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Abstract

Azam and Richmond studied the generating function Pλ(y), which enumerates
(by length) partitions in the lower ideal [0, λ] in the Young lattice. They found a
rational recursion for

Qk(x, y) =
∑

λ∈Λ(k)

Pλ(y)xλ.

We show that their results can be extended to a multi-graded version.
By interpreting the original problem as one of enumerating plane partitions with

two rows, we can describe the multi-graded version of Qk using the integer transform
of a certain rational pointed polyhedral cone. We furthermore relate Azam’s and
Richmond’s result to those obtained by Andrews and Paule using MacMahon’s Ω-
operator.

Mathematics Subject Classifications: 05A17,05A15

1 Introduction

For a partition λ = (λ1 > λ2 > · · · > λk > 0), let |λ| =
∑

i λi denote its rank and k
denote its length. We use Λ(k) to denote the set of partitions with length k.

In [5] Azam and Richmond studied the rank-generating function

Pλ(y) =
∑
µ∈[0,λ]

y|µ|

of the lower order ideal [0, λ] in the Young lattice. They obtained a rational recursion for

Qk(x, y) =
∑
λ∈Λ(k)

Pλ(y)xλ,
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and concluded that Qk is a rational function, with denominator

Dk(x1, . . . , xk, y) =
k∏

m=1

m∏
j=0

(1− yj
m∏
`=1

x`).

These results were used to establish asymptotics for the average cardinality of lower
order ideals [0, λ] of partitions λ of rank n.

2 Multigradings, pairs of partitions, and plane partitions with
two rows

2.1 The generating functions Qk and Q̃k

Let us define

Qk(x,y) =
∑

∅6µ6λ∈Λ(k)

yµxλ.

Then specializing y1 = y2 = · · · = yk = y we get back the previous Qk(x, y). However,
the multigraded version can be interpreted as the generating function of plane partitions
with at most two rows, where the top row, representing λ, has λk > 0. Introducing

Q̃k(x,y) =
∑

∅6µ6λ∈Λ(6k)

yµxλ

where Λ(6 k) denotes partitions with length at most k, we have that

Q̃k =
k∑
j=0

Qj

and that

Qk = Q̃k − Q̃k−1.

2.2 Cones, hyperplanes, and polytopes

The generating function Q̃k enumerates plane partitions contained in a 2-by-k box. Ex-
plicitly, the inequalities that the integer vectors (λ, µ) ∈ Zk × Zk has to satisfy are as
follows:

λi − λj > 0 ∀i < j (1)

µi − µj > 0 ∀i < j (2)

λi − µi > 0 ∀i (3)

λi > 0 ∀i (4)

µi > 0 ∀i (5)
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We let C = Ck ⊂ Rk×Rk denote the rational pointed polyhedral cone cut out in affine
space by the above inequalities, and let Ak be its “integer transform”, that is to say, the
affine monoid Ck ∩ (Zk × Zk).

2.2.1 The case k = 2

For instance, when k = 2, the plane partitions in a 2× 2-box are(
λ1 λ2

µ1 µ2

)
λ1 > λ2 > µ2 > 0, λ1 > µ1 > µ2 > 0.

The corresponding integer transform is Q̃2(x1, x2, y1, y2); to get the plane partitions
enumerated by Q2((x1, x2, y1, y2)) we add the extra inequality λ2 > 0. The resulting
polyhedron has C2 as its recession cone.

The cone C2 ⊂ R2×R2 has 5 extremal rays, listed in Table 1. They can be calculated
using Fourier-Motzkin elimination (see for instance [12] for a description of this algorithm).
The software Normaliz [6] (which is conveniently available from within SageMath [10]) is
able to do these calculations.

Table 1: Generating rays of plane partitions inside a 2 by 2 box
0 (1, 0, 0, 0)
1 (1, 0, 1, 0)
2 (1, 1, 0, 0)
3 (1, 1, 1, 0)
4 (1, 1, 1, 1)

2.2.2 General k

For a general k, we note that all extremal rays of C = Ck intersect the affine hyperplane

H = {(λ1, . . . , λk, µ1, . . . , µk) : λ1 = 1}

in lattice points. Call the set of these points Sk. Let P = Pk be the intersection C ∩H.
Let

Tk = P ∩ (Zk × Zk).

Recall that we introduced the affine monoid

A = Ak = Ck ∩ (Zk × Zk)

whose generating function is Q̃k.

Lemma 1. Let Ck, Ak, Pk, Sk, Tk be as above. Then
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1. The cone C is the disjoint union

C = ∪t>0tP

of dilations of P .

2. Sk = Tk.

3. Denote the vector of length r consisting of all ones by 1r, and the vector of length r
consisting of all zeroes by 0r. Put

Uk = {(1a,0b,1c,0d) : a+ b = c+ d = k, a > c, a > 1}. (6)

Then Sk = Tk = Uk.

4. The polytope P is the convex hull of Sk.

5. Q̃k is the multigraded Ehrhart series of P .

6. Let Dk =
∏

r∈Sk
(1− (xy)r). Then Q̃k ×Dk is a polynomial.

7. Sk form a Hilbert basis for the affine monoid Ak.

Proof. Let (λ, µ) be a plane partition in Ak. If (λ, µ) is non-zero, then λ1 > 1. Let
(s(λ), s(µ)) be the support of the pair; here s(λ)(i) = 1 if λi > 0, and zero otherwise.
Then it is easy to see that (s(λ), s(µ)) ∈ Uk. Furthermore,

(λ, µ)− (s(λ), s(µ)) ∈ Ak.
Thus, every element in Ak is expressible as a sum of elements in Uk.
Elements in Tk are irreducible; if the partition (1a,0b) is to written as a sum of elements

in Nk×Nk, one of the summands would have to start with a zero — but this is impossible.
By Gordan’s lemma (see for instance [7]) we have that the Hilbert basis of Ak consists

of the irreducible elements in the monoid. Any element in (λ, µ) ∈ Ak with λ1 > 1 can
be written as

(λ, µ) = (s(λ), s(µ)) + ((λ, µ)− (s(λ), s(µ)))

and is thus reducible. Hence, the Hilbert basis consists precisely of Tk, and this set is
equal to Uk and Sk.

For a simplicial rational cone, the generating function has numerator 1, and denom-
inator given by the extremal rays. Our cone C is not simplicial, though; it has more
generators than the embedding dimension 2k. Thus the numerator is some multivariate
polynomial. However, from general theory [7, 9] it follows that

Corollary 2. The denominator of Q̃k, and hence of Qk, is precisely Dk.

Specializing y1 = · · · = yk = y we recover Proposition 15 of [5]. In the multigraded
case there can be no cancellation between the numerator and the denominator of Qk, so
we can assert that this Dk is the denominator, not just divisible by the denominator.
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2.3 Calculating Q̃k by triangulating Ck

2.3.1 k = 2

Let us consider C2 again. It lives in R2 × R2 but, as was shown in Table 1, it is spanned
by 5 extremal rays, hence it is it not simplicial. We can, however, triangulate it into a
union of simplicial cones. We used Normaliz [6] to find such a triangulation, shown in
Table 2 (rows indicate subsets of rays).

Table 2: Triangulation of C2

0 1 2 4
1 2 3 4

So C = C2 = K1 ∪K2, where K1, K2 and K3 = K1 ∩K2 are rational simplicial cones.
K3 is generated by the intersection of the generating rays of K1 and of K2, that is to say,
by r1, r1, r4.

A rational polyhedral simplicial cone generated by the rays r will have generating
function

1∏
r(1− (xy)r))

.

Hence, by inclusion-exclusion,

N

(1− (xy)r0)(1− (xy)r1)(1− (xy)r2)(1− (xy)r3)(1− (xy)r4)

=
1

(1− (xy)r0)(1− (xy)r1)(1− (xy)r2)(1− (xy)r4)

+
1

(1− (xy)r1)(1− (xy)r2)(1− (xy)r3)(1− (xy)r4)

− 1

(1− (xy)r1)(1− (xy)r2)(1− (xy)r4)

hence

N = (xy)r3 + (xy)r0 − (xy)r0(xy)r3 ,

which evaluates to

(−x0y0x1 + 1) + (−x0 + 1) − (x0
2y0x1 − x0y0x1 − x0 + 1) = −x0

2y0x1 + 1.

2.3.2 k = 3

For k = 3 the plane partitions are (
λ1 λ2 λ3

µ1 µ2 µ3

)
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with inequalities ensuring that the entries are non-negative and non-increasing in rows
and columns.

Extremal rays There are now 9 extremal rays, generating the cone C = C3 ⊂ R3×R3.
We display these vectors in R3 × R3 as 2 by 3 matrices.

Table 3: Extremal rays of plane partitions with 2 rows and 3 columns

0

(
1 0 0
0 0 0

)
3

(
1 1 0
1 0 0

)
6

(
1 1 1
1 0 0

)
1

(
1 0 0
1 0 0

)
4

(
1 1 0
1 1 0

)
7

(
1 1 1
1 1 0

)
2

(
1 1 0
0 0 0

)
5

(
1 1 1
0 0 0

)
8

(
1 1 1
1 1 1

)

Triangulation A (regular) triangulation of the cone, with rays numbered as in Table
3, is shown in Table 4.

Table 4: Triangulation of the cone of plane partitions with 2 rows and 3 columns, rows
are subcones

0 1 2 4 5 8
0 1 4 5 7 8
1 2 3 4 5 8
1 3 4 5 6 8
1 4 5 6 7 8

2.3.3 General k

It is feasible to use inclusion-exclusion to find Q̃3, the generating function of the cone
C3. However, this is not an efficient way of calculating Q̃k for general k. The number of
extremal rays of Ck is, as we shown, equal to one less the number of plane partitions inside
a 2 × k × 1 box. From [8], this number is

(
2+k

2

)
− 1. The number of simplicial subcones

in the triangulation grows swiftly; it is equal to the Catalan number. We tabulate the
number of extremal rays and subcones in a triangulation of Ck in Table 5.

3 The rational recursion of Azam and Richmond

3.1 Original version

We state the main result of [5]. Recall that their Qk is multi-graded in x but simply-graded
in y, so depends on k + 1 variables.
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Table 5: nr of cones in triangulation of C
k dim(C) nr rays nr cones in tri
2 4 5 2
3 6 9 5
4 8 14 14
5 10 20 42
6 12 27 132
7 14 35 429
8 16 44 1430
9 18 54 4862

Theorem 3 (Azam and Richmond Thm 1). Let pk = x1 · · ·xk, and for a sequence of
parameters Z = (z1, . . . , zk+1), let

Qk(Z) = Qk(z1, . . . , zk+1).

• If Z = (x1, . . . , xk, y), then denote Qk = Qk(Z).

• For 0 < r 6 k, we put Zr = (yrpr+1, xr+2, xr+3, . . . , xk, y).

Then Q0 = 1 and for k > 1 we have

(1− pk)Qk = xkQk−1 +
∑

06i<r6k

(
yrpk

1− yrpr

)
Qk−r(Zr) ·Qi (7)

In particular, Qk is a rational function in the variables x1, . . . , xk, y.

They go on to prove

Proposition 4 (Azam and Richmond Proposition 15). Let pk = x1 · · · xk, and Dk =
Dk(x1, . . . , xk, y) =

∏k
m=1

∏m
j=0(1− yjpm). Then Qk ·Dk is a polynomial.

As we have seen, this latter results is a straight-forward consequence of classification
of the generating rays of Ck.

The numerators Nk of Qk = Nk/Dk are given below, for k = 1, 2, 3. We show the multi-
graded case, with denominator Dk =

∏k
m=1

∏m
j=0(1 − pm

∏j
`=1 y`). The y-simplygraded

case, (as studied by Azam and Richmond) can be recovered by setting the different yi’s
to y.

k = 1: −x2
1y1 + x1y1 + x1 .

k = 2:

x3
1y

2
1x

3
2y2 − x2

1y
2
1x

2
2y2 − x2

1y1x
2
2y2 − x2

1y1x
2
2 − x2

1y1x2 + x1y1x2y2 + x1y1x2 + x1x2
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k = 3:

x6
1y

4
1x

5
2y

2
2x

4
3y3 − x5

1y
4
1x

4
2y

2
2x

3
3y3 − x5

1y
3
1x

4
2y

2
2x

3
3y3 − x4

1y
3
1x

4
2y

2
2x

4
3y3 − x5

1y
3
1x

4
2y2x

3
3y3

− x5
1y

3
1x

4
2y2x

3
3 − x5

1y
3
1x

4
2y2x

2
3 + x4

1y
3
1x

3
2y

2
2x

2
3y3 + x3

1y
3
1x

3
2y

2
2x

3
3y3 + x4

1y
3
1x

3
2y2x

2
3y3

+ x3
1y

2
1x

3
2y

2
2x

3
3y3 + x4

1y
3
1x

3
2y2x

2
3 + x4

1y
2
1x

3
2y2x

2
3y3 + x3

1y
2
1x

3
2y2x

3
3y3 + x4

1y
2
1x

3
2y2x

2
3 + x3

1y
2
1x

3
2y2x

3
3

+ x4
1y

2
1x

3
2x

2
3 + x3

1y
2
1x

3
2y2x

2
3 − x2

1y
2
1x

2
2y

2
2x

2
3y3 + x3

1y
2
1x

3
2y2x3 − x3

1y
2
1x

2
2y2x3y3 − x2

1y
2
1x

2
2y2x

2
3y3

− x2
1y

2
1x

2
2y2x

2
3 − x2

1y1x
2
2y2x

2
3y3 − x2

1y
2
1x

2
2y2x3 − x2

1y1x
2
2y2x

2
3 − x2

1y1x
2
2y2x3

− x2
1y1x

2
2x

2
3 − x2

1y1x
2
2x3 + x1y1x2y2x3y3 − x2

1y1x2x3

+ x1y1x2y2x3 + x1y1x2x3 + x1x2x3

We note, for future reference, that

Q̃2 = 1 +Q1 +Q2 =
1− x2

1x2y1

(1− x1)(1− x1x2)(1− x1y1)(1− x1x2y1)(1− x1x2y1y2)
(8)

3.2 Multigraded version

We come to the main purpose of this note: the rational recursion of Qk works multigrad-
edly!

Corollary 5. For i, r, k > 0, define

• Qk = Qk(x,y)

• pr = x1 · · ·xr

• qr = y1 · · · yr

• Ẑr,k = (pr+1qr, xr+2, . . . , xk, yr+1, . . . , yk)

• Ri,r,k = pkqr
(1−pk)(1−prqr)

QiQk−r(Ẑr,k)

Then Q0 = 1 and for k > 0

Qk =
xkQk−1

1− pk
+

∑
06i<r6k

Ri,r,k (9)

Proof (sketch). The difference to the original theorem is that Qk = Qk(x,y) is a function
of 2k variables whereas Qk(x, y) is a function of k + 1. Furthermore, the substitution in
Qk−r is refined to

Qk−r(x1 · · ·xr+1 · y1 · · · yr, xr+2, . . . , xk, yr+1, . . . , yk)

rather than
Qk−r(x1 · · ·xr+1 · yr, xr+2, . . . , xk, y).

The various lemmas and propositions in Section 2 of [5] that prove the recursion are based
on bijections, and can be modified so to work multigradedly. Specifically:
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• Replace Pλ(y) =
∑

µ∈[∅,λ] y
|µ| with Pλ(y) =

∑
µ∈[∅,λ] y

µ

• Replace Pµ,λ(y) =
∑

ν∈[µ,λ] y
|ν| with Pµ,λ(y) =

∑
ν∈[µ,λ] y

ν

• Replace

Qk,m(x, y) =
∑

λ∈Λ(k,m)

Pλ(y)xλ

with
Qk,m(x,y) =

∑
λ∈Λ(k,m)

Pλ(y)xλ

• Proposition 12: Replace yk with y1 · · · yk.

• Proposition 14: Also replace

Qk−r,m−1(yrpr+1, xr+2, . . . , xk, y) with Qk−r,m−1(qrpr+1, xr+2, . . . , xk, yr+1, . . . , yk)

• Lemma 13, Theorem 1: Do the above replacements.

4 Relation to prior work by Andrews and Paule and MacMahon

4.1 Geometric interpretation of the rational recursion

The rational recursion above yields an efficient way of calculating Q`, and hence Q̃`.
Explicitly,

Q̃` =
∑̀
k=0

Qk

=
∑̀
k=0

(
xkQk−1

1− pk
+

∑
06i<r6k

Ri,r,k

)

=
∑̀
k=0

(
xkQk−1

1− pk
+

∑
06i<r6k

pkqr
(1− pk)(1− prqr)

QiQk−r(Ẑr,k)

)

This is a description how to slice up the affine monoid A` into disjoint pieces; Qk enumer-
ates lattice points in C ∩H+, C being the polyhedral cone, and H+ the open half-space
λk > 0. The term Qk−1

xk
1−pk

enumerates lattice points in the translation of the projection
of C in a certain direction, et etcetera. It is not a triangulation of C into subcones, nor is
it a “disjoint decomposition” as is computed by Normaliz; it is much more complicated.
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4.2 Generating functions for plane partitions in a box using the Omega op-
erator

In a long series of papers, starting with [1], [2], Andrews and Paule revisits MacMahon’s
[8] method of partition analysis. Their twelfth entry [3] applies this method to plane
partitions. They define

pm,n(X) =
∑

ai,j∈Pm,n

x
a1,1
1,1 · · ·xam,n

m,n

where Pm,n consists of all m × n matrices (ai,j) over non-negative integers ai,j such that
ai,j > ai,j+1 and ai,j > ai+1,j. Putting m = 2, we get our objects of interest.

They then (pages 650-651) illustrate MacMahon’s method using his Ω operator by
calculating p2,2(X). This is of course the same as Q̃2.

Andrews and Paule have developed a Mathematica package called Omega [4]. The
Maple package LinDiophantus [11], by Doron Zeilberger, can perform similar calculations.
We will briefly illustrate how to use the Omega package (written by Daniel Krenn) which
is included in recent versions of SageMath [10]. For more information about this package,
type help(MacMahonOmega) at the SageMath command prompt.

L.<mu11,mu12,l11,l21,x11,x12,x21,x22> = LaurentPolynomialRing(ZZ)

p22setup = [1-x11*l11*mu11, 1-x21*l21/mu11, 1-x12*mu12/l11, 1-x22/(l21*mu12)]

M = MacMahonOmega

p22 = M(l21, M(l11, M(mu12, M(mu11, 1, p22setup))))

[(t[0],t[1]) for t in p22]

yields the result

[(-x11^2*x12*x21 + 1, 1),

(-x11 + 1, -1),

(-x11*x12 + 1, -1),

(-x11*x12*x21*x22 + 1, -1),

(-x11*x21 + 1, -1),

(-x11*x12*x21 + 1, -1)]

We recognize from (8) the numerator (first line) and denominator of Q̃2, with renamed
variables.

The most interesting part, for us, in [3], is their Lemma 2.3, which provides a recursion
for plane partitions in an m× n box. Specialising to m = 2 we get

Corollary 6 (Andrews and Paule Lemma 2.3).

p2,n+1

(
x1,1 · · · x1,n x1,n+1

x2,1 · · · x2,n x2,n+1

)
=

(
1− x1,n+1x2,n+1

∏
16i62,16j6n

xi,j

)−1

× Ω> p2,n

(
x1,1 · · · x1,n−1 λ0x1,n

x2,1 · · · x2,n−1 λ1x2,n

)
× 1

(1− x1,n+1

λ0
)(1− x1,n+1x2,n+1

λ0λ1
)

(10)
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Without going into details regarding the Ω operator, we will mention that it operates
of formal Laurent polynomials and transforms the expression under its purvey so that
the “spurious” λ variables (not related to partitions, we are using Andrews’ and Paule’s
notations here) gets eliminated, and what is left is the desired generating function.

Question 7. Is there a relation between the “rational recursion” (9) and Andrews’ and
Paule’s Lemma 2.3?

Remark 8. The SageMath code used by the author to implement the rational recursion
is included in the ancillary section of the ArXiv preprint, arXiv:2401.04030.
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