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Abstract
Let H be a set of connected graphs. A graph is said to be H-free if it does not

contain an induced subgraph isomorphic a member of H. A graph is called traceable
if it has a path containing all its vertices. In 1997, Faudree and Gould characterized
all pairs R,S such that every connected {R,S}-free graph is traceable. In this paper,
we extend this result by considering 2-connected graphs, and characterize all pairs
R,S such that every 2-connected {R,S}-free graph is traceable. Furthermore, we
characterize all 2-connected {K1,3, N1,3,4}-free non-traceable graphs.
Mathematics Subject Classifications: 05C38, 05C45

1 Introduction

We basically follow the most common graph-theoretical terminology and notation and for
concepts not defined here we refer the reader to [4]. All graphs in this paper are simple,
finite and undirected.

Let G be a graph, and u, v ∈ V (G), X ⊆ V (G), and let H be a subgraph of G. Then
NG(v) denotes the set, and dG(v) the number, of neighbors of v in G, dH(v) the number
of neighbors of v in H, NG(X) the set of vertices of V (G) \ X having a neighbor in X,
and NH(X) the set of vertices of V (H) \ X having a neighbor in X. For X ⊂ V (G),
we use ⟨X⟩H to denote the subgraph of H induced by the set of vertices X in H. The
distance between u and v in G is denoted distG(u, v), and when u, v ∈ V (H), distH(u, v)
denotes their distance in the subgraph H of G, i.e., the length of a shortest path between
u and v in H. The girth (the circumference) of G, denoted by g(G) (c(G)), is the length
of a shortest (longest) cycle of G. A pendant vertex is a vertex of degree 1, and a pendant
edge is an edge having a pendant vertex as an end vertex. As usual, we use Pi(i ⩾ 1) to
denote the path on i vertices. We use Ni,j,k to denote the graph obtained by attaching
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Figure 1: Zi, Bi,j and Ni,j,k

three vertex-disjoint paths of lengths i, j, k ⩾ 0 to a triangle. In the special case when
i, j ⩾ 1 and k = 0 (or i ⩾ 1 and j = k = 0), Ni,j,k is also denoted Bi,j (or Zi), respectively
(see Figure 1).

A graph G is called hamiltonian, if it contains a Hamilton cycle, i.e., a cycle containing
all vertices of G. A graph G is called traceable, if it contains a Hamilton path, i.e., a path
containing all vertices of G. A graph G is called Hamilton-connected if it contains a
Hamilton (x, y)-path for each pair x, y of vertices of G. A graph G is called supereulerian
if it contains a spanning connected even subgraph of G. A graph G is called pancyclic if it
contains a cycle Cl for all 3 ⩽ l ⩽ |G|. A cycle C in a graph G is called dominating if every
edge of G is incident with a vertex of C. A spanning subgraph H of graph G is called
its k-factor if every vertex in H has edgree k, 1-factor is also called perfect matching. A
graph G is called homogeneously traceable if it has a Hamilton path starting from any
vertex of G.

Let H be a set of connected graphs. A graph G is said to be H-free if G does not contain
an induced subgraph isomorphic to a member of H. We call H a forbidden pair of G if
|H| = 2. If H = {H}, then we simply say that G is H-free and G is claw-free if H = K1,3.
For a property P , it is a popular research topic to give forbidden induced subgraphs
condition forcing a graph to have the property P . Many researchers characterized the
forbidden pairs for the property P of k-connected graphs, we now summarize some known
results in Table 1. When considering forbidden pairs for property P of k-connected graphs,
the connectivity k must meet the necessity condition of P for otherwise the forbidden pairs
are ‘none’. The literal ‘trivial’ in Table 1 means that the forbidden pairs are arbitrary
because every 4-edge-graph has been supereulerian. In 1984, Matthews and Sumner [36]
conjectured that every 4-connected claw-free graph is hamiltonian, which has been proven
to be equivalent to many other conjectures and still open. So the literal ‘open’ in Table
1 means that the forbidden pairs are related to Matthews-Sumner conjecture.

In this paper, we characterize all forbidden pairs for traceability of 2-connected graphs
by proving the following.

Theorem 1. Let R,S be a pair of connected graphs such that neither R nor S is an
induced subgraph of P3. Then every 2-connected {R,S}-free graph is traceable if and
only if (up to symmetry) R = K1,3 and S is an induced subgraph of B2,4, N1,1,5 or N1,3,3;
R = K1,4 and S = P4.

We actually obtain more general result than Theorem 1, and characterize all 2-
connected {K1,3, N1,3,4}-free non-traceable graphs. Before state our next result, we need
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Table 1: Characterizing forbidden pairs for properties P of k-connected graphs
P k = 1 k = 2 k = 3 k ⩾ 4

hamiltonian none full [2][13] partical [7][18][26][30][33][40] open
traceable full [13] this paper unknown open

Hamilton-connected none none partical [3][13][15][25][31][32][38] open
perfect mathching full [20] full [19] full[19] full [19]

2-factor none full [14] unknown open
homogenously traceable none full [27] unknown open

supereulerian none full [34][35] unknown trivial
pancyclic none none full [22] partical [16][17]

dominating cycle none partical [8][9][12] unknown open

the following definitions.
Let G be a claw-free graph. A vertex x ∈ V (G) is locally connected if the neighborhood

of x induces a connected subgraph in G. For x ∈ V (G), the graph G′
x obtained from G by

adding the edges {yz : y, z ∈ N(x) and yz /∈ E(G)} is called the local completion of G at
x. The closure of G, denoted by cl(G), is obtained from G by recursive performing local
completions at any locally connected vertex with non-complete neighborhood, as long as
it is possible. Ryjáček [37] proved the closure cl(G) is the line graph of a triangle-free
graph. To split a vertex v is to replace v by two adjacent vertices, v′ and v′′, and to
replace each edge incident to v by an edge incident to either v′ and v′′ (but not both).
We now define the following six graphs depicted in Figure 2. Let

• F1 be obtained from a complete bipartite graph K2,t(t ⩾ 2) by splitting one vertex
of degree t into two new vertices, and adding some pendant edges (possible zero) to
the two new vertices and the other vertex of degree t (denoted as the special vertex
v)};

• F2 be obtained from K2,2t+1(t ⩾ 1) by adding some pendant edges (possible zero)
to the exactly one vertex of degree two (denoted as the special vertex v) and the
two vertices of degree 2t+ 1;

• F3 be obtained from K2,2t(t ⩾ 1) by adding some pendant edges (possible zero) to
the exactly one vertex of degree two (denoted as the special vertex v) and the two
vertices of degree 2t;

• F4 be obtained from K2,2t(t ⩾ 2) by adding some pendant edges (possible zero) to
all vertices (one of the two vertices of degree 2t is denoted as the special vertex v);

• F5 be obtained from K2,2t+1(t ⩾ 2) by adding some pendant edges (possible zero) to
all vertices except one vertex of degree two (one of the two vertices of degree 2t+1
is denoted as the special vertex v);

• F6 be obtained from K2,2t+1(t ⩾ 2) by adding at least one pendant edge to each
vertex of degree two and by adding some pendant edges (possible zero) to the two
vertices of degree 2t+ 1 ( one of the two vertices of degree 2t+ 1 is denoted as the
special vertex v).
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Figure 2: Graph Fi for 1 ⩽ i ⩽ 6

Let F⋆ be obtained three copies of F6 by identifying their special vertex v, and let
F = {F : F is obtained from F⋆ and a sequence of Fi(1 ⩽ i ⩽ 6) by identifying their
special vertex v}. We may state our next main result.

Theorem 2. Let G be a 2-connected {K1,3, N1,3,4}-free graph. Then either G is traceable
or cl(G) is the line graph of a member in F .

In the next section, we will introduce the properties of Ryjáček closure and some useful
results. In Section 3, we will prove Theorem 1. In Section 4, we will prove Theorems 2
and 11 which are used to prove the sufficiency of Theorem 1. In the last section, we give
some concluding remarks.

2 Preliminaries and basic results

2.1 The stable properties under Ryjáček closure

Ryjáček prove that the closure of claw-free graphs preserves the hamiltonicity.

Theorem 3. ([37]) Let G be a claw-free graph. Then

(i) cl(G) is uniquely determined;

(ii) cl(G) is the line graph of a triangle-free graph;

(iii) G is hamiltonian if and only if cl(G) is hamiltonian.

Brandt, Favaron and Ryjáček proved that the closure of claw-free graphs preserves
the traceability.

Theorem 4. ([5]) Let G ba a claw-free graph. Then G is traceable if and only if cl(G) is
traceable.
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We say that a class H of claw-free graphs is stable if for every graph in H, its closure
is also in H. Brousek, Ryjáček and Favaron proved that the following classes of claw-free
graphs are stable.

Theorem 5. ([6]) If S ∈ {Pi : i > 0} ∪ {Zi : i > 0} ∪ {Ni,j,k : i, j, k > 0}, then the class
of {K1,3, S}-free graphs is stable.

In [6], Brousek, Ryjáček and Favaron also pointed out that the class of {K1,3, Bi,j}-free
graphs (i, j ⩾ 1) is not stable. Later, Du and the second author dealt with this case by
considering {K1,3, Bi,j}(i, j ⩾ 1)-free graphs with three pendant vertices.

Lemma 6. ([11]) Let G be a connected claw-free graph. Suppose G contains a connected
induced subgraph H with three pendant vertices v1, v2, v3. Then for any pair of vi, vj ∈
{v1, v2, v3}, H has an induced subgraph Bl,k(l ⩾ k ⩾ 1) containing vi, vj.

Lemma 7. Let G be a connected claw-free graph. Suppose G has a connected induced sub-
graph H containing two pendant edges u1v1, u2v2 with u1 ̸= u2 and dH(v1) = dH(v2) = 1. If
|V (H)\{v1, v2}| ⩾ 3, then H has an induced B1,1 containing v1 and v2, or distH(u1, u2) ⩾
2.

Proof. Suppose that distH(u1, u2) ⩽ 1. Then u1u2 ∈ E(G). Since |V (H)\{v1, v2}| ⩾ 3,
there exists a vertex w ∈ V (H)\{v1, v2, u1, u2} such that w is adjacent to one of u1, u2,
say u1w ∈ E(G). Since G is claw-free, we have u2w ∈ E(G), then ⟨{v1, u1, u2, v2, w}G is
an induced B1,1. This proves Lemma 7.

2.2 Useful results

A subgraph H of a graph G is dominating if every edge of G has at least one end in H.
A subgraph H of a graph G is even if every vertex of H has even degree. A trail in a
graph G is a sequence W := v0e1v1 · · · vl−1elvl, whose terms are alternately vertices (not
necessarily distinct) and distinct edges of G, such that vi−1 and vi are ends of ei, 1 ⩽ i ⩽ l.
For convenience, we sometimes abbreviate the term of v0e1v1 · · · vl−1elvl to v0v1 · · · vl−1vl.
Harary and Nash-Williams [23] showed that for a graph H with |E(H)| ⩾ 3, L(H) is
hamiltonian if and only if H has a dominating connected even subgraph. Li, Lai and
Zhan obtained similar result for traceability.

Theorem 8. ([29]) Let G be a graph with |E(G)| ⩾ 3. Then the line graph L(G) is
traceable if and only if G has a dominating trail.

We now give the following definitions introduced in [39]. Let G be a 2-connected graph
and let C be a cycle of G, and let D be a component of G − V (C). Clearly D has at
least two distinct neighbors on C. For any path P in D, if the two ends (probably only
one if P is itself a vertex) of P have two distinct neighbors x1, x2 on C, then P is called a
2-attaching path of C in D, and {x1, x2} is called a 2-attaching pair of P on C. Note that
if D is a K1 or K2, then D is itself the 2-attaching path of C. Furthermore, if a longest
2-attaching path of D has order k, then D is called a k-component of G− V (C).
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Lemma 9. ([39]) Let G be a 2-connected graph with circumference c(G) and let C be a
longest cycle of G. Then

(i) if D is a k-component of G− V (C), then k ⩽ ⌊ c(G)
2
⌋ − 1;

(ii) every 2-component of G− V (C) is a star;

(iii) if c(G) ⩽ 5, then G has a spanning trail starting from any vertex and every vertex
lies on a circumference cycle;

(iv) if c(G) ⩽ 7, then G has a spanning trail.

3 Proof of Theorem 1

3.1 The necessity part of Theorem 1

We may construct eight non-traceable 2-connected graphs Gi with 1 ⩽ i ⩽ 8, as shown in
Figure 3. Then each Gi(1 ⩽ i ⩽ 8) contains at least one of R,S as an induced subgraph.

Claim 10. Either R or S is a K1,3 or a K1,4.

Proof. Suppose, by contradiction, that neither R nor S is a K1,3 or a K1,4. Consider
the following fact: If a connected graph is not a graph in {P1, P2, P3, K1,3, K1,4}, then it
contains one of the graphs in {K3, C4, P4, K1,5} as an induced subgraph. Consider the
graph G1, we may assume that R is an induced subgraph of G1 without loss of generality.
Since G1 is {K3, P4}-free, it follows that R contains one of graphs in {C4, K1,5} as an
induced subgraph. Suppose first that R contains an induced subgraph C4. Note that G2

and G7 are C4-free, implying that both are R-free. Then S is a common induced subgraph
of G2 and G7. Note that the maximal common induced subgraph of G2 and G7 is K1,3,
implying that S is an induced subgraph of K1,3, a contradiction.

Now suppose that R contains an induced subgraph K1,5. Note that G6 and G7 are
K1,5-free, implying that both are R-free. Then S is a common induced subgraph of G6

and G7. Note that the maximal common induced subgraph of G6 and G7 is K1,4, implying
that S is an induced subgraph of K1,4, a contradiction. This proves Claim 10.

By Claim 10, we may assume that R = K1,3 or K1,4 without loss of generality. If
R = K1,4, then considering graphs G4, G5, G7, each one is K1,4-free and then it contains
S as an induced subgraph. Note that the common induced subgraph of G5 and G7 is a
path, implying that S is a path. Since the largest induced path of G4 is P4, it follows
that S is an induced subgraph of P4.

Hence we assume that R = K1,3. Considering graphs G3, G5, G8, each one is K1,3-free
and then it contains S as an induced subgraph. If S is a tree, then since G8 is claw-free,
S is a path. Note that the largest induced path of G8 is P8, implying S is an induced
path of P8. Hence assume that S contains an induced cycle. Note that the length of
any common induced cycle of G3 and G5 is three, implying that any induced cycle of S
should be a triangle. We further claim that S contains only one triangle. Otherwise, S
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Figure 3: Gi, i = 1, · · · , 8

contains at least two triangles. Note that the length of any induced path in G5 joining any
two triangles is at least four. But the length of any induced path in G8 joining any two
triangles is at most three, contradicting the fact that S is a common induced subgraph
of G8 and G5.

Then S is a Zi, Bi,j or an Ni,j,k. If S is a Zi, then since the maximal Zi of G8 is Z5, S is
an induced subgraph of Z5. If S is a Bi,j, then since all maximal Bi,j of G5 are B2,4, B1,5,
S is an induced subgraph of B2,4 or B1,5. If S is an Ni,j,k, then since all maximal Ni,j,k

of G8 are N1,1,5, N3,3,3, and G3 is N2,2,2-free, S is an induced subgraph of N1,1,5 or N1,3,3.
Note that P8, Z5, B1,5 are three induced subgraphs of N1,1,5, we summarize that S is an
induced subgraph of B2,4, N1,1,5, or N1,3,3. The proof is complete.

3.2 The sufficiency part proof of Theorem 1

We now state the following results to prove the sufficiency of Theorem 1.

Theorem 11. Every 2-connected {K1,3, N1,1,5}-free graph is traceable.

A graph is called a block-chain if its connectivity is at least 2, or its connectivity is 1
and it has exactly two end-blocks. Li, Broersma and Zhang proved the following.

Theorem 12. ([28] Every {K1,4, P4}-free block-chain is traceable.

Proof the sufficiency of Theorem 1. By Theorms 11 and 12, we only prove that every 2-
connected {K1,3, S}-free graph is traceable for the cases S = B2,4 or N1,3,3. Suppose
not, and let G be a counter-example to this. Then G is a 2-connected non-traceable
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{K1,3, N1,3,4}-free graph. By Theorem 2, we assume that cl(G) = L(H) where H ∈ F .
By the definition of F , H contains a subgraph F⋆ which is obtained by three copies
F6 be identifying the special vertices, where F6 is depicted in Fighre 2. Then cl(G)
contains an induced subgraph L(F⋆) where L(F⋆) is depicted in Figure 4. Let W be
the vertex set of L(F⋆). By the definition of L(F⋆), W has a partition {U, S11 , · · · , S1t1

,
S21 , · · · , S2t2

, S31 , · · · , S3t3
, T1, T2, T3} such that each one induces a clique of size at least

three.
Note that for any two distinct elements X1, X2 ∈ {U, S11 , · · · , S1t1

, S21 , · · · , S2t2
,

S31 , · · · , S3t2
, T1, T2, T3} with X1 ∩ X2 ̸= ∅, it holds that |X1 ∩ X2| = 1 and let X1 ∩

X2 = {vX1X2}. For i = 1, 2, 3, since |Siti
| ⩾ 3, we have Siti

\ (U ∪ Ti) ̸= ∅. Let
w1, w2, w3 be three vertices such that wj ∈ Sj2 \ (U ∪ Tj) for j = 1, 2, 3. The graph
⟨{vUS11

, vUS21
, vUS31

}∪{vT1S11
, vT1S12

, w1}∪{vT2S21
, vT2S22

, w2}∪{vT3S31
, vT3S32

, w3}⟩cl(G) is
exactly an induced N3,3,3 in cl(G). On the other hand, since G is {K1,3, N1,3,3}-free, cl(G)
is N1,3,3-free by Theorem 5, a contradiction.

In the following, we shall find an induced B2,4 in G to obtain a contradiction. We first
have the following fact.
Claim 13. For i ∈ {1, 2, 3} and j ∈ {1, · · · ti}, dist⟨Sij

⟩G(vUSij
, vSij

Ti
) ⩾ 2.

Proof. Otherwise, we may assume that vUS11
vS11T1 is an edge in G without loss of gener-

ality. Let t ∈ T1 and u ∈ U such that vS11T1t, vUS11
u ∈ E(G). Probably t = vT1S12

, u =
vS12U

. Considering the graph ⟨S11 ∪ {u, t}⟩G, which is a connected claw-free graph with
two pendant edges vS11T1t, vUS11

u. By Lemma 7, ⟨S11 ∪{u, t1}⟩G contains an induced B1,1

containing u and t, say B1,1(u, t). Recall that wj ∈ Sj2 \ (U ∪ Tj) for j = 1, 2, 3. Let
P (t, w1) be a shortest path connecting t and w1 in ⟨T1 ∪ S12⟩G, and let P (u,w2) be a
longest induced path connecting u and w2 in ⟨{U, S21 , T2, S22}⟩G. It is easy to see the
lengths of P (t, w1) and P (u,w2) are at least one and three, respectively. Together these
two induced paths with B1,1(u, t) can yield an induced B2,4 in G, a contradiction. This
proves Claim 13.
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Recall that wj ∈ Sj2 \ (U ∪ Tj) for j = 1, 2, 3, and let P (vUSj1
, wj) be a shortest

path connecting vUSj1
and wj in ⟨Sj1 ∪ Tj ∪ Sj2⟩G. For each j = 1, 2, 3, P (vUSj1

, wj) has
length at least four by Claim 13, and let v+USj1

denote the the successor of vUSj1
on the

path P (vUSj1
, wj). Consider the graph ⟨U ∪ {v+US11

, v+US21
, v+US31

}⟩G, which is an induced
subgraph of G containing three pendant vertices v+US11

, v+US21
, v+US31

. By Lemma 6, ⟨U ∪
{v+US11

, v+US21
, v+US31

}⟩G has an induced Bl,k(l, k ⩾ 1) containing {v+US11
, v+US21

}, together
with two paths P (vUS11

, w1), P (vUS21
, w2), is an induced B4,4 in G, a contradiction. The

proof is complete.

4 Proofs of Theorems 11 and 2

We start with the following notation. The core of a graph G, denoted by G0, is obtained
by recursive deleting all pendant vertices of G. We define Λ(G) to be the set of the vertices
in G which is incident with at least one pendant vertex. An edge cut X of a graph G is
essential if G\X has at least two nontrivial components. For an integer k > 0, a graph G
is essentially k-edge-connected if G does not have an essential edge-cut X with |X| < k.
Note that if G is essentially 2-edge-connected then its core G0 is 2-edge-connected. Let G
be an essentially 2-edge-connected graph and let G0 be the core of G. For any block B of
G0, let B = B∪{e : e is a pendant edge of G and has at least one end in V (B)∩Λ(G)}. We
then call B a super-block of G. Furthermore, if B ∩G0 contains at least two cut vertices
of G0 then B is called an inner-super-block of G, otherwise B is called outer-super-block
of G. For integer i, j, k ⩾ 0, let Ti,j,k be the graph obtained three paths Pi+1, Pj+1 and
Pk+1 by identifying exactly one end vertex of each path. The resulting special vertex of
Ti,j,k is called the root. We call the other end of Pk+1 in Ti,j,k the special leaf.

Let G be a claw-free graph. Then cl(G) is the line graph of a triangle-free graph by
Theorem 3. Note that by Theorems 4 and 5 that Theorems 11 and 2 can be equivalently
expressed as follows:

• every 2-connected N1,1,5-free line graph L(H) with g(H) ⩾ 4 is traceable,

• every 2-connected N1,3,4-free line graph L(H) with g(H) ⩾ 4 is traceable or L(H)
is the line graph of a member in F .

Observe that L(H) is Ni,j,k-free if and only if H has no subgraph isomorphic to Ti+1,j+1,k+1.
Note that L(H) is k-connected if and only if H is essentially k-edge-connected or complete.
If L(H) is complete, then L(H) is traceable. Therefore, by Theorem 8, Theorems 11 and 2
can be equivalently expressed as the following two theorems.

Theorem 14. Let G be an essentially 2-edge-connected triangle-free graph without sub-
graphs isomorphic to T2,2,6. Then G has a dominating trail.

Theorem 15. Let G be an essentially 2-edge-connected triangle-free graph without sub-
graphs isomorphic to T2,4,5. Then either G has a dominating trail or G ∈ F .
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Before to prove theorems 14 and 15 we need the following lemmas. For a subgraph H
of G and for v ∈ V (H), we denote by Pv(H) a longest path in H starting from v, and use
|Pv(H)| to denote the order of Pv(H). Note that if G is triangle-free then |Pv(B)| ⩾ 4.

Lemma 16. Let G be an essentially 2-edge-connected triangle-free graph, and let B be
an outer-super-block of G containing the cut vertex v of G0. Suppose that B has no
dominating cycle containing v. Then each of the following holds:

(i) if c(B) ⩾ 6, then |Pv(B)| ⩾ 6 and B contains a subgraph T2,2,k(k ⩾ 1) with the
special leaf v, furthermore, either B contains a subgraph T2,4,0 with the root v or B
has a dominating trail starting from v,

(ii) if c(B) = 5, then B contains a subgraph T2,4,0 with the root v, and contains a
subgraph T2,2,k(k ⩾ 2) with the special leaf v and |Pv(B)| ⩾ 6,

(iii) if c(B) = 4, then either B contains a subgraph T2,2,k(k ⩾ 2) with the special leaf v
and contains a subgraph T2,4,0 with the root v and |Pv(B)| ⩾ 5, or |Pv(B)| ⩾ 6 and
B contains a subgraph T2,2,k(k ⩾ 1) with the special leaf v.

Proof. Suppose that c(B) ⩾ 6. It is easy to see that |Pv(B)| ⩾ 6. Let C be a longest
cycle of B. If v ∈ V (C), then E(B − V (C)) ̸= ∅, for otherwise C is a dominating
cycle of B containing v. Let D be a nontrivial component of B − V (C). Note that
|NB(D)∩V (C)| ⩾ 2. It is easy to deduce that ⟨V (C)∪V (D)⟩G contains a subgraph T2,4,0

with the root v and also contains a subgraph T2,2,k(k ⩾ 1) with the special leaf v. Hence
we may assume that v /∈ V (C). Since B ∩ G0 is 2-connected, there exist two internally
disjoint paths Q1, Q2 in B ∩ G0 joining v and C. If some Qi has length at least two,
then Q1 ∪Q2 ∪C contains a subgraph T2,4,0 with the root v and also contains a subgraph
T2,2,k(k ⩾ 1) the special leaf v. Hence we may assume that each Qi(i = 1, 2) is an edge,
implying that ⟨V (C)∪ {v}⟩G is connected. Assume that Q1 = vv′, Q2 = vv′′. If c(B) ⩾ 7
or distC(v

′, v′′) = 2, then one can easily check that ⟨V (C) ∪ {v}⟩G contains a subgraph
T2,4,0 with the root v and also contains a subgraph T2,2,k(k ⩾ 1) with the special leaf v.
So we have c(B) = 6 and distC(v

′, v′′) = 3. Clearly ⟨V (C) ∪ {v}⟩G contains a subgraph
T2,2,1 with the special leaf v. If B−V (C)∪{v} is edgeless, then ⟨V (C)∪{v}⟩G contains a
dominating trail of B starting from v. So we assume that E(B−V (C)∪{v}) ̸= ∅. Then
there exists an edge u1u2 in B − V (C) ∪ {v} incident with some vertex in V (C) ∪ {v},
one can easily check that ⟨V (C)∪{v, u1, u2}⟩G contains a subgraph T2,4,0 with the root v.

Now suppose that c(B) ⩽ 5. Since B ∩ G0 is 2-connected and by Lemma 9(iii),
there is a cycle C of length c(B) in B ∩ G0 containing v. Choose C such that the
number of vertices in V (B) ∩ Λ(G) is maximized. Since C is a longest cycle of B ∩ G0

and by Lemma 9(i), D ∩ G0 is a 1-component of B ∩ G0 − V (C), say u1. Since D is
nontrivial, u1 ∈ V (B) ∩ Λ(G) and let u1u2 be a pendant edge of G. Since B ∩ G0 is
2-connected and C is a longest cycle of B ∩ G0, it follows that |NB(u1) ∩ V (C)| = 2.
Suppose further that c(B) = 5. Let C = vv1v2v3v4v. If v ∈ NB(u1) ∩ V (C), then
NB(u1)∩V (C) = {v, v2} or NB(u1)∩V (C) = {v, v3}. By symmetry, we may assume that
NB(u1)∩V (C) = {v, v2}, then v1 ∈ V (H)∩Λ(G); otherwise the cycle vu1v2v3v4v has more

the electronic journal of combinatorics 32(3) (2025), #P3.5 10



vertices in V (B)∩Λ(G). Let v1z be a pendant edge of G. Then v2v1z∪v2u1u2∪v2v3v4v is
a T2,2,3 with the special leaf v and vv4v3v2u1u2 is a path of order 6. If v /∈ NB(u1)∩V (C),
then NB(u1) ∩ V (C) = {v1, v3} or NB(u1) ∩ V (C) = {v2, v4}. By symmetry, we may
assume that NB(u1) ∩ V (C) = {v1, v3}, then v2 ∈ V (H) ∩ Λ(G); otherwise the cycle
vv1u1v3v4v has more vertices in V (B) ∩ Λ(G). Let v2z be a pendant edge of G. Then
v3u1u2 ∪ v3v2z ∪ v3v4v is a T2,2,2 with v as its leaf and vv4v3v2v1u1u2 path of order 7.

Now suppose that c(B) = 4. Let C = v0v1v2v3v. If v ∈ NB(u1)∩V (C), then NB(u1)∩
V (C) = {v, v2}, implying that v1 ∈ V (H) ∩ Λ(G); otherwise the cycle vu1v2v3v has more
vertices in V (B)∩Λ(G). Let v1z be a pendant edge of G. Then v2v1z ∪ v2u1u2 ∪ v2v3v is
a T2,2,2 with the special leaf v and zv1vv3v2u1u2 is a T2,4,0 with the root v and vv3v2u1u2

is path of order 5. If v /∈ NB(u1) ∩ V (C), then NB(u1) ∩ V (C) = {v1, v3}, implying that
v2 ∈ V (H) ∩ Λ(G); otherwise the cycle vv1u1v3v has more vertices in V (B) ∩ Λ(G). Let
v2z be a pendant edge of G. Then v3u1u2 ∪ v3v2z ∪ v3v is a T2,2,1 with the special leaf v
and vv3v2v1u1u2 is a path of order 6. This completes the proof.

Lemma 17. Let G be an essentially 2-edge-connected graph without subgraphs isomorphic
to T2,2,6. If κ(G0) ⩾ 2, then G has a dominating trail.

Proof. Suppose, by contradiction, that G has no dominating trail. Let C = v0v1v2 · · ·
vc(G)−1 v0 be a longest cycle of G. Then E(G−V (C)) ̸= ∅, for otherwise C is a dominating
trail of G. Thus G−V (C) has a nontrivial component D. Let P be a longest 2-attaching
path of C in D ∩G0 with a 2-attaching pair {vi′ , vi′′}. Since C is a longest cycle of G, we
have distC(vi′ , vi′′) ⩾ 2. Since D is nontrivial, there exists an edge u1z1 in D incident with
one of vi′ and vi′′ . Then c(G) ⩽ 8, for otherwise ⟨V (C) ∪ {u1, z1}⟩G contains a subgraph
isomorphic to T2,2,6. By Lemma 9(iv), it suffices to consider the case when |V (C)| = 8,
then distC(vi′ , vi′′) ⩽ 4.

In the following, the subscript i of vi is in {0, 1, · · · , 7}.
Claim 18. For any two independent edges u1z1, u2z2 in G−V (C). If u1z1 is incident with
vi in C, then u2z2 cannot be incident with any vertex in {vi, vi+1, vi+3, vi+4, vi+5, vi+7}.

Proof. Otherwise, we may assume that u1vi ∈ E(G), then we obtain the following

viu1z1 ∪ viu2z2 ∪ vivi+1vi+2vi+3vi+4vi+5vi+6
∼= T2,2,6 if u2vi ∈ E(G)

vi+1viu1 ∪ vi+2u2z2 ∪ vi+1vi+2vi+3vi+4vi+5vi+6vi+7
∼= T2,2,6 if u2vi+1 ∈ E(G)

vi+3vi+2vi+1 ∪ vi+3u2z2 ∪ vi+3vi+4vi+5vi+6vi+7viu1
∼= T2,2,6 if u2vi+3 ∈ E(G)

vi+4vi+3vi+2 ∪ vi+4u2z2 ∪ vi+4vi+5vi+6vi+7u1z1 ∼= T2,2,6 if u2vi+4 ∈ E(G)

vi+5vi+6vi+7 ∪ vi+5u2z2 ∪ vi+5vi+4vi+3vi+2vi+1viu1
∼= T2,2,6 if u2vi+5 ∈ E(G)

vi+7viu1 ∪ vi+7u2z2 ∪ vi+7vi+6vi+5vi+4vi+3vi+2vi+1
∼= T2,2,6 if u2vi+7 ∈ E(G)

a contradiction.

Claim 19. D is the only one nontrivial component of G− V (C).
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Proof. Suppose to the contrary, and let D′ be a nontrivial component of G−V (C) distinct
from D. Note that |NG(D) ∩ V (C)| ⩾ 2 and |NG(D

′) ∩ V (C)| ⩾ 2. Since {vi′ , vi′′} ⊆
NG(D) ∩ V (C) and by Claim 18, NG(D

′) ∩ V (C) ∩ {vi′ , vi′+1, vi′+3, vi′+4, vi′+5, vi′+7} = ∅
and NG(D

′) ∩ V (C) ∩ {vi′′ , vi′′+1, vi′′+3, vi′′+4, vi′′+5,
vi′′+7} = ∅, then NG(D

′) ∩ V (C) = {vi′+2, vi′+6} = {vi′′+2, vi′′+6}, implying that i′′ =
i′ + 4. Without loss of generality, we may assume that vi′ = v0 and vi′′ = v4, then
NG(D

′) ∩ V (C) = {v4, v6}. Since C is a longest cycle of G, it follows that D ∩ G0 and
D′ ∩G0 are both 1-components of G0 − V (C), say u1, u2. Clearly u1 and u2 dominate all
edges in D and D′, respectively. Since D is nontrivial, u1 ∈ Λ(G) and let u1z1 be a pendant
edge of G. Then v7 has no neighbors in G − V (C) ∪ V (D) ∪ V (D′). Otherwise, assume
that z2 ∈ NG−V (C)−u1(v7), then v6v7z2∪v6v5v4∪v6u2v2v1v0u1z1 is a T2,2,6, a contradiction.
But then v1v0u1v4v5v6u2v2v3 is a dominating trail of G. This proves Claim 19.

If P is a dominating path of D, then by Claim 19, ⟨V (C) ∪ V (P )⟩G contains a domi-
nating trail of G, a contradiction. Hence P cannot be a dominating path in D. It follows
that P has length at least two, for otherwise D ∩ G0 is a 1-component of G0 − V (C)
and clearly D ∩ G0 dominates all edges of D. Recall that P is a longest 2-attaching
path of C in D ∩ G0 with a 2-attaching pair {vi′ , vi′′}. Since C is a longest cycle of G,
we have 3 ⩽ distC(vi′ , vi′′) ⩽ 4 and P is an edge if distC(vi′ , vi′′) = 3. Suppose that
distC(vi′ , vi′′) = 3. Since P is not a dominating path of D, there is an edge u1u2 in D
incident with P , which is not dominated by P . But then ⟨V (C) ∪ V (P ) ∪ {u1, u2}⟩G
contains a subgraph isomorphic to T2,2,6, a contradiction.

So we have distC(vi′ , vi′′) = 4. We may assume that vi′ = v0, vi′′ = v4 without loss
of generality. Since C is a longest cycle of G, we have 2 ⩽ |V (P )| ⩽ 3. If P is an edge
and let P = x1x2, then since P is not a dominating path of D, there is an edge x3z in
D such that x3 is adjacent to x1 or x2, where x3z is not dominated by x1x2. We may
assume that x1x3 ∈ E(G) without loss of generality. Note that D ∩G0 is a 2-component
of G0 − V (C). By Lemma 9 (ii) D ∩ G0 is a star, implying that x1 is the center and
x3 is a leaf of D ∩ G0. Then x3z is a pendant edge of G and x3 ∈ Λ(G). Since G0 is
2-connected, NG(x3) ∩ V (C) ̸= ∅. By Claim 18, NG(x3) ∩ {v0, v1, v3, v4, v5, v7} = ∅ and
therefore NG(x3)∩{v2, v6} ̸= ∅, implying that x2x1x3 is a 2-attaching path of C in D∩G0.
But this contradicts the fact that P is a longest 2-attaching path of C in D ∩G0.

Hence we have |V (P )| = 3 and let P = y1y2y3. Since P is not a dominating path of
D, there is an edge y4z in D such that y4 is adjacent to some yi in {y1, y2, y3}, where y4z
is not dominated by y1y2y3. Therefore, y1y4, y3y4 /∈ E(G), for otherwise, up to symmetry,
we may assume that y4y1 ∈ E(G), but then y1y4z ∪ y1y2y3 ∪ y1v0v1v2v3v4v5 is a T2,2,6.
Hence we have y4y2 ∈ E(G). We further claim that z is a pendant vertex of G. If not,
then z ∈ V (G0). Since G0 is 2-connected, there exist two internally disjoint paths Q1, Q2

in G0 from z to {y1, y3}. Note that D∩G0 is a 3-component of G0−V (C). Then there is
no cycle in D ∩G0 containing y3, y2, y4, z or y1, y2, y4, z, implying that one of Q1 and Q2,
say Q1, joins z and C such that y1, y2, y3, y4 /∈ V (Q1), then there exists a 2-attaching path
of C in D ∩ G0 containing y3, y2, y4, z or y1, y2, y4, z. But this contradicts the fact that
P is a longest 2-attaching path of C in D ∩ G0. This implies that z is a pendant vertex
of G and then y4 ∈ V (G0). Since G0 is 2-connected, there exist two internally disjoint
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path Q′, Q′′ in G0 from y4 to {y1, y3}. Since D ∩ G0 is a 3-component of G0 − V (C),
there is no cycle in D ∩G0 containing y3, y2, y4 or y1, y2, y4, implying that one of Q′ and
Q′′, say Q′, joins y4 and C such that y1, y2, y3 /∈ V (Q′). Therefore, since D ∩ G0 is a
3-component of G0 − V (C), Q′ is an edge and hence NG(y4) ∩ V (C) ̸= ∅. By Claim 18,
NG(y4)∩ {v0, v1, v3, v4, v5, v7} = ∅ and then NG(y4)∩ {v2, v6} ̸= ∅. By symmetry, we may
assume that v2 ∈ NG(y4), but then v0v1v2y4y2y3v4v5v6v7v0 is a 10-cycle, a contradiction.
This completes the proof of Lemma 17.

Proof of Theorem 14. We argue by contradiction, and assume that G is a counter-example
to Theorem 14 such that the number of super-blocks of G is minimized. By Lemma 17
we have κ(G0) = 1.

For a super-block B of G, we use G/B to mean that deleting all edges between
vertices of B and then identifying the vertices of B into a single vertex v, we call v the
concentration in G/B.
Claim 20. Every outer-super-block of G has no dominating cycle containing the cut vertex
of G0.

Proof. Suppose not, and let B be an outer-super-block of G such that B has a dominating
cycle C containing the cut vertex v of G0 in B. Note that G/B has less super-blocks
than G and no subgraph isomorphic to T2,2,6. By the minimality of the super-blocks of G,
G/B has a dominating trail T , but then T ∪ C is a dominating trail of G, contradicting
the choice of G. This proves Claim 20.

Claim 21. G0 has only one cut vertex v.

Proof. Suppose otherwise. Then G0 contains two end cut vertices v1, v2. Let B1,B2 be
two outer-super-blocks of G such that vi ∈ V (Bi). Clearly V (B1) ∩ V (B2) = ∅. By
Claim 20 and Lemma 16, Bi contains a subgraph T2,2,k(k ⩾ 1) with the special leaf v
and |Pvi(Bi)| ⩾ 5 for each i = 1, 2. Choose a longest path P (v1, v2) in G joining v1
and v2. Since G0 is 2-edge-connected, P (v1, v2) passes through at least one nontrivial
block (contains a cycle) of G0, implying that |P (v1, v2)| ⩾ 3. It is easy to see that
B1∪P (v1, v2)∪Pv2(B2) contains a subgraph T2,2,7 and clearly contains a subgraph T2,2,6,
a contradiction. This proves Claim 21.

Let B1,B2 be two outer-super-blocks of G. By Claim 21 we have V (B1) ∩ V (B2) =
{v}. By Claim 20 and Lemma 16, for each i = 1, 2, Bi contains a subgraph T2,2,k(k ⩾ 1)
with the special leaf v and |Pvi(Bi)| ⩾ 5. Since B1 ∪ B2 has no subgraph isomorphic
to T2,2,6, it follows that |Pvi(Bi)| = 5 for i = 1, 2. Therefore, again by Lemma 16, Bi

contains a subgraph T2,2,k(k ⩾ 2) with the special leaf v and |Pvi(Bi)| = 5. It is easy to
see that B1 ∪B2 contains a subgraph T2,2,6, a contradiction. This completes the proof of
Theorem 14.

We now need the following lemmas to show Theorem 15.
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Lemma 22. Let G be an essentially 2-edge-connected trangle-free graph that has no
subgraph isomorphic to T2,4,5. If κ(G0) ⩾ 2, then G has a dominating trail.
Proof. Suppose, by way contradiction, that G has no dominating trail. Let C = v0v1v2 · · ·
vc(G)−1v0 be a longest cycle of G. Then E(G−V (C)) ̸= ∅, for otherwise C is a dominating
trail of G. Thus G−V (C) has a nontrivial component D. Let P be a longest 2-attaching
path of C in D ∩G0 with a 2-attaching pair {vi′ , vi′′}. Since C is a longest cycle of G, we
have distC(vi′ , vi′′) ⩾ 2. Since D is nontrivial, there exists an edge u1z1 in D incident with
one of vi′ and vi′′ . Then c(G) ⩽ 9, for otherwise ⟨V (C) ∪ {u1, z1}⟩G contains a subgraph
isomorphic to T2,4,5. By Lemma 9(iv), it suffices to consider the case when |V (C)| = 8, 9,
then distC(vi′ , vi′′) ⩽ 4.
Claim 23. For any nontrivial component D of G− V (C), every longest 2-attaching path
of C in D ∩G0 is a dominating path of D.

Proof. Suppose not, and let D be a nontrivial component of G−V (C) such that C has a
longest 2-attaching path in D ∩G0 which is not a dominating path of D. It follows that
D contains a path P of length three such that its end-vertex adjacent to some vertex of
C, but then ⟨V (C) ∪ V (P )⟩G contains a subgraph isomorphic to T2,4,5, a contradiction.
This proves Claim 23.

Since P is a longest 2-attaching path of C in D ∩ G0, by Claim 23, P dominates all
edges of D. We now distinguish two cases.

Case 1. c(G) = 9.
Claim 24. D is the only one nontrivial component of G− V (C).

Proof. Suppose not the contrary that that G − V (C) has a nontrivial component D′

distinct from D. Then there exist two edges x1x2, y1y2 in D and D′, respectively, such
that x1, y1 are incident with C. We may assume that v0x1 ∈ E(G) without loss of
generality. Then y1 cannot be adjacent to any vertex in {v2, v3, v4, v5, v6, v7}. Otherwise
we obtain the following

v0x1x2 ∪ v0v1v2y1y2 ∪ v0v8v7v6v5v4 ∼= T2,4,5 if y1v2 ∈ E(G)

v0x1x2 ∪ v0v1v2v3y1 ∪ v0v8v7v6v5v4 ∼= T2,4,5 if y1v3 ∈ E(G)

v0x1x2 ∪ v0v8v7v6v5 ∪ v0v1v2v3v4y1 ∼= T2,4,5 if y1v4 ∈ E(G)

v5y1y2 ∪ v5v4v3v2v1 ∪ v5v6v7v8v0x1
∼= T2,4,5 if y1v5 ∈ E(G)

v6y1y2 ∪ v6v7v8v0x1 ∪ v6v5v4v3v2v1 ∼= T2,4,5 if y1v6 ∈ E(G)

v7y1y2 ∪ v7v8v0x1x2 ∪ v7v6v5v4v3v2 ∼= T2,4,5 if y1v7 ∈ E(G)

a contradiction. It follows that NG(D
′) ∩ V (C) ⊆ {v0, v1, v8}, but this yield a cycle with

length more than C in G, a contradiction. This proves Claim 24.

By Claims 23 and 24, ⟨V (C)∪V (P )⟩G contains a dominating trail of G, a contradiction.
In the following the subscript i of vi is in {0, 1, · · · , c(G)− 1}.

Case 2. c(G) = 8.
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Claim 25. For any two independent edges x1x2, y1y2 in G − V (C) such that x1, y1
are incident with C. If x1vi ∈ E(G), then y1 cannot be incident with any vertex in
{vi+2, vi+3, vi+5, vi+6}.

Proof. Otherwise, we obtain the following
vi+2y1y2 ∪ vi+2vi+1vix1x2 ∪ vi+2vi+3vi+4vi+5vi+6vi+7

∼= T2,4,5 if y1vi+2 ∈ E(G)

vi+3y1y2 ∪ vi+3vi+4vi+5vi+6vi+7 ∪ vi+3vi+2vi+1vix1x2
∼= T2,4,5 if y1vi+3 ∈ E(G)

vix1x2 ∪ vivi+1vi+2vi+3vi+4 ∪ vivi+7vi+6vi+5y1y2 ∼= T2,4,5 if y1vi+5 ∈ E(G)

vix1x2 ∪ vivi+7vi+6y1y2 ∪ vivi+1vi+2vi+3vi+4vi+5
∼= T2,4,5 if y1vi+6 ∈ E(G)

a contradiction. This proves Claim 25.

Note that 2 ⩽ distC(vi′ , vi′′) ⩽ 4. Suppose that distC(vi′ , vi′′) = 2. We may assume
that vi′ = v0, vi′′ = v2 without loss of generality. Then D is the only one nontrivial
component of G − V (C). If not, and let D′ be a nontrivial component of G − V (C)
distinct from D. By Claim 25, NG(D

′) ∩ V (C) ∩ {v2, v3, v5, v6, v4, v7, v0} = ∅, but then
NG(D

′) ∩ V (C) ⊆ {v1}, a contradiction. By Claim 23, ⟨V (C) ∪ V (P )⟩G contains a
dominating trail of G, a contradiction.

Suppose next that distC(vi′ , vi′′) = 3. We may assume that vi′ = v0, vi′′ = v3 without
loss of generality. If D is the only one nontrivial component of G − V (C), then by
Claim 23 P is a dominating path of D, but now v0Pv3 · · · v7v0v1v2 is a dominating trail
of G, a contradiction. Hence G − V (C) has a nontrivial component D′ distinct from
D. By Claim 25, NG(D

′) ∩ V (C) ∩ {v2, v3, v5, v6, v0, v1} = ∅, implying that NG(D
′) ∩

V (C) ⊆ {v4, v7}. Let Q be a longest 2-attaching path of C in D ∩ G0. By Claim 23 Q
dominates all edges of D′. Similarly we can again apply Claim 25 to obtain D,D′ are all
nontrivial components G − V (C), but then v2v1v0Pv3v4Qv7v6v5 is a dominating trail of
G, a contradiction.

Finally suppose that distC(vi′ , vi′′) = 4. We may assume that vi′ = v0, vi′′ = v4 without
loss of generality. Then D is the only one nontrivial component of G− V (C). If not, and
let D′ be a nontrivial component of G − V (C) distinct from D. By Claim 25 NG(D

′) ∩
V (C)∩ {v2, v3, v5, v6, v7, v0, v1, v4} = ∅, a contradiction. By Claim 23, ⟨V (C)∪ V (P )⟩G is
a dominating trail of G, a contradiction. This completes the proof of Lemma 22.

Lemma 26. Let G be an essentially 2-edge-connected graph without subgraphs isomorphic
to T2,4,5, and let B be a super-block of G. Assume G/B has a dominating closed trail T
which contains the concentration vertex v. Then G has a dominating trail.

Proof. Let S = {v1, · · · , vt} be the set of cut vertcies of G0 in B. We constructs the
graph B′ obtained from B by adding t pendant edges v1w1, · · · , vtwt. Note that B′ has
no subgraph isomorphic to T2,4,5. Applying Lemma 22 to B′, we obtain that B′ has a
dominating trail T ′. Clearly S ⊂ V (T ′). Since G/B has a dominating closed trail T
which contains the concentration vertex v, it follows that T ∪ T ′ is a dominating trail of
G. The proof is complete.
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Lemma 27. Let G be an essentially 2-edge-connected triangle-free graph without subgraphs
isomorphic to T2,4,5. If G has an inner-super-block B, then G has a dominating trail.

Proof. We argue by contradiction, and assume that G is a counter-example to Lemma 27
such that the number of super-blocks of G is minimized.
Claim 28. Every inner-super-block of G contains exactly two cut vertices of the core G0

of G.

Proof. Suppose not. We may assume, without loss of generality, that B1,B2,B3 are three
super-block of G such that B ∩ Bi = {vi} where vi is a cut vertex of G0 in B. Since
B∩G0 is 2-connected and G is triangle-free, there exists a cycle C of length at least four
in B∩G0 containing v1 and v3. Note that |Pvi(Bi)| ⩾ 4 for i = 1, 2, 3. If v2 ∈ V (C), then
Pv1(B1)∪Pv2(B2)∪Pv3(B3)∪C contains a subgraph isomorphic to T2,4,5 with the root v1
or v2, a contradiction. Hence we have v2 /∈ V (C). Then there exists a path P in B ∩G0

joining v2 and C since B∩G0 is connected, but now Pv1(B1)∪Pv2(B2)∪Pv3(B3)∪C ∪P
contains a subgraph isomorphic to T2,4,5 with the root v1 or v2, a contradiction. This
proves Claim 28.

Claim 29. There is no triple of super-blocks of G such that they have a common cut
vertex of G0.

Proof. Suppose otherwise. Then exist three super-block of G such that they have a
common cut vertex v of G0. It follows that G has at least three outer-super-blocks. We
may assume, without loss of generality, that B1,B2,B3 are three outer-super-block of G
such that B ∩ B1 ∩ B2 = {v} and B ∩ B3 = {u}. Note that if G has more than one
inner-super-block then it is more easier than this case to get a contradiction. Note that
|Pv(B ∪B3)| ⩾ 6. Since G has no subgraph isomorphic to T2,4,5, it follows that for each
i = 1, 2, |Pv(Bi)| ⩽ 5, implying that c(Bi) ⩽ 5. If some Bi has a dominating cycle Cv

containing v, say B1, then G/B2 has super-blocks less than G and has an inner-super-
block B and no subgraph isomorphic to T2,4,5. By the choice of G, G/B2 has a dominating
trail T , but then T ∪ Cv is a dominating trail of G, a contradiction. Hence for each
i ∈ {1, 2}, Bi has no dominating cycle containing v and since c(Bi) ⩽ 5, by Lemma 16(ii)-
(iii) Bi contains a subgraph T2,4,0 with the root v implying that Bi∪Pv(B∪B4) contains a
subgraph isomorphic to T2,4,5 with the root v, a contradiction. This proves Claim 29.

By Claims 28 and 29, G has exactly two outer-super-blocks B1,B2. We may assume,
without loss of generality, that B,B1,B2 are all three super-blocks of G three super-blocks
if G has more than three super-blocks then it is more easier than this case to obtain a
contradiction. Let B ∩ B1 = {v1} and B ∩ B2 = {v2}. Note that |Pv2(B1 ∪ B)| ⩾ 6
and |Pv1(B2 ∪ B)| ⩾ 6. Since G has no subgraph isomorphic to T2,4,5, it follows that
each Bi(i = 1, 2) contains no subgraph T2,4,0 with the root vi. If each Bi(i = 1, 2) has
a dominating cycle containing vi, then these two cycle form a dominating closed trial of
G/B and containing the concentration vertex vi, by Lemma 26 G has a dominating trail
of G.
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Hence we may assume that B1 has no dominating cycle containing v1 without loss of
generality. Since B1 contains no subgraph T2,4,0 with the root v1, by Lemma 16 we have
|Pv1(B1)| ⩾ 6. Let C(v1, v2) be a cycle in B containing v1 and v2. Then C(v1, v2) has
length exactly four, for otherwise C(v1, v2) has length at least five and then C(v1, v2)∪B2

contains a subgraph T2,4,0 with the root v1, but this together with Pv1(B1) yield a subgraph
isomorphic to T2,4,5. Similarly one can show that C(v1, v2) \ {v1, v2} has no neighbor
outside in B, for otherwise, B ∪B2 contains a subgraph T2,4,k(k ⩾ 0) with the root v1,
but B1∪B∪B2 contains a subgraph isomorphic to T2,4,5. Thus C(v1, v2) is a dominating
cycle of B and clearly C(v1, v2) contains a dominating path P (v1, v2) in B. If B2 has a
dominating cycle Cv2 containing v2, then Cv2 ∪ C(v1, v2) is a dominating closed trail of
G/B1 which contains the concentration vertex v1, by Lemma 26 G has a dominating trail
of G. Hence for each i = 1, 2, Bi has no dominating cycle containing vi. If c(Bi) ⩾ 6
then since Bi contains no subgraph T2,4,0 with the root vi, by Lemma 16(i) Bi has a
dominating trail starting from vi, and if c(Bi) ⩽ 5 then by Lemma 9(iii), Bi ∩ G0 has a
spanning trail starting from vi. In any cases we can obtain that each Bi(i = 1, 2) has a
dominating trail Ti starting from vi, but then T1 ∪ P (v1, v2) ∪ T2 is a dominating trail of
G, a contradiction. This completes the proof of Lemma 27.

Proof of Theorem 15. Suppose that G has no dominating trail. Since G has no subgraph
isomorphic to T2,4,5, by Lemma 22 we have κ(G0) = 1. By Lemma 27, G0 has only one
cut vertex v. Let B1, · · · ,Bt(t ⩾ 2) be all super-blocks of G.
Claim 30. t ⩾ 3.

Proof. Suppose not. Then t = 2. If some Bi has a dominating cycle containing v, then
since B1 ∪B2 = G, by Lemma 26 G has a dominating trail, a contradiction. Hence both
B1 and B2 have no dominating cycle containing v. If each c(Bi) ⩾ 6 for i = 1, 2, then
by Lemma 16(i), Bi contains a subgraph T2,4,0 with the root v or Bi has a dominating
trail Ti starting from v. Note that |Pv(Bi)| ⩾ 6 for i = 1, 2. But then B1 ∪ B2 contains a
subgraph isomorphic to T2,4,5 or T1 ∪ T2 is a dominating trail of G. If c(Bi) ⩽ 5 for each
i = 1, 2, then by Lemma 9(iii) Bi ∩ G0 has a spanning trail T i starting from v, but now
T 1 ∪ T 2 is a dominating trail of G, a contradiction.

Hence we may assume that c(B1) ⩽ 5 and c(B2) ⩾ 6 without loss of generality.
Since each Bi(i = 1, 2) has no dominating cycle containing v. Applying Lemma 16 to
B1, either B1 contains a subgraph T2,4,0 with the root v or |Pv(B1)| ⩾ 6 holds. Again
applying Lemma 16 to B2, either B2 contains a subgraph T2,4,0 with the root v or has a
dominating trail starting from v holds.

Note that by Lemma 9(iii) that B1 ∩ G0 has a spanning trail starting from v. Since
G has no dominating trail, it follows that B2 has no dominating trail starting from v,
implying that B2 contains a subgraph T2,4,0 with the root v. Since G has no subgraph
isomorphic to T2,4,5, it follows that |Pv(B1)| ⩽ 5, implying that B1 contains a subgraph
T2,4,0 with the root v. Note that |Pv(B2)| ⩾ 6. But then B1 ∪ B2 contains a subgraph
isomorphic to T2,4,5, a contradiction. This proves Claim 30.

Claim 31. For each i = 1, · · · , t, |Pv(Bi)| ⩽ 5.
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Proof. Suppose otherwise. We may assume that |Pv(B1)| ⩾ 6 without loss of generality.
If each Bi(i = 2, · · · , t) has a dominating cycle containing v, then these dominating cycles
form a dominating closed trail of G/B1 and containing the concentration vertex v, by
Lemma 26 G has a dominating trail, a contradiction. Hence we may assume that B2 has
no dominating cycle containing v without loss of generality. By Lemma 16, |Pv(B2)| ⩾ 5.
Note that |Pv(B3)| ⩾ 3. But then Pv(B1)∪Pv(B2)∪Pv(B3) contains a subgraph isomorphic
to T2,4,5, a contradiction. This proves Claim 31.

By Claim 31, it follows that c(Bi) ⩽ 5 for each i = 1, 2, · · · , t. Let H = {B1, · · · ,Bt}.
Let

• H1 = {B ∈ H : c(B) = 5};

• H2 = {B ∈ H : c(B) = 4 and dB∩G0(v) = 2 and ∆(B ∩G0) is odd};

• H3 = {B ∈ H : c(B) = 4 and dB∩G0(v) = 2 and ∆(B ∩G0) is even};

• H4 = {B ∈ H : c(B) = 4 and dB∩G0(v) = ∆(B∩G0) ⩾ 4 and ∆(B∩G0) is even};

• H5 = {B ∈ H : c(B) = 4 and dB∩G0(v) = ∆(B ∩ G0) ⩾ 3 and ∆(B ∩ G0) is odd
and there exists a vertex u adjacent to v in B ∩G0 such that u /∈ Λ(G)};

• H6 = {B ∈ H : c(B) = 4 and dB∩G0(v) = ∆(B ∩ G0) ⩾ 3 and ∆(B ∩ G0) is odd
and any vertex u is adjacent to v in B ∩G0 such that u ∈ Λ(G)}.

Clearly {H1,H2,H3,H4,H5} is a partition of H.
Claim 32. For each i = 1, 2, 3, 4, 5, 6, every B in Hi is isomorphic Fi where Fi is defined
in Section 1 and shown in Figure 2. Consequently, each member of Hi has a dominating
closed trail containing v for 1 ⩽ i ⩽ 5.

Proof. Let B ∈ H. Since c(B) ⩽ 5, by Lemma 9(iii) there is a cycle C of length
c(G) containing v. We may assume that C = vv1 · · · vc(G)−1v. If B ∩ G0 − V (C) = ∅,
then B ∈ H1 ∪ H3, and clearly C is a dominating cycle of B containing v. Hence we
assume that B ∩ G0 − V (C) ̸= ∅. By Lemma 9(i), every component of B ∩ G0 − V (C)
is a 1-component, and let u1, u2, · · · , ut be all components of B ∩ G0 − V (C). Then
V (B∩G0) = V (C)∪{u1, u2, · · · , ut}. Suppose that c(B) = 5. Then B ∈ H1. Since C is a
longest cycle of B and ui is a 1-component to B∩G0−V (C), we have |NB(ui)∩V (C)| = 2,
implying that NB(ui) ∩ V (C) = {v, v2} or NB(ui) ∩ V (C) = {v, v3} for 1 ⩽ i ⩽ t. By
Claim 31, {v1, v4, u1, · · · , ut} ∩ Λ(G) = ∅, implying that B is isomorphic to F1. Clearly
C is a dominating cycle containing v.

Hence we assume that c(B) = 4. Since C is a longest cycle of B and ui is a 1-
component of B ∩G0 − V (C) for 1 ⩽ i ⩽ t. Then NB(ui) ∩ V (C) = {v, v2} or NB(ui) ∩
V (C) = {v1, v3} for 1 ⩽ i ⩽ t. Suppose that B ∈ H2 ∪H3. Since dB∩G0(v) = 2, it follows
that NB(ui) ∩ V (C) = {v1, v3} for 1 ⩽ i ⩽ t. By Claim 31, {v2, u1, · · · , ut} ∩ Λ(G) = ∅.
Clearly C is a dominating cycle containing v. If ∆(B ∩G0) is odd then B is isomorphic
to F2, if ∆(B ∩G0) is even then B is isomorphic to F3.
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Now suppose that B ∈ H4. Then NB(ui)∩V (C) = {v, v2} for 1 ⩽ i ⩽ t and t is even.
Hence B is isomorphic to F4, and clearly B ∩G0 is an even graph.

Finally suppose that B ∈ H5 ∪ H6. Then NB(ui) ∩ V (C) = {v, v2} for 1 ⩽ i ⩽ t
and t is odd. If there exists a vertex u ∈ {v1, v3, u1, · · · , u4} such that u /∈ Λ(G), then
B is isomorphic to F5, clearly B ∩ G0 − u is an even graph. Hence we assume that
{v1, v3, u1, · · · , u4} ⊆ Λ(G), implying that B is isomorphic to F6. This proves Claim 32.

Note that H1 ∪ · · · ∪ H6 = G. If H1 ∪ · · · ∪ H5 ̸= ∅, then by Claim 32, the set
H1 ∪ · · · ∪ H5 of graphs contains a dominating closed trail containing v. Since each B
in H6 has circumference four, it follows Lemma 9(iv) that B ∩ G0 has a spanning trail
starting at v. If |H6| ⩽ 2, then clearly G has a dominating trail, a contradiction. Hence
|H6| ⩾ 3 and G ∈ F . The proof is complete.

5 Concluding remarks

In 1966, Gallai asked whether all longest paths in a connected graph have a nonempty
intersection. The answer to this question is not true in general and various counterex-
amples have been found. However, Gallai’s question has a positive solution for many
well-known classes of graphs such as split graphs, series-parallel graphs, and 2K2- free
graphs. Recently, Gao and Shan [21] proved that Gallai’s question has an affirmative
answer for connected {K1,3, S}-free graphs where S ∈ {P6, Z3, B1,2}. We think that one
may extend this result to {K1,3, S}-free graphs where S ∈ {N1,1,5, N1,3,3, B2,4} by applying
our result (Theorem 1.1).
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