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Abstract

A graph Γ is edge-transitive (s-arc-transitive, respectively) if its full automor-
phism group Aut (Γ) acts transitively on the set of edges (the set of s-arcs in Γ for
an integer s > 0, respectively). A 1-arc-transitive graph is called an arc-transitive
graph or a symmetric graph. In this paper, we construct cubic symmetric bi-Cayley
graphs over some groups of order p4, where p > 7 is a prime. Using these construc-
tions, we classify the connected cubic edge-transitive graphs of order 2p4 for each
prime p and we also show that all these graphs are symmetric.

Mathematics Subject Classifications: 05C25, 20B25

1 Introduction

Throughout this paper, we consider finite groups and finite connected simple graphs. For
a graph Γ, we denote by V (Γ), E(Γ) and Aut (Γ) the vertex set, the edge set and the full
automorphism group of Γ, respectively. For a non-negative integer s, an s-arc in a graph
Γ is an ordered (s+1)-tuple (v0, v1, · · · , vs−1, vs) of vertices in Γ such that vi−1 is adjacent
to vi for 1 6 i 6 s and vi−1 6= vi+1 for 1 6 i 6 s− 1. Usually, a 1-arc is called an arc. A
graph Γ is said to be s-arc-transitive if Aut (Γ) is transitive on the set of s-arcs in Γ. Note
that a 0-arc-transitive graph means vertex-transitive graph, and a 1-arc-transitive graph is
called an arc-transitive graph or a symmetric graph. An s-arc-transitive graph Γ is called
s-arc-regular if for every two s-arcs in Γ there exists a unique automorphism in Aut (Γ)
sending one to the other. A graph Γ is edge-transitive if Aut (Γ) is transitive on E(Γ),
and semisymmetric if Γ is edge-transitive but not vertex-transitive with regular valency.
A graph Γ is edge-regular if for any two edges in Γ there exists a unique automorphism in
Aut (Γ) sending one to the other. We say that a graph is half-arc-transitive if it is vertex-
transitive and edge-transitive but not arc-transitive. Note that every half-arc-transitive
graph has even valency (see [17]).

aDepartment of Mathematics, Beijing Jiaotong University, Beijing 100044, P.R. China
(xuewang@bjtu.edu.cn, jxzhou@bjtu.edu.cn).

bCollege of Science, Tianjin University of Technology Tianjin 300384, P.R. China
cDepartment of Mathematics, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541,
South Korea (sjbang@ynu.ac.kr).

the electronic journal of combinatorics 32(3) (2025), #P3.51 https://doi.org/10.37236/13675

https://doi.org/10.37236/13675


In this paper, we are interested in regular edge-transitive graphs with a given order. By
definition, it is easily seen that edge-transitive graphs with regular valency can be parti-
tioned into three classes: symmetric graphs, half-arc-transitive graphs and semisymmetric
graphs.

Let p be a prime. In the literature, a fair amount of work has been done on edge-
transitive graphs of order kp` for some integers k and `. It is easy to show that edge-
transitive graphs of order p are also vertex-transitive. In 1971, Chao [2] classified the
vertex- and edge-transitive graphs of order p. For the case of edge-transitive graphs of
order 2p, in 1967, Folkman [11] showed that a regular edge-transitive graph of order 2p is
also vertex-transitive, and in 1987, Cheng and Oxley [3] classified the vertex- and edge-
transitive graphs of order 2p by using deep group theory. Edge-transitive graphs of order
2p2 have also been studied in [11, 28]. Folkman [11] showed that a regular edge-transitive
graph of order 2p2 is vertex-transitive, and Zhou and Zhang [28] gave a classification of
the vertex- and edge-transitive graphs of order 2p2. It is worth mentioning that all regular
edge-transitive graphs of order p, 2p or 2p2 are symmetric (see [2, 3, 11, 28]). For the
case of order 2p3, the situation becomes much more complicated. Unlike in the case of
p, 2p, 2p2, there exists a semisymmetric graph of order 2p3 for some p, for example the
Gray graph. Actually, Malnič at el. [14] proved that the Gray graph is the only cubic
semisymmetric graph of order 2p3. Following their work, Du et al. started the project
of classification of the semisymmetric graphs of order 2p3, and they have been working a
big progress on this project, see [8, 18, 19, 20, 21, 22]. On the other hand, there are also
symmetric graphs of order 2p3 and half-arc-transitive graphs of order 2p3. In 2006, Feng
and Kwak [10] classified all cubic symmetric graphs of order 2p3, and in 2019, Zhang and
Zhou [25] classified all tetravalent half-arc-transitive graphs of order 2p3. Note here that
all cubic edge-transitive graphs of order kp` for k 6 2 and ` 6 3 are classified.

Motivated by this, we shall focus on cubic edge-transitive graphs of order 2p4. In the
following main theorem, we classify the connected cubic edge-transitive graphs of order
2p4 for each prime p > 2 and we also determine their s-arc-regular property for each case.

Theorem 1. Let p be a prime. Let Γ be a connected cubic edge-transitive graph of order
2p4. Then Γ satisfies one of the following:

(i) Γ is 1-arc-regular and Γ is isomorphic to one of graphs in
{F162A, Υ4,0,i, Υ3,1,i, ΓH3,p,i, ΓH9,7,i,k (k 6= 3), ΓH9,p,i,k (p > 7), ΓH10,p,i},

(ii) Γ is 2-arc-regular and Γ is isomorphic to F32, F162B, F1250A or Υ2,2,0,

(iii) Γ is 3-arc-regular and Γ is isomorphic to F162C or F1250B,

(iv) Γ is 4-arc-regular and Γ is isomorphic to ΓH9,7,i,3,

where we refer to [6] and Equations (11)-(12) for notations.
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Moreover, the following interesting corollary is obtained immediately from Theorem 1.

Corollary 2. Let p be a prime. Every connected cubic edge-transitive graph of order 2p4

is symmetric.

This paper is organized as follows. In Section 2, we set up notations and preliminary
results about groups of order p4, bi-Cayley graphs and cubic edge-transitive graphs. In
Section 3, we construct cubic symmetric bi-Cayley graphs of order 2p4 with p > 7 a
prime and we determine their s-arc-regular property (s > 1). In Subsection 3.1 (3.2,
respectively), we construct such bi-Cayley graphs over abelian (non-abelian, respectively)
groups of order p4. Using these constructions, we complete the proof of Theorem 1 in
Section 4.

2 Preliminaries

In this section, we set up notations and preliminary results which will be used in this
paper. In Subsections 2.1, we consider groups of order p4 and we recall bi-Cayley graphs
and cubic edge-transitive graphs in Subsection 2.2.

Let G be a group. We write Aut (G), Z(G), G′ and Φ(G) for the automorphism
group, the center, the derived subgroup and the Frattini subgroup of G, respectively. For
any elements x, y ∈ G, we denote by o(x) the order of x and by [x, y] the commutator
x−1y−1xy. For a subgroup H 6 G and for a normal subgroup N EG, denote by CG(H),
NG(H) and G/N the centralizer of H in G, the normalizer of H in G and the quotient
group, respectively. For a positive integer n, we denote by Zn and Z∗n the cyclic group of
order n and the multiplicative group of integers modulo n, respectively. For two groups
G1 and G2, we write G1 × G2 for the direct product of G1 and G2, and G1 o G2 for a
semidirect product of G1 by G2.

Let G be a permutation group on a finite set Ω. For each element α ∈ Ω, the subgroup
of G fixing α is denoted by Gα (i.e., the stabilizer of α in G). The group G is semiregular
if Gα = 1 holds for any α ∈ Ω, and G is regular if G is transitive and semiregular.

2.1 Groups of order p4

To prove the main result Theorem 1, we need the classification of groups of order p4 where
p > 2 is a prime. In view of the results by Conder [4, 5] for 2 6 p 6 5, we mainly consider
the case for p > 7.

Theorem 3. [12, Chapter 3], [24, Section 3] Up to isomorphism, there are fifteen groups
of order p4 with p > 7 a prime as follows.

(i) Five abelian groups:

Zp4 , Zp3 × Zp, Zp2 × Zp2 , Zp2 × Zp × Zp and Zp × Zp × Zp × Zp;
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(ii) Ten non-abelian groups:

H1 = 〈a, b | ap3 = bp = 1, b−1ab = a1+p
2〉;

H2 = 〈a, b | ap2 = bp
2

= 1, b−1ab = a1+p〉;
H3 = 〈a, b, c | ap2 = bp = cp = 1, [a, b] = c, [a, c] = [b, c] = 1〉;
H4 = 〈a, b, c | ap2 = bp = cp = 1, b−1ab = a1+p, [a, c] = [b, c] = 1〉;
H5 = 〈a, b, c, d | ap = bp = cp = dp = 1, [a, b] = c, [c, a] = [c, b] = [d, a] = [d, b] = [d, c] = 1〉;
H6 = 〈a, b, c | ap2 = bp = cp = 1, [b, c] = ap, [a, b] = [a, c] = 1〉;
H7 = 〈a, b, c | ap2 = bp = cp = 1, [a, b] = c, [c, a] = 1, [c, b] = ap〉;
H8 = 〈a, b, c | ap2 = bp = cp = 1, [a, b] = c, [c, a] = 1, [c, b] = aνp〉(ν ∈ Z∗

p, ν
2 6= 1(mod p));

H9 = 〈a, b, c | ap2 = bp = cp = 1, [a, b] = c, [c, a] = ap, [c, b] = 1〉;
H10 = 〈a, b, c, d | ap = bp = cp = dp = 1, [a, b] = c, [c, a] = 1, [c, b] = d, [d, a] = [d, b] = [d, c] = 1〉.

(1)

Let G be a finite p-group, where p is a prime. We write c(G) and exp(G) for the
nilpotent class of G and the exponent of G (i.e., the largest order of the elements in G),
respectively. If (xy)p = xpyp holds for any x, y ∈ G, then G is called p-abelian. The
following result gives an equivalent condition for being p-abelian for some p-groups.

Proposition 4. [23, Theorem 2] Let G be a finite p-group which is generated by two
elements and whose derived subgroup G′ is abelian. Then G is p-abelian if and only if
exp(G′) 6 p and c(G) < p.

Using Proposition 4, we show the following result which will be used in Sections 3-4.

Lemma 5. Referring to (1), each group Ht(t = 7, 8, 9, 10) is p-abelian and it satisfies

Z(Ht) = 〈[[x, y], z] | x, y, z ∈ Ht〉 =

{
〈ap〉 if t = 7, 8, 9
〈d〉 if t = 10

.

Proof. We first show that Ht is p-abelian for each 7 6 t 6 10. Put Kt := 〈ap〉 × 〈c〉 (7 6
t 6 9) and K10 := 〈c〉 × 〈d〉. Then Kt 6 H ′t, Kt

∼= Zp×Zp and |Ht/Kt| = p2 (7 6 t 6 10)
all hold. Since every group of order p2 is abelian, Ht/Kt is abelian and thus H ′t 6 Kt. This
shows H ′t = Kt

∼= Zp×Zp and hence H ′t is abelian with exp(H ′t) 6 p. Since c(Ht) 6 3 < p
holds by |H ′t| = p2, it follows by Proposition 4 that Ht is p-abelian.

Since any non-trivial p-group has non-trivial center, we have |Z(Ht)| > p. Suppose
|Z(Ht)| > p2. Then H ′t 6 Z(Ht) follows by |Ht/Z(Ht)| 6 p2. This is impossible as
c ∈ H ′t \ Z(Ht). This shows

|Z(Ht)| = p (7 6 t 6 10). (2)

On the other hand, it follows by (2), |H ′t| = p2 and Z(Ht)∩〈[[x, y], z] | x, y, z ∈ Ht〉 6= {1}
that

Z(Ht) = 〈[[x, y], z] | x, y, z ∈ Ht〉 (3)

holds. For t = 10, we obtain Z(H10) = 〈d〉 by d ∈ Z(H10), dp = 1 and (2). Now we will
show Z(Ht) = 〈ap〉 (t = 7, 8, 9). Since Ht is p-abelian,

b−1apb = (b−1ab)p = (b−1)papbp = ap and c−1apc = (c−1ac)p = (c−1)papcp = ap (4)

holds by bp = cp = 1. It follows by (4), ap
2

= 1 and (2) that Z(Ht) = 〈ap〉 (t = 7, 8, 9).
This completes the proof by (3).
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2.2 Bi-Cayley graphs and cubic edge-transitive graphs

A graph Γ is called a bi-Cayley graph over a group H if Γ admits a group of automorphisms
which is isomorphic to H and acts semiregularly on V (Γ) with two orbits of the same
size. We note that every bi-Cayley graph can be constructed as follows (see [7, 27]).

Definition 6. Let H be a finite group, let R, L and S be subsets of H satisfying R−1 = R,
L−1 = L and 1 /∈ R ∪ L. Let Hi = {(h, i) | h ∈ H} with i ∈ {0, 1}. For convenience, we
write hi to denote (h, i) for each h ∈ H and i ∈ {0, 1}. Define the graph BiCay(H,R,L, S)
to be a graph with vertex set H0 ∪H1 and edge set

{{h0, (xh)0}, {h1, (yh)1}, {h0, (zh)1} | h ∈ H, x ∈ R, y ∈ L, z ∈ S}.

We say that BiCay(H,R,L, S) is a bi-Cayley graph over H relative to (R,L, S).

Next, we introduce normal bi-Cayley graphs as well as normal edge-transitive bi-
Cayley graphs.

Definition 7. Let Γ be a bi-Cayley graph BiCay(H,R,L, S) over a group H. For each
automorphism α ∈ Aut (H) and for any elements x, y, z ∈ H, we define some permutations
on H0 ∪H1 as follows:

R(z) : hi 7→ (hz)i, ∀i ∈ Z2, ∀h ∈ H, (5)

δα,x,y : h0 7→ (xhα)1, h1 7→ (yhα)0, ∀h ∈ H, (6)

σα,z : h0 7→ (hα)0, h1 7→ (zhα)1, ∀h ∈ H. (7)

For a subset T ⊆ H and for each α ∈ Aut (H), define Tα := {hα | h ∈ T} and put

R(H) := {R(z) | z ∈ H}, (8)

I := {δα,x,y | α ∈ Aut (H), x, y ∈ H, Rα = x−1Lx, Lα = y−1Ry, Sα = y−1S−1x}, (9)

F := {σα,z | α ∈ Aut (H), z ∈ H, Rα = R, Lα = z−1Lz, Sα = z−1S}. (10)

Then by [27], we see thatR(H) 6 Aut (Γ), I ⊆ NAut (Γ)
(R(H)) and F 6 NAut (Γ)

(R(H)).

Moreover,R(H) acts semiregularly on V (Γ) with two orbits H0 and H1. IfR(H) is normal
in Aut (Γ), then Γ is called a normal bi-Cayley graph over H (see [27]). If NAut (Γ)

(R(H))

is transitive on E(Γ), then Γ is called a normal edge-transitive bi-Cayley graph over H
(see [7]).

Now, we recall some preliminary results on bi-Cayley graphs which will be used in this
paper.

Proposition 8. [27, Theorem 1.1 & Lemmas 3.1–3.2] Let Γ = BiCay(H,R,L, S) be a
connected bi-Cayley graph over a group H. Referring to Equations (5)–(10), the following
hold:

(i) H is generated by R ∪ L ∪ S;
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(ii) S can be chosen to contain the identity element of H;

(iii) For any α ∈ Aut (H), BiCay(H,R,L, S) ∼= BiCay(H,Rα, Lα, Sα);

(iv) NAut (Γ)
(R(H)) =

{
R(H)o F if I = ∅
R(H)〈F, δα,x,y〉 for some δα,x,y ∈ I if I 6= ∅ ;

(v) I ⊆ Aut(Γ), and if I 6= ∅, then for each δα,x,y ∈ I, 〈R(H), δα,x,y〉 acts transitively
on V (Γ);

(vi) If α is an automorphism of H of order 2, then Γ ∼= Cay(H̄, R ∪ αS), where
H̄ = H o 〈α〉.

In the rest of this subsection, we review some results about cubic edge-transitive
graphs.
Let Γ be a connected graph. Let G be a subgroup of Aut (Γ) such that G is transitive on
E(Γ), and let N be a normal subgroup of G which is intransitive on V (Γ). The quotient
graph of Γ relative to N , denoted by ΓN , is the graph whose vertices are the orbits of N
on V (Γ), where two different orbits are adjacent if there is an edge in Γ between those
two orbits.

Proposition 9. [13, Theorem 9] Let Γ be a connected cubic graph. Let G be a subgroup
of Aut (Γ) acting arc-transitively on Γ and let N be a normal subgroup of G. Then the
following hold.

(i) G acts regularly on the s-arcs of Γ for some s > 1.

(ii) Suppose that N has more than two orbits on V (Γ). Then N is semiregular on
V (Γ) and N is the kernel of G acting on V (ΓN). Moreover, ΓN is a cubic graph,
G/N 6 Aut (ΓN) holds and G/N acts arc-transitively on ΓN .

Proposition 10. [15, Lemmas 17-18] For an integer n > 1 and a prime number p > 3,
let Γ be a connected cubic edge-transitive graph of order 2pn.

(i) If p ∈ {5, 7} and n > 2, then the maximal normal p-subgroup of Aut (Γ) has order
pn or pn−1.

(ii) If p > 5 then Γ is a bi-Cayley graph over H, where H is a Sylow p-subgroup of
Aut (Γ) with order pn. Moreover, if p > 11 then Γ is a normal bi-Cayley graph over
H.

Proposition 11. [15, Theorem 1] For a prime number p > 3, let H be a non-abelian
metacyclic p-group. If Γ is a connected cubic edge-transitive bi-Cayley graph over H, then
p = 3 holds and Γ is either the Gray graph or a normal bi-Cayley graph over H.
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3 Constructions of cubic symmetric bi-Cayley graphs

In this section, we consider constructions of cubic symmetric bi-Cayley graphs of order
2p4 with p > 7 a prime and their s-arc-regular property (s > 1). In Subsection 3.1 (3.2,
respectively), we construct such bi-Cayley graphs over abelian (non-abelian, respectively)
groups of order p4. To consider their s-arc-regular property for s > 1, we first need the
following lemma.

Lemma 12. Let H be a group of order pn, where p > 7 is a prime and n > 1 is an
integer. Let Γ be a cubic symmetric bi-Cayley graph over H.

(i) If there exists a characteristic subgroup N of H satisfying H/N ∼= Zpr with r > 1,
then Γ is 1-arc-regular.

(ii) If there exists a characteristic subgroup N of H satisfying H/N ∼= Zp × Zp, then Γ
is at most 2-arc-regular.

Proof. Let N be a characteristic subgroup of H with |N | 6= |H|. Since we may identify
H with R(H) and H E Aut (Γ) holds by Proposition 10 (ii), we have N E Aut (Γ). It
follows by Proposition 9 that the corresponding quotient graph ΓN is a connected cubic
symmetric bi-Cayley graph over H/N satisfying Aut (Γ)/N 6 Aut (ΓN). If H/N ∼= Zpr
with r > 1, then ΓN is 1-arc-regular by [9, Theorem 3.5]. This implies that Γ is also
1-arc-regular. If H/N ∼= Zp×Zp, then ΓN is 2-arc-regular by [9, Theorem 3.5], and hence
Γ is at most 2-arc-regular. This completes the proof.

3.1 Constructions over abelian groups of order p4

In this subsection, we give constructions of cubic bi-Cayley graphs over abelian groups of
order p4 with p > 7 (i.e., Υ2,2,0,Υ4,0,i,Υ3,1,i in Construction I) and we show in Lemma 13
that these graphs are either 1-arc-regular or 2-arc-regular.

In view of Theorem 3, there are five abelian groups of order p4:

Zp4 , Zp3 × Zp, Zp2 × Zp2 , Zp2 × Zp × Zp and Zp × Zp × Zp × Zp.

In the following Construction I, we construct bi-Cayley graphs over the first three
groups.

Construction I. For a prime number p > 7 and for integers m > n > 0 with m+ n = 4,

let H := 〈a〉 × 〈b〉 ∼= Zpm × Zpn and define Υm,n,i := BiCay(H, ∅, ∅, {1, a, aib}) (11)

where i = 0 if m = n = 2, and i ∈ Z∗pm−n satisfying i2 − i + 1 ≡ 0 (mod pm−n) if
(m,n) = (4, 0) or (3, 1).

In the following lemma, we consider their s-arc-regular property for s > 1.

the electronic journal of combinatorics 32(3) (2025), #P3.51 7



Lemma 13. Referring to (11), both Υ4,0,i and Υ3,1,i are 1-arc-regular, but Υ2,2,0 is 2-arc-
regular.

Proof. If p = 7, then the result follows by using Magma [1]. Now we assume p > 7
and let i ∈ Z∗pm−n satisfying i2 − i + 1 ≡ 0 (mod pm−n). Then by [26, Lemma 5.1], both
Υ4,0,i and Υ3,1,i are at least 1-arc-regular, but Υ2,2,0 is at least 2-arc-regular. For Υ2,2,0,
we find that N = 〈ap〉 × 〈bp〉 is a characteristic subgroup of H satisfying H/N ∼= Zp ×Zp
and thus Υ2,2,0 is 2-arc-regular by Lemma 12 (ii). For Υ3,1,i and Υ4,0,i, we obtain that
N = 〈ap〉 × 〈b〉 is a characteristic subgroup of H satisfying H/N ∼= Zp2 for Υ3,1,i and
H/N ∼= Zp3 for Υ4,0,i. By Lemma 12 (i), all they are 1-arc-regular. This completes the
proof.

3.2 Constructions over non-abelian groups of order p4

In this subsection, we construct three kinds of cubic bi-Cayley graphs over non-abelian
groups of order p4 with p > 7 (see Construction II) and we show in Lemmas 14–17 that
these graphs are either 1-arc-regular or 4-arc-regular.

Up to isomorphism, there are only ten non-abelian groups of order p4, say Hi (1 6 i 6
10) (see Theorem 3 (ii)). In the following construction, we consider three of them: H3,
H9 and H10.

Construction II. For a prime number p > 7 and for non-abelian groups H3, H9, H10

given in (1), define

ΓH3,p,i := BiCay(H3, ∅, ∅, {1, a, bai})
ΓH9,p,i,k := BiCay(H9, ∅, ∅, {1, a, aibk}) (12)

ΓH10,p,i := BiCay(H10, ∅, ∅, {1, b, bia})

where i, k ∈ Z∗p satisfying i2 − i+ 1 ≡ 0 (mod p) and k2 − k + 1 ≡ 0 (mod p).

In the following three lemmas, we prove s-arc-regular property (s ∈ {1, 4}) for the
graphs in Construction II.

Lemma 14. [16, Theorem 4.11(4)] Referring to (12), ΓH3,p,i is 1-arc-regular.

Lemma 15. Referring to (12), the following hold.

(i) Let p = 7. Then ΓH9,7,i,3 is 4-arc-regular and ΓH9,7,i,k (k 6= 3) is 1-arc-regular.

(ii) For p > 7, ΓH9,p,i,k is 1-arc-regular.

Proof. Let p = 7. With the aid of Magma [1], we obtain that ΓH9,7,i,3 is 4-arc-regular
and ΓH9,7,i,k is 1-arc-regular for k 6= 3. Now we assume p > 7. For given i, k as in (12),
take n ∈ Z∗p satisfying kn ≡ 1 (mod p). We first prove the following claim. Recall by (1)
in Theorem 3 that

H9 = 〈a, b, c | ap2 = bp = cp = 1, [a, b] = c, [c, a] = ap, [c, b] = 1〉. (13)
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Claim 16. For each j ∈ {1, 2}, H9 has an automorphism θj mapping a, b, c to aj, bj, cj,
where

a1 := ai−1bk, b1 := ((ai−1bk)−ia−1)n, c1 := ca−p,
a2 := a−1, b2 := (aib−ka−i)n, c2 := ca−(i+1)p.

Proof of Claim 16: Note that group H9 satisfies the following (see Lemma 5 and (12)):

p-abelian, ap ∈ Z(H9) = 〈[[x, y], z] | x, y, z ∈ H9〉 and i2 − i+ 1 ≡ 0, kn ≡ 1 (mod p).
(14)

Using (13)–(14), we obtain the following:

ap1 = (ai−1bk)p = a(i−1)p(bp)k = a(i−1)p 6= 1 and thus ap
2

1 = (ap
2
)i−1 = 1;

ap2 = a−p 6= 1 and (a2)p
2

= (ap
2
)−1 = 1;

bp1 = ((ai−1bk)−ia−1)np = a−(i2−i+1)np = 1 and bp2 = (aib−ka−i)np = (aipb−kpa−ip)n = 1;

cp1 = (ca−p)p = cpa−p
2

= 1 and cp2 = cpa−(i+1)p2 = 1.

Now, we need to obtain Equations (15)–(20) which will be used for calculating the
relations aj, bj, cj (j = 1, 2). Using (13)–(14), we obtain the following calculations for
` > 1:

[c, a`] = [c, a]` = ap` ; (15)

[c`, (ai−1bk)−ia−1] = [c`, a−1][c`, (ai−1bk)−i] = [c`, a]−(i2−i+1) = a−`(i
2−i+1)p = 1; (16)

[ai−1bk, (ai−1bk)−ia−1] = [bk, a−1] = [b, a−1]k = (ca−p)k; (17)

[a−1, (aib−ka−i)n] = [a−1, aib−ka−i]n; (18)

[a−1, aib−ka−i] = [a−1, b−ka−i] = (ai+1ca−i−1)k = (ca−(i+1)p)k; (19)

[ca−(i+1)p, (aib−ka−i)n] = [c, (aib−ka−i)n] = [c, aib−ka−i]n. (20)

Using (14) and applying some of (15)–(20), we obtain the following:

[c1, a1] = [ca−p, ai−1bk] = [c, ai−1bk] = [c, bk][c, ai−1] = [c, ai−1] = a(i−1)p = ap1 (by (15));

[c1, b1] = [ca−p, ((ai−1bk)−ia−1)n] = [c, ((ai−1bk)−ia−1)n] = 1 (by (16));

[a1, b1] = [ai−1bk, ((ai−1bk)−ia−1)n] = [ai−1bk, (ai−1bk)−ia−1]n = (ca−p)kn = ca−p = c1 (by (16), (17));

[a2, b2] = [a−1, (aib−ka−i)n] = [a−1, aib−ka−i]n = (ca−(i+1)p)kn = ca−(i+1)p = c2 (by (18), (19));

[c2, a2] = [ca−(i+1)p, a−1] = [c, a−1] = a−p = ap2 (by (15));

[c2, b2] = [ca−(i+1)p, (aib−ka−i)n] = [c, aib−ka−i]n = ([c, a−i][c, b−k][c, ai])n = 1 (by (15), (20)).

It follows that aj, bj, cj satisfy the same relations as a, b, c in (13) for each j ∈ {1, 2}.
Moreover, the following hold:

ai1b
k
1 = (ai−1bk)i((ai−1bk)−ia−1)kn = (ai−1bk)i(ai−1bk)−ia−1 = a−1;

((ai1b
k
1)i−1a1)n = (a−(i−1)ai−1bk)n = bkn = b;

aip1 c
−1
1 = (ai−1bk)ipapc−1 = a(i−1)ipapc−1 = a(i2−i+1)pc−1 = c−1;

a2 = a−1 ;

(ai2b
k
2a
−i
2 )n = (a−iaib−ka−iai)n = b−kn = b−1;

c2a
−(i+1)p
2 = ca−(i+1)pa(i+1)p = c,
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and hence 〈a, b, c〉 = 〈aj, bj, cj〉 for each j ∈ {1, 2}. Thus, the map

a 7→ aj, b 7→ bj, c 7→ cj

induces an automorphism θj (j = 1, 2) of H9. This completes the proof of Claim 16.

Proof Lemma 15 (cont.) To complete the proof of Lemma 15, we will use Lemma 12 (i).
We first show that the cubic bi-Cayley graph ΓH9,p,i,k is symmetric. By Claim 16, there
exists θj ∈ Aut (H9) such that aθj = aj, b

θj = bj, c
θj = cj for each j ∈ {1, 2}. It is easy

to verify that
{1, a, aibk}θ1 = {1, ai−1bk, a−1} = a−1{1, a, aibk},
{1, a, aibk}θ2 = {1, a−1, b−ka−i} = {1, a, aibk}−1.

In view of Proposition 8, σθ1,a and δθ2,1,1 are automorphisms of ΓH9,p,i,k. Moreover, σθ1,a
fixes 10 and it permutates the three neighbors of 10 cyclically. This implies that R(H9)o
〈σθ1,a〉 acts regularly on E(ΓH9,p,i,k). On the other hand, δθ2,1,1 swaps 10 and 11. This
implies that ΓH9,p,i,k is vertex-transitive and thus it is symmetric. Since CH9(H

′
9) is a

characteristic subgroup of H ′9 and H ′9 is a characteristic subgroup of H9, we obtain that
CH9(H

′
9) is a characteristic subgroup of H9. We find by CH9(H

′
9) = 〈ap, b, c〉 ∼= Z3

p that
H9/(CH9(H

′
9)) ∼= Zp holds. Therefore, ΓH9,p,i,k is 1-arc-regular by Lemma 12 (i). This

completes the proof of Lemma 15.

Lemma 17. Referring to (12), ΓH10,p,i for p > 7 is 1-arc-regular.

Proof. If p = 7 then we find by applying Magma [1] that ΓH10,7,i is 1-arc-regular. Now
we assume p > 7. We first prove the following claim. Recall by (1) in Theorem 3 that

H10 = 〈a, b, c, d | ap = bp = cp = dp = 1, [a, b] = c, [c, a] = 1, [c, b] = d,
[d, a] = [d, b] = [d, c] = 1〉. (21)

Claim 18. For each j ∈ {1, 2}, aj, bj, cj, dj have the same relations as a, b, c, d in (21),
where

a1 := (bi−1a)−ib−1, b1 := bi−1a, c1 := cd−1, d1 := di−1,
a2 := bia−1b−i, b2 := b−1, c2 := cd−(1+i), d2 := d−1.

Proof of Claim 18. Note that group H10 satisfies the following (see Lemma 5 and (12)):

p-abelian, Z(H10) = 〈d〉 and i2 − i+ 1 ≡ 0 (mod p). (22)

Using (21) and the p-abelian property of H10, we find o(aj) = o(bj) = o(cj) = o(dj) = p
for each j = 1, 2. It follows by d1, d2 ∈ Z(H10) = 〈d〉 (see (22)) that [dj, aj] = [dj, bj] =
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[dj, cj] = 1 for each j = 1, 2. Using (21)–(22), we obtain the following relations:

[a1, b1] = [(bi−1a)−ib−1, bi−1a] = [b−1, bi−1a] = [b−1, a] = cd−1 = c1;

[c1, a1] = [cd−1, (bi−1a)−ib−1] = [c, (bi−1a)−ib−1] = [c, b−1][c, (bi−1a)−i]

= [c, b]−1[c, bi−1a]−i = [c, b]−1[c, b]−i(i−1) = [c, b]−(i2−i+1) = d−(i2−i+1) = 1;

[c1, b1] = [cd−1, bi−1a] = [c, bi−1a] = [c, bi−1] = di−1 = d1;

[a2, b2] = [bia−1b−i, b−1] = [a−1b−i, b−1] = cd−(1+i) = c2;

[c2, a2] = [cd−(1+i), bia−1b−i] = [c, bia−1b−i] = [c, b−i][c, a−1][c, bi] = [c, b−i][c, bi] = 1;

[c2, b2] = [cd−(1+i), b−1] = [c, b−1] = d−1 = d2.

This completes the proof of Claim 18.

To complete the proof of Lemma 17, we will use Lemma 12 (i). We first show that
given cubic bi-Cayley graph ΓH10,p,i is symmetric. By Claim 18, the map

a 7→ aj, b 7→ bj, c 7→ cj, d 7→ dj

induces an automorphism of H10, say θj (j = 1, 2), respectively. It is easy to verify that

{1, b, bia}θ1 = {1, bi−1a, b−1} = b−1{1, b, bia},
{1, b, bia}θ2 = {1, b−1, (bia)−1} = {1, b, bia}−1.

In view of Proposition 8, σθ1,b and δθ2,1,1 are automorphisms of ΓH10,p,i. Moreover,
σθ1,b fixes 10 and it permutates the three neighbors of 10 cyclically. This implies that
R(H10)o 〈σθ1,b〉 acts regularly on E(ΓH10,p,i). On the other hand, δθ2,1,1 swaps 10 and 11.
This implies that ΓH10,p,i is vertex-transitive and thus it is symmetric. Since CH10(H

′
10) is

a characteristic subgroup of H ′10 and H ′10 is a characteristic subgroup of H10, we obtain
that CH10(H

′
10) is a characteristic subgroup of H10. We find by CH10(H

′
10) = 〈a, c, d〉 ∼= Z3

p

that H10/(CH10(H
′
10)) ∼= Zp holds. Therefore, ΓH10,p,i is 1-arc-regular by Lemma 12 (i).

This completes the proof of Lemma 17.

4 Proof of Theorem 1

In this section, we prove the main result of this paper. We first consider the following
lemma.

Lemma 19. For a prime number p > 7, let Γ be a connected cubic edge-transitive graph
of order 2p4. Then Γ is a normal edge-transitive bi-Cayley graph over H, where H is a
Sylow p-subgroup of Aut (Γ) with order p4. Furthermore, if p > 7 then Γ is a normal
Cayley graph over H.

Proof. By Proposition 10 (ii), if p > 7 then the result follows; and if p = 7 then Γ is a
bi-Cayley graph over a Sylow p-subgroup H of Aut (Γ) with order p4. To complete the
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proof, it is enough to show that if p = 7 then the bi-Cayley graph Γ is normal edge-
transitive. Let Q be the maximal normal p-subgroup of Aut (Γ). Then |Q| ∈ {p3, p4}
holds by Proposition 10 (i). We first consider |Q| = p4. As Q is a Sylow p-subgroup of
Aut (Γ), H = Qα = Q holds for some α ∈ Aut (Γ) by the Sylow theorems. This shows
H E Aut (Γ) (i.e., Γ is a normal bi-Cayley graph over H). Now we consider |Q| = p3.
Then the quotient graph ΓQ of Γ relative to Q is isomorphic to the Heawood graph. With
the aid of Magma [1], there is a subgroup B := B/Q in Aut (Γ)/Q such that B acts
regularly on the edge set E(ΓQ) satisfying B ∼= ZpoZ3. Let P be a Sylow p-subgroup of
B. Then P EB and thus QP EB follows by P = PQ/Q = QP/Q for some P 6 Aut (Γ).
As |QP | = p4, QP is a Sylow p-subgroup of Aut (Γ). By the Sylow theorems, we have
H = (QP )αEBα for some α ∈ Aut (Γ). Clearly, Bα acts edge-transitively on Γ and thus
Γ is a normal edge-transitive bi-Cayley graph over H.

Now we are ready to prove the main result.

Proof of Theorem 1. For a prime p > 2, let Γ be a connected cubic edge-transitive graph
of order 2p4. We first consider 2 6 p 6 5. By Conder [4, 5], one of the following holds:

(i) if p = 2, then Γ is 2-arc-regular and Γ ∼= F32 ;

(ii) if p = 3, then Γ is s-arc-regular and Γ ∼= F162S, where (s, S) ∈ {(1, A), (2, B), (3, C)};

(iii) if p = 5, then Γ is s-arc-regular and Γ ∼= F1250S, where (s, S) ∈ {(2, A), (3, B)}.

In the rest of the proof, we assume p > 7. It follows by Lemma 19 that Γ is a
normal edge-transitive bi-Cayley graph over H, where H is a Sylow p-subgroup of Aut (Γ)
with order p4. Without loss of generality, put Γ := BiCay(H,R,L, S). Since each orbit
Hi (i = 0, 1) has no edges of Γ, R = L = ∅ holds. By Proposition 8, we may assume
S = {1, x, y} ⊆ H and thus

H = 〈S〉 = 〈x, y〉 and Γ = BiCay(H, ∅, ∅, {1, x, y}). (23)

As Γ is normal edge-transitive, there exists α ∈ Aut (H) satisfying

xα = x−1y, yα = x−1 and o(α) = 3. (24)

Now we divide the rest of the proof into two cases: H is abelian or not. We first show
that H satisfies one of the following (iv)–(vii). It follows by [7, Proposition 5.2] and
Construction I (see (11)) that

(iv) if H is abelian with p > 7 then Γ ∼= Υ2,2,0 or Γ ∼= Υm,n,i holds, where (m,n) ∈
{(4, 0), (3, 1)} and i ∈ Z∗pm−n satisfying i2 − i+ 1 ≡ 0 (mod pm−n).

Now we assume that H is non-abelian with p > 7. By Theorem 3, H ∼= Ht for some
1 6 t 6 10. Since H1 and H2 are metacyclic p-groups, p = 3 follows by Proposition 11.
As p > 7, H � Hi (i = 1, 2). Since H3 is inner-abelian and non-metacyclic, it follows by
[16, Theorem 1.1] and (12) that
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(v) if H ∼= H3 then Γ ∼= ΓH3,p,i holds, where i ∈ Z∗p satisfying i2 − i+ 1 ≡ 0 (mod p).

Since H is generated by two elements by (23), H � Ht (t = 4, 5, 6). To consider H ∼=
Ht (t = 7, 8, 9, 10), we need the following claim.

Claim 20. Let H ∼= Ht (7 6 t 6 10) and z := [x, y] (see (23)). Then the following hold.

(a) z 6= 1, z ∈ H ′, z 6∈ Z(H).

(b) Z(H) = 〈ξ〉 for some ξ ∈ {[z, x], [z, y]} (i.e., [z, x] 6= 1 or [z, y] 6= 1 holds).

(c) There exists λ ∈ Z∗p satisfying [z, y] = [z, x]λ+1, λ+1 6≡ 0 (mod p) and λ2+λ+1 ≡ 0
(mod p).

(d) For λ in (c), let b1 := x−λ−1y. Then o(b1) = p, [z, b1] = 1 and b1 ∈ CH(H ′).

Proof of Claim 20. (a)-(b): As H is non-abelian, z 6= 1. By z ∈ H ′, H ′ ∼= Zp × Zp and
Lemma 5, we have o(z) = p and thus z 6∈ Z(H) (i.e., [z, x] 6= 1 or [z, y] 6= 1 holds).
(c): By Claim 20(b) and Lemma 5, we may assume [z, x] 6= 1 and Z(H) = 〈[z, x]〉. Since
Z(H)α = Z(H) holds for α in (24), there exists λ ∈ Z∗p satisfying [z, x]α = [z, x]λ. If

λ + 1 ≡ 0 (mod p), then [z, x]α = [z, x]λ = [z, x]−1 and thus we find [z, x]α
3

= [z, x]−3.

On the other hand, we obtain [z, x]α
3

= [z, x] by o(α) = 3. This shows [z, x]4 = 1,
which contradicts to p > 7. Thus, λ + 1 6≡ 0 (mod p) (i.e., λ + 1 ∈ Z∗p). By using

[x−1, z−1] ∈ Z(H) (by Lemma 5) and the following:

zα = [xα, yα] = [x−1y, x−1] = [y, x−1] = [x−1, z−1]z ;

[z, x]λ = [z, x]α = [zα, x−1y] = [[x−1, z−1]z, x−1y] = [z, x−1y] = [z, x−1][z, y] = [z, x]−1[z, y],

we find [z, y] = [z, x]λ+1 and thus

[z, x]λ
2+λ = [z, y]λ = [z, y]α = [zα, yα] = [[x−1, z−1]z, x−1] = [z, x−1] = [z, x]−1

follows. This shows [z, x]λ
2+λ = [z, x]−1 and we obtain λ2 + λ + 1 ≡ 0 (mod p) by

o([z, x]) = p. Moreover, we obtain [z, y] 6= 1 by [z, x] 6= 1 and λ+ 1 6≡ 0 (mod p).
(d): Since yp = xp(λ+1) and H is p-abelian, we have bp1 = 1. Note that [x, b1] = [x, y] = z
and [z, b1] = [z, x]−λ−1[z, y] = [z, x]−λ−1[z, x]λ+1 = 1. It follows by H ′ = 〈z, [z, x]〉 and
[z, x] ∈ Z(H) that b1 ∈ CH(H ′). This completes the proof of Claim 20.

We first assume the case H ∼= Ht (t = 7, 8). Then

H ′ = 〈aip, c〉 ∼= Zp × Zp, CH(H ′) = 〈a〉 × 〈c〉 ∼= Zp2 × Zp and b1 ∈ 〈aip, c〉 6 Φ(H)

all hold, where i = 1 for t = 7 and i = ν for t = 8 (see (1) and Claim 20(d)). However,
this is impossible as Φ(H) is the Frattini subgroup of H, where H = 〈b1, x〉. Hence,
H 6∼= Ht (t = 7, 8).

Now, we consider the case H ∼= H9. In view of Claim 20(b) and Lemma 5, we
may assume 〈[z, x]〉 = 〈xp〉 = Z(H). Take k, n ∈ Z∗p satisfying kn ≡ 1 (mod p) and
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[z, x] = xkp. For a2 := x, b2 := bn1 and c2 := zn, we can check by using Claim 20(d) and
(1) that they have the same relations as a, b and c in H9 as follows:

ap
2

2 = bp2 = cp2 = 1 ;

[a2, b2] = [x, bn1 ] = [x, b1]n = [x, y]n = zn = c2 ;

[c2, a2] = [zn, x] = [z, x]n = xknp = xp = ap2 ;

[c2, b2] = [zn, bn1 ] = 1 .

So, there exists β ∈ Aut (H) satisfying aβ2 = a and bβ2 = b. As x = a2 and y = xλ+1b1 =
xλ+1bk2,

{1, x, y}β = {1, a, aλ+1bk}
holds. This shows Γ ∼= Γβ = BiCay(H, ∅, ∅, {1, a, aλ+1bk}) by Proposition 8. Using Claim
20(c) with i = λ+ 1, we find i ∈ Z∗p satisfying i2− i+ 1 ≡ 0 (mod p). Now we obtain the
following:

(vi) If H ∼= H9 then Γ ∼= ΓH9,p,i,k (see Construction II).

Finally, we consider the case H ∼= H10. In view of Claim 20(b) and Lemma 5, we may
assume Z(H) = 〈[z, x]〉, where [z, x] 6= 1. Put a2 := x−λ−1y, b2 := x, c2 := [a2, b2] and
d2 := [c2, b2]. Using

c2 = [a2, b2] = [x−λ−1y, x] = [y, x] = z−1 6= 1 (25)

and [z, x] 6= 1, we find d2 = [c2, b2] = [z−1, x] = [[y, x], x] 6= 1. By Lemma 5,

〈d2〉 = Z(H) (26)

holds. Since H is p-abelian with exp(H) = p and all a2, b2, c2, d2 are non-identity,

ap2 = bp2 = cp2 = dp2 = 1 .

Moreover, we can check that they have the same relations as a, b, c and d in H10 as follows
(see also (1)):

[c2, a2] = [z−1, x−λ−1y] = [z, x−λ−1y]−1 = ([z, x]−λ−1[z, y])−1 = 1

(by (25), Claim 20(c) and Lemma 5);

[d2, a2] = [d2, b2] = [d2, c2] = 1 (by (26)).

So, there exists β ∈ Aut (H) satisfying aβ2 = a and bβ2 = b. By xβ = bβ2 = b, y = bλ+1
2 a2

and yβ = bλ+1a,
{1, x, y}β = {1, b, bλ+1a}

holds. This shows Γ ∼= Γβ = BiCay(H, ∅, ∅, {1, b, bλ+1a}) by Proposition 8. By Claim
20(c) with i = λ+ 1, we find i ∈ Z∗p satisfying i2− i+ 1 ≡ 0 (mod p). Now we obtain the
following:

(vii) If H ∼= H10 then Γ ∼= ΓH10,p,i (see Construction II).

Now the result follows by (i)–(vii) and Lemmas 13–17. This completes the proof of
Theorem 1.
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