Forbidden pairs for traceability of 2-connected graphs

Shipeng Wang^{a,b} Liming Xiong^{c,d}

Submitted: Jul 3, 2023; Accepted: Jun 1, 2025; Published: Jul 4, 2025 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let \mathcal{H} be a set of connected graphs. A graph is said to be \mathcal{H} -free if it does not contain an induced subgraph isomorphic a member of \mathcal{H} . A graph is called traceable if it has a path containing all its vertices. In 1997, Faudree and Gould characterized all pairs R, S such that every connected $\{R, S\}$ -free graph is traceable. In this paper, we extend this result by considering 2-connected graphs, and characterize all pairs R, S such that every 2-connected $\{R, S\}$ -free graph is traceable. Furthermore, we characterize all 2-connected $\{K_{1,3}, N_{1,3,4}\}$ -free non-traceable graphs.

Mathematics Subject Classifications: 05C38, 05C45

1 Introduction

We basically follow the most common graph-theoretical terminology and notation and for concepts not defined here we refer the reader to [4]. All graphs in this paper are simple, finite and undirected.

Let G be a graph, and $u, v \in V(G)$, $X \subseteq V(G)$, and let H be a subgraph of G. Then $N_G(v)$ denotes the set, and $d_G(v)$ the number, of neighbors of v in G, $d_H(v)$ the number of neighbors of v in H, $N_G(X)$ the set of vertices of $V(G) \setminus X$ having a neighbor in X, and $N_H(X)$ the set of vertices of $V(H) \setminus X$ having a neighbor in X. For $X \subset V(G)$, we use $\langle X \rangle_H$ to denote the subgraph of H induced by the set of vertices X in H. The distance between u and v in G is denoted $dist_G(u,v)$, and when $u,v \in V(H)$, $dist_H(u,v)$ denotes their distance in the subgraph H of G, i.e., the length of a shortest path between u and v in H. The girth (the circumference) of G, denoted by g(G) (c(G)), is the length of a shortest (longest) cycle of G. A pendant vertex is a vertex of degree 1, and a pendant edge is an edge having a pendant vertex as an end vertex. As usual, we use $P_i(i \ge 1)$ to denote the path on i vertices. We use $N_{i,j,k}$ to denote the graph obtained by attaching

^aDepartment of Mathematics, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China. (spwang22@ujs.edu.cn).

^bSchool of Mathematics and Statistics, Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, P.R. China (lmxiong@bit.edu.cn).

^cDepartment of Mathematics, Lanzhou University of Arts and Science, Lanzhou 730000, P.R. China

Figure 1: $Z_i, B_{i,j}$ and $N_{i,j,k}$

three vertex-disjoint paths of lengths $i, j, k \ge 0$ to a triangle. In the special case when $i, j \ge 1$ and k = 0 (or $i \ge 1$ and j = k = 0), $N_{i,j,k}$ is also denoted $B_{i,j}$ (or Z_i), respectively (see Figure 1).

A graph G is called hamiltonian, if it contains a Hamilton cycle, i.e., a cycle containing all vertices of G. A graph G is called traceable, if it contains a Hamilton path, i.e., a path containing all vertices of G. A graph G is called Hamilton-connected if it contains a Hamilton (x, y)-path for each pair x, y of vertices of G. A graph G is called supereulerian if it contains a spanning connected even subgraph of G. A graph G is called pancyclic if it contains a cycle C_l for all $1 \le l \le |G|$. A cycle C in a graph G is called pancyclic if every edge of G is incident with a vertex of G. A spanning subgraph G of G is called G its G is called G if it has a Hamilton path starting from any vertex of G.

Let \mathcal{H} be a set of connected graphs. A graph G is said to be \mathcal{H} -free if G does not contain an induced subgraph isomorphic to a member of \mathcal{H} . We call \mathcal{H} a forbidden pair of G if $|\mathcal{H}| = 2$. If $\mathcal{H} = \{H\}$, then we simply say that G is H-free and G is claw-free if $H = K_{1,3}$. For a property \mathcal{P} , it is a popular research topic to give forbidden induced subgraphs condition forcing a graph to have the property \mathcal{P} . Many researchers characterized the forbidden pairs for the property \mathcal{P} of k-connected graphs, we now summarize some known results in Table 1. When considering forbidden pairs for property \mathcal{P} of k-connected graphs, the connectivity k must meet the necessity condition of \mathcal{P} for otherwise the forbidden pairs are 'none'. The literal 'trivial' in Table 1 means that the forbidden pairs are arbitrary because every 4-edge-graph has been superculerian. In 1984, Matthews and Sumner [36] conjectured that every 4-connected claw-free graph is hamiltonian, which has been proven to be equivalent to many other conjectures and still open. So the literal 'open' in Table 1 means that the forbidden pairs are related to Matthews-Sumner conjecture.

In this paper, we characterize all forbidden pairs for traceability of 2-connected graphs by proving the following.

Theorem 1. Let R, S be a pair of connected graphs such that neither R nor S is an induced subgraph of P_3 . Then every 2-connected $\{R, S\}$ -free graph is traceable if and only if (up to symmetry) $R = K_{1,3}$ and S is an induced subgraph of $B_{2,4}, N_{1,1,5}$ or $N_{1,3,3}$; $R = K_{1,4}$ and $S = P_4$.

We actually obtain more general result than Theorem 1, and characterize all 2-connected $\{K_{1,3}, N_{1,3,4}\}$ -free non-traceable graphs. Before state our next result, we need

Table 1: Characterizing forbidden pairs for properties \mathcal{P} of k-connected graphs

\mathcal{P}	k = 1	k=2	k=3	$k \geqslant 4$
hamiltonian	none	full [2][13]	partical [7][18][26][30][33][40]	open
traceable	full [13]	this paper	unknown	open
Hamilton-connected	none	none	partical [3][13][15][25][31][32][38]	open
perfect mathching	full [20]	full [19]	full[19]	full [19]
2-factor	none	full [14]	unknown	open
homogenously traceable	none	full [27]	unknown	open
supereulerian	none	full [34][35]	unknown	trivial
pancyclic	none	none	full [22]	partical [16][17]
dominating cycle	none	partical [8][9][12]	unknown	open

the following definitions.

Let G be a claw-free graph. A vertex $x \in V(G)$ is locally connected if the neighborhood of x induces a connected subgraph in G. For $x \in V(G)$, the graph G'_x obtained from G by adding the edges $\{yz: y, z \in N(x) \text{ and } yz \notin E(G)\}$ is called the local completion of G at x. The closure of G, denoted by cl(G), is obtained from G by recursive performing local completions at any locally connected vertex with non-complete neighborhood, as long as it is possible. Ryjáček [37] proved the closure cl(G) is the line graph of a triangle-free graph. To split a vertex v is to replace v by two adjacent vertices, v' and v'', and to replace each edge incident to v by an edge incident to either v' and v'' (but not both). We now define the following six graphs depicted in Figure 2. Let

- F_1 be obtained from a complete bipartite graph $K_{2,t}(t \ge 2)$ by splitting one vertex of degree t into two new vertices, and adding some pendant edges (possible zero) to the two new vertices and the other vertex of degree t (denoted as the special vertex v)};
- F_2 be obtained from $K_{2,2t+1}(t \ge 1)$ by adding some pendant edges (possible zero) to the exactly one vertex of degree two (denoted as the special vertex v) and the two vertices of degree 2t + 1;
- F_3 be obtained from $K_{2,2t}(t \ge 1)$ by adding some pendant edges (possible zero) to the exactly one vertex of degree two (denoted as the special vertex v) and the two vertices of degree 2t;
- F_4 be obtained from $K_{2,2t}(t \ge 2)$ by adding some pendant edges (possible zero) to all vertices (one of the two vertices of degree 2t is denoted as the special vertex v);
- F_5 be obtained from $K_{2,2t+1}(t \ge 2)$ by adding some pendant edges (possible zero) to all vertices except one vertex of degree two (one of the two vertices of degree 2t + 1 is denoted as the special vertex v);
- F_6 be obtained from $K_{2,2t+1}(t \ge 2)$ by adding at least one pendant edge to each vertex of degree two and by adding some pendant edges (possible zero) to the two vertices of degree 2t + 1 (one of the two vertices of degree 2t + 1 is denoted as the special vertex v).

Figure 2: Graph F_i for $1 \le i \le 6$

Let F_{\star} be obtained three copies of F_6 by identifying their special vertex v, and let $\mathcal{F} = \{F : F \text{ is obtained from } F_{\star} \text{ and a sequence of } F_i (1 \leq i \leq 6) \text{ by identifying their special vertex } v\}$. We may state our next main result.

Theorem 2. Let G be a 2-connected $\{K_{1,3}, N_{1,3,4}\}$ -free graph. Then either G is traceable or cl(G) is the line graph of a member in \mathcal{F} .

In the next section, we will introduce the properties of Ryjáček closure and some useful results. In Section 3, we will prove Theorem 1. In Section 4, we will prove Theorems 2 and 11 which are used to prove the sufficiency of Theorem 1. In the last section, we give some concluding remarks.

2 Preliminaries and basic results

2.1 The stable properties under Ryjáček closure

Ryjáček prove that the closure of claw-free graphs preserves the hamiltonicity.

Theorem 3. ([37]) Let G be a claw-free graph. Then

- (i) cl(G) is uniquely determined;
- (ii) cl(G) is the line graph of a triangle-free graph;
- (iii) G is hamiltonian if and only if cl(G) is hamiltonian.

Brandt, Favaron and Ryjáček proved that the closure of claw-free graphs preserves the traceability.

Theorem 4. ([5]) Let G be a claw-free graph. Then G is traceable if and only if cl(G) is traceable.

We say that a class \mathcal{H} of claw-free graphs is *stable* if for every graph in \mathcal{H} , its closure is also in \mathcal{H} . Brousek, Ryjáček and Favaron proved that the following classes of claw-free graphs are stable.

Theorem 5. ([6]) If $S \in \{P_i : i > 0\} \cup \{Z_i : i > 0\} \cup \{N_{i,j,k} : i, j, k > 0\}$, then the class of $\{K_{1,3}, S\}$ -free graphs is stable.

In [6], Brousek, Ryjáček and Favaron also pointed out that the class of $\{K_{1,3}, B_{i,j}\}$ -free graphs $(i, j \ge 1)$ is not stable. Later, Du and the second author dealt with this case by considering $\{K_{1,3}, B_{i,j}\}$ $(i, j \ge 1)$ -free graphs with three pendant vertices.

Lemma 6. ([11]) Let G be a connected claw-free graph. Suppose G contains a connected induced subgraph H with three pendant vertices v_1, v_2, v_3 . Then for any pair of $v_i, v_j \in \{v_1, v_2, v_3\}$, H has an induced subgraph $B_{l,k}(l \ge k \ge 1)$ containing v_i, v_j .

Lemma 7. Let G be a connected claw-free graph. Suppose G has a connected induced subgraph H containing two pendant edges u_1v_1 , u_2v_2 with $u_1 \neq u_2$ and $d_H(v_1) = d_H(v_2) = 1$. If $|V(H)\setminus\{v_1,v_2\}| \geq 3$, then H has an induced $B_{1,1}$ containing v_1 and v_2 , or $dist_H(u_1,u_2) \geq 2$.

Proof. Suppose that $dist_H(u_1, u_2) \leq 1$. Then $u_1u_2 \in E(G)$. Since $|V(H)\setminus \{v_1, v_2\}| \geq 3$, there exists a vertex $w \in V(H)\setminus \{v_1, v_2, u_1, u_2\}$ such that w is adjacent to one of u_1, u_2 , say $u_1w \in E(G)$. Since G is claw-free, we have $u_2w \in E(G)$, then $\langle \{v_1, u_1, u_2, v_2, w\}_G \}$ is an induced $B_{1,1}$. This proves Lemma 7.

2.2 Useful results

A subgraph H of a graph G is dominating if every edge of G has at least one end in H. A subgraph H of a graph G is even if every vertex of H has even degree. A trail in a graph G is a sequence $W := v_0 e_1 v_1 \cdots v_{l-1} e_l v_l$, whose terms are alternately vertices (not necessarily distinct) and distinct edges of G, such that v_{i-1} and v_i are ends of e_i , $1 \le i \le l$. For convenience, we sometimes abbreviate the term of $v_0 e_1 v_1 \cdots v_{l-1} e_l v_l$ to $v_0 v_1 \cdots v_{l-1} v_l$. Harary and Nash-Williams [23] showed that for a graph H with $|E(H)| \ge 3$, L(H) is hamiltonian if and only if H has a dominating connected even subgraph. Li, Lai and Zhan obtained similar result for traceability.

Theorem 8. ([29]) Let G be a graph with $|E(G)| \ge 3$. Then the line graph L(G) is traceable if and only if G has a dominating trail.

We now give the following definitions introduced in [39]. Let G be a 2-connected graph and let C be a cycle of G, and let D be a component of G - V(C). Clearly D has at least two distinct neighbors on C. For any path P in D, if the two ends (probably only one if P is itself a vertex) of P have two distinct neighbors x_1, x_2 on C, then P is called a 2-attaching path of C in D, and $\{x_1, x_2\}$ is called a 2-attaching pair of P on C. Note that if D is a K_1 or K_2 , then D is itself the 2-attaching path of C. Furthermore, if a longest 2-attaching path of D has order K, then D is called a K-component of K-co

Lemma 9. ([39]) Let G be a 2-connected graph with circumference c(G) and let C be a longest cycle of G. Then

- (i) if D is a k-component of G V(C), then $k \leq \lfloor \frac{c(G)}{2} \rfloor 1$;
- (ii) every 2-component of G V(C) is a star;
- (iii) if $c(G) \leq 5$, then G has a spanning trail starting from any vertex and every vertex lies on a circumference cycle;
- (iv) if $c(G) \leq 7$, then G has a spanning trail.

3 Proof of Theorem 1

3.1 The necessity part of Theorem 1

We may construct eight non-traceable 2-connected graphs G_i with $1 \le i \le 8$, as shown in Figure 3. Then each $G_i(1 \le i \le 8)$ contains at least one of R, S as an induced subgraph.

Claim 10. Either R or S is a $K_{1,3}$ or a $K_{1,4}$.

Proof. Suppose, by contradiction, that neither R nor S is a $K_{1,3}$ or a $K_{1,4}$. Consider the following fact: If a connected graph is not a graph in $\{P_1, P_2, P_3, K_{1,3}, K_{1,4}\}$, then it contains one of the graphs in $\{K_3, C_4, P_4, K_{1,5}\}$ as an induced subgraph. Consider the graph G_1 , we may assume that R is an induced subgraph of G_1 without loss of generality. Since G_1 is $\{K_3, P_4\}$ -free, it follows that R contains one of graphs in $\{C_4, K_{1,5}\}$ as an induced subgraph. Suppose first that R contains an induced subgraph G_4 . Note that G_2 and G_7 are G_4 -free, implying that both are G_4 -free. Then G_4 is a common induced subgraph of G_4 and G_4 is an induced subgraph of G_4 and G_5 is an induced subgraph of G_5 and G_7 is an induced subgraph of G_7 and G_7 is an induced subgraph of G_7 .

Now suppose that R contains an induced subgraph $K_{1,5}$. Note that G_6 and G_7 are $K_{1,5}$ -free, implying that both are R-free. Then S is a common induced subgraph of G_6 and G_7 . Note that the maximal common induced subgraph of G_6 and G_7 is $K_{1,4}$, implying that S is an induced subgraph of $K_{1,4}$, a contradiction. This proves Claim 10.

By Claim 10, we may assume that $R = K_{1,3}$ or $K_{1,4}$ without loss of generality. If $R = K_{1,4}$, then considering graphs G_4, G_5, G_7 , each one is $K_{1,4}$ -free and then it contains S as an induced subgraph. Note that the common induced subgraph of G_5 and G_7 is a path, implying that S is a path. Since the largest induced path of G_4 is P_4 , it follows that S is an induced subgraph of P_4 .

Hence we assume that $R = K_{1,3}$. Considering graphs G_3, G_5, G_8 , each one is $K_{1,3}$ -free and then it contains S as an induced subgraph. If S is a tree, then since G_8 is claw-free, S is a path. Note that the largest induced path of G_8 is P_8 , implying S is an induced path of P_8 . Hence assume that S contains an induced cycle. Note that the length of any common induced cycle of G_3 and G_5 is three, implying that any induced cycle of S should be a triangle. We further claim that S contains only one triangle. Otherwise, S

Figure 3: $G_i, i = 1, \dots, 8$

contains at least two triangles. Note that the length of any induced path in G_5 joining any two triangles is at least four. But the length of any induced path in G_8 joining any two triangles is at most three, contradicting the fact that S is a common induced subgraph of G_8 and G_5 .

Then S is a Z_i , $B_{i,j}$ or an $N_{i,j,k}$. If S is a Z_i , then since the maximal Z_i of G_8 is Z_5 , S is an induced subgraph of Z_5 . If S is a $B_{i,j}$, then since all maximal $B_{i,j}$ of G_5 are $B_{2,4}$, $B_{1,5}$, S is an induced subgraph of $B_{2,4}$ or $B_{1,5}$. If S is an $N_{i,j,k}$, then since all maximal $N_{i,j,k}$ of G_8 are $N_{1,1,5}$, $N_{3,3,3}$, and G_3 is $N_{2,2,2}$ -free, S is an induced subgraph of $N_{1,1,5}$ or $N_{1,3,3}$. Note that P_8 , P_8 , P_8 , P_8 , are three induced subgraphs of P_8 , we summarize that S is an induced subgraph of P_8 , P_8

3.2 The sufficiency part proof of Theorem 1

We now state the following results to prove the sufficiency of Theorem 1.

Theorem 11. Every 2-connected $\{K_{1,3}, N_{1,1,5}\}$ -free graph is traceable.

A graph is called a *block-chain* if its connectivity is at least 2, or its connectivity is 1 and it has exactly two end-blocks. Li, Broersma and Zhang proved the following.

Theorem 12. ([28] Every $\{K_{1,4}, P_4\}$ -free block-chain is traceable.

Proof the sufficiency of Theorem 1. By Theorem 11 and 12, we only prove that every 2-connected $\{K_{1,3}, S\}$ -free graph is traceable for the cases $S = B_{2,4}$ or $N_{1,3,3}$. Suppose not, and let G be a counter-example to this. Then G is a 2-connected non-traceable

Figure 4: $L(F_{\star})$

 $\{K_{1,3}, N_{1,3,4}\}$ -free graph. By Theorem 2, we assume that cl(G) = L(H) where $H \in \mathcal{F}$. By the definition of \mathcal{F} , H contains a subgraph F_{\star} which is obtained by three copies F_6 be identifying the special vertices, where F_6 is depicted in Fighre 2. Then cl(G) contains an induced subgraph $L(F_{\star})$ where $L(F_{\star})$ is depicted in Figure 4. Let W be the vertex set of $L(F_{\star})$. By the definition of $L(F_{\star})$, W has a partition $\{U, S_{1_1}, \cdots, S_{1_{t_1}}, S_{2_1}, \cdots, S_{2_{t_2}}, S_{3_1}, \cdots, S_{3_{t_3}}, T_1, T_2, T_3\}$ such that each one induces a clique of size at least three.

Note that for any two distinct elements $X_1, X_2 \in \{U, S_{1_1}, \cdots, S_{1_{t_1}}, S_{2_1}, \cdots, S_{2_{t_2}}, S_{3_1}, \cdots, S_{3_{t_2}}, T_1, T_2, T_3\}$ with $X_1 \cap X_2 \neq \emptyset$, it holds that $|X_1 \cap X_2| = 1$ and let $X_1 \cap X_2 = \{v_{X_1X_2}\}$. For i = 1, 2, 3, since $|S_{i_{t_i}}| \geqslant 3$, we have $S_{i_{t_i}} \setminus (U \cup T_i) \neq \emptyset$. Let w_1, w_2, w_3 be three vertices such that $w_j \in S_{j_2} \setminus (U \cup T_j)$ for j = 1, 2, 3. The graph $\langle \{v_{US_{1_1}}, v_{US_{2_1}}, v_{US_{3_1}}\} \cup \{v_{T_1S_{1_1}}, v_{T_1S_{1_2}}, w_1\} \cup \{v_{T_2S_{2_1}}, v_{T_2S_{2_2}}, w_2\} \cup \{v_{T_3S_{3_1}}, v_{T_3S_{3_2}}, w_3\} \rangle_{cl(G)}$ is exactly an induced $N_{3,3,3}$ in cl(G). On the other hand, since G is $\{K_{1,3}, N_{1,3,3}\}$ -free, cl(G) is $N_{1,3,3}$ -free by Theorem 5, a contradiction.

In the following, we shall find an induced $B_{2,4}$ in G to obtain a contradiction. We first have the following fact.

Claim 13. For
$$i \in \{1, 2, 3\}$$
 and $j \in \{1, \dots, t_i\}$, $dist_{\langle S_{i_i} \rangle_G}(v_{US_{i_i}}, v_{S_{i_i}T_i}) \geq 2$.

Proof. Otherwise, we may assume that $v_{US_{1_1}}v_{S_{1_1}T_1}$ is an edge in G without loss of generality. Let $t \in T_1$ and $u \in U$ such that $v_{S_{1_1}T_1}t, v_{US_{1_1}}u \in E(G)$. Probably $t = v_{T_1S_{1_2}}, u = v_{S_{1_2}U}$. Considering the graph $\langle S_{1_1} \cup \{u,t\} \rangle_G$, which is a connected claw-free graph with two pendant edges $v_{S_{1_1}T_1}t, v_{US_{1_1}}u$. By Lemma 7, $\langle S_{1_1} \cup \{u,t_1\} \rangle_G$ contains an induced $B_{1,1}$ containing u and t, say $B_{1,1}(u,t)$. Recall that $w_j \in S_{j_2} \setminus (U \cup T_j)$ for j = 1, 2, 3. Let $P(t,w_1)$ be a shortest path connecting t and w_1 in $\langle T_1 \cup S_{1_2} \rangle_G$, and let $P(u,w_2)$ be a longest induced path connecting u and w_2 in $\langle \{U,S_{2_1},T_2,S_{2_2}\} \rangle_G$. It is easy to see the lengths of $P(t,w_1)$ and $P(u,w_2)$ are at least one and three, respectively. Together these two induced paths with $B_{1,1}(u,t)$ can yield an induced $B_{2,4}$ in G, a contradiction. This proves Claim 13.

Recall that $w_j \in S_{j_2} \setminus (U \cup T_j)$ for j = 1, 2, 3, and let $P(v_{US_{j_1}}, w_j)$ be a shortest path connecting $v_{US_{j_1}}$ and w_j in $\langle S_{j_1} \cup T_j \cup S_{j_2} \rangle_G$. For each j = 1, 2, 3, $P(v_{US_{j_1}}, w_j)$ has length at least four by Claim 13, and let $v_{US_{j_1}}^+$ denote the the successor of $v_{US_{j_1}}$ on the path $P(v_{US_{j_1}}, w_j)$. Consider the graph $\langle U \cup \{v_{US_{j_1}}^+, v_{US_{j_1}}^+, v_{US_{j_1}}^+,$

4 Proofs of Theorems 11 and 2

We start with the following notation. The *core* of a graph G, denoted by G_0 , is obtained by recursive deleting all pendant vertices of G. We define $\Lambda(G)$ to be the set of the vertices in G which is incident with at least one pendant vertex. An edge cut X of a graph G is essential if $G \setminus X$ has at least two nontrivial components. For an integer k > 0, a graph G is essentially k-edge-connected if G does not have an essential edge-cut X with |X| < k. Note that if G is essentially 2-edge-connected then its core G_0 is 2-edge-connected. Let G be an essentially 2-edge-connected graph and let G_0 be the core of G. For any block G of G, let G is a pendant edge of G and has at least one end in G in G is cut vertices of G then G is called an inner-super-block of G otherwise G is called outer-super-block of G. For integer G is called an inner-super-block of G otherwise G is called outer-super-block of G. For integer G is called the root. We call the other end of G in G in G is essentially G is called the root. We call the other end of G is G in G in G is obtained three paths G is G in G is obtained three paths G in G is essentially G in G i

Let G be a claw-free graph. Then cl(G) is the line graph of a triangle-free graph by Theorem 3. Note that by Theorems 4 and 5 that Theorems 11 and 2 can be equivalently expressed as follows:

- every 2-connected $N_{1,1,5}$ -free line graph L(H) with $g(H) \ge 4$ is traceable,
- every 2-connected $N_{1,3,4}$ -free line graph L(H) with $g(H) \ge 4$ is traceable or L(H) is the line graph of a member in \mathcal{F} .

Observe that L(H) is $N_{i,j,k}$ -free if and only if H has no subgraph isomorphic to $T_{i+1,j+1,k+1}$. Note that L(H) is k-connected if and only if H is essentially k-edge-connected or complete. If L(H) is complete, then L(H) is traceable. Therefore, by Theorem 8, Theorems 11 and 2 can be equivalently expressed as the following two theorems.

Theorem 14. Let G be an essentially 2-edge-connected triangle-free graph without subgraphs isomorphic to $T_{2,2,6}$. Then G has a dominating trail.

Theorem 15. Let G be an essentially 2-edge-connected triangle-free graph without subgraphs isomorphic to $T_{2,4,5}$. Then either G has a dominating trail or $G \in \mathcal{F}$.

Before to prove theorems 14 and 15 we need the following lemmas. For a subgraph H of G and for $v \in V(H)$, we denote by $P_v(H)$ a longest path in H starting from v, and use $|P_v(H)|$ to denote the order of $P_v(H)$. Note that if G is triangle-free then $|P_v(\mathfrak{B})| \ge 4$.

Lemma 16. Let G be an essentially 2-edge-connected triangle-free graph, and let \mathfrak{B} be an outer-super-block of G containing the cut vertex v of G_0 . Suppose that \mathfrak{B} has no dominating cycle containing v. Then each of the following holds:

- (i) if $c(\mathfrak{B}) \geqslant 6$, then $|P_v(\mathfrak{B})| \geqslant 6$ and \mathfrak{B} contains a subgraph $T_{2,2,k}(k \geqslant 1)$ with the special leaf v, furthermore, either \mathfrak{B} contains a subgraph $T_{2,4,0}$ with the root v or \mathfrak{B} has a dominating trail starting from v,
- (ii) if $c(\mathfrak{B}) = 5$, then \mathfrak{B} contains a subgraph $T_{2,4,0}$ with the root v, and contains a subgraph $T_{2,2,k}(k \geq 2)$ with the special leaf v and $|P_v(\mathfrak{B})| \geq 6$,
- (iii) if $c(\mathfrak{B}) = 4$, then either \mathfrak{B} contains a subgraph $T_{2,2,k}(k \geq 2)$ with the special leaf v and contains a subgraph $T_{2,4,0}$ with the root v and $|P_v(\mathfrak{B})| \geq 5$, or $|P_v(\mathfrak{B})| \geq 6$ and \mathfrak{B} contains a subgraph $T_{2,2,k}(k \geq 1)$ with the special leaf v.

Proof. Suppose that $c(\mathfrak{B}) \geq 6$. It is easy to see that $|P_v(\mathfrak{B})| \geq 6$. Let C be a longest cycle of \mathfrak{B} . If $v \in V(C)$, then $E(\mathfrak{B} - V(C)) \neq \emptyset$, for otherwise C is a dominating cycle of \mathfrak{B} containing v. Let D be a nontrivial component of $\mathfrak{B} - V(C)$. Note that $|N_{\mathfrak{B}}(D) \cap V(C)| \geq 2$. It is easy to deduce that $\langle V(C) \cup V(D) \rangle_G$ contains a subgraph $T_{2,4,0}$ with the root v and also contains a subgraph $T_{2,2,k}(k \ge 1)$ with the special leaf v. Hence we may assume that $v \notin V(C)$. Since $\mathfrak{B} \cap G_0$ is 2-connected, there exist two internally disjoint paths Q_1, Q_2 in $\mathfrak{B} \cap G_0$ joining v and C. If some Q_i has length at least two, then $Q_1 \cup Q_2 \cup C$ contains a subgraph $T_{2,4,0}$ with the root v and also contains a subgraph $T_{2,2,k}(k \ge 1)$ the special leaf v. Hence we may assume that each $Q_i(i=1,2)$ is an edge, implying that $\langle V(C) \cup \{v\} \rangle_G$ is connected. Assume that $Q_1 = vv', Q_2 = vv''$. If $c(\mathfrak{B}) \geqslant 7$ or $dist_C(v',v'')=2$, then one can easily check that $\langle V(C)\cup\{v\}\rangle_G$ contains a subgraph $T_{2,4,0}$ with the root v and also contains a subgraph $T_{2,2,k}(k \ge 1)$ with the special leaf v. So we have $c(\mathfrak{B}) = 6$ and $dist_C(v', v'') = 3$. Clearly $\langle V(C) \cup \{v\} \rangle_G$ contains a subgraph $T_{2,2,1}$ with the special leaf v. If $\mathfrak{B} - V(C) \cup \{v\}$ is edgeless, then $\langle V(C) \cup \{v\} \rangle_G$ contains a dominating trail of \mathfrak{B} starting from v. So we assume that $E(\mathfrak{B} - V(C) \cup \{v\}) \neq \emptyset$. Then there exists an edge u_1u_2 in $\mathfrak{B} - V(C) \cup \{v\}$ incident with some vertex in $V(C) \cup \{v\}$, one can easily check that $\langle V(C) \cup \{v, u_1, u_2\} \rangle_G$ contains a subgraph $T_{2,4,0}$ with the root v.

Now suppose that $c(\mathfrak{B}) \leq 5$. Since $\mathfrak{B} \cap G_0$ is 2-connected and by Lemma 9(iii), there is a cycle C of length $c(\mathfrak{B})$ in $\mathfrak{B} \cap G_0$ containing v. Choose C such that the number of vertices in $V(\mathfrak{B}) \cap \Lambda(G)$ is maximized. Since C is a longest cycle of $\mathfrak{B} \cap G_0$ and by Lemma 9(i), $D \cap G_0$ is a 1-component of $\mathfrak{B} \cap G_0 - V(C)$, say u_1 . Since D is nontrivial, $u_1 \in V(\mathfrak{B}) \cap \Lambda(G)$ and let u_1u_2 be a pendant edge of G. Since $\mathfrak{B} \cap G_0$ is 2-connected and C is a longest cycle of $\mathfrak{B} \cap G_0$, it follows that $|N_{\mathfrak{B}}(u_1) \cap V(C)| = 2$. Suppose further that $c(\mathfrak{B}) = 5$. Let $C = vv_1v_2v_3v_4v$. If $v \in N_{\mathfrak{B}}(u_1) \cap V(C)$, then $N_{\mathfrak{B}}(u_1) \cap V(C) = \{v, v_2\}$ or $N_{\mathfrak{B}}(u_1) \cap V(C) = \{v, v_3\}$. By symmetry, we may assume that $N_{\mathfrak{B}}(u_1) \cap V(C) = \{v, v_2\}$, then $v_1 \in V(H) \cap \Lambda(G)$; otherwise the cycle $vu_1v_2v_3v_4v$ has more

vertices in $V(\mathfrak{B}) \cap \Lambda(G)$. Let v_1z be a pendant edge of G. Then $v_2v_1z \cup v_2u_1u_2 \cup v_2v_3v_4v$ is a $T_{2,2,3}$ with the special leaf v and $vv_4v_3v_2u_1u_2$ is a path of order 6. If $v \notin N_{\mathfrak{B}}(u_1) \cap V(C)$, then $N_{\mathfrak{B}}(u_1) \cap V(C) = \{v_1, v_3\}$ or $N_{\mathfrak{B}}(u_1) \cap V(C) = \{v_2, v_4\}$. By symmetry, we may assume that $N_{\mathfrak{B}}(u_1) \cap V(C) = \{v_1, v_3\}$, then $v_2 \in V(H) \cap \Lambda(G)$; otherwise the cycle $vv_1u_1v_3v_4v$ has more vertices in $V(\mathfrak{B}) \cap \Lambda(G)$. Let v_2z be a pendant edge of G. Then $v_3u_1u_2 \cup v_3v_2z \cup v_3v_4v$ is a $T_{2,2,2}$ with v as its leaf and $vv_4v_3v_2v_1u_1u_2$ path of order 7.

Now suppose that $c(\mathfrak{B})=4$. Let $C=v_0v_1v_2v_3v$. If $v\in N_{\mathfrak{B}}(u_1)\cap V(C)$, then $N_{\mathfrak{B}}(u_1)\cap V(C)=\{v,v_2\}$, implying that $v_1\in V(H)\cap \Lambda(G)$; otherwise the cycle $vu_1v_2v_3v$ has more vertices in $V(\mathfrak{B})\cap \Lambda(G)$. Let v_1z be a pendant edge of G. Then $v_2v_1z\cup v_2u_1u_2\cup v_2v_3v$ is a $T_{2,2,2}$ with the special leaf v and $zv_1vv_3v_2u_1u_2$ is a $T_{2,4,0}$ with the root v and $vv_3v_2u_1u_2$ is path of order 5. If $v\notin N_{\mathfrak{B}}(u_1)\cap V(C)$, then $N_{\mathfrak{B}}(u_1)\cap V(C)=\{v_1,v_3\}$, implying that $v_2\in V(H)\cap \Lambda(G)$; otherwise the cycle $vv_1u_1v_3v$ has more vertices in $V(\mathfrak{B})\cap \Lambda(G)$. Let v_2z be a pendant edge of G. Then $v_3u_1u_2\cup v_3v_2z\cup v_3v$ is a $T_{2,2,1}$ with the special leaf v and $vv_3v_2v_1u_1u_2$ is a path of order 6. This completes the proof.

Lemma 17. Let G be an essentially 2-edge-connected graph without subgraphs isomorphic to $T_{2,2,6}$. If $\kappa(G_0) \ge 2$, then G has a dominating trail.

Proof. Suppose, by contradiction, that G has no dominating trail. Let $C = v_0 v_1 v_2 \cdots v_{c(G)-1} v_0$ be a longest cycle of G. Then $E(G-V(C)) \neq \emptyset$, for otherwise C is a dominating trail of G. Thus G-V(C) has a nontrivial component D. Let P be a longest 2-attaching path of C in $D \cap G_0$ with a 2-attaching pair $\{v_{i'}, v_{i''}\}$. Since C is a longest cycle of G, we have $dist_C(v_{i'}, v_{i''}) \geq 2$. Since D is nontrivial, there exists an edge $u_1 z_1$ in D incident with one of $v_{i'}$ and $v_{i''}$. Then $c(G) \leq 8$, for otherwise $\langle V(C) \cup \{u_1, z_1\} \rangle_G$ contains a subgraph isomorphic to $T_{2,2,6}$. By Lemma 9(iv), it suffices to consider the case when |V(C)| = 8, then $dist_C(v_{i'}, v_{i''}) \leq 4$.

In the following, the subscript i of v_i is in $\{0, 1, \dots, 7\}$.

Claim 18. For any two independent edges u_1z_1 , u_2z_2 in G-V(C). If u_1z_1 is incident with v_i in C, then u_2z_2 cannot be incident with any vertex in $\{v_i, v_{i+1}, v_{i+3}, v_{i+4}, v_{i+5}, v_{i+7}\}$.

Proof. Otherwise, we may assume that $u_1v_i \in E(G)$, then we obtain the following

```
\begin{cases} v_{i}u_{1}z_{1} \cup v_{i}u_{2}z_{2} \cup v_{i}v_{i+1}v_{i+2}v_{i+3}v_{i+4}v_{i+5}v_{i+6} \cong T_{2,2,6} & \text{if } u_{2}v_{i} \in E(G) \\ v_{i+1}v_{i}u_{1} \cup v_{i+2}u_{2}z_{2} \cup v_{i+1}v_{i+2}v_{i+3}v_{i+4}v_{i+5}v_{i+6}v_{i+7} \cong T_{2,2,6} & \text{if } u_{2}v_{i+1} \in E(G) \\ v_{i+3}v_{i+2}v_{i+1} \cup v_{i+3}u_{2}z_{2} \cup v_{i+3}v_{i+4}v_{i+5}v_{i+6}v_{i+7}v_{i}u_{1} \cong T_{2,2,6} & \text{if } u_{2}v_{i+3} \in E(G) \\ v_{i+4}v_{i+3}v_{i+2} \cup v_{i+4}u_{2}z_{2} \cup v_{i+4}v_{i+5}v_{i+6}v_{i+7}u_{1}z_{1} \cong T_{2,2,6} & \text{if } u_{2}v_{i+4} \in E(G) \\ v_{i+5}v_{i+6}v_{i+7} \cup v_{i+5}u_{2}z_{2} \cup v_{i+5}v_{i+4}v_{i+3}v_{i+2}v_{i+1}v_{i}u_{1} \cong T_{2,2,6} & \text{if } u_{2}v_{i+5} \in E(G) \\ v_{i+7}v_{i}u_{1} \cup v_{i+7}u_{2}z_{2} \cup v_{i+7}v_{i+6}v_{i+5}v_{i+4}v_{i+3}v_{i+2}v_{i+1} \cong T_{2,2,6} & \text{if } u_{2}v_{i+5} \in E(G) \end{cases}
```

a contradiction. \Box

Claim 19. D is the only one nontrivial component of G - V(C).

Proof. Suppose to the contrary, and let D' be a nontrivial component of G-V(C) distinct from D. Note that $|N_G(D) \cap V(C)| \ge 2$ and $|N_G(D') \cap V(C)| \ge 2$. Since $\{v_{i'}, v_{i''}\} \subseteq N_G(D) \cap V(C)$ and by Claim 18, $N_G(D') \cap V(C) \cap \{v_{i'}, v_{i'+1}, v_{i'+3}, v_{i'+4}, v_{i'+5}, v_{i'+7}\} = \emptyset$ and $N_G(D') \cap V(C) \cap \{v_{i''}, v_{i''+1}, v_{i''+3}, v_{i''+4}, v_{i''+5}, v_{i''+7}\} = \emptyset$, then $N_G(D') \cap V(C) = \{v_{i'+2}, v_{i'+6}\} = \{v_{i''+2}, v_{i''+6}\}$, implying that i'' = i' + 4. Without loss of generality, we may assume that $v_{i'} = v_0$ and $v_{i''} = v_4$, then

 $v_{i''+7} = v$, then $N_G(D') + V(C) = \{v_{i'+2}, v_{i'+6}\} = \{v_{i''+2}, v_{i''+6}\}$, implying that v = i' + 4. Without loss of generality, we may assume that $v_{i'} = v_0$ and $v_{i''} = v_4$, then $N_G(D') \cap V(C) = \{v_4, v_6\}$. Since C is a longest cycle of G, it follows that $D \cap G_0$ and $D' \cap G_0$ are both 1-components of $G_0 - V(C)$, say u_1, u_2 . Clearly u_1 and u_2 dominate all edges in D and D', respectively. Since D is nontrivial, $u_1 \in \Lambda(G)$ and let $u_1 z_1$ be a pendant edge of G. Then v_7 has no neighbors in $G - V(C) \cup V(D) \cup V(D')$. Otherwise, assume that $z_2 \in N_{G-V(C)-u_1}(v_7)$, then $v_6 v_7 z_2 \cup v_6 v_5 v_4 \cup v_6 u_2 v_2 v_1 v_0 u_1 z_1$ is a $T_{2,2,6}$, a contradiction. But then $v_1 v_0 u_1 v_4 v_5 v_6 u_2 v_2 v_3$ is a dominating trail of G. This proves Claim 19.

If P is a dominating path of D, then by Claim 19, $\langle V(C) \cup V(P) \rangle_G$ contains a dominating trail of G, a contradiction. Hence P cannot be a dominating path in D. It follows that P has length at least two, for otherwise $D \cap G_0$ is a 1-component of $G_0 - V(C)$ and clearly $D \cap G_0$ dominates all edges of D. Recall that P is a longest 2-attaching path of C in $D \cap G_0$ with a 2-attaching pair $\{v_{i'}, v_{i''}\}$. Since C is a longest cycle of G, we have $3 \leq dist_C(v_{i'}, v_{i''}) \leq 4$ and P is an edge if $dist_C(v_{i'}, v_{i''}) = 3$. Suppose that $dist_C(v_{i'}, v_{i''}) = 3$. Since P is not a dominating path of D, there is an edge u_1u_2 in D incident with P, which is not dominated by P. But then $\langle V(C) \cup V(P) \cup \{u_1, u_2\} \rangle_G$ contains a subgraph isomorphic to $T_{2,2,6}$, a contradiction.

So we have $dist_C(v_{i'}, v_{i''}) = 4$. We may assume that $v_{i'} = v_0, v_{i''} = v_4$ without loss of generality. Since C is a longest cycle of G, we have $2 \leq |V(P)| \leq 3$. If P is an edge and let $P = x_1x_2$, then since P is not a dominating path of D, there is an edge x_3z in D such that x_3 is adjacent to x_1 or x_2 , where x_3z is not dominated by x_1x_2 . We may assume that $x_1x_3 \in E(G)$ without loss of generality. Note that $D \cap G_0$ is a 2-component of $G_0 - V(C)$. By Lemma 9 (ii) $D \cap G_0$ is a star, implying that x_1 is the center and x_3 is a leaf of $D \cap G_0$. Then x_3z is a pendant edge of G and $x_3 \in \Lambda(G)$. Since G_0 is 2-connected, $N_G(x_3) \cap V(C) \neq \emptyset$. By Claim 18, $N_G(x_3) \cap \{v_0, v_1, v_3, v_4, v_5, v_7\} = \emptyset$ and therefore $N_G(x_3) \cap \{v_2, v_6\} \neq \emptyset$, implying that $x_2x_1x_3$ is a 2-attaching path of C in $D \cap G_0$. But this contradicts the fact that P is a longest 2-attaching path of C in $D \cap G_0$.

Hence we have |V(P)| = 3 and let $P = y_1y_2y_3$. Since P is not a dominating path of D, there is an edge y_4z in D such that y_4 is adjacent to some y_i in $\{y_1, y_2, y_3\}$, where y_4z is not dominated by $y_1y_2y_3$. Therefore, $y_1y_4, y_3y_4 \notin E(G)$, for otherwise, up to symmetry, we may assume that $y_4y_1 \in E(G)$, but then $y_1y_4z \cup y_1y_2y_3 \cup y_1v_0v_1v_2v_3v_4v_5$ is a $T_{2,2,6}$. Hence we have $y_4y_2 \in E(G)$. We further claim that z is a pendant vertex of G. If not, then $z \in V(G_0)$. Since G_0 is 2-connected, there exist two internally disjoint paths Q_1, Q_2 in G_0 from z to $\{y_1, y_3\}$. Note that $D \cap G_0$ is a 3-component of $G_0 - V(C)$. Then there is no cycle in $D \cap G_0$ containing y_3, y_2, y_4, z or y_1, y_2, y_4, z , implying that one of Q_1 and Q_2 , say Q_1 , joins z and C such that $y_1, y_2, y_3, y_4 \notin V(Q_1)$, then there exists a 2-attaching path of C in $D \cap G_0$ containing y_3, y_2, y_4, z or y_1, y_2, y_4, z . But this contradicts the fact that P is a longest 2-attaching path of C in $D \cap G_0$. This implies that z is a pendant vertex of G and then $y_4 \in V(G_0)$. Since G_0 is 2-connected, there exist two internally disjoint

path Q', Q'' in G_0 from y_4 to $\{y_1, y_3\}$. Since $D \cap G_0$ is a 3-component of $G_0 - V(C)$, there is no cycle in $D \cap G_0$ containing y_3, y_2, y_4 or y_1, y_2, y_4 , implying that one of Q' and Q'', say Q', joins y_4 and C such that $y_1, y_2, y_3 \notin V(Q')$. Therefore, since $D \cap G_0$ is a 3-component of $G_0 - V(C)$, Q' is an edge and hence $N_G(y_4) \cap V(C) \neq \emptyset$. By Claim 18, $N_G(y_4) \cap \{v_0, v_1, v_3, v_4, v_5, v_7\} = \emptyset$ and then $N_G(y_4) \cap \{v_2, v_6\} \neq \emptyset$. By symmetry, we may assume that $v_2 \in N_G(y_4)$, but then $v_0v_1v_2y_4y_2y_3v_4v_5v_6v_7v_0$ is a 10-cycle, a contradiction. This completes the proof of Lemma 17.

Proof of Theorem 14. We argue by contradiction, and assume that G is a counter-example to Theorem 14 such that the number of super-blocks of G is minimized. By Lemma 17 we have $\kappa(G_0) = 1$.

For a super-block \mathfrak{B} of G, we use G/\mathfrak{B} to mean that deleting all edges between vertices of \mathfrak{B} and then identifying the vertices of \mathfrak{B} into a single vertex v, we call v the concentration in G/\mathfrak{B} .

Claim 20. Every outer-super-block of G has no dominating cycle containing the cut vertex of G_0 .

Proof. Suppose not, and let \mathfrak{B} be an outer-super-block of G such that \mathfrak{B} has a dominating cycle C containing the cut vertex v of G_0 in \mathfrak{B} . Note that G/\mathfrak{B} has less super-blocks than G and no subgraph isomorphic to $T_{2,2,6}$. By the minimality of the super-blocks of G, G/\mathfrak{B} has a dominating trail T, but then $T \cup C$ is a dominating trail of G, contradicting the choice of G. This proves Claim 20.

Claim 21. G_0 has only one cut vertex v.

Proof. Suppose otherwise. Then G_0 contains two end cut vertices v_1, v_2 . Let $\mathfrak{B}_1, \mathfrak{B}_2$ be two outer-super-blocks of G such that $v_i \in V(\mathfrak{B}_i)$. Clearly $V(\mathfrak{B}_1) \cap V(\mathfrak{B}_2) = \emptyset$. By Claim 20 and Lemma 16, \mathfrak{B}_i contains a subgraph $T_{2,2,k}(k \geq 1)$ with the special leaf v and $|P_{v_i}(\mathfrak{B}_i)| \geq 5$ for each i = 1, 2. Choose a longest path $P(v_1, v_2)$ in G joining v_1 and v_2 . Since G_0 is 2-edge-connected, $P(v_1, v_2)$ passes through at least one nontrivial block (contains a cycle) of G_0 , implying that $|P(v_1, v_2)| \geq 3$. It is easy to see that $\mathfrak{B}_1 \cup P(v_1, v_2) \cup P_{v_2}(\mathfrak{B}_2)$ contains a subgraph $T_{2,2,7}$ and clearly contains a subgraph $T_{2,2,6}$, a contradiction. This proves Claim 21.

Let $\mathfrak{B}_1, \mathfrak{B}_2$ be two outer-super-blocks of G. By Claim 21 we have $V(\mathfrak{B}_1) \cap V(\mathfrak{B}_2) = \{v\}$. By Claim 20 and Lemma 16, for each i = 1, 2, \mathfrak{B}_i contains a subgraph $T_{2,2,k}(k \ge 1)$ with the special leaf v and $|P_{v_i}(\mathfrak{B}_i)| \ge 5$. Since $\mathfrak{B}_1 \cup \mathfrak{B}_2$ has no subgraph isomorphic to $T_{2,2,6}$, it follows that $|P_{v_i}(\mathfrak{B}_i)| = 5$ for i = 1, 2. Therefore, again by Lemma 16, \mathfrak{B}_i contains a subgraph $T_{2,2,k}(k \ge 2)$ with the special leaf v and $|P_{v_i}(\mathfrak{B}_i)| = 5$. It is easy to see that $\mathfrak{B}_1 \cup \mathfrak{B}_2$ contains a subgraph $T_{2,2,6}$, a contradiction. This completes the proof of Theorem 14.

We now need the following lemmas to show Theorem 15.

Lemma 22. Let G be an essentially 2-edge-connected trangle-free graph that has no subgraph isomorphic to $T_{2,4,5}$. If $\kappa(G_0) \ge 2$, then G has a dominating trail.

Proof. Suppose, by way contradiction, that G has no dominating trail. Let $C = v_0 v_1 v_2 \cdots v_{c(G)-1} v_0$ be a longest cycle of G. Then $E(G-V(C)) \neq \emptyset$, for otherwise C is a dominating trail of G. Thus G-V(C) has a nontrivial component D. Let P be a longest 2-attaching path of C in $D \cap G_0$ with a 2-attaching pair $\{v_{i'}, v_{i''}\}$. Since C is a longest cycle of G, we have $dist_C(v_{i'}, v_{i''}) \geq 2$. Since D is nontrivial, there exists an edge $u_1 z_1$ in D incident with one of $v_{i'}$ and $v_{i''}$. Then $c(G) \leq 9$, for otherwise $\langle V(C) \cup \{u_1, z_1\} \rangle_G$ contains a subgraph isomorphic to $T_{2,4,5}$. By Lemma 9(iv), it suffices to consider the case when |V(C)| = 8, 9, then $dist_C(v_{i'}, v_{i''}) \leq 4$.

Claim 23. For any nontrivial component D of G - V(C), every longest 2-attaching path of C in $D \cap G_0$ is a dominating path of D.

Proof. Suppose not, and let D be a nontrivial component of G - V(C) such that C has a longest 2-attaching path in $D \cap G_0$ which is not a dominating path of D. It follows that D contains a path P of length three such that its end-vertex adjacent to some vertex of C, but then $\langle V(C) \cup V(P) \rangle_G$ contains a subgraph isomorphic to $T_{2,4,5}$, a contradiction. This proves Claim 23.

Since P is a longest 2-attaching path of C in $D \cap G_0$, by Claim 23, P dominates all edges of D. We now distinguish two cases.

Case 1.
$$c(G) = 9$$
.

Claim 24. D is the only one nontrivial component of G - V(C).

Proof. Suppose not the contrary that that G - V(C) has a nontrivial component D' distinct from D. Then there exist two edges x_1x_2, y_1y_2 in D and D', respectively, such that x_1, y_1 are incident with C. We may assume that $v_0x_1 \in E(G)$ without loss of generality. Then y_1 cannot be adjacent to any vertex in $\{v_2, v_3, v_4, v_5, v_6, v_7\}$. Otherwise we obtain the following

```
\begin{cases} v_0x_1x_2 \cup v_0v_1v_2y_1y_2 \cup v_0v_8v_7v_6v_5v_4 \cong T_{2,4,5} & \text{if } y_1v_2 \in E(G) \\ v_0x_1x_2 \cup v_0v_1v_2v_3y_1 \cup v_0v_8v_7v_6v_5v_4 \cong T_{2,4,5} & \text{if } y_1v_3 \in E(G) \\ v_0x_1x_2 \cup v_0v_8v_7v_6v_5 \cup v_0v_1v_2v_3v_4y_1 \cong T_{2,4,5} & \text{if } y_1v_4 \in E(G) \\ v_5y_1y_2 \cup v_5v_4v_3v_2v_1 \cup v_5v_6v_7v_8v_0x_1 \cong T_{2,4,5} & \text{if } y_1v_5 \in E(G) \\ v_6y_1y_2 \cup v_6v_7v_8v_0x_1 \cup v_6v_5v_4v_3v_2v_1 \cong T_{2,4,5} & \text{if } y_1v_6 \in E(G) \\ v_7y_1y_2 \cup v_7v_8v_0x_1x_2 \cup v_7v_6v_5v_4v_3v_2 \cong T_{2,4,5} & \text{if } y_1v_7 \in E(G) \end{cases}
```

a contradiction. It follows that $N_G(D') \cap V(C) \subseteq \{v_0, v_1, v_8\}$, but this yield a cycle with length more than C in G, a contradiction. This proves Claim 24.

By Claims 23 and 24, $\langle V(C) \cup V(P) \rangle_G$ contains a dominating trail of G, a contradiction. In the following the subscript i of v_i is in $\{0, 1, \dots, c(G) - 1\}$.

Case 2.
$$c(G) = 8$$
.

Claim 25. For any two independent edges x_1x_2, y_1y_2 in G - V(C) such that x_1, y_1 are incident with C. If $x_1v_i \in E(G)$, then y_1 cannot be incident with any vertex in $\{v_{i+2}, v_{i+3}, v_{i+5}, v_{i+6}\}$.

Proof. Otherwise, we obtain the following

```
\begin{cases} v_{i+2}y_1y_2 \cup v_{i+2}v_{i+1}v_ix_1x_2 \cup v_{i+2}v_{i+3}v_{i+4}v_{i+5}v_{i+6}v_{i+7} \cong T_{2,4,5} & \text{if } y_1v_{i+2} \in E(G) \\ v_{i+3}y_1y_2 \cup v_{i+3}v_{i+4}v_{i+5}v_{i+6}v_{i+7} \cup v_{i+3}v_{i+2}v_{i+1}v_ix_1x_2 \cong T_{2,4,5} & \text{if } y_1v_{i+3} \in E(G) \\ v_ix_1x_2 \cup v_iv_{i+1}v_{i+2}v_{i+3}v_{i+4} \cup v_iv_{i+7}v_{i+6}v_{i+5}y_1y_2 \cong T_{2,4,5} & \text{if } y_1v_{i+5} \in E(G) \\ v_ix_1x_2 \cup v_iv_{i+7}v_{i+6}y_1y_2 \cup v_iv_{i+1}v_{i+2}v_{i+3}v_{i+4}v_{i+5} \cong T_{2,4,5} & \text{if } y_1v_{i+6} \in E(G) \end{cases}
```

a contradiction. This proves Claim 25.

Note that $2 \leq dist_C(v_{i'}, v_{i''}) \leq 4$. Suppose that $dist_C(v_{i'}, v_{i''}) = 2$. We may assume that $v_{i'} = v_0, v_{i''} = v_2$ without loss of generality. Then D is the only one nontrivial component of G - V(C). If not, and let D' be a nontrivial component of G - V(C) distinct from D. By Claim 25, $N_G(D') \cap V(C) \cap \{v_2, v_3, v_5, v_6, v_4, v_7, v_0\} = \emptyset$, but then $N_G(D') \cap V(C) \subseteq \{v_1\}$, a contradiction. By Claim 23, $\langle V(C) \cup V(P) \rangle_G$ contains a dominating trail of G, a contradiction.

Suppose next that $dist_C(v_{i'}, v_{i''}) = 3$. We may assume that $v_{i'} = v_0, v_{i''} = v_3$ without loss of generality. If D is the only one nontrivial component of G - V(C), then by Claim 23 P is a dominating path of D, but now $v_0Pv_3\cdots v_7v_0v_1v_2$ is a dominating trail of G, a contradiction. Hence G - V(C) has a nontrivial component D' distinct from D. By Claim 25, $N_G(D') \cap V(C) \cap \{v_2, v_3, v_5, v_6, v_0, v_1\} = \emptyset$, implying that $N_G(D') \cap V(C) \subseteq \{v_4, v_7\}$. Let Q be a longest 2-attaching path of C in $D \cap G_0$. By Claim 23 Q dominates all edges of D'. Similarly we can again apply Claim 25 to obtain D, D' are all nontrivial components G - V(C), but then $v_2v_1v_0Pv_3v_4Qv_7v_6v_5$ is a dominating trail of G, a contradiction.

Finally suppose that $dist_C(v_{i'}, v_{i''}) = 4$. We may assume that $v_{i'} = v_0, v_{i''} = v_4$ without loss of generality. Then D is the only one nontrivial component of G - V(C). If not, and let D' be a nontrivial component of G - V(C) distinct from D. By Claim 25 $N_G(D') \cap V(C) \cap \{v_2, v_3, v_5, v_6, v_7, v_0, v_1, v_4\} = \emptyset$, a contradiction. By Claim 23, $\langle V(C) \cup V(P) \rangle_G$ is a dominating trail of G, a contradiction. This completes the proof of Lemma 22.

Lemma 26. Let G be an essentially 2-edge-connected graph without subgraphs isomorphic to $T_{2,4,5}$, and let \mathcal{B} be a super-block of G. Assume G/\mathcal{B} has a dominating closed trail T which contains the concentration vertex v. Then G has a dominating trail.

Proof. Let $S = \{v_1, \dots, v_t\}$ be the set of cut vertices of G_0 in \mathcal{B} . We constructs the graph \mathcal{B}' obtained from \mathcal{B} by adding t pendant edges v_1w_1, \dots, v_tw_t . Note that \mathcal{B}' has no subgraph isomorphic to $T_{2,4,5}$. Applying Lemma 22 to \mathcal{B}' , we obtain that \mathcal{B}' has a dominating trail T'. Clearly $S \subset V(T')$. Since G/\mathcal{B} has a dominating closed trail T which contains the concentration vertex v, it follows that $T \cup T'$ is a dominating trail of G. The proof is complete.

Lemma 27. Let G be an essentially 2-edge-connected triangle-free graph without subgraphs isomorphic to $T_{2,4,5}$. If G has an inner-super-block \mathfrak{B} , then G has a dominating trail.

Proof. We argue by contradiction, and assume that G is a counter-example to Lemma 27 such that the number of super-blocks of G is minimized.

Claim 28. Every inner-super-block of G contains exactly two cut vertices of the core G_0 of G.

Proof. Suppose not. We may assume, without loss of generality, that $\mathfrak{B}_1, \mathfrak{B}_2, \mathfrak{B}_3$ are three super-block of G such that $\mathfrak{B} \cap \mathfrak{B}_i = \{v_i\}$ where v_i is a cut vertex of G_0 in \mathfrak{B} . Since $\mathfrak{B} \cap G_0$ is 2-connected and G is triangle-free, there exists a cycle C of length at least four in $\mathfrak{B} \cap G_0$ containing v_1 and v_3 . Note that $|P_{v_i}(\mathfrak{B}_i)| \geqslant 4$ for i = 1, 2, 3. If $v_2 \in V(C)$, then $P_{v_1}(\mathfrak{B}_1) \cup P_{v_2}(\mathfrak{B}_2) \cup P_{v_3}(\mathfrak{B}_3) \cup C$ contains a subgraph isomorphic to $T_{2,4,5}$ with the root v_1 or v_2 , a contradiction. Hence we have $v_2 \notin V(C)$. Then there exists a path P in $\mathfrak{B} \cap G_0$ joining v_2 and C since $\mathfrak{B} \cap G_0$ is connected, but now $P_{v_1}(\mathfrak{B}_1) \cup P_{v_2}(\mathfrak{B}_2) \cup P_{v_3}(\mathfrak{B}_3) \cup C \cup P$ contains a subgraph isomorphic to $T_{2,4,5}$ with the root v_1 or v_2 , a contradiction. This proves Claim 28.

Claim 29. There is no triple of super-blocks of G such that they have a common cut vertex of G_0 .

Proof. Suppose otherwise. Then exist three super-block of G such that they have a common cut vertex v of G_0 . It follows that G has at least three outer-super-blocks. We may assume, without loss of generality, that $\mathfrak{B}_1, \mathfrak{B}_2, \mathfrak{B}_3$ are three outer-super-block of G such that $\mathfrak{B} \cap \mathfrak{B}_1 \cap \mathfrak{B}_2 = \{v\}$ and $\mathfrak{B} \cap \mathfrak{B}_3 = \{u\}$. Note that if G has more than one inner-super-block then it is more easier than this case to get a contradiction. Note that $|P_v(\mathfrak{B} \cup \mathfrak{B}_3)| \geq 6$. Since G has no subgraph isomorphic to $T_{2,4,5}$, it follows that for each $i = 1, 2, |P_v(\mathfrak{B}_i)| \leq 5$, implying that $c(\mathfrak{B}_i) \leq 5$. If some \mathfrak{B}_i has a dominating cycle C_v containing v, say \mathfrak{B}_1 , then G/\mathfrak{B}_2 has super-blocks less than G and has an inner-super-block \mathfrak{B} and no subgraph isomorphic to $T_{2,4,5}$. By the choice of G, G/\mathfrak{B}_2 has a dominating trail T, but then $T \cup C_v$ is a dominating trail of G, a contradiction. Hence for each $i \in \{1,2\}$, \mathfrak{B}_i has no dominating cycle containing v and since $c(\mathfrak{B}_i) \leq 5$, by Lemma 16(ii)-(iii) \mathfrak{B}_i contains a subgraph $T_{2,4,0}$ with the root v implying that $\mathfrak{B}_i \cup P_v(\mathfrak{B} \cup \mathfrak{B}_4)$ contains a subgraph isomorphic to $T_{2,4,5}$ with the root v, a contradiction. This proves Claim 29. \square

By Claims 28 and 29, G has exactly two outer-super-blocks $\mathfrak{B}_1, \mathfrak{B}_2$. We may assume, without loss of generality, that $\mathfrak{B}, \mathfrak{B}_1, \mathfrak{B}_2$ are all three super-blocks of G three super-blocks if G has more than three super-blocks then it is more easier than this case to obtain a contradiction. Let $\mathfrak{B} \cap \mathfrak{B}_1 = \{v_1\}$ and $\mathfrak{B} \cap \mathfrak{B}_2 = \{v_2\}$. Note that $|P_{v_2}(\mathfrak{B}_1 \cup \mathfrak{B})| \geq 6$ and $|P_{v_1}(\mathfrak{B}_2 \cup \mathfrak{B})| \geq 6$. Since G has no subgraph isomorphic to $T_{2,4,5}$, it follows that each $\mathfrak{B}_i(i=1,2)$ contains no subgraph $T_{2,4,0}$ with the root v_i . If each $\mathfrak{B}_i(i=1,2)$ has a dominating cycle containing v_i , then these two cycle form a dominating closed trial of G/\mathfrak{B} and containing the concentration vertex v_i , by Lemma 26 G has a dominating trail of G.

Hence we may assume that \mathfrak{B}_1 has no dominating cycle containing v_1 without loss of generality. Since \mathfrak{B}_1 contains no subgraph $T_{2,4,0}$ with the root v_1 , by Lemma 16 we have $|P_{v_1}(\mathfrak{B}_1)| \geq 6$. Let $C(v_1, v_2)$ be a cycle in \mathfrak{B} containing v_1 and v_2 . Then $C(v_1, v_2)$ has length exactly four, for otherwise $C(v_1, v_2)$ has length at least five and then $C(v_1, v_2) \cup \mathfrak{B}_2$ contains a subgraph $T_{2,4,0}$ with the root v_1 , but this together with $P_{v_1}(\mathfrak{B}_1)$ yield a subgraph isomorphic to $T_{2,4,5}$. Similarly one can show that $C(v_1,v_2)\setminus\{v_1,v_2\}$ has no neighbor outside in \mathfrak{B} , for otherwise, $\mathfrak{B} \cup \mathfrak{B}_2$ contains a subgraph $T_{2,4,k}(k \geq 0)$ with the root v_1 , but $\mathfrak{B}_1 \cup \mathfrak{B} \cup \mathfrak{B}_2$ contains a subgraph isomorphic to $T_{2,4,5}$. Thus $C(v_1, v_2)$ is a dominating cycle of \mathfrak{B} and clearly $C(v_1, v_2)$ contains a dominating path $P(v_1, v_2)$ in \mathfrak{B} . If \mathfrak{B}_2 has a dominating cycle C_{v_2} containing v_2 , then $C_{v_2} \cup C(v_1, v_2)$ is a dominating closed trail of G/\mathfrak{B}_1 which contains the concentration vertex v_1 , by Lemma 26 G has a dominating trail of G. Hence for each $i=1,2, \mathfrak{B}_i$ has no dominating cycle containing v_i . If $c(\mathfrak{B}_i) \geqslant 6$ then since \mathfrak{B}_i contains no subgraph $T_{2,4,0}$ with the root v_i , by Lemma 16(i) \mathfrak{B}_i has a dominating trail starting from v_i , and if $c(\mathfrak{B}_i) \leq 5$ then by Lemma 9(iii), $\mathfrak{B}_i \cap G_0$ has a spanning trail starting from v_i . In any cases we can obtain that each \mathfrak{B}_i (i=1,2) has a dominating trail T_i starting from v_i , but then $T_1 \cup P(v_1, v_2) \cup T_2$ is a dominating trail of G, a contradiction. This completes the proof of Lemma 27.

Proof of Theorem 15. Suppose that G has no dominating trail. Since G has no subgraph isomorphic to $T_{2,4,5}$, by Lemma 22 we have $\kappa(G_0) = 1$. By Lemma 27, G_0 has only one cut vertex v. Let $\mathfrak{B}_1, \dots, \mathfrak{B}_t(t \geq 2)$ be all super-blocks of G.

Claim 30. $t \ge 3$.

Proof. Suppose not. Then t=2. If some \mathfrak{B}_i has a dominating cycle containing v, then since $\mathfrak{B}_1 \cup \mathfrak{B}_2 = G$, by Lemma 26 G has a dominating trail, a contradiction. Hence both \mathfrak{B}_1 and \mathfrak{B}_2 have no dominating cycle containing v. If each $c(\mathfrak{B}_i) \geqslant 6$ for i=1,2, then by Lemma 16(i), \mathfrak{B}_i contains a subgraph $T_{2,4,0}$ with the root v or \mathfrak{B}_i has a dominating trail T_i starting from v. Note that $|P_v(\mathfrak{B}_i)| \geqslant 6$ for i=1,2. But then $\mathcal{B}_1 \cup \mathcal{B}_2$ contains a subgraph isomorphic to $T_{2,4,5}$ or $T_1 \cup T_2$ is a dominating trail of G. If $c(\mathfrak{B}_i) \leqslant 5$ for each i=1,2, then by Lemma 9(iii) $\mathcal{B}_i \cap G_0$ has a spanning trail T^i starting from v, but now $T^1 \cup T^2$ is a dominating trail of G, a contradiction.

Hence we may assume that $c(\mathfrak{B}_1) \leq 5$ and $c(\mathfrak{B}_2) \geq 6$ without loss of generality. Since each $\mathcal{B}_i(i=1,2)$ has no dominating cycle containing v. Applying Lemma 16 to \mathfrak{B}_1 , either \mathfrak{B}_1 contains a subgraph $T_{2,4,0}$ with the root v or $|P_v(\mathfrak{B}_1)| \geq 6$ holds. Again applying Lemma 16 to \mathfrak{B}_2 , either \mathfrak{B}_2 contains a subgraph $T_{2,4,0}$ with the root v or has a dominating trail starting from v holds.

Note that by Lemma 9(iii) that $\mathfrak{B}_1 \cap G_0$ has a spanning trail starting from v. Since G has no dominating trail, it follows that \mathfrak{B}_2 has no dominating trail starting from v, implying that \mathfrak{B}_2 contains a subgraph $T_{2,4,0}$ with the root v. Since G has no subgraph isomorphic to $T_{2,4,5}$, it follows that $|P_v(\mathfrak{B}_1)| \leq 5$, implying that \mathfrak{B}_1 contains a subgraph $T_{2,4,0}$ with the root v. Note that $|P_v(\mathfrak{B}_2)| \geq 6$. But then $\mathfrak{B}_1 \cup \mathfrak{B}_2$ contains a subgraph isomorphic to $T_{2,4,5}$, a contradiction. This proves Claim 30.

Claim 31. For each $i = 1, \dots, t, |P_v(\mathcal{B}_i)| \leq 5$.

Proof. Suppose otherwise. We may assume that $|P_v(\mathcal{B}_1)| \ge 6$ without loss of generality. If each $\mathcal{B}_i(i=2,\cdots,t)$ has a dominating cycle containing v, then these dominating cycles form a dominating closed trail of G/\mathcal{B}_1 and containing the concentration vertex v, by Lemma 26 G has a dominating trail, a contradiction. Hence we may assume that \mathcal{B}_2 has no dominating cycle containing v without loss of generality. By Lemma 16, $|P_v(\mathcal{B}_2)| \ge 5$. Note that $|P_v(\mathcal{B}_3)| \ge 3$. But then $P_v(\mathcal{B}_1) \cup P_v(\mathcal{B}_2) \cup P_v(\mathcal{B}_3)$ contains a subgraph isomorphic to $T_{2,4,5}$, a contradiction. This proves Claim 31.

By Claim 31, it follows that $c(\mathcal{B}_i) \leq 5$ for each $i = 1, 2, \dots, t$. Let $\mathbf{H} = \{\mathfrak{B}_1, \dots, \mathfrak{B}_t\}$. Let

- $\mathbf{H}_1 = \{ \mathfrak{B} \in \mathbf{H} : c(\mathfrak{B}) = 5 \};$
- $\mathbf{H}_2 = \{ \mathfrak{B} \in \mathbf{H} : c(\mathfrak{B}) = 4 \text{ and } d_{\mathfrak{B} \cap G_0}(v) = 2 \text{ and } \Delta(\mathfrak{B} \cap G_0) \text{ is odd} \};$
- $\mathbf{H}_3 = \{\mathfrak{B} \in \mathbf{H} : c(\mathfrak{B}) = 4 \text{ and } d_{\mathfrak{B} \cap G_0}(v) = 2 \text{ and } \Delta(\mathfrak{B} \cap G_0) \text{ is even}\};$
- $\mathbf{H}_4 = \{ \mathfrak{B} \in \mathbf{H} : c(\mathfrak{B}) = 4 \text{ and } d_{\mathfrak{B} \cap G_0}(v) = \Delta(\mathfrak{B} \cap G_0) \geqslant 4 \text{ and } \Delta(\mathfrak{B} \cap G_0) \text{ is even} \};$
- $\mathbf{H}_5 = \{ \mathfrak{B} \in \mathbf{H} : c(\mathfrak{B}) = 4 \text{ and } d_{\mathfrak{B} \cap G_0}(v) = \Delta(\mathfrak{B} \cap G_0) \geqslant 3 \text{ and } \Delta(\mathfrak{B} \cap G_0) \text{ is odd}$ and there exists a vertex u adjacent to v in $\mathfrak{B} \cap G_0$ such that $u \notin \Lambda(G) \}$;
- $\mathbf{H}_6 = \{ \mathfrak{B} \in \mathbf{H} : c(\mathfrak{B}) = 4 \text{ and } d_{\mathfrak{B} \cap G_0}(v) = \Delta(\mathfrak{B} \cap G_0) \geqslant 3 \text{ and } \Delta(\mathfrak{B} \cap G_0) \text{ is odd and any vertex } u \text{ is adjacent to } v \text{ in } \mathfrak{B} \cap G_0 \text{ such that } u \in \Lambda(G) \}.$

Clearly $\{\mathbf{H}_1, \mathbf{H}_2, \mathbf{H}_3, \mathbf{H}_4, \mathbf{H}_5\}$ is a partition of \mathbf{H} .

Claim 32. For each i = 1, 2, 3, 4, 5, 6, every \mathfrak{B} in \mathbf{H}_i is isomorphic F_i where F_i is defined in Section 1 and shown in Figure 2. Consequently, each member of \mathbf{H}_i has a dominating closed trail containing v for $1 \leq i \leq 5$.

Proof. Let $\mathfrak{B} \in \mathbf{H}$. Since $c(\mathfrak{B}) \leq 5$, by Lemma 9(iii) there is a cycle C of length c(G) containing v. We may assume that $C = vv_1 \cdots v_{c(G)-1}v$. If $\mathfrak{B} \cap G_0 - V(C) = \emptyset$, then $\mathfrak{B} \in \mathbf{H}_1 \cup \mathbf{H}_3$, and clearly C is a dominating cycle of \mathfrak{B} containing v. Hence we assume that $\mathfrak{B} \cap G_0 - V(C) \neq \emptyset$. By Lemma 9(i), every component of $\mathfrak{B} \cap G_0 - V(C)$ is a 1-component, and let u_1, u_2, \cdots, u_t be all components of $\mathfrak{B} \cap G_0 - V(C)$. Then $V(\mathfrak{B} \cap G_0) = V(C) \cup \{u_1, u_2, \cdots, u_t\}$. Suppose that $c(\mathfrak{B}) = 5$. Then $\mathfrak{B} \in \mathbf{H}_1$. Since C is a longest cycle of \mathfrak{B} and u_i is a 1-component to $\mathfrak{B} \cap G_0 - V(C)$, we have $|N_{\mathfrak{B}}(u_i) \cap V(C)| = 2$, implying that $N_{\mathfrak{B}}(u_i) \cap V(C) = \{v, v_2\}$ or $N_{\mathfrak{B}}(u_i) \cap V(C) = \{v, v_3\}$ for $1 \leq i \leq t$. By Claim 31, $\{v_1, v_4, u_1, \cdots, u_t\} \cap \Lambda(G) = \emptyset$, implying that \mathfrak{B} is isomorphic to F_1 . Clearly C is a dominating cycle containing v.

Hence we assume that $c(\mathfrak{B})=4$. Since C is a longest cycle of \mathfrak{B} and u_i is a 1-component of $\mathfrak{B}\cap G_0-V(C)$ for $1\leqslant i\leqslant t$. Then $N_{\mathfrak{B}}(u_i)\cap V(C)=\{v,v_2\}$ or $N_{\mathfrak{B}}(u_i)\cap V(C)=\{v_1,v_3\}$ for $1\leqslant i\leqslant t$. Suppose that $\mathfrak{B}\in \mathbf{H}_2\cup \mathbf{H}_3$. Since $d_{\mathfrak{B}\cap G_0}(v)=2$, it follows that $N_{\mathfrak{B}}(u_i)\cap V(C)=\{v_1,v_3\}$ for $1\leqslant i\leqslant t$. By Claim 31, $\{v_2,u_1,\cdots,u_t\}\cap \Lambda(G)=\emptyset$. Clearly C is a dominating cycle containing v. If $\Delta(\mathfrak{B}\cap G_0)$ is odd then \mathfrak{B} is isomorphic to F_2 , if $\Delta(\mathfrak{B}\cap G_0)$ is even then \mathfrak{B} is isomorphic to F_3 .

Now suppose that $\mathfrak{B} \in \mathbf{H}_4$. Then $N_{\mathfrak{B}}(u_i) \cap V(C) = \{v, v_2\}$ for $1 \leq i \leq t$ and t is even. Hence \mathfrak{B} is isomorphic to F_4 , and clearly $\mathfrak{B} \cap G_0$ is an even graph.

Finally suppose that $\mathfrak{B} \in \mathbf{H}_5 \cup \mathbf{H}_6$. Then $N_{\mathfrak{B}}(u_i) \cap V(C) = \{v, v_2\}$ for $1 \leq i \leq t$ and t is odd. If there exists a vertex $u \in \{v_1, v_3, u_1, \cdots, u_4\}$ such that $u \notin \Lambda(G)$, then \mathfrak{B} is isomorphic to F_5 , clearly $\mathfrak{B} \cap G_0 - u$ is an even graph. Hence we assume that $\{v_1, v_3, u_1, \cdots, u_4\} \subseteq \Lambda(G)$, implying that \mathfrak{B} is isomorphic to F_6 . This proves Claim 32.

Note that $\mathbf{H}_1 \cup \cdots \cup \mathbf{H}_6 = G$. If $\mathbf{H}_1 \cup \cdots \cup \mathbf{H}_5 \neq \emptyset$, then by Claim 32, the set $\mathbf{H}_1 \cup \cdots \cup \mathbf{H}_5$ of graphs contains a dominating closed trail containing v. Since each \mathfrak{B} in \mathbf{H}_6 has circumference four, it follows Lemma 9(iv) that $\mathfrak{B} \cap G_0$ has a spanning trail starting at v. If $|\mathbf{H}_6| \leq 2$, then clearly G has a dominating trail, a contradiction. Hence $|\mathbf{H}_6| \geq 3$ and $G \in \mathcal{F}$. The proof is complete.

5 Concluding remarks

In 1966, Gallai asked whether all longest paths in a connected graph have a nonempty intersection. The answer to this question is not true in general and various counterexamples have been found. However, Gallai's question has a positive solution for many well-known classes of graphs such as split graphs, series-parallel graphs, and $2K_2$ - free graphs. Recently, Gao and Shan [21] proved that Gallai's question has an affirmative answer for connected $\{K_{1,3}, S\}$ -free graphs where $S \in \{P_6, Z_3, B_{1,2}\}$. We think that one may extend this result to $\{K_{1,3}, S\}$ -free graphs where $S \in \{N_{1,1,5}, N_{1,3,3}, B_{2,4}\}$ by applying our result (Theorem 1.1).

Acknowledgements

We thank the anonymous referee for a thorough reading of the original manuscript and very detailed and helpful suggestions. This work is supported by Natural Science Foundation of China (Nos. 12001242, 12131013).

References

- [1] R. Aldred, J. Fujisawa and A. Saito, Forbidden subgraphs and existence of a 2-factor. J. Graph Theory 64(3): 250-266, 2010.
- [2] P. Bedrossian, Forbidden subgraph and minimum degree conditions for Hamiltonicity (Ph.D. thesis), Memphis State University, 1991.
- [3] Q. Bian, R. Gould, P. Horn, S. Janiszewski, S. Fleur and P. Wrayno, 3-connected $\{K_{1,3}, P_9\}$ -free graphs are Hamiltonian-Connected. Graphs and Combin., 30(5): 1099-1122, 2014.
- [4] J.A. Bondy and U.S.R. Murty, Graph Theory, Graduate in Mathematics, Vol.244, Springer, 2008.

- [5] S. Brandt, O. Favaron and Z. Ryjáček, Closure and stable hamiltonian properties in claw-free graphs. J. Graph Theory, 34(1): 30-41, 2000.
- [6] J. Brousek, Z. Ryjáček and O. Favaron, Forbidden subgraphs, hamiltonicity and closure in claw-free graphs. Discrete Math., 196: 29-50, 1999.
- [7] G. Chen, Y. Egawa, R. Gould and A. Saito, Forbidden pairs for k-connected Hamiltonian graphs. Discrete Math., 312(5): 938-942, 2012.
- [8] S. Chiba, M. Furuya and S. Tsuchiya, Forbidden pairs and the existence of a dominating cycle. Discrete Math., 338(12): 2442-2452, 2015.
- [9] S. Chiba M. Furuya and S. Tsuchiya, Dominating cycles and forbidden pairs containing P_5 . Graphs and Combin., 32 (5): 1773-1788, 2016
- [10] D. Duffus, R.J. Gould and M.S. Jacobson, Forbidden subgraphs and Hamiltonian theme, in: The Theory and Applications of Graphs, Kalamazoo, Michigan, 1980, Wiley, New York, 1981, pp.297-316.
- [11] J. Du and L. Xiong, The locally structure of claw-free graphs without induced generalized bull. Graphs and Combin., 35(5): 1091-1103, 2019.
- [12] Y. Fang and L. Xiong, Characterizing forbidden pairs for relative length of longest paths and cycles. Discrete Math., 345(7): 112870, 2022.
- [13] R. J. Faudree and R. Gould, Characterizing forbidden pairs for Hamiltonian properties. Discrete Math., 173: 45-60, 1997.
- [14] J. R. Faudree, R. J. Faudree and Z. Ryjáček, Forbidden subgraphs that imply 2-factors. Discrete Math., 308: 1571-1582, 2008.
- [15] J. R. Faudree, R. J. Faudree, Z. Ryjáček and P. Vrána, On forbidden pairs implying Hamilton-connectedness. J. Graph Theory, 72(3): 327-345, 2013.
- [16] M. Ferrara, T. Morris and P. Wenger, Pancyclicity of 4-connected {Claw-Free, P_{10} }-free Graphs. J. Graph Theory, 71(4): 435-447, 2012.
- [17] M. Ferrara, S. Gehrke, R. Gould C. Magnant and J. Powell, Pancyclicity of 4-connected {claw, generalized bull}-free graphs. Discrete Math.,313(4): 460-467, 2013.
- [18] J. Fujisawa, Forbidden Subgraphs for Hamiltonicity of 3-connected claw-free graphs. J. Graph Theory, 73(2): 146-160, 2013.
- [19] J. Fujisawa, S. Fujita, M.D. Plummer and A. Saito and Ingo Schiermeyer, A pair of forbidden subgraphs and perfect matchings in graphs of high connectivity. Combinatorica, 31(6): 703-723, 2011.
- [20] S. Fujita, K. Kawarabayashi, C.L. Lucchesi, K. Ota, M.D. Plummer and A. Saito, A pair of forbidden subgraphs and perfect matchings. J. Combin. Theory Ser. B, 96(3): 315-324, 2006.
- [21] Y. Gao and S. Shan, Nonempty intersection of longest paths in graphs without forbidden pairs. Discrete Appl. Math., 304: 76-83, 2021.
- [22] R. Gould, T. Łuczak and F. Pfender, Pancyclicity of 3-connected graphs: Pairs of forbidden subgraphs. J. Graph Theory, 47(3): 183-202, 2004.

- [23] F. Harary and C. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs. Canad. Math. Bull., 8: 701-710, 1965.
- [24] Z. Hu and H. Lin, Two forbidden subgraph pairs for hamiltonicity of 3-connected graphs. Graphs and Combin., 29(6): 1755-1775, 2013.
- [25] Z. Hu and Z. Zhang, Every 3-connected $\{K_{1,3}, N_{1,2,3}\}$ -free graph is Hamilton-connected. Graphs and Combin., 32(2): 685-705, 2016.
- [26] H.-J. Lai, L. Xiong, H. Yan and J. Yan, Every 3-connected claw-free \mathbb{Z}_8 -free graph is Hamiltonian. J. Graph Theory, 64(1): 1-11, 2010.
- [27] B. Li, H. Broersma and S. Zhang, Pairs of forbidden induced subgraphs for homogeneously traceable graphs. Discrete Math., 312(18): 2800-2818, 2012.
- [28] B. Li, H. Broersma and S. Zhang, Forbidden subgraph pairs for traceability of block-chains. E. J. Graph Theory and Application, 1(1):1-10, 2013.
- [29] D. Li, H.-J. Lai and M. Zhan, Eulerian subgraphs and hamilton-connected line graphs. Discrete Appl. Math., 145(3): 422-428, 2005.
- [30] H. Lin and Z. Hu, Every 3-connected $\{K_{1,3}, N_{3,3,3}\}$ -free graph is Hamiltonian. Science China Math., 56: 1585-1595, 2013.
- [31] X. Liu, Z. Ryjáček, P. Vrána, L. Xiong, and X. Yang, Hamilton-connected claw,net-free graphs I. J. Graph Theory, 102(1): 154-179, 2023.
- [32] X. Liu, Z. Ryjáček, P. Vrána, L. Xiong, and X. Yang, Hamilton-connected claw,net-free graphs II. J. Graph Theory, 103(1): 119-138, 2023.
- [33] T. Łuczak and F. Pfender, Claw-free 3-connected P_{11} -free graphs are hamiltonian. J. Graph Theory, 47(2): 111-121, 2004.
- [34] S. Lv and L. Xiong, Forbidden pairs for spanning (closed) trails. Discrete Math., 340(5): 1012-1018, 2017.
- [35] S. Lv and L. Xiong, Erratum to 'Forbidden pairs for spanning (closed) trails' [Discrete Math. 341(4): 1012-1018, 2018.]
- [36] M.M. Matthews, D.P. Sumner, Hamiltonian results in $K_{1,3}$ -free graphs. J. Graph Theory, 8: 139-146, 1984.
- [37] Z. Ryjáček, On a closure concept in claw-free graphs. J. Combin. Theory Ser. B, 70(2): 217-224, 1997.
- [38] Z. Ryjáček and P. Vrána, Hamilton-connected {claw, bull}-free graphs. J. Graph Theory, 102(1): 129-153, 2023.
- [39] S. Wang and L. Xiong, Spanning trails in a 2-connected graphs. The Electronic Journal of Combinatorics, 26(3):#P3. 56, 2019.
- [40] W. Xiong, H.-J. Lai, X. Ma, K. Wang and M. Zhang, Hamilton cycles in 3-connected claw-free and net-free graphs. Discrete Math., 313(6): 784-795, 2013.