of 1 and 4 with elements
in the same block. Ignoring colors for the moment, we observe that the elements 7, 8, and
9 appear exactly once, and they are respectively preceded by 1, 1, and 4. Both 1 and 4
appear multiple times in (13), so we can try to use the information involving 7, 8, or 9
to change this. For simplicity, we choose the largest element 9, which is preceded by a 4
in (13). The elements directly after appearances of 4’s are 10, 90, and 10. Regardless of
how these two appearances of 1 are replaced with other elements in B1 = {1, 2, 3}, the
element 90 will still be the largest. Then for descents at positions 4 and 5 to occur, the
element 40 must map to 90. Using this information, we next consider

(101182521070419052), (14)

as we have determined the image of 40, but we have not determined the images of 50 or
60. Observe that since 9 appeared exactly once in (13), the element preceding it in (14)
now appears exactly once.

Continuing in this manner, 8 is now the largest element that appears only once but
whose preceding element 1 in (14) appears multiple times. The elements that follow these
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appearances of 1 are 11, 82, and 70. We wish for descents at positions 1 and 2, and the
unique option for this is

(201182523070419052). (15)

Finally, we consider repeated instances of 5 to obtain

(201182523070419062). (16)

Observe that this is in the orbit of (ω, τ) under the action in (12), and it has descents at
positions 1, 2, 4, and 5.

We now give an algorithm that formalizes the example above. We then use this to
establish Lemma 26.

Algorithm 1: ColoredDescents

Input: (ω, τ) ∈ Sn,r without cycles of lengths 1, 2, . . . , 2k; indices a1, . . . , ak ∈ [n]
Output: a colored permutation (ω′, τ ′) ∈ Sn,r in the orbit of (ω, τ) under (12)

1 B1, . . . ,Bt := blocks induced by a1, . . . , ak
2 σ1, . . . , σm := cycles of (ω, τ)
3 σ′1, . . . , σ

′
m := cycles obtained by starting with σ1, . . . , σm and replacing each

i ∈ [n] with the smallest number from the block that contains it
4 while σ′1, . . . , σ

′
m contains repeated integers from [n] do

5 S := subset of [n] consisting of elements that appear exactly once in σ′1, . . . , σ
′
m

6 j := largest element in S whose preceding element i in σ′1, . . . , σ
′
m appears

multiple times
7 B := block containing i
8 i1, . . . , i` := elements in σ′1, . . . , σ

′
m that are in the block B

9 jc11 , . . . , j
c`
` := elements respectively following i1, . . . , i` in σ′1, . . . , σ

′
m

10 6:= partial order on jc11 , . . . , j
c`
` given by (5) with repeated elements treated

as distinct, incomparable elements
11 � := partial order on i1, . . . , i` formed by starting with 6, replacing each jchh

with ih, and reversing the relation in 6
12 σ′1, . . . , σ

′
m := σ′1, . . . , σ

′
m after replacing instances of i1, . . . , i` with minimal

elements in B in a manner that respects �
13 return σ′1, . . . , σ

′
m

Proof of Lemma 26. It was shown in [18, Proof of Theorem 3] that the conjugation action
of J on any conjugacy class Cλ of Sn without cycles of lengths 1, 2, . . . , 2k results in
orbits of size |J | =

∏t
i=1 |Bi|!. Define f : Sn,r → Sn to be the projection f(ω, τ) = ω.

Combining all of this with Lemma 25, we conclude that for any (ω, τ) ∈ Cλ,

|J · (ω, τ)| = |{(π,0)(ω, τ)(π,0)−1 : π ∈ J}|
> |{f((π,0)(ω, τ)(π,0)−1) : π ∈ J}|
= |{πωπ−1 : π ∈ J}|
= |J |.

(17)
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Since |J · (ω, τ)| 6 |J | always holds, we conclude |J · (ω, τ)| = |J |. It now suffices to show
that there is a unique element in each orbit with descents at a1, . . . , ak, which we do using
ColoredDescents. We start by showing that this algorithm is well-defined.

First, observe that the k elements in a1, . . . , ak can induce at most k blocks of size
larger than 1, which accounts for at most 2k of the elements in [n]. Hence, some blocks
in B1, . . . ,Bt must initially consist of only one element. If (ω, τ) ∈ Sn,r has no cycles
of lengths 1, 2, . . . , 2k, then each cycle σ′1, . . . , σ

′
m in line 3 must contain some element

from a block of size 1. Consequently, choosing j in the while loop is well-defined in
the first iteration. After each iteration of the while loop, the number of elements that
appear exactly once increases in at least one cycle in σ′1, . . . , σ

′
m, as the element that

precedes j appears multiple times at the start of the loop but appears exactly once at the
end of the loop. Consequently, future iterations of the while loop are well-defined, and
the algorithm will continue until it terminates at a colored permutation. Furthermore,
ColoredDescents only replaces elements in the cycle notation with others in the same
block while leaving colors unchanged, so by Lemma 25, the output of this algorithm is in
the same J-orbit as the original colored permutation.

It remains to show that the output permutation from ColoredDescents is the unique
one in the J-orbit of (ω, τ) with descents at a1, . . . , ak. Observe that at the start of the
algorithm, the cycles σ′1, . . . , σ

′
m in ColoredDescents trivially satisfy the property that

whenever i1 < i2 appear in σ′1, . . . , σ
′
m and belong to the same block, the elements jc11

and jc22 that follow them in σ′1, . . . , σ
′
m satisfy jc11 > jc22 with respect to the ordering for

descents given in (5). By the replacement procedure in the algorithm, this property is
preserved after each iteration of the while loop, so the colored permutation resulting
from ColoredDescents has the property that when i1 < i2 are in the same block, the
elements following them in the cycle notation satisfy jc11 > jc22 . Consequently, the colored
permutation resulting from the algorithm has descents at a1, . . . , ak. Additionally, it is
clear that at each iteration of line 12, the algorithm identifies necessary conditions for
descents to eventually occur at a1, . . . , ak, and the replacement used at this line is unique.
Consequently, the output colored permutation must be the unique permutation in the
orbit of (ω, τ) that has descents at a1, . . . , ak.

Lemma 28. Let a1, . . . , ak ∈ [n] with induced blocks B1, . . . ,Bt, where Bt contains n.
Let Cλ be any conjugacy class of Sn,r that contains no cycles of lengths 1, 2, . . . , 2k. If
a1, . . . , ak ∈ [n− 1], then

ECλ
[Xa1Xa2 · · ·Xak ] =

t∏
i=1

1

|Bi|!
. (18)

Otherwise,

ECλ
[Xa1Xa2 · · ·Xak ] =

(
r − 1

r

)|Bt|

·
t∏
i=1

1

|Bi|!
. (19)

Proof. First consider when a1, . . . , ak ∈ [n−1]. Define J = SB1× . . .×SBt , and let ω ∈ J
act on Cλ by conjugation as in (12). Lemma 26 shows that this action decomposes Cλ
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into orbits of size |J | where exactly one element in each orbit has descents at a1, . . . , ak.
This implies (18).

For (19), we assume without loss of generality that ak = n and a1, . . . , ak−1 ∈ [n− 1].
Expressing Bt = {m+ 1, . . . , n}, we have that

ECλ
[Xa1Xa2 · · ·Xak ]

= PrCλ
[τ(i) 6= 0∀ i > m] · PrCλ

[Xa1 · · ·Xak−1
= 1 | τ(i) 6= 0∀ i > m].

(20)

By summing over all choices of nonzero colors and applying Lemma 13, the first term is
((r− 1)/r)n−m. For the second term, Lemma 25 shows that the action of J preserves the
property that τ(i) 6= 0 for all i > m, as the colors on the elements following m+ 1, . . . , n
in the cycle notation are unaffected by the conjugation action of J . Hence, this action
stabilizes the subset in Cλ where τ(i) 6= 0 for all i > m. Lemma 26 then implies that the
second term in (20) is 1/|J | as needed.

Combining our results, we can now establish Theorem 1 for desn,r. In fact, this result
holds for any statistic that is a linear combination of the statistics Xi, including majn,r.

Theorem 29. Let X =
∑n

i=1 ciXi with ci ∈ R, and let Cλ be a conjugacy class of Sn,r.
If Cλ contains no cycles of lengths 1, 2, . . . , 2k, then ECλ

[Xk] = ESn,r [X
k]. Furthermore,

if cn = 0, then this is also equal to ESn [Xk].

Proof. Using the decomposition X =
∑n

i=1 ciXi with ci ∈ R and expanding, we obtain

ECλ
[Xk] =

∑
a1,...,ak∈[n]

(
k∏
i=1

ci

)
· ECλ

[Xa1 · · ·Xak ]. (21)

Note that the summation ranges over all possible a1, . . . , ak, so it is possible that some
of the Xi’s in the product Xa1 · · ·Xak are redundant. Regardless, using the fact that Cλ

has no cycles of lengths 1, 2, . . . , 2k with Lemma 20, Corollary 24, and Lemma 28, each
of the summands in (21) is equal to the corresponding summand in

ESn,r [X
k] =

∑
a1,...,ak∈[n]

(
k∏
i=1

ci

)
ESn,r [Xa1 · · ·Xak ], (22)

so the k-th moments of X on Cλ and Sn,r coincide.
In the case where cn = 0, we can restrict the summation in (22) to a1, . . . , ak ∈

[n−1]. Lemma 28 then implies that each term in the summation for ESn,r [X
k] equals the

corresponding one in

ESn [Xk] =
∑

a1,...,ak∈[n−1]

(
k∏
i=1

ci

)
ESn [Xa1 · · ·Xak ] (23)

so the k-th moments of X on Sn,r and Sn coincide.
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Corollary 30. Let Cλ be a conjugacy class of Sn,r. If Cλ contains no cycles of lengths
1, 2, . . . , 2k, then

ECλ
[deskn,r] = ESn,r [deskn,r] and ECλ

[majkn,r] = ESn,r [majkn,r] = ESn [majkn].

We conclude this section with Corollary 2 for desn,r. Our proof combines the preceding
result with the Method of Moments and known asymptotic results.

Corollary 31. For every n > 1, let Cλn be a conjugacy class of Sn,r. Suppose that for
all i, the number of cycles of length i in λn approaches 0 as n→∞. Then for sufficiently
large n, desn,r has mean µn,r = rn+r−2

2r
and variance σ2

n,r = n+1
12

on Cλn, and as n→∞, the

random variable desn,r −µn,r

σn,r
converges in distribution to the standard normal distribution.

Proof. The mean and variance follow from using Theorem 29 on the first two moments of
desn,r with the assumption that there are no cycles of lengths 1, 2, 3, and 4 for sufficiently
large n. For the asymptotic behavior, we fix k and express(

desn,r−µn,r
σn,r

)k
=

1

σkn,r

k∑
i=0

(
k

i

)
(−1)k−iµk−in,r desin,r . (24)

For all sufficiently large n, Cλn contains no cycles of lengths 1, 2, . . . , 2k, so Corollary 30
implies that ESn,r [desn,r] = ECλn

[desn,r] when n is sufficiently large. Hence, the expec-
tation of (24) on Sn,r and Cλn coincide when n is sufficiently large. Consequently, this
equality holds as n → ∞, and the result now follows from the Method of Moments and
Theorem 5.

Corollary 32. For every n > 1, let Cλn be a conjugacy class of Sn,r. Suppose that for
all i, the number of cycles of length i in λn approaches 0 as n→∞. Then for sufficiently

large n, majn,r has mean µn,r = n(n−1)
4

and variance σ2
n,r = n(2n2+3n−5)

72
on Cλn, and as

n→∞, the random variable
majn,r −µn,r

σn,r
converges in distribution to the standard normal

distribution.

Proof. Apply the same argument from Corollary 31, but comparing moments of
majn,r −µn,r

σn,r

on Cλ with the moments of majn−µn,1

σn,1
on Sn. The asymptotic normality of Mahonian

distributions is well-known [16].

4 Flag major index

In this section, we establish Theorem 1 and Corollary 2 for the flag major index statistic
fmajn,r. Our general approach follows the one that we used for desn,r and majn,r. However,
we need several modifications to account for the coln,r statistic, and our techniques involve
the degree of a colored permutation statistic, as described in Section 2.3.
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Throughout this section, we define Yi,c to be the indicator function for the color of
i ∈ [n] being c ∈ Zr,

Yi,c(ω, τ) =

{
1 if τ(i) = c

0 otherwise.

Using the same Xi indicator functions for descents, this allows us to express fmajn,r as

fmajn,r = r ·
n−1∑
i=1

iXi +
n∑
i=1

r−1∑
c=0

cYi,c.

In particular, fmajkn,r can be expressed as linear combinations of the random variables

Xa1 · · ·XajYaj+1,cj+1
· · ·Yak,ck (25)

where a1, . . . , aj ∈ [n − 1], aj+1, . . . , ak ∈ [n], and cj+1, . . . , ck ∈ Zr. We will consider
products of this form, and show that their expectations coincide on Sn,r and all Cλ

without cycles of lengths 1, 2, . . . , 2k. We start with a definition and then give a result on
the degree of (25).

Definition 33. Let a1, . . . , aj ∈ [n − 1], aj+1, . . . , ak ∈ [n], and cj+1, . . . , ck ∈ Zr. The
essential set of the statistic Xa1 · · ·XajYaj+1,cj+1

· · ·Yak,ck is

Ess(Xa1 · · ·XajYaj+1,cj+1
· · ·Yak,ck) =

(
j⋃
i=1

{ai, ai + 1}

)⋃(
k⋃

i=j+1

{ai}

)
.

Each element in Ess(Xa1 · · ·XajYaj+1,cj+1
· · ·Yak,ck) will be called an essential position.

Lemma 34. Let a1, . . . , aj ∈ [n− 1], aj+1, . . . , ak ∈ [n], and cj+1, . . . , ck ∈ Zr. Then Z =
Xa1 · · ·XajYaj+1,cj+1

· · ·Yak,ck has degree at most j + k. Consequently, its mean coincides
on all conjugacy classes Cλ of Sn,r without cycles of lengths 1, 2, . . . , j + k. The same
holds for ZYi,c when i ∈ Ess(Z) and c ∈ Zr is arbitrary.

Proof. By Theorem 16, it suffices to show that Z and ZYi,c have degree at most j + k.
Observe that summands for fmajn,r in Example 14 can be used to express each Xai using
partial colored permutations of size 2 and each Yai,c using partial colored permutations of
size 1. Using Lemma 15, Z has degree at most 2j + (k − j) = j + k.

For ZYi,c, first observe that the resulting expansion described above for Z consists of
linear combinations of statistics of the form

j∏
i=1

I{(a0i , x
ci
i ),((ai+1)0, y

di
i )} ·

n∏
i=j+1

I{(a0i , z
ci
i )}, (26)

where xcii > ydii and zcii are elements in [n]r. Additionally, we can express

Yi,c =
n∑
x=1

I{(i0, xc)}. (27)
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It now suffices to show that the product of (26) with any summand I{(i0, xc)} of (27) has
degree at most j + k.

Since i ∈ Ess(Z), there is some I(K,κ) in the product (26) where (K,κ) contains an
ordered pair of the form (i0, zd). If xc = zd, then multiplying (26) by I(i0,xc) has no effect,
and hence, this additional indicator function can be omitted. Otherwise, xc 6= zd implies
that the product of (26) and I{(i0, xc)} is identically 0. Combined, we conclude that ZYi,c
also has degree at most j + k.

In statistics of the form Xa1 · · ·XajYaj+1,cj+1
· · ·Yak,ck , some elements in aj+1, . . . , ak

may be involved with descents at positions a1, . . . , aj, while others are not. Our next
result allows us to reduce to when all elements in aj+1, . . . , ak are involved in descents at
a1, . . . , aj.

Lemma 35. Let a1, . . . , aj ∈ [n − 1], aj+1, . . . , ak ∈ [n], and cj+1, . . . , ck ∈ Zr. If ak /∈
Ess(Xa1 · · ·XajYaj+1,cj+1

· · ·Yak−1,ck−1
), then

ESn,r [Xa1 · · ·XajYaj+1,cj+1
· · ·Yak−1,ck−1

Yak,ck ]

=
1

r
· ESn,r [Xa1 · · ·XajYaj+1,cj+1

· · ·Yak−1,ck−1
].

(28)

The same holds on any Cλ without cycles of lengths 1, 2, . . . , j + k.

Proof. For brevity, let Z = Xa1 · · ·XajYaj+1,cj+1
· · ·Yak−1,ck−1

and express

ESn,r [ZYak,ck ] = PrSn,r [ZYak,ck = 1]

= PrSn,r [Z = 1] · PrSn,r [Yak,ck = 1 | Z = 1]

= ESn,r [Z] · PrSn,r [Yak,ck = 1 | Z = 1].

It now suffices to show the second term is 1/r. Define an action of Zr on Sn,r as follows:
c ∈ Zr acts on (ω, τ) by adding c to τ(ak). Since ak is not an essential position of Z, this
group action is stable on the set of elements where Z = 1. Within each orbit of size r,
exactly one satisfies τ(ak) = ck. Hence,

PrSn,r [Yak,ck = 1 | Z = 1] = 1/r

as desired.
For conjugacy classes without cycles of lengths 1, 2, . . . , j+k, we let Ωc be the conjugacy

class of Sn,r consisting of permutations with a single cycle of length n and color c, and
we consider Ω =

⋃
c∈Z Ωc. The same action of Zr on Sn,r given above is stable on Ω,

implying

EΩ[ZYak,ck ] =
1

r
EΩ[Z].

Lemma 34 with the Law of Total Expectation implies that

EΩ[Z] =
∑
c∈Zr

PrΩ[Ωc] · EΩc [Z] =
∑
c∈Zr

1

r
· EΩ0 [Z] = EΩ0 [Z],
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and the same holds when Z is replaced with ZYik,ck . Applying Lemma 34 again allows us
to conclude that on any Cλ without cycles of lengths 1, 2, . . . , j + k,

ECλ
[ZYik,ck ] = EΩ0 [ZYak,ck ] = EΩ[ZYak,ck ] =

1

r
EΩ[Z] =

1

r
EΩ0 [Z] =

1

r
ECλ

[Z].

We now consider when aj+1, . . . , ak is the essential set of Xa1 · · ·Xaj . In this case, our
preceding work with ColoredDescents shows that the mean coincides on Sn,r and any
conjugacy classes without cycles of length 2j.

Lemma 36. Let a1, . . . , aj ∈ [n− 1], aj+1, . . . , ak ∈ [n], and cj+1, . . . , ck ∈ Zr, and define
Z = Xa1 · · ·XajYaj+1,cj+1

· · ·Yak,ck . If

Ess(Xa1 · · ·Xaj) = Ess(Yaj+1,cj+1
· · ·Yak,ck),

then on any conjugacy class Cλ of Sn,r without cycles of lengths 1, 2, . . . , 2j,

ESn,r [Z] = ECλ
[Z].

Proof. We can assume without loss of generality that all of the elements a1, . . . , aj are
distinct, and all of the elements aj+1, . . . , ak are distinct. Let B1, . . . ,Bt be the blocks
induced by a1, . . . , aj. We first consider when there exists some i and i + 1 in the same
block, and both Yi,c and Yi+1,c′ appear in Z for some c and c′. If c < c′, then a descent at
position i is impossible. This implies Z = 0 on both the entire group and on conjugacy
classes, so the result is clear. If c > c′, then removing Xi from the product defining
Z results in the same statistic. Iterating this argument, we can assume without loss of
generality that for any i and i+ 1 in the same block where some Yi,c and Yi+1,c′ appear in
Z, we have c = c′. Combined with the fact that

Ess(Xa1 · · ·Xaj) = Ess(Yaj+1,cj+1
· · ·Yak,ck),

this implies that the property Yaj+1,cj+1
· · ·Yak,ck(ω, τ) = 1 is equivalent to τ satisfying

some fixed κ : {aj+1, . . . , ak} → Zr that is either constant on or not defined on each block
B1, . . . ,Bt.

We now show the claimed equality, first by considering Sn,r. Express ESn,r [Z] as

PrSn,r [Xa1 · · ·Xaj = 1 | Yaj+1,cj+1
· · ·Yak,ck = 1] · PrSn,r [Yaj+1,cj+1

· · ·Yak,ck = 1].

This can be rewritten as

PrSn,r [Xa1 · · ·Xaj = 1 | τ satisfies κ] · PrSn,r [τ satisfies κ]. (29)

There are k− j elements in the domain of κ, so the second term in (29) is 1/rk−j. For the
first term, we use a similar approach as the one for descents. Let J = SB1× . . .×SBt act
by permuting the one-line notation within each block so that σ ∈ SBj

permutes the images
of i0 for i ∈ Bj. Since κ is constant or undefined on each block, this action stabilizes
the subset of colored permutations satisfying κ. Each orbit has size |J | and contains
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exactly one element where the one-line notation within each block is in descending order.
Hence, exactly one element in each orbit has the appropriate descents at a1, . . . , aj, and
we conclude

ESn,r [Z] =
1

rk−j

t∏
i=1

1

|Bi|
. (30)

For a conjugacy class Cλ without cycles of lengths 1, 2, . . . 2j, we similarly express

ECλ
[Z] = PrCλ

[Xa1 · · ·Xaj = 1 | τ satisfies κ] · PrCλ
[τ satisfies κ]. (31)

Since we assumed that

Ess(Xa1 · · ·Xaj) = Ess(Yaj+1,cj+1
· · ·Yak,ck)

and this common essential set has at most 2j elements, we conclude that the domain of κ
has size k− j 6 2j. Since Cλ has no cycles of lengths 1, 2, . . . , 2j, the second term in (31)
above is 1/rk−j by Lemma 13. For the first term, let π ∈ J act on (ω, τ) as conjugation
by (π,0). If κ is constant on a block Bj, then any (ω, τ) ∈ Cλ where τ satisfies κ has the
property that the elements following i ∈ Bj in the cycle notation of (ω, τ) have the same
color. Then Lemma 25 implies that this property is preserved under the action of J , and
hence J stabilizes the elements in Cλ satisfying κ. This allows us to apply Lemma 26
to conclude that exactly one element in each orbit of size |J | has descents at a1, . . . , aj.
Thus, (31) becomes

ECλ
[Z] =

1

rk−j

t∏
i=1

1

|Bi|
,

and the right side coincides with the right side of (30).

Finally, we show that the mean of Xa1 · · ·XajYaj+1,cj+1
· · ·Yak,ck coincides on Sn,r and

appropriate Cλ. We then conclude with Theorem 1 and Corollary 2 for fmajn,r.

Lemma 37. Let a1, . . . , aj ∈ [n− 1], aj+1, . . . , ak ∈ [n], and cj+1, . . . , ck ∈ Zr, and define
Z = Xa1 · · ·XajYaj+1,cj+1

· · ·Yak,ck . Then on any conjugacy class Cλ of Sn,r without cycles
of lengths 1, 2, . . . , j + k,

ESn,r [Z] = ECλ
[Z].

Proof. We can assume without loss of generality that all of the elements a1, . . . , aj are
distinct, and all of the elements aj+1, . . . , ak are distinct. Starting with Y , observe that if
some ai ∈ {aj+1, . . . , ak} is not in the essential set of Xa1 · · ·Xaj , then Lemma 35 implies
that it suffices to remove Yai,ci and prove the result for the resulting statistic. Applying
this repeatedly, we see that we can assume Ess(Yaj+1,cj+1

· · ·Yak,ck) ⊆ Ess(Xa1 · · ·Xaj).
Now suppose that this is a proper subset, so there exists some

i ∈ Ess(Xa1 · · ·Xaj) \ {aj+1, . . . , ak}.
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In this case, we can express

Z =
r−1∑
c=0

Z · Yi,c,

where each statistic in the sum has degree at most j + k by Lemma 34. Hence, it suffices
to show the statements for each Z · Yi,c. Iterating this process, we see that it suffices
to consider when Ess(Yaj+1,cj+1

· · ·Yak,ck) = Ess(Xa1 · · ·Xaj), and this case follows from
Lemma 36.

Theorem 38. Let Cλ be a conjugacy class of Sn,r without cycles of lengths 1, 2, . . . , 2k.
Then

ESn,r [fmajkn,r] = ECλ
[fmajkn,r].

Proof. As noted in (25), fmajkn,r can be expressed as linear combinations of the form

Xa1 · · ·XajYaj+1,cj+1
· · ·Yak,ck

where j 6 k, a1, . . . , aj ∈ [n − 1], aj+1, . . . , ak ∈ [n], and cj+1, . . . , ck ∈ Zr. Lemma 37
implies that on any Cλ ⊆ Sn,r without cycles of lengths 1, 2, . . . , j + k,

ESn,r [Xa1 · · ·XajYaj+1,cj+1
· · ·Yak,ck ] = ECλ

[Xa1 · · ·XajYaj+1,cj+1
· · ·Yak,ck ].

Since j 6 k, this holds on all Cλ without cycles of lengths 1, 2, . . . , 2k. By linearity of
expectation, we conclude ECλ

[fmajkn,r] = ESn,r [fmajkn,r].

Corollary 39. For every n > 1, let Cλn be a conjugacy class of Sn,r. Suppose that for
all i, the number of cycles of length i in λn approaches 0 as n→∞. Then for sufficiently

large n, fmajn,r has mean µn,r = n(rn+r−2)
4

and variance σ2
n,r = 2r2n3+3r2n2+(r2−6)n

72
on Cλn.

Furthermore, as n→∞, the statistic
fmajn,r −µn,r

σn,r
converges in distribution to the standard

normal distribution.

Remark 40. The original definitions of major index and flag major index given in [2] are
based on the total order

1r−1 < 2r−1 < 3r−1 < · · · < 11 < 21 < 31 < · · · < 10 < 20 < 30 · · · . (32)

However, similar to many statistics on Sn, modifying the total ordering used in majn,r
and fmajn,r does not affect the resulting distributions on Sn,r.

One method for showing this is to fix colors c1, . . . , cn ∈ Zr and partition Sn,r into
subsets of the form

Ω(c1,...,cn) = {(ω, τ) ∈ Sn,r : {ω(i)τ(i)}ni=1 = {ici}ni=1}.

Any total order on [n]r will restrict to a total order on {ici}ni=1. By replacing elements
in the one-line notation of (ω, τ) ∈ Ω(c1,...,cn) with their images under the unique order-
preserving map from {ici}ni=1 to [n], one can show that∑

(ω,τ)∈Ω(c1,...,cn)

qmajn,r(ω,τ) =
∑
ω∈Sn

qmajn(ω) = [1]q[2]q · · · [n]q, (33)
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where [i]q = 1 + q + q2 + · · · + qi−1 is the q-integer of i. For example, for the colored
permutation [31, 80, 50, 61, 22, 12, 40, 71] ∈ S8,3 from Example 4, this replacement results
in the permutation [4, 3, 2, 5, 8, 7, 1, 6] ∈ S8. This new permutation has the same descent
set as the original colored permutation, and hence, has the same major index statistic.

The corresponding result for fmajn,r with respect to any total order on [n]r is∑
(ω,τ)∈Ω(c1,...,cn)

qfmajn,r(ω,τ) = qc1+c2+···+cn
∑

(ω,τ)∈Ω(c1,...,cn)

qr·majn,r(ω,τ)

= qc1+c2+···+cn
n∏
i=1

(1 + qr + q2r + · · ·+ q(i−1)r).

(34)

Since (33) and (34) hold regardless of the total order on [n]r, it follows that the distribu-
tions of majn,r and fmajn,r coincide on any Ω(c1,...,cn) regardless of the total order. These
distributions must therefore coincide on Sn,r, so Theorem 6 holds regardless of the total
order chosen for defining fmajn,r.

Theorem 38 and Corollary 39 can also be established for the flag major index statistic
when defined using the total order in (32). One can replace the usage of the the total
order (5) with (32) in ColoredDescents and prove analogs of the necessary results used
throughout Sections 3 and 4. More generally, our arguments can be adapted to establish
Theorem 38 and Corollary 39 when the flag major index is defined with any total order
that can be obtained from permuting the colors in (5), changing the total order on [n]
used within all colors, or a combination of these two.

5 Conclusion

In this paper, we analyzed the moments and asymptotic distributions of desn,r and fmajn,r
on conjugacy classes Cλ of Sn,r with sufficiently long cycles. Our methods showed that
the moments and asymptotic distributions of these statistics on Cλ coincide with those
on Sn,r. However, another natural question is to determine the actual distributions for
these statistics on Cλ.

Problem 41. Study the distributions of desn,r and fmajn,r on conjugacy classes of Sn,r.

The distribution for desn on conjugacy classes of Sn was established by Diaconis,
McGrath, and Pitman [15]. Additionally, the distribution of desBn on conjugacy classes
of Bn was established by Campion Loth, Levet, Liu, Sundaram, and Yin [11], and this
built on prior work of Reiner involving a different notion of descents on Bn [36]. As noted
in the introduction, desBn does not coincide with desn,2, but the general approach may
still be insightful for Problem 41.

Using the distribution of desn on conjugacy classes of Sn, Kim and Lee [29] established
asymptotic normality of the descent statistic on arbitrary conjugacy classes of Sn. Hence,
one can consider the corresponding problem for desn,r on arbitrary conjugacy classes of
Sn,r, and results from Problem 41 may be useful for this.
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Problem 42. Determine the asymptotic distribution for desn,r on arbitrary conjugacy
classes of Sn,r.
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