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Abstract

The (ordinary) representation theory of the symmetric group is fascinating and
has rich connections to combinatorics, including the Frobenius correspondence to
the self-dual graded Hopf algebra of symmetric functions. The 0-Hecke algebra (type
A) is a deformation of the group algebra of the symmetric group, and its represen-
tation theory has an analogous correspondence to the dual graded Hopf algebras
of quasisymmetric functions and noncommutative symmetric functions. Macdonald
used the hook length formula for the number of standard Young tableaux of a fixed
shape to determine how many irreducible representations of the symmetric group
have dimensions indivisible by a prime p. In this paper, we study the dimensions
of the projective indecomposable modules of the 0-Hecke algebra modulo p; such a
module is indexed by a composition and its dimension is given by a ribbon number,
i.e., the cardinality of a descent class. Applying a result of Dickson on the congru-
ence of multinomial coefficients, we count how many ribbon numbers belong to each
congruence class modulo p and extend the result to other finite Coxeter groups.

Mathematics Subject Classifications: 05E10

1 Introduction

Given a finite group G and a prime p, let mp(G) denote the number of (complex) ir-
reducible representations of G with dimension coprime to p. For the symmetric group
Sn, which consists of all permutations of [n] := {1, 2, . . . , n}, each irreducible represen-
tation is indexed by a partition λ of n, i.e., a decreasing sequence of positive integers
λ = (λ1, . . . , λ`) with |λ| := λ1 + · · ·+λ` = n, and has dimension given by the number fλ

of standard Young tableaux of shape λ. Thus fλ is also known as the dimension of the
partition λ. Using the p-core/quotient of a partition λ and the well-known hook length
formula for fλ, Macdonald [12] showed that

mp(Sn) =
k∏
j=0

[
∞∏
i=1

1

(1− xi)pj

]
xnj

,
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where [f(x)]xd denotes the coefficient of xd in a power series f(x) and

n = n0 + n1p+ · · ·+ nkp
k, n0, n1, . . . , nk ∈ {0, 1, . . . , p− 1}.

In particular, if n = pd1+· · ·+pdk is a sum of distinct powers of p, thenmp(Sn) = pd1+···+dk ;
this applies to all values of n when p = 2.

Extending Macdonald’s result, Amrutha and T. Geetha [1] obtained some results on
mp(G) when p is a power of 2, and Khanna [10] computed the number of partitions λ of n
with fλ congruent to 1 or 3 modulo 4 for certain values of n. There have also been studies
on partitions with odd dimensions [3, 7] and more generally, on the divisibility of character
values of Sn. For example, Miller [13] conjectured that almost every character value of
Sn is congruent to 0 modulo a prime p as n→∞, Peluse [15] confirmed this conjecture
for some small primes, and Peluse—Soundararajan [16] established the conjecture for all
prime moduli, although it remains open when the modulus is a power of a prime; see also
Ganguly, Prasad, and Spallone [8].

On the other hand, there is a deformation of the group algebra of the symmetric
group Sn called the (type A) 0-Hecke algebra Hn(0). Similarly to the correspondence
between the (complex) representation theory of Sn and the self-dual graded Hopf al-
gebra Sym of symmetric functions, the representation theory of Hn(0), first studied by
Norton [14], admits a correspondence to the dual graded Hopf algebras QSym of qua-
sisymmetric functions and NSym of noncommutative symmetric functions. We briefly
recall this correspondence below; see, e.g., Krob and Thibon [11].

Every irreducible Hn(0)-module Cα is indexed by a composition α of n, that is, a
sequence α = (α1, . . . , α`) of positive integers whose sum is n. Every projective inde-
composable Hn(0)-module is the projective cover Pα of some Cα, so its top (i.e., the
quotient by its radical) is isomorphic to Cα. Each Cα corresponds to the fundamen-
tal quasisymmetric function Fα, and each Pα corresponds to the noncommutative ribbon
Schur function sα; this gives two isomorphisms of graded Hopf algebras. While Cα is one
dimensional, Pα has a basis indexed by the descent class {w ∈ Sn : D(w) = D(α)}, where
D(w) := {i ∈ [n − 1] : w(i) > w(i + 1)} and D(α) := {α1, α1 + α2, . . . , α1 + · · · + α`−1};
see also our earlier work [9] for a combinatorial realization of Pα using standard tableaux
of a ribbon shape corresponding to α. It follows that the dimension of Pα is given by the
(type A) ribbon number

rα := |{w ∈ Sn : D(w) = D(α)}|,

which can be viewed as the dimension of the composition α. Note that rα is also the
flag h-vector indexed by D(α) for the Boolean algebra of subsets of [n − 1]. Moreover,
the descent classes of Sn form a basis for the descent algebra, which is an important
subalgebra of the group algebra of Sn introduced by Solomon [17] and frequently studied
in combinatorics and other areas.

Therefore, it is natural to study the number of compositions α of n with rα co-
prime to a given prime p, or more generally, the composition dimension p-vector cp(n) :=
(cp,i(n) : i ∈ Zp), where

cp,i(n) := |{α |= n : rα ≡ i (mod p)}| for all i ∈ Zp.
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In this paper, we use an expression of rα as an alternating sum of multinomial coefficients
and apply a theorem of Dickson [6] on the congruence of multinomial coefficients modulo
p to determine cp(n).

Our result can be spelled out more explicitly for certain values of n, such as multiples
of a power of p and sums of distinct powers of p (the latter includes all values of n when
p = 2), but it becomes tedious for other values of n. It would be nice to develop a different
approach, even though it is not clear to us whether the results on cp(n) can be interpreted
by operations on standard Young tableaux of ribbon shapes, the representation theory
of the 0-Hecke algebra Hn(0), or the flag h-vector of the Boolean algebra of subsets of
[n− 1].

It is possible to generalize our results to all finite Coxeter groups, for which the descent
set and ribbon number are well defined. For type B and type D, we use the same method
as in type A to obtain similar results. In particular, we show that every ribbon number
in type B and type D is odd. In contrast, the corresponding result in type A is not as
nice. For example, we have c2(n) = (0, 2n−1) if n is a power of 2, c2(n) = (2n−2, 2n−2) if n
is a sum of two or three distinct powers of 2, and c2(n) = 2n−7(35, 29) if n is a sum of four
distinct powers of 2. For the exceptional types, we provide some data from computations
in Sage.

This paper is structured as follows. First, we provide some preliminaries in Section 2.
Next, we give our results for type A in Section 3. Then we extend our results to type
B and type D in Section 4 and Section 5, respectively. Finally, we conclude the paper
with a brief discussion on the exceptional types and some questions for future research in
Section 6.

2 Preliminaries

We first recall some basic definitions for Coxeter groups and their connections with com-
binatorics; see, e.g., Björner and Brenti [4] for details.

Let W be a group generated by a set S with relations (st)mst = 1 for all s, t ∈ S,
where mst = 1 whenever s = t and mst = mts > 2 whenever s 6= t, or equivalently, s2 = 1
for all s ∈ S and (sts · · · )mst = (tst · · · )mst whenever s 6= t, where (aba · · · )m denotes
the alternating product of a and b with length m. The pair (W,S) is called a Coxeter
system and W is called a Coxeter group. We often label the elements of S by nonnegative
integers and identify each si ∈ S with the index i. The Coxeter diagram of a Coxeter
system (W,S) is a graph whose vertices are the elements of S; there is an edge between
s and t whenever mst > 3, and an edge is labeled with mst whenever mst > 4. A Coxeter
system is irreducible if its Coxeter graph is connected. Finite irreducible Coxeter systems
are classified into types An, Bn, Dn, E6, E7, E8, F4, H3, H4, and I2(m).

For each w ∈ W , an expression w = si1 · · · sik of w as a product of elements in S is
reduced if k is as small as possible; the minimum value of k is called the length `(w) of w.
The set of (right) descents of w is

D(w) := {s ∈ S : `(ws) < `(w)}.
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As a q-deformation of the group algebra of a Coxeter system (W,S), the Iwahori-Hecke
algebra HS(q) is generated by {Ts : s ∈ S} with relations

• (Ts + 1)(Ts − q) = 0 for all s ∈ S, and

• (TsTtTs · · · )mst = (TtTsTt · · · )mst for all distinct s, t ∈ S.

The algebra HS(q) has a (linear) basis {Tw : w ∈ W}, where Tw := Ti1 · · ·Tik whenever
w = si1 · · · sik is a reduced expression. While specializing q = 1 recovers the group algebra
of W , taking q = 0 in the definition of HS(q) gives the 0-Hecke algebra HS(0). Norton [14]
worked out the representation theory of the 0-Hecke algebra HS(0) of a finite Coxeter
system (W,S): Every irreducible HS(0)-module CI is one dimensional and indexed some
I ⊆ S, and every projective indecomposable HS(0)-module PI is the projective cover
of some CI with a basis indexed by the descent class {w ∈ W : D(W ) = I}. We are
interested in the ribbon number

rSI := |{w ∈ W : D(w) = I}| = dim(PI).

Every subset I of S generates a parabolic subgroup WI of W . A (left) coset of WI

has a unique representative of minimum length, which is the element w in this coset with
D(w) ⊆ S \ I. Thus ∣∣W/WS\I

∣∣ = |{w ∈ W : D(w) ⊆ I}| =
∑
J⊆I

rSJ .

It follows from inclusion-exclusion that

rSI =
∑
J⊆I

(−1)|I|−|J |
∣∣W/WS\I

∣∣ .
A finite Coxeter system (W,S) has a longest element w0 ∈ W , which satisfies `(w0w) =

`(w0)− `(w) for all w ∈ W . This implies that D(w0w) = S \D(w) since for each s ∈ S,
we have

`(w0ws) = `(w0)− `(ws) > `(w0)− `(w) = `(w0w)⇐⇒ `(ws) < `(w).

Therefore, there is a symmetry rSI = rSS\I among the ribbon numbers.
An important example of the Coxeter groups is the symmetric group Sn, which consists

of all permutations of [n] := {1, 2, . . . , n}. It is generated by s1, . . . , sn−1, where si :=
(i, i + 1) is the adjacent transposition that swaps i and i + 1 for i = 1, 2, . . . , n− 1, with
the following relations:

s2i = 1, 1 6 i 6 n− 1,

sisi+1si = si+1sisi+1, 1 6 i 6 n− 2,

sisj = sjsi, 1 6 i, j 6 n− 1, |i− j| > 1.
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Thus Sn is the Coxeter group of type An, whose Coxeter diagram is below.

s1 s2 · · · sn−2 sn−1

For each w ∈ Sn, the length `(w) coincides with the number of inversion pairs

inv(w) := |{(i, j) : 1 6 i < j 6 n, w(i) > w(j)}|,

and identifying si with i, we have

D(w) = {i ∈ [n− 1] : w(i) > w(i+ 1)}.

The (type A) 0-Hecke algebra Hn(0) is the monoid algebra of the monoid generated
by π1, . . . , πn−1 (note that πi is not Ti but rather Ti + 1 when q = 0) with relations

π2
i = πi, 1 6 i 6 n− 1,

πiπi+1πi = πi+1πiπi+1, 1 6 i 6 n− 2,

πiπj = πjπi, 1 6 i, j 6 n− 1, |i− j| > 1.

To describe the representation theory of Hn(0), recall that a composition is a sequence
α = (α1, . . . , α`) of positive integers. The size of α is |α| := α1 + · · · + α` and the parts
of α are α1, . . . , α`. If |α| = n then we say α is a composition of n and write α |= n.
Define σi := α1 + · · · + αi for i = 0, 1, . . . , `. It is clear that σ0 = 0, σ` = n, and
D(α) := {σ1, . . . , σ`−1} is a subset of [n− 1]. Thus a composition α |= n can be encoded
in a binary string a1 · · · an whose jth digit is one if and only if j ∈ D(α)∪ {n}. It follows
that there are exactly 2n−1 compositions of n. The length of α is `(α) := ` = |D(α)|+ 1.

Each irreducible Hn(0)-module Cα is indexed by a composition α of n and has di-
mension one. Each projective indecomposable Hn(0)-module Pα is the projective cover of
some Cα and has a basis indexed by permutations of [n] with descent set equal to D(α),
so its dimension is the (type A) ribbon number

rα := |{w ∈ Sn : D(w) = D(α)}|.

We call rα the dimension of the composition α.
To compute rα, we use the following multinomial coefficient, where m,m1, . . . ,mk are

nonnegative integers:(
m

m1, . . . ,mk

)
:=

{
m!

m1!···m`!
, if m1 + · · ·+mk = m;

0, otherwise.

Given a composition β = (β1, . . . , β`) of n, a permutation w ∈ Sn satisfies D(w) ⊆ D(β)
if and only if w(j) < w(j + 1) for all j ∈ [n− 1] \D(β). Thus

|{w ∈ Sn : D(w) ⊆ D(β)}| =
(
n

β

)
:=

(
n

β1, . . . , β`

)
.
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Applying inclusion-exclusion to this yields a formula

rα =
∑
β4α

(−1)`(α)−`(β)
(
n

β

)
(1)

for every composition α of n, where β 4 α means that β is a composition of n with
D(β) ⊆ D(α), or in other words, β is a composition of n refined by α. There is also an
equivalent formula for rα given below, where 1/k! := 0 if k < 0:

rα = n! det

(
1

(σj − σi−1)!

)`
i,j=1

We will mainly use the formula (1) for rα to study the type A composition dimension
p-vector cp(n) := (cp,i(n) : i ∈ Zp), where

cp,i(n) := |{α |= n : rα ≡ i (mod p)}.

We can write a positive integer n in base p as n = n0 + n1p + · · · + nkp
k, where

n0, n1, . . . , nk ∈ {0, 1, . . . , p − 1} and nk > 0; this gives a vector [n]p := (n0, n1, . . . , nk).
A well-known theorem of Lucas determined the residue of a binomial coefficient modulo
a prime p, and Dickson [6, p. 76] generalized it to the multinomial coefficient.

Theorem 1 (Dickson). Let n be a positive integer n with [n]p = (n0, n1, . . . , nk). Given
nonnegative integers β1, . . . , β` whose sum is n, we write [βi]p = (βi0, βi1, . . . , βik) for
i = 1, . . . , ` by abuse of notation (adding trailing zeros if necessary). Then(

n

β1, . . . , β`

)
≡

k∏
j=0

(
nj

β1j, . . . , β`j

)
(mod p).

It follows from Theorem 1 that
(

n
β1,...,β`

)
≡ 0 (mod p) unless β1j + · · · + β`j = nj for

all j = 0, 1, . . . , k, i.e., ([β1]p, . . . , [β`]p) is a vector composition of [n]p (cf. Andrews [2]).
Also recall that a poset is a set P with a partial order on P . A chain in P is a subset

of P whose elements are pairwise comparable. The compositions of [n] form a poset under
4, which is isomorphic to the poset of subsets of [n− 1] under inclusion via the bijection
α 7→ D(α); this gives two incarnations of the finite Boolean algebra.

3 Type A

Let p be a prime number. In this section we determine the type A composition dimension
p-vector cp(n) := (cp,i(n) : i ∈ Zp), where cp,i(n) is the number of compositions α |= n
satisfying rα ≡ i (mod p) for all i ∈ Zp.

Theorem 2. Let p be a prime and n > 2 an integer with [n]p = (n0, n1, . . . , nk). Define

P :=
{
b0 + b1p+ · · ·+ bkp

k : 0 6 bj 6 nj, j = 0, 1, . . . , k
}
\ {0, n},
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which is a subset of [n− 1] with |P | =
∏k

j=0(nj + 1)− 2. For each T ⊆ P , define

r(T ) :=
∑

β|=n, D(β)⊆T
β1j+···+β`j=nj , ∀j

(−1)|T |−|D(β)|
k∏
j=0

(
nj

β1j, . . . , β`j

)
.

Here β = (β1, . . . , β`) is a composition of n with [βi]p = (βi0, βi1, . . . , βid) for i = 1, . . . , `.
Then

cp,i(n) =


2n+1−

∏k
j=0(nj+1) |{T ⊆ P : r(T ) ≡ i (mod p)}| , if p = 2 or i = 0 or

n0 = · · · = nk−1 = p− 1;

2n−
∏k

j=0(nj+1) |{T ⊆ P : r(T ) ≡ ±i (mod p)}| , otherwise.

Proof. Let α be an arbitrary composition of n, whose corresponding binary string is
a = a1 · · · an with an = 1. We use the formula (1) for the ribbon number rα to reduce it
modulo p. We have β 4 α if and only if ar = 1 for all r in

D(β) =

{
s∑
i=1

k∑
j=0

βijp
j : s = 1, . . . `− 1

}
.

If
(
n
β

)
6≡ 0 (mod p) then β1j + · · ·+ β`j = nj for all j = 0, 1, . . . , k by Theorem 1, and this

implies D(β) ⊆ P . Thus to find which compositions β with
(
n
β

)
6≡ 0 (mod p) are refined

by α, it suffices to look at the substring â := (ar : r ∈ P ) of a. It is easy to see that P is
a subset of [n− 1] with |P | = (n0 + 1) · · · (nk + 1)− 2.

Let b be a fixed binary string indexed by P with supp(b) := {r ∈ P : br = 1} = T . If
â = b, then

rα ≡
∑
β|=n

D(β)⊆T

(−1)`(α)−`(β)
k∏
j=0

(
nj

β1j, . . . , β`j

)
≡ r(T ) (mod p),

and we have exactly 2n−|P |−1 possibilities for α, half of which have even lengths by toggling
aj for some j ∈ [n − 1] \ P unless P = [n − 1], i.e., n0 = n1 = · · · = nk−1 = p − 1. The
result follows.

We derive some consequences of Theorem 2 below.

Corollary 3. Let p be a prime and n > 2 an integer with [n]p = (n0, . . . , nk). For all
i ∈ Zp, we have cp,i(n) = cp,−i(n) unless n0 = · · · = nk−1 = p− 1 and{

2n+2−(n0+1)···(nk+1) divides cp,i(n), if p = 2 or i = 0 or n0 = · · · = nk−1 = p− 1;

2n+1−(n0+1)···(nk+1) divides cp,i(n), otherwise.
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Proof. Theorem 2 immediately implies that cp,i(n) = cp,−i(n) for all i ∈ Zp unless n0 =
· · · = nk−1 = p − 1. The symmetry rSI = rSS\I for the ribbon numbers of a finite Coxeter

system (W,S) mentioned in Section 2 implies r(T ) ≡ r(P \ T ) (mod p) for all T ⊆ P .
Thus cp,i(n) is divisible by the desired power of 2.

Next, we specialize Theorem 2 to the case when n is a multiple of a prime power.

Corollary 4. Suppose n = mpd, where p is a prime, m ∈ {1, . . . , p− 1}, and d > 0 is an
integer. Then

cp,i(n) =

{
2n−m|{γ |= m : rγ ≡ i (mod p)}|, if i = 0 or p = 2 or d = 0;

2n−m−1|{γ |= m : rγ ≡ ±i (mod p)}|, otherwise.

Proof. By Theorem 2, we have [n]p = (0, . . . , 0,m), P = {jpd : j = 1, 2, . . . ,m− 1}, and
each T ⊆ P corresponds to a composition γ |= m with D(γ) = {t/pd : t ∈ T} such that

r(T ) =
∑
β|=n

D(β)⊆T

(−1)|T |−|D(β)|
d∏
j=0

(
nj

β1j, . . . , β`j

)

=
∑
δ4γ

(−1)`(γ)−`(δ)
(
m

δ

)
= rγ,

where δ is obtained from β by dividing each part by pd. The result follows.

Example 5. Corollary 4 becomes trivial when d = 0. Assume d > 0 below. For m =
1, 2, 3, 4, we compute rγ for all γ |= m:

• r(1) = 1, r(1,1) = r(2) = 1, r(1,1,1) = r(3) = 1, r(1,2) = r(2,1) = 2,

• r(1,1,1,1) = r(4) = 1, r(1,1,2) = r(2,1,1) = r(1,3) = r(3,1) = 3, r(1,2,1) = r(2,2) = 5.

Thus we have the following by Corollary 4.

• If n = pd then cp(n) = (0, 2n−1) when p = 2 and cp(n) = (0, 2n−2, 0, . . . , 0, 2n−2)
when p > 2.

• If n = 2pd and p > 2 then cp,±1(n) = 2n−2 and cp,i(n) = 0 for all i 6≡ ±1 (mod p).

• If n = 3pd and p > 3 then cp,±1(n) = cp,±3(n) = 2n−3 and cp,i(n) = 0 for all
i 6≡ ±1,±3 (mod p).

• If n = 4pd then cp(n) = 2n−4(2, 1, 2, 2, 1) when p = 5 and cp,±1(n) = cp,±5(n) = 2n−4,
cp,±3(n) = 2n−3, and cp,i(n) = 0 for all i 6≡ ±1,±3,±5 (mod p) when p > 5.

Next, we consider the case when n is a sum of distinct powers of a prime p; this applies
to all values of n when p = 2.
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Corollary 6. Let p be a prime and n = pd1 + · · · + pdk , where 0 6 d1 < · · · < dk and
k > 1. Define

P :=
{
U : ∅ 6= U $ {pd1 , . . . , pdk}

}
, partially ordered by 4,

where U denotes the sum of all elements of U and U 4 V in the poset P if and only if
U ⊆ V . Then

cp,i(n) =

{
2n−2

k+1|{T ⊆ P : χ(T ) ≡ i (mod p)}|, if p = 2 or i = 0;

2n−2
k |{T ⊆ P : χ(T ) ≡ ±i (mod p)}|, if p > 2 and i = 1, . . . , p− 1.

Here χ(T ) is the number of chains of even cardinality minus the number of chains of odd
cardinality in T .

Proof. By Theorem 2, we have P =
{
U : ∅ 6= U $ {pd1 , . . . , pdk}

}
with |P | = 2k − 2, and

for every T ⊆ P ,
r(T ) = (−1)|T |χ(T )

since a composition β |= n satisfies D(β) ⊆ T if and only if D(β) gives a chain of
cardinality |D(β)| in T and the multinomial coefficients in the definition of r(T ) are
all ones for n = pd1 + · · · + pdk . The result then follows from Theorem 2 (the case
n0 = · · · = nk−1 = p− 1 does not occur since k > 1).

We give an example when n is a sum of two distinct powers of a prime p.

Example 7. Let p be a prime and n = u+v, where u and v are distinct nonnegative powers
of p. By Corollary 6, we have P = {u, v}, χ(∅) = 1−0 = 1, χ({u}) = χ({v}) = 1−1 = 0,
χ({u, v}) = 1− 2 = −1, and thus the following holds.

• If p = 2 then cp,0(n) = cp,1(n) = 2n−2.

• If p > 2 then cp,0(n) = 2n−2, cp,±1(n) = 2n−3, and cp,i(n) = 0 for all i 6≡ 0,±1
(mod p).

We also provide a direct proof here to help illustrate our method. Theorem 1 implies that(
n

β

)
≡

{
1 (mod p), if β ∈ {(n), (u, v), (v, u)};
0, otherwise

for every composition β |= n. Let α be a composition of n corresponding to a binary
string a1 · · · an. Then

rα ≡


(−1)`(α) (mod p), if (u, v) 4 α and (v, u) 4 α, i.e., au = av = 1;

(−1)`(α)−1 (mod p), if (u, v) 64 α and (v, u) 64 α, i.e., av = au = 0;

0, otherwise.

There are exactly 2n−3 possibilities for α in either the first or the second case. There are
2n−2 possibilities for α in the last case, half with even lengths in each case by the bijection
toggling aj for some j ∈ [n− 1] \ P . The result follows.
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We have another example when n is the sum of three distinct powers of a prime p.

Example 8. Suppose n = u+ v + w, where u, v, w are distinct nonnegative powers of p.
By Corollary 6, we need to calculate χ(T ) for each T ⊆ P := {u, v, w, u+v, u+w, v+w}.
We distinguish some cases below.

• If |T | = 0 then χ(T ) = 1− 0 = 1; the number of possibilities for T is 1.

• If |T | = 1 then χ(T ) = 1− 1 = 0; the number of possibilities for T is 6.

• If T consists of two comparable elements, then χ(T ) = 2 − 2 = 0; the number of
possibilities for T is 3 · 2 = 6.

• If T consists of two incomparable elements, then χ(T ) = 1 − 2 = −1; the number
of possibilities for T is

(
6
2

)
− 6 = 9.

• If T is of the form {u, v, u + v} or {u, u + v, u + w}, then χ(T ) = 3 − 3 = 0; the
number of possibilities for T is 3 + 3 = 6.

• If T is for the form {u, v, u+ w} or {u, u+ v, v + w}, then χ(T ) = 2− 3 = −1; the
number of possibilities for T is 3 · 2 + 3 · 2 = 12.

• If T is of the form {u, v, w} or {u+ v, u+ w, v + w}, then χ(T ) = 1− 3 = −2; the
number of possibilities for T is 2.

• If T is of the form {u, v, w, u+ v}, {u, u+ v, u+ w, v + w}, or {u, v, u+ w, v + w},
then χ(T ) = 3− 4 = −1; the number of possibilities for T is 3 + 3 + 3 = 9.

• If T is of the form {u, v, u + v, u + w}, then χ(T ) = 4 − 4 = 0; the number of
possibilities for T is 3 · 2 = 6.

• If |T | = 5, then χ(T ) = 5− 5 = 0; the number of possibilities for T is 6.

• If |T | = 6, then χ(T ) = 7− 6 = 1; the number of possibilities for T is 1.

Thus by Corollary 6, we have

• c2,0(n) = 2n−7(6 + 6 + 6 + 2 + 6 + 6) = 32 · 2n−7 = 2n−2,

• c2,1(n) = 2n−7(1 + 9 + 12 + 9 + 1) = 32 · 2n−7 = 2n−2,

• cp,0(n) = 2n−7(6 + 6 + 6 + 6 + 6) = 30 · 2n−7 if p > 2,

• cp,±1(n) = 2n−8(1 + 9 + 12 + 2 + 9 + 1) = 17 · 2n−7 if p = 3,

• cp,±1(n) = 2n−8(1 + 9 + 12 + 9 + 1) = 16 · 2n−7 if p > 3,

• cp,±2(n) = 2n−8 · 2 = 2n−7 if p > 3.

The next example settles the case when n is a sum of four distinct powers of p.
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Example 9. Computations in Sage based on Corollary 6 show that if n is the sum of
four distinct nonnegative powers of p then

cp(n) =



2n−15(8960, 7424) = 2n−7(35, 29), if p = 2;

2n−15(7766, 4309, 4309), if p = 3;

2n−15(7606, 3636, 753, 753, 3636), if p = 5;

2n−15(7604, 3630, 673, 87, 87, 673, 3630), if p = 7;

2n−15(7604, 3630, 672, 81, 6, 1, 0, . . . , 0, 1, 6, 81, 672, 3630), if p > 11.

Next, we study the case when n is two times a power of an odd prime p plus a different
power of p.

Corollary 10. Let p be an odd prime and n = 2pd + pe, where d and e are distinct
nonnegative integers.

• If p = 3 and n = 5 then cp,0(n) = 6, c1p(n) = 8, and c2p(n) = 2.

• If p = 3 and n > 5 then cp,0(n) = 6 · 2n−5 and cp,±1(n) = 5 · 2n−5.

• If p > 3 then cp,0(n) = 6 · 2n−5, cp,±1(n) = 4 · 2n−5, cp,±2(n) = 2n−5, and cp,i(n) = 0
for all i 6≡ 0,±1,±2 (mod p).

Proof. By Theorem 2, we have P = {pd, pe, 2pd, pd + pe}, and for each T ⊆ P , we can
calculate r(T ) based on which β |= n satisfies D(β) ⊆ T in the definition of r(T ).

• If T = {pd, pe, 2pd, pd + pe} then r(T ) = 1− 1− 2− 2− 1 + 2 + 2 + 2 = 1 since the
possibilities for β form a poset with the following Hasse diagram.

(n)

(2pd, pe) (pd, pd + pe) (pd + pe, pd) (pe, 2pd)

(pd, pd, pe) (pd, pe, pd) (pe, pd, pd)

• If T = {pd, pe, 2pd} then β ∈ {(n), (pd, pd + pe), (pe, 2pd), (2pd, pe), (pd, pd, pe)} and
thus r(T ) = (−1)3(1− 2− 1− 1 + 2) = 1.

• If T = {pd, pe, pd + pe} then we have r(T ) = −1 + 2 + 1 + 2 − 2 − 2 = 0 since
β ∈ {(n), (pd, pd + pe), (pe, 2pd), (pd + pe, pd), (pd, pe, pd), (pe, pd, pd)}.

• If T = {pd, 2pd, pd + pe} then we have r(T ) = −1 + 2 + 1 + 2 − 2 − 2 = 0 since
β ∈ {(n), (pd, pd + pe), (2pd, pe), (pd + pe, pd), (pd, pd, pe), (pd, pe, pd)}.

• If T = {pe, 2pd, pd + pe} then β ∈ {(n), (pe, 2pd), (2pd, pe), (pd + pe, pd), (pe, pd, pd)}
and thus r(T ) = −1 + 1 + 1 + 2− 2 = 1.

• If T = {pd, pe} then β ∈ {(n), (pd, pd + pe), (pe, 2pd)} and r(T ) = 1− 2− 1 = −2.
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• If T = {pd, 2pd} then β ∈ {(n), (pd, pd + pe), (2pd, pe), (pd, pd, pe)} and thus r(T ) =
1− 2− 1 + 2 = 0.

• If T = {pd, pd + pe} then β ∈ {(n), (pd, pd + pe), (pd + pe, pd), (pd, pe, pd)} and thus
r(T ) = 1− 2− 2 + 2 = −1.

• If T = {pe, 2pd} then β ∈ {(n), (pe, 2pd), (2pd, pe)} and thus r(T ) = 1− 1− 1 = −1.

• If T = {pe, pd + pe} then β ∈ {(n), (pe, 2pd), (pd + pe, pd), (pe, pd, pd)} and thus
r(T ) = 1− 1− 2 + 2 = 0.

• If T = {2pd, pd+pe} then β ∈ {(n), (2pd, pe), (pd+pe, pd)} and r(T ) = 1−1−2 = −2.

• If T = {pd} then β =∈ {(n), (pd, pd + pe)} and r(T ) = −1 + 2 = 1.

• If T = {pe} then β ∈ {(n), (pe, 2pd)} and r(T ) = −1 + 1 = 0.

• If T = {2pd} then β = {(n), (2pd, pe)} and r(T ) = −1 + 1 = 0.

• If T = {pd + pe} then β ∈ {(n), (pd + pe, pd) and r(T ) = −1 + 2 = 1.

• If T = ∅ then β = (n) and r(T ) = 1.

Thus by Theorem 2, we have

• c3,0(5) = 6, c3,1(5) = 8, c3,2(5) = 2, c3,0(n) = 6 · 2n−5 and c3,±1(n) = 10 · 2n−6 for
n > 5;

• cp,0(n) = 6 · 2n−5, cp,±1(n) = 8 · 2n−6, cp,±2(n) = 2 · 2n−6, and cp,i(n) = 0 for all
i 6≡ 0,±1,±2 (mod p) if p > 3.

The case n = 2pd + 2pe with d 6= e will again be tedious. Computations in Sage based
on the definition of cp(n) show that c3(20) = c3(2203) = 212(42, 43, 43).

We compute cp(n) based on its definition for small values of n and p in Sage and give
our data in Table 1, which agree with the results in this section; note that the power of
2 given by Corollary 3 may or may not be the highest in cp,i(n).

n p = 2 p = 3 p = 5 p = 7 p = 11

2 2(0, 1) 2(0, 1, 0) 2(0, 1, 0, 0, 0) 2(0, 1, 0, 0, 0, 0, 0) 2(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
3 2(1, 1) 2(0, 1, 1) 2(0, 1, 1, 0, 0) 2(0, 1, 1, 0, 0, 0, 0) 2(0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

4 23(0, 1) 2(2, 1, 1) 2(1, 1, 0, 2, 0) 2(0, 1, 0, 2, 0, 1, 0) 2(0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0)

5 23(1, 1) 2(3, 4, 1) 23(0, 1, 0, 0, 1) 2(0, 1, 3, 0, 3, 0, 1) 2(1, 1, 0, 0, 2, 1, 1, 0, 0, 2, 0)

6 24(1, 1) 24(0, 1, 1) 23(2, 1, 0, 0, 1) 2(4, 1, 0, 2, 0, 9, 0) 2(0, 1, 2, 2, 2, 2, 1, 2, 2, 0, 2)

7 25(1, 1) 22(6, 5, 5) 22(6, 4, 1, 1, 4) 25(0, 1, 0, 0, 0, 0, 1) 2(5, 9, 1, 0, 3, 3, 4, 1, 1, 5, 0)

8 27(0, 1) 2(21, 17, 26) 2(22, 9, 12, 12, 9) 25(2, 1, 0, 0, 0, 0, 1) 2(6, 7, 5, 5, 8, 7, 9, 6, 5, 1, 5)

9 27(1, 1) 27(0, 1, 1) 22(19, 16, 8, 11, 10) 24(6, 4, 1, 0, 0, 1, 4) 2(4, 13, 13, 5, 12, 14, 22, 6, 19, 10, 10)

10 28(1, 1) 27(2, 1, 1) 28(0, 1, 0, 0, 1) 23(20, 9, 7, 6, 6, 7, 9) 2(27, 25, 35, 14, 16, 38, 19, 20, 13, 24, 25)

11 29(1, 1) 26(6, 5, 5) 26(6, 4, 1, 1, 4) 22(56, 40, 21, 39, 39, 21, 40) 29(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

12 210(1, 1) 29(2, 1, 1) 24(38, 30, 15, 15, 30) 2(204, 139, 134, 137, 137, 134, 139) 29(2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

13 211(1, 1) 26(30, 17, 17) 23(134, 102, 87, 87, 102) 2(503, 276, 294, 241, 209, 316, 209) 28(6, 4, 1, 0, 0, 0, 0, 0, 0, 1, 4)

14 212(1, 1) 23(406, 309, 309) 2(999, 855, 716, 666, 860) 212(0, 1, 0, 0, 0, 0, 1) 27(20, 9, 6, 6, 0, 1, 1, 0, 6, 6, 9)

15 28(35, 29) 210(6, 5, 5) 212(0, 1, 1, 1, 1) 210(6, 4, 1, 0, 0, 1, 4) 26(64, 23, 9, 30, 13, 21, 21, 13, 30, 9, 23)

Table 1: cp(n) for small values of p and n
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4 Type B

In this section we study the ribbon numbers in type B. We first recall some basic defi-
nitions and properties on Coxeter groups of type B; see Björner and Brenti [4] for more
details.

A signed permutation of [n] is a bijection w from {±1, . . . ,±n} to itself such that
w(−i) = −w(i) for all i; this can be expressed as a word w = w(1)w(2) · · ·w(n), where a
negative number −j is often written as j̄. The signed permutations of [n] form the hyper-
octahedral group SB

n , whose order is 2n·n!. This group can be generated by s0, s1, . . . , sn−1,
where s0 := 1̄2 · · ·n and s1, . . . , sn−1 are the adjacent transpositions, with relations

s2i = 1, 0 6 i 6 n− 1,

s0s1s0s1 = s1s0s1s0,

sisi+1si = si+1sisi+1, 1 6 i 6 n− 2,

sisj = sjsi, |i− j| > 1.

Thus SB
n is the Coxeter group of type Bn for n > 2, whose Coxeter diagram is below.

s0
4
s1 s2 · · · sn−2 sn−1

Given a signed permutation w ∈ SB
n , its length `(w) can be described combinatorially,

and with w(0) := 0 and each si identified with i, we have the descent set

D(w) = {i ∈ {0, 1, . . . , n− 1} : w(i) > w(i+ 1)}.

A sequence α = (α1, . . . , α`) of integers with α1 > 0, α2, . . . , α` > 0, and |α| :=
α1 + · · · + α` = n is called a pseudo-composition of n and written as α |=0 n. There is a
bijection sending α |=0 n to its descent set

D(α) := {α1, α1 + α2, . . . , α1 + · · ·+ α`−1} ⊆ {0, 1, . . . , n− 1},

which can also be encoded in a binary string a0a1 · · · an with ai = 1 if and only if i ∈
D(α) ∪ {n}. Thus there are exactly 2n pseudo-compositions of n, and they form a poset
under the reverse refinement 4, which is isomorphic to the Boolean algebra of subsets of
{0, 1, . . . , n− 1} via α 7→ D(α).

Similarly to type A, the group algebra of SB
n has a deformation called the type B

0-Hecke algebra HB
n (0), which is generated by π0, π1, . . . , πn−1 with relations

π2
i = πi, 0 6 i 6 n− 1,

π0π1π0π1 = π1π0π1π0,

πiπi+1πi = πi+1πiπi+1, 1 6 i 6 n− 2,

πiπj = πjπi, |i− j| > 1.
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The irreducible modules of HB
n (0) are indexed by pseudo-compositions α |=0 n, and so

are the projective indecomposable modules. The former are all one dimensional, while
the latter have dimensions given by the type B ribbon numbers

rBα :=
{
w ∈ SB

n : D(w) = D(α)
}
.

We need a formula for rBα to reduce it modulo a prime p.

Proposition 11. For each pseudo-composition α of n, we have

rBα =
∑
β4α

(−1)`(α)−`(β)2n−β1
(
n

β

)
.

Proof. Given a pseudo-composition β = (β1, . . . , β`) of n, the number of signed permuta-
tions in SB

n with descent set contained in D(β) is

2nn!

2β1β1! · · · β`!
= 2n−β1

(
n

β

)
.

It is straightforward to prove this either by a direct combinatorial argument or using
the quotient of SB

n by its parabolic subgroup indexed by the pseudo-composition βc of
n with D(βc) = {0, 1, . . . , n} \ D(β). The desired formula then follows from inclusion-
exclusion.

Using the same strategy as in type A, we can determine the type B composition
dimension p-vector cBp (n) :=

(
cBp,i(n) : i ∈ Zp

)
, where

cBp,i(n) :=
∣∣{α |=0 n : rBα ≡ i (mod p)

}∣∣ .
We first solve the case p = 2.

Corollary 12. We have c2,0(n) = 0 and c2,1(n) = 2n, i.e., rBα is odd for every pseudo-
composition α of n.

Proof. Let α be a pseudo-composition of n. By Proposition 11, rBα is a sum over pseudo-
compositions β 4 α, where the summand indexed by β is odd if and only if β1 = n, i.e.,
β = (n). Thus rBα is odd.

From now on, we may assume that p is an odd prime.

Theorem 13. Let p be an odd prime and n > 2 an integer with [n]p = (n0, n1, . . . , nk).
Define

P :=
{
b0 + b1p+ · · ·+ bkp

k : 0 6 bj 6 nj, j = 0, 1, . . . , k
}
\ {n},

which is a subset of {0, 1, . . . , n− 1} with |P | = (n0 + 1) · · · (nk + 1)− 1. For each T ⊆ P ,
define

rB(T ) :=
∑

β|=0n, D(β)⊆T
β1j+···+β`j=nj , ∀j

(−1)|T |−|D(β)|
k∏
j=0

2nj−β1j
(

nj
β1j, . . . , β`j

)
.
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Here β = (β1, . . . , β`) is a pseudo-composition of n with [βi]p = (βi0, βi1, . . . , βid) for
i = 1, . . . , `. Then

cBp,i(n) =


2n+1−(n0+1)···(nk+1)

∣∣{T ⊆ P : rB(T ) ≡ i (mod p)}
∣∣ , if i = 0 or n0 = · · ·

= nk−1 = p− 1;

2n−(n0+1)···(nk+1)
∣∣{T ⊆ P : rB(T ) ≡ ±i (mod p)}

∣∣ , otherwise.

Proof. Let α be a pseudo-composition of n, whose corresponding binary string is a =
a0a1 · · · an with an = 1. We use Proposition 11 to reduce rBα modulo p. We have β 4 α if
and only if ar = 1 for all r in{

s∑
i=1

k∑
j=0

βijp
j : s = 1, . . . `− 1

}
.

Moreover, if
(
n
β

)
6≡ 0 (mod p) then β1j+ · · ·+β`j = nj for all j = 0, 1, . . . , k by Theorem 1,

and this implies D(β) ⊆ P . Thus to find which pseudo-compositions β with
(
n
β

)
6≡ 0

(mod p) are refined by α, it suffices to look at the substring â := (ar : r ∈ P ) of a. It is
easy to see that P is a subset of {0, 1, . . . , n− 1} with |P | = (n0 + 1) · · · (nk + 1)− 1.

Fix any binary string b indexed by P with supp(b) := {r ∈ P : br = 1} = T , and
suppose â = b. Then we have exactly 2n−|P | possibilities for α, half of which have even
lengths by toggling aj for some j ∈ {0, 1, . . . , n− 1} \P unless P = {0, 1, . . . , n− 1}, i.e.,
n0 = · · · = nk−1 = p− 1. We also have

n− β1 =
k∑
j=0

(nj − β1j)pj =⇒ 2n−β1 ≡
k∏
j=0

2nj−β1j (mod p)

by Fermat’s little theorem. Combining this with Proposition 11 and Theorem 1 we obtain

rBα ≡
∑
β|=0n
D(β)⊆T

(−1)`(α)−`(β)
k∏
j=0

2nj−β1j
(

nj
β1j, . . . , β`j

)
≡ rB(T ) (mod p).

The result follows.

We derive some consequences of Theorem 13 below.

Corollary 14. Let p be an odd prime and n > 2 an integer with [n]p = (n0, . . . , nk). For
all i ∈ Zp we have cBp,i(n) = cBp,−i(n) unless n0 = · · · = nk−1 = p− 1 and

cBp,i(n) is divisible by

{
2n+2−(n0+1)···(nk+1), if i = 0 or n0 = · · · = nk−1 = p− 1;

2n+1−(n0+1)···(nk+1), otherwise.

Proof. Theorem 13 immediately implies that cBp,i(n) = cBp,−i(n) for all i ∈ Zp unless n0 =
· · · = nk−1 = p − 1. The symmetry rSI = rSS\I for the ribbon numbers of a finite Coxeter

system (W,S) mentioned in Section 2 implies that rB(T ) ≡ rB(P \ T ) (mod p). Thus
cBp,i(n) is divisible by the desired power of 2.
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We can make Theorem 13 more explicit in some special situations. We begin with the
case when n is a multiple of a power of an odd prime p.

Corollary 15. If n = mpd, where p is an odd prime, m ∈ {1, . . . , p− 1} and d > 0 is an
integer, then

cBp,i(n) =

{
2n−m|{γ |=0 m : rBγ ≡ i (mod p)}|, if i = 0 or d = 0;

2n−m−1|{γ |=0 m : rBγ ≡ ±i (mod p)}|, otherwise.

Proof. By Theorem 13, we have [n]p = (0, . . . , 0,m), P = {jpd : j = 0, 1, . . . ,m − 1},
and each T ⊆ P corresponds to a pseudo-composition γ |=0 m with descent set D(γ) =
{t/pd : t ∈ T} such that

rB(T ) =
∑
β|=0n
D(β)⊆T

(−1)|T |−|D(β)|
d∏
j=0

2nj−β1j
(

nj
β1j, . . . , β`j

)

=
∑
δ4γ

(−1)`(γ)−|`(δ)|2k−δ1
(
k

δ

)
= rBγ ,

where δ is obtained from β by dividing each part by pd. The result follows.

Example 16. Corollary 15 becomes trivial when d = 0. Assume d > 0 below. For
m = 1, 2, 3 we can compute rBγ for all γ |= m:

• rB(1) = rB(0,1) = 1, rB(2) = rB(0,1,1) = 1, rB(1,1) = rB0,2 = 3,

• rB(3) = rB(0,1,1,1) = 1, rB(2,1) = rB(0,1,2) = 5, rB(0,3) = rB(1,1,1) = 7, rB(1,2) = rB(0,2,1) = 11.

Thus we have the following by Corollary 15, where p is an odd prime.

• Assume n = pd. Then cp(n) = (0, 2n−1, 0, . . . , 0, 2n−1).

• Assume n = 2pd. Then cp(n) = 2n−2(2, 1, 1) when p = 3 and cp,i(n) = 2n−2 if
i ≡ ±1,±3 (mod p) or cp,i(n) = 0 otherwise when p > 3.

• Assume n = 3pd. If p = 5 then cp(n) = 2n−3(2, 2, 1, 1, 2). If p = 7 then cp(n) =
2n−3(2, 1, 1, 1, 1, 1, 1). If p = 11 then cp(n) = 2n−3(2, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1). For
p > 11, cp,i(n) = 2n−3 if i ≡ ±1,±5,±7,±11 (mod p) or cp,i(n) = 0 otherwise.

Next, we consider the case when n is a sum of distinct powers of an odd prime p.

Corollary 17. Suppose n = pd1 + · · ·+ pdk , where p is an odd prime, 0 6 d1 < · · · < dk,
and k > 1. Define

P :=
{
U : U $ {pd1 , . . . , pdk}

}
ordered by 4
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where U denotes the sum of all elements of U and U 4 V in the poset P if and only if
U ⊆ V . Then

cBp,i(n) =

{
2n−2

d+1
∣∣{T ⊆ P : χB(T ) ≡ i (mod p)

}∣∣ , if i = 0;

2n−2
d |{T ⊆ P : χB(T ) ≡ ±i (mod p)}|, otherwise.

Here χB(T ) is the following sum over chains (including the empty one) in T (as a subposet
of P ):

χB(T ) :=
∑

U1$···$Uh$Uh+1={pd1 ,··· ,pdk}
U1,...,Uh∈T

(−1)h2d−|U1|

Proof. By Theorem 13, we have P =
{
U : U $ {pd1 , . . . , pdk}

}
with |P | = 2k − 1, and for

every T ⊆ P ,
rB(T ) = (−1)|T |χB(T )

since in the definition of rB(T ), a pseudo-composition β |=0 n satisfies D(β) ⊆ T if and
only if D(β) gives a chain of cardinality |D(β)| in T , the power 2nj−β1j is either 2 when
nj = 1 and β1j = 0 or 1 when nj = β1j ∈ {0, 1}, and the multinomial coefficients involved
are all equal to one. The result then follows immediately (the case n0 = · · · = nk−1 = p−1
does not occur since k > 1).

We have the following example when n is a sum of two distinct powers of a prime p.

Example 18. Suppose n = u + v, where u and v are distinct powers of a prime p. By
Corollary 17, we have P = {0, u, v} and for every T ⊆ P , we compute χB(T ) below.

• The only chain in T = ∅ is the empty chain, so χB(∅) = 1.

• The only nonempty chain in T = {0} is 0 = ∅, so χB({0}) = 1− 22 = −3.

• The only nonempty chain in T = {u} is u, so χB({u}) = 1− 2 = −1.

• The only nonempty chains in T = {0, u} are 0, u, and 0 4 u, so χB({0, u}) =
1− 22 − 2 + 22 = −1.

• The only nonempty chains in T = {u, v} are u and v, so χB({u, v}) = 1−2−2 = −3.

• The only nonempty chains in T = {0, u, v} are 0, u, v, 0 4 u, and 0 4 v, so
χB({0, u, v}) = 1− 22 − 2− 2 + 22 + 22 = 1.

Note that swapping u and v does not change χB(T ). It follows that cBp (n) = 2n−3(2, 3, 3)
when p = 3, and cBp,±1(n) = 3 · 2n−3, cBp,±3(n) = 2n−3, and cBp,i(n) = 0 if i 6≡ ±1,±3
(mod p) when p > 3. For example, we have cB3 (4) = (4, 6, 6), cB3 (10) = (256, 384, 384),
cB5 (6) = (0, 24, 8, 8, 24), and cB7 (8) = (0, 96, 0, 32, 32, 0, 96).

We compute cBp (n) based on its definition for small values of n and p in Sage and give
our data in Table 2, which agree with the results in this section; note that the power of
2 given by Corollary 14 may or may not be the highest in cBp,i(n).
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n p = 3 p = 5 p = 7 p = 11

2 2(1, 1, 0) 2(0, 1, 0, 1, 0) 2(0, 1, 0, 1, 0, 0, 0) 2(0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0)

3 22(0, 1, 1) 2(1, 2, 1, 0, 0) 2(1, 1, 0, 0, 1, 1, 0) 2(1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0)

4 2(2, 3, 3) 2(1, 3, 3, 1, 0) 2(1, 3, 1, 2, 0, 0, 1) 2(0, 2, 1, 0, 1, 0, 1, 1, 1, 1, 0)

5 2(4, 9, 3) 24(0, 1, 0, 0, 1) 2(4, 1, 4, 2, 4, 0, 1) 2(3, 1, 2, 0, 0, 1, 1, 2, 1, 5, 0)

6 24(2, 1, 1) 23(0, 3, 1, 1, 3) 2(4, 7, 4, 6, 5, 2, 4) 2(4, 7, 1, 2, 2, 3, 2, 1, 9, 1, 0)

7 24(2, 3, 3) 22(6, 7, 6, 6, 7) 26(0, 1, 0, 0, 0, 0, 1) 2(7, 3, 6, 5, 7, 9, 8, 7, 5, 6, 1)

8 2(50, 39, 39) 23(6, 8, 5, 5, 8) 25(0, 3, 0, 1, 1, 0, 3) 2(13, 13, 11, 13, 8, 10, 11, 12, 13, 10, 14)

9 28(0, 1, 1) 2(52, 59, 49, 56, 40) 24(4, 6, 3, 5, 5, 3, 6) 2(29, 15, 29, 25, 19, 19, 26, 21, 37, 21, 15)

10 27(2, 3, 3) 28(0, 1, 1, 1, 1) 23(26, 19, 19, 13, 13, 19, 19) 2(59, 46, 51, 47, 43, 47, 41, 50, 37, 51, 40)

11 28(2, 3, 3) 26(6, 7, 6, 6, 7) 22(58, 91, 62, 74, 74, 62, 91) 210(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

12 29(2, 3, 3) 26(6, 12, 17, 17, 12) 2(248, 256, 307, 337, 337, 307, 256) 29(0, 3, 0, 1, 0, 0, 0, 0, 1, 0, 3)

13 27(18, 23, 23) 22(458, 440, 355, 355, 440) 2(570, 696, 516, 565, 571, 525, 653) 28(2, 6, 0, 4, 2, 3, 3, 2, 4, 0, 6)

14 25(166, 173, 173) 2(1523, 1775, 1647, 1567, 1680) 212(0, 1, 0, 1, 1, 0, 1) 27(14, 14, 13, 9, 10, 11, 11, 10, 9, 13, 14)

15 212(2, 3, 3) 212(2, 2, 1, 1, 2) 210(4, 6, 3, 5, 5, 3, 6) 26(44, 48, 49, 40, 52, 45, 45, 52, 40, 49, 48)

Table 2: cBp (n) for small values of p and n

5 Type D

Now we study the ribbon numbers in type D. The reader is referred to Björner and
Brenti [4] for details on Coxeter groups of type D.

A signed permutation w ∈ SB
n is even (resp., odd) if the number of negative in

w(1), w(2), . . . , w(n) is even (resp., odd). The even signed permutations in SB
n form a

subgroup SD
n , which is generated by s0 := 2̄1̄3 · · ·n (different from s0 in type B) and the

adjacent transpositions s1, . . . , sn−1 with the relations
s2i = 1, 0 6 i 6 n− 1,

s0s2s0 = s2s0s2,

sisi+1si = si+1sisi+1, 1 6 i 6 n− 2,

sisj = sjsi, |i− j| > 1.

Thus SD
n is the Coxeter group of type Dn for n > 4, whose Coxeter diagram is given

below.
s0

s2 s3 · · · sn−2 sn−1
s1

We have |SD
n | = 2n−1n! since toggling the sign of w(n) gives a bijection between even

and odd signed permutations of [n]. For each w ∈ SD
n , the combinatorial interpretation

of the length of w in SD
n is slightly different from its length in SB

n , but its descent set can
be described in a similar way as in type B with the convention that w(0) := −w(2):

D(w) = {i ∈ {0, 1, . . . , n− 1 : w(i) > w(i+ 1)}

The type D 0-Hecke algebra HD
n (0) is generated by π0, π1, . . . , π2; the relations satisfies

by these generators are the same as the above relations for s0, s1, . . . , sn−1 except that
π2
i = πi for i = 0, 1, . . . , n − 1. Both irreducible modules and projective indecomposable
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modules of HD
n (0) are indexed by pseudo-compositions α |=0 n. The former are all one

dimensional, whereas the latter have dimensions given by the type D ribbon numbers

rDα := |{w ∈ SD
n : D(w) = D(α)}|.

To study rDα , we need the following formula.

Proposition 19. For each pseudo-composition α of n, we have

rDα =
∑
β4α

(−1)`(α)−`(β)ν(β),

where

ν(β) :=


2n−1

(
n
β

)
, if β1 = 0;

2n−1
(

n
1+β2,β3,...,β`

)
, if β1 = 1;

2n−β1
(
n
β

)
, if 1 < β1 6 n.

Proof. It suffices to show that the number of signed permutations in SD
n with descent

set contained in D(β) is ν(β) for every pseudo-composition β of n. This can be proved
by considering the quotient of SD

n by its parabolic subgroup generated by {si : i ∈
{0, 1, . . . , n−1}\D(β)}. Alternatively, the following case-by-case combinatorial argument
on |{w ∈ SD

n : D(w) ⊆ D(β)}| works.

Case 1: β1 = 0. Then w ∈ SD
n has D(w) ⊆ D(β) if and only if

w(1) < · · · < w(β2), w(β2+1) < · · · < w(β2+β3), · · · , w(β2+· · ·+β`−1+1) < · · · < w(n).

There are 2n
(
n
β

)
signed permutations w ∈ SB

n satisfying the above, half of which belong

to SD
n by toggling w(n). Thus the number of signed permutations w ∈ SD

n belonging to
this case is 2n−1

(
n
β

)
.

Case 2: β1 = 1. Then w ∈ SD
n has D(w) ⊆ D(β) if and only if

− w(2) < w(1), w(2) < · · · < w(1 + β2),

w(2 + β2) < · · · < w(1 + β2 + β3), . . . , w(2 + β2 + · · ·+ β`−1) < · · · < w(n).

We may replace −w(2) < w(1) with |w(1)| < w(2) or |w(2)| < w(1).
If the former holds, then 0 < |w(1)| < w(2) < · · · < w(1 + β2) and the sign of w(1) is

determined by the signs of w(i) for all i > 1 + β2, so the number of possibilities for w is

2n−1−β2n!

(1 + β2)!β3! · · · β`!
.

If the latter holds, then for each i ∈ {3, . . . , 1 + β2} with |w(i)| > w(1), we must have
w(i) > 0 (otherwise w(i) < −w(1) < w(2)), so the number of possibilities for w is

β2−1∑
j=0

2n−2−jn!

(1 + β2)!β3! · · · β`!
=

2n−1−β2(2β2 − 1)n!

(1 + β2)!β3! · · · β`!
.
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Here j := {i : |w(i)| > w(1), 3 6 i 6 1 + β2}.
Adding the above two results, we have the number of signed permutations w ∈ SD

n

belonging to this case is 2n−1
(

n
1+β2,β3,...,β`

)
.

Case 3: β1 > 1. Then w ∈ SD
n has D(w) ⊆ D(β) if and only if

− w(2) < w(1) < w(2) < · · · < w(β1), |w(1)| < w(2) < · · · < w(β1),

w(β1 + 1) < · · · < w(β1 + β2), . . . , w(β1 + · · ·+ β`−1 + 1) < · · · < w(n).

Note that the sign of w(1) is determined by the signs of w(i) for all i > β1. Thus the
number of signed permutations w ∈ SD

n belonging to this case 2n−β1
(
n
β

)
.

Using the same strategy for type A and type B, we determine the type D composition
dimension p-vector cDp (n) :=

(
cDp,i(n) : i ∈ Zp

)
, where

cDp,i(n) := |{α |=0 n : rDα ≡ i (mod p)}|.

We first settle the case p = 2.

Corollary 20. If n > 4 then cD2 (n) = (0, 2n), i.e., rDα is odd for all α |=0 n.

Proof. Let α be a pseudo-composition of n. Then rDα is odd by Proposition 19, since for
each β 4 α, we have ν(β) is odd if and only if β1 = n, i.e., β = (n).

From now on we may assume that p is an odd prime.

Theorem 21. Let p be an odd prime and n > 4 an integer with [n]p = (n0, n1, . . . , nk).
For each pseudo-composition β = (β1, . . . , β`) of n with [βi]p = (βi0, βi1, . . . , βid),

• if β1 = 0 then define β′ := β and νp(β
′) := 1

2

∏d
j=0 2nj

(
nj

β1j ,...,β`j

)
;

• if β1 = 1 then define β′ := (0, 1 + β2, β3, . . . , β`) |=0 n and νp(β
′) as in the last case;

• if β1 > 1 then define β′ := β and νp(β
′) :=

∏d
j=0 2nj−β1j

(
nj

β1j ,...,β`j

)
.

For each T ⊆ P :=
{
b0 + b1p+ · · ·+ bkp

d : 0 6 bj 6 nj, j = 0, 1, . . . , k
}
∪ {1} \ {n} ⊆

{0, 1, . . . , n− 1}, let

rD(T ) :=
∑

β|=0n, D(β)⊆T
β′
1j+···+β′

`j=nj , ∀j

(−1)|T |−|D(β)|νp(β
′).

Then |P | = (n0 + 1) · · · (nk + 1) if b0 = 0 or |P | = (n0 + 1) · · · (nk + 1)− 1 of b0 > 0, and

cDp,i(n) =


2n−|P |

∣∣{T ⊆ P : rD(T ) ≡ i (mod p)}
∣∣ , if i = 0 or

n0 = · · · = nk−1 = p− 1;

2n−|P |−1
∣∣{T ⊆ P : rD(T ) ≡ ±i (mod p)}

∣∣ , otherwise.
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Proof. We determine cDp (n) by using Proposition 19 to reduce rDα modulo p for an arbitrary
pseudo-composition α of n. Let a = a0a1 · · · an be the binary string corresponding to α,
that is, ai = 1 if and only if i ∈ D(α) ∪ {n}. We have β 4 α if and only if ar = 1 for all
r in {

s∑
i=1

d∑
j=0

βijp
j : s = 1, . . . `− 1

}
.

If ν(β) 6≡ 0 (mod p), then β′1j + · · · + β′`j = nj for all j = 0, 1, . . . , k by Theorem 1, and
this implies D(β) ⊆ P . Thus to find which pseudo-compositions β with ν(β) 6≡ 0 (mod p)
are refined by α, it suffices to look at the substring â := (ar : r ∈ P ) of a. It is easy to
check that P is a subset of {0, 1, . . . , n− 1} with

|P | =

{
(n0 + 1) · · · (nk + 1), if 1 /∈ P , i.e., b0 = 0;

(n0 + 1) · · · (nk + 1)− 1, if 1 ∈ P , i.e., b0 > 0.

Let b be a fixed binary string indexed by P with supp(b) := {r ∈ P : br = 1} = T ,
and suppose â = b. We have exactly 2n−|P | possibilities for α, half of which have even
lengths by toggling aj for some j ∈ {0, 1, . . . , n− 1} \P unless P = {0, 1, . . . , n− 1}, i.e.,
n0 = · · · = nk−1 = p− 1. By Fermat’s little theorem, we have

n− 1 = −1 +
d∑
j=0

njp
j =⇒ 2n−1 ≡ 1

2

d∏
j=0

2nj (mod p),

n− β1 =
d∑
j=0

(nj − β1j)pj =⇒ 2n−β1 ≡
d∏
j=0

2nj−β1j (mod p).

Combining this with Proposition 19 and Theorem 1 we obtain

rDα ≡
∑

β|=0n, D(β)⊆T
β′
1j+···+β′

`j=nj , ∀j

(−1)`(α)−`(β)νp(β
′) ≡ rD(T ) (mod p).

The result follows.

We derive some consequences of Theorem 13 below.

Corollary 22. For all i ∈ Zp, we have that cDp,i(n) = cDp,−i(n) unless n0 = · · · = nk−1 =
p− 1 and that cDp,i(n) is divisible by

2n+2−(n0+1)···(nk+1), if (n0 > 0 and i = 0) or n0 = · · · = nk−1 = p− 1;

2n−(n0+1)···(nk+1), if n0 = 0 and i 6= 0;

2n+1−(n0+1)···(nk+1), otherwise.
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Proof. Theorem 21 immediately implies that cDp,i(n) = cDp,−i(n) for all i ∈ Zp unless n0 =
· · · = nk−1 = p − 1. The symmetry rSI = rSS\I for the ribbon numbers of a finite Coxeter

system (W,S) mentioned in Section 2 implies r(T ) ≡ r(P \ T ) (mod p). Thus cDp,i(n) is

divisible by 2n−|P |+1 if i = 0 or n0 = · · · = nk−1 = p − 1 or divisible by 2n−|P | otherwise.
We also have |P | = (n0+1) · · · (nk+1) if n0 = 0 or |P | = (n0+1) · · · (nk+1)−1 otherwise.
The result follows.

We can make Theorem 21 more explicit in some special situations. We begin with
case when n is a small multiple of a power of p.

Corollary 23. Let p be an odd prime and d a positive integer. Then the following holds.

(i) If n = pd then cDp,0(n) = 2n−1, cDp,±1(n) = 2n−2, and cDn,i(n) = 0 for all i 6≡ 0,±1
(mod p).

(ii) If n = 2pd then cDp,±1(n) = 3 · 2n−3, cDp,±3(n) = 2n−3, and cDn,i(n) = 0 for all i 6≡
0,±1,±3 (mod p) when p > 3 and cD3 (n) = (2n−2, 3 · 2n−3, 3 · 2n−3).

(iii) Suppose n = 3pd below.

If p = 5 then cD5 (n) = (2n−3, 2n−3, 5 · 2n−4, 5 · 2n−4, 2n−3).

If p = 7 then cD7 (n) = (2n−3, 2n−3, 5 · 2n−4, 5 · 2n−4, 2n−3).

If p = 11 then cD11(n) = (2n−3, 2n−4, 0, 2n−2, 2n−4, 2n−4, 2n−4, 2n−4, 2n−2, 0, 2n−4).

If p > 11 then cDp,±1(n) = 2n−4, cDp,±3(n) = 2n−2, cDp,±5(n) = 2n−4, cDp,±7(n) = 2n−4,
cDp,±11(n) = 2n−4, and cDp,i(n) = 0 for all i 6≡ ±1,±3,±5,±7,±11 (mod p).

Proof. We apply Theorem 21 to the following cases.
(i) Suppose n = pd for some integer d > 0. We compute rD(T ) for every T ⊆ P :=

{0, 1}. For each β in the definition of rD(T ), we have

νp(β
′) =

{
1, if β ∈ {(n)};
1− 1− 1 = −1, if β ∈ {(0, n), (1, n− 1)}.

Thus

rD(T ) =


1− 1− 1 = −1, if T = {0, 1};
(−1)(1− 1) = 0, if T = {0} of {1};
1, if T = ∅.

It follows that cDp,0(n) = 2n−1, cDp,±1(n) = 2n−2, and cDn,i(n) = 0 for all i 6≡ 0,±1 (mod p).
(ii) Suppose n = 2pd for some integer d > 0. We compute rD(T ) for every T ⊆ P :=

{0, 1, pd}. For each β in the definition of rD(T ), we have

νp(β
′) =


1, if β ∈ {(n)};
2, if β ∈ {(0, n), (1, n− 1)};
4, if β ∈ {(0, pd, pd), (1, pd − 1, pd), (pd, pd)}.
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Thus

rD(T ) =



(−1)(1− 2− 2− 4 + 4 + 4) = −1, if T = {0, 1, pd};
1− 2− 2 = −3, if T = {0, 1};
1− 2− 4 + 4 = −1, if T = {0, pd} or {1, pd};
(−1)(1− 2) = 1, if T = {0} or {1};
(−1)(1− 4) = 3, if T = {pd};
1, if T = ∅.

It follows that cDp,0(n) = 2n−2, cDp,±1(n) = 3 ·2n−3, and cDn,i(n) = 0 for all i 6≡ 0,±1 (mod p)
if p = 3 and cDp,±1(n) = 3 · 2n−3, cDp,±3(n) = 2n−3, and cDn,i(n) = 0 for all i 6≡ 0,±1,±3
(mod p) if p > 3.

(iii) Suppose n = 3pd for some integer d > 0. We compute rD(T ) for every T ⊆ P :=
{0, 1, pd, 2pd}. For each β in the definition of rD(T ), we have

νp(β
′) =



1, if β ∈ {(n)};
4, if β ∈ {(0, n), (1, n− 1)};
6, if β ∈ {(2pd, pd)};
12, if β ∈ {(0, pd, 2pd), (0, 2pd, pd), (1, pd − 1, 2pd), (1, 2pd − 1, pd), (pd, 2pd)};
24, if β ∈ {(0, pd, pd, pd), (1, pd − 1, pd, pd), (pd, pd, pd)}.

Thus

rD(T ) =



1− 4 · 2− 6− 12 + 12 · 4 + 24− 24 · 2 = −1, if T = {0, 1, pd, 2pd};
(−1)(1− 4 · 2− 12 + 12 · 2) = −5, if T = {0, 1, pd};
(−1)(1− 4 · 2− 6 + 12 · 2) = −11, if T = {0, 1, 2pd};
(−1)(1− 4− 6− 12 + 12 · 2 + 24− 24) = −3, if T = {0, pd, 2pd}

or {1, pd, 2pd};
1− 4− 4 = −7, if T = {0, 1};
1− 6− 12 + 24 = 7, if T = {pd, 2pd};
1− 4− 12 + 12 = −3, if T = {0, pd} or {1, pd};
1− 4− 6 + 12 = 3, if T = {0, 2pd} or {1, 2pd};
(−1)(1− 4) = 3, if T = {0} or {1};
(−1)(1− 12) = 11, if T = {pd};
(−1)(1− 6) = 5, if T = {2pd};
1, if T = ∅.

The result on cDp (n) follows.

Next, we study the case when n is a sum of two distinct powers of p.

Corollary 24. Let p be an odd prime. The following holds for cDp (n).
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(i) If n = 1 + pd for some integer d > 0 then cDp,±1(n) = 2n−1 and cDp,i(n) = 0 for all
i 6≡ ±1 (mod p).

(ii) If n is the sum of two distinct positive powers of p then cDp,±1(n) = 7·2n−4, cDp,±3(n) =
2n−4, and cDp,i(n) = 0 for all i 6≡ ±1,±3 (mod p) when p > 3 and cDp (n) = (2n−3, 7 ·
2n−4, 7 · 2n−4) when p = 3.

Proof. We apply Theorem 21 to the following cases.
(i) Suppose n = 1 + pd for some integer d > 0. We compute rD(T ) for every T ⊆ P :=

{0, 1, pd}. For each β appearing in the definition of rD(T ), we have

νp(β
′) =

{
1, if β ∈ {(n)};
2, if β ∈ {(0, n), (0, 1, pd), (0, pd, 1), (1, pd − 1, 1), (1, pd), (pd, 1)}.

Thus

rD(T ) =


(−1)(1− 2− 2− 2 + 2 + 2 + 2) = −1, if |T | = 3;

1− 2− 2 + 2 = −1, if |T | = 2;

(−1)(1− 2) = 1, if |T | = 1;

1, if |T | = 0.

Thus cDp,±1(n) = 2n−1 and cDp,i(n) = 0 for all i 6≡ ±1 (mod p).
(ii) Suppose n = i + j, where i and j are distinct positive powers of p. We compute

rD(T ) for every T ⊆ P := {0, 1, i, j}. For each β appearing in the definition of rD(T ), we
have

νp(β
′) =


1, if β ∈ {(n)};
2, if β ∈ {(0, n), (0, i, j), (0, j, i),

(1, n− 1), (1, i− 1, j), (1, j − 1, i), (i, j), (j, i)}.

Thus

rD(T ) =



1− 2 · 4 + 2 · 4 = 1, if |T | = 4;

(−1)(1− 2 · 3 + 2 · 2) = 1, if |T | = 3;

1− 2− 2 + 2 = −1, if T ∈ {{0, i}, {0, j}, {1, i}, {1, j}};
1− 2− 2 = −3, if T ∈ {{0, 1}, {i, j}};
(−1)(1− 2) = 1, if |T | = 1;

1, if |T | = 0;

It follows that cDp,±1(n) = 7 · 2n−4, cDp,±3(n) = 2n−4, and cDp,i(n) = 0 for all i 6≡ ±1,±3
(mod p) when p > 3 and cD3 (n) = (2n−3, 7 · 2n−4, 7 · 2n−4).

For small values of p and n, we compute cDp (n) in Sage based on its definition and
provide our data in Table 3, which agrees with the results in this section; note that the
power of 2 given by Corollary 22 may or may not be the highest in cDp,i(n).
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n p = 3 p = 5 p = 7 p = 11

4 (0, 8, 8) (0, 2, 12, 2, 0) (6, 2, 2, 6, 0, 0, 0) (0, 4, 0, 0, 0, 0, 6, 6, 0, 0, 0)
5 (12, 16, 4) (16, 8, 0, 0, 8) (6, 6, 10, 2, 4, 0, 4) (6, 2, 2, 0, 4, 2, 6, 0, 2, 4, 4)
6 (16, 24, 24) (0, 32, 0, 0, 32) (4, 12, 10, 8, 12, 6, 12) (12, 6, 0, 0, 6, 6, 4, 4, 14, 8, 4)
7 (56, 36, 36) (16, 32, 24, 24, 32) (64, 32, 0, 0, 0, 0, 32) (18, 4, 8, 4, 22, 16, 12, 10, 16, 16, 2)
8 (96, 80, 80) (52, 62, 40, 40, 62) (0, 128, 0, 0, 0, 0, 128) (18, 28, 24, 18, 22, 18, 30, 24, 26, 22, 26)
9 (256, 128, 128) (104, 112, 100, 96, 100) (0, 128, 32, 96, 96, 32, 128) (36, 40, 72, 52, 40, 24, 38, 62, 62, 50, 36)

10 29(0, 1, 1) 27(0, 3, 1, 1, 3) 23(20, 15, 19, 20, 20, 19, 15) 2(47, 48, 45, 54, 47, 42, 36, 50, 50, 45, 48)

11 27(6, 5, 5) 26(2, 7, 8, 8, 7) 23(32, 51, 29, 32, 32, 29, 51) 29(2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

12 28(2, 7, 7) 24(38, 47, 62, 62, 47) 2(280, 250, 341, 293, 293, 341, 250) 211(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

13 26(38, 45, 45) 23(190, 237, 180, 180, 237) 2(614, 631, 521, 599, 601, 530, 600) 29(0, 4, 0, 3, 0, 1, 1, 0, 3, 0, 4)

14 24(306, 359, 359) 2(1473, 1777, 1620, 1595, 1727) 211(0, 3, 0, 1, 1, 0, 3) 27(24, 15, 6, 4, 9, 18, 18, 9, 4, 6, 15)

15 211(6, 5, 5) 211(2, 2, 5, 5, 2) 210(2, 7, 1, 7, 7, 1, 7) 26(50, 58, 48, 32, 46, 47, 47, 46, 32, 48, 58)

16 25(606, 721, 721) 210(14, 15, 10, 10, 15) 28(22, 44, 39, 34, 34, 39, 44) 25(260, 195, 257, 158, 160, 124, 124, 160, 158, 257, 195)

Table 3: cDp (n) for small values of p and n

6 Concluding remarks

In this paper, we use a result of Dickson [6] on the congruence of multinomial coefficients
to determine how many ribbon numbers indexed by compositions of n belong to each
congruence class modulo p. We apply our result to some special cases of n, that is, when
n takes the following values:

mpd, pd1 + · · ·+ pdk , 2pd + pe

For other values of n, our result becomes tedious, and it would be nice to develop a
different approach. There might be an interpretation of our results by the representation
theory of Hn(0), or by certain operations on standard tableaux of ribbon shapes, or even
by the flag h-vector of the Boolean algebra of subsets of [n−1], which could lead to results
for more values of n.

We also extend our result to type B and type D; in particular, we show that the
ribbon numbers are all odd in these two types. For the Coxeter system of I2(m), it is
routine to check that there are two descent classes of size 1 and two of size m − 1. For
Coxeter systems of exceptional types, we list the sizes of the descent classes below based
on computations in Sage, where rk means k descent classes of size r.

• F4: 12, 234, 732, 954, 972, 1692

• H3: 12, 112, 192, 292, 29

• H4: 12, 1192, 5992, 6012, 7192, 11992, 16812, 22812

• E6: 12, 264, 712, 1904, 2154, 2172, 3344, 5304, 6474, 6492, 7192, 7934, 8384, 11064,
11512, 12254, 14144, 17292, 20424, 26632

• E7: 12, 552, 1252, 5752, 7012, 7552, 13312, 18912, 20152, 33314, 34012, 40312, 54732,
66792, 67492, 73092, 79392, 80092, 81892, 87492, 95054, 100252, 100792, 106552,
107652, 146872, 153732, 155532, 160032, 168292, 181452, 194592, 200352, 214912,
215452, 223012, 229312, 255772, 262072, 262092, 268392, 274692, 288552, 295392,
301852, 309252, 342732, 349032, 382492, 396352, 410212, 423912, 444772, 451072,
496452, 504552, 550072, 591492, 625512, 698752, 733312, 941212
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Reducing the above sizes modulo a prime p gives the number c
(W,S)
p,i (n) of descent classes

of sizes congruent to i modulo p for all i ∈ Zp. For small values of p, see Table 4.

Type p = 2 p = 3 p = 5 p = 7 p = 11 p = 13

E6 25(1, 1) 25(0, 1, 1) 2(8, 7, 5, 5, 7) 22(4, 2, 1, 2, 0, 7, 0) 2(1, 4, 5, 2, 7, 1, 6, 3, 1, 2, 0) 2(5, 5, 0, 2, 1, 0, 3, 3, 2, 3, 6, 1, 1)

E7 27(0, 1) 26(0, 1, 1) 22(10, 8, 3, 3, 8) 26(0, 1, 0, 0, 0, 0, 1) 2(4, 5, 12, 3, 8, 7, 4, 8, 5, 4, 4) 2(6, 7, 7, 7, 4, 3, 4, 3, 5, 1, 4, 7, 6)

F4 24(0, 1) 23(0, 1, 1) 2(2, 1, 1, 3, 1) 2(0, 2, 2, 1, 2, 0, 1) 2(0, 3, 0, 0, 1, 0, 0, 3, 0, 1, 0) 2(1, 1, 0, 0, 2, 0, 1, 0, 1, 0, 2, 0, 0)

H3 23(0, 1) 22(0, 1, 1) 22(0, 1, 0, 0, 1) 2(0, 2, 0, 0, 1, 1, 0) 2(1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0) 2(0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0)

H4 24(0, 1) 23(0, 1, 1) 23(0, 1, 0, 0, 1) 2(1, 2, 1, 0, 1, 1, 2) 2(1, 1, 0, 0, 2, 1, 0, 1, 0, 2, 0) 2(0, 2, 1, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0)

I2(5) 2(1, 1) 22(0, 1, 0) 2(0, 1, 0, 0, 1) 2(0, 1, 0, 0, 1, 0, 0) 2(0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0) 2(0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

I2(6) 22(0, 1) 2(0, 1, 1) 2(1, 1, 0, 0, 0) 2(0, 1, 0, 0, 0, 1, 0) 2(0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0) 2(0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

I2(7) 2(1, 1) 2(1, 1, 0) 22(0, 1, 0, 0, 0) 2(0, 1, 0, 0, 0, 0, 1) 2(0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0) 2(0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

Table 4: c
(W,S)
p,i (n) for Coxeter systems (W,S) of exceptional types

The source code for our computations can be found here: https://cocalc.com/

share/public_paths/8af477db157c1e30eb5c0bc2653ffb3e2440f1c8.
An important tool used in this work is Theorem 1, which was obtained by Dickson [6]

as a generalization of Lucas’ theorem on congruence of binomial coefficients to multinomial
coefficients. Note that Davis and Webb [5] generalized Lucas’ theorem to prime powers.
Thus it might be possible to generalize our results to prime powers.

Finally, while our results are all deterministic, it would be meaningful to explore
probabilistic features of the ribbon numbers modulo a prime.
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