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Abstract

We introduce the notion of the free product of q-matroids, which is the q-
analogue of the free product of matroids. We study the properties of this non-
commutative binary operation, making an extensive use of the theory of cyclic flats.
We show that the free product of two q-matroids M1 and M2 is maximal with
respect to the weak order on q-matroids having M1 as a restriction and M2 as
the complementary contraction. We characterise q-matroids that are �-irreducible
with respect to the free product and we prove that the factorization of a q-matroid
into a free product of �-irreducibles is unique up to isomorphism. We discuss the
representability of the free product, with a particular focus on rank one uniform
q-matroids and show that such a product is represented by clubs on the projective
line.

Mathematics Subject Classifications: 05B35, 94B05,51E20

1 Introduction

The notion of a q-matroid was introduced by Crapo [12], however, since their rediscovery
in 2018 in [26], the study of q-matroids has attracted a great deal of attention due to
the link to rank-metric codes; see for instance [21, 22, 25, 37]. Recently, the direct sum of
q-matroids has been introduced in terms of the rank function; see [11]. The study of this
operation highlighted many differences between matroid theory and q-matroid theory.

The free product of matroids was introduced by Crapo and Schmitt in [13]. The same
authors used it as a tool to prove Welsh’s 1969 conjecture [38], which gives a lower bound
on the number of isomorphism classes of matroids defined on a ground set of cardinality
n. Moreover, in [14], it was shown that the free product of matroids M and N on ground
sets S and T is the unique matroid with the most independent sets among all matroids on
S ∪ T whose restriction to S and whose complementary contraction by S are M and N ,
respectively. They also showed that the direct sum of matroids has the most dependent
sets in this class of matroids. In other words, the direct sum and the free product are
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the minimal and maximal element, respectively, with respect to the weak order among
matroids whose restrictions to S and complementary contraction by S are M and N ,
respectively.

As for matroids, there are many equivalent ways to describe a q-matroid axiomati-
cally. An exposition of such cryptomorphisms has been given in [9], in terms of the rank
function, independent spaces, flats, circuits, bases, spanning spaces, the closure function,
hyperplanes, open spaces etc. Another cryptomorphism based on cyclic flats was shown
in [2]. These are, in general, not straightforward q-analogues of the traditional matroid
cryptomorphisms.

In this paper we introduce the free product of a pair of q-matroids. We give three
cryptomorphic descriptions of the free product, namely in terms of its independent spaces,
its rank function, and its lattice of cyclic flats. We show that while the free product is the
maximal element with respect to the weak order among a particular class of q-matroids,
the direct sum is not in general the minimal element, in contrast to the matroid case. We
then establish that any q-matroid can be uniquely factorised (up to isomorphism) into
irreducible components with respect to the free product. We use the theory of cyclic flats
of q-matroids, recently developed in [2, 23] as a key tool for many of our results.

We also study the representability of the free product in terms of finite geometry, again
making use of the lattice of cyclic flats. Geometric descriptions of representable q-matroids
in terms of q-systems (see [35,36]) have been given in [2]. We describe representations of
the free product (if one exists) and then we focus on representations of the free product of
uniform q-matroids. These are special q-matroids, which are representable as maximum
rank distance (MRD) codes or, equivalently, as scattered subspaces. Inspired by [3], using
properties of cyclic flats, we prove that if a q-system is a representation of the free product
of two uniform q-matroids, then it is evasive. Moreover, we show the converse in the case
of the free product of rank one uniform q-matroids, by relating it to the existence of clubs.

The remainder of this paper is organized as follows. Section 2 contains the required
preliminary material. In section 3, we define the free product of two q-matroids in terms
of the independent spaces of the factors. We then describe the lattice of cyclic flats of
the free product, as well as an explicit expression of the rank function. We establish
several fundamental properties of the free product, we give a duality result and prove
the associativity of the free product. In section 4, we consider the weak order on a
special subclass Mq(M1, . . . ,M`) of q-matroids (see Definition 41). We prove that the
free product of q-matroids is maximal inMq(M1, . . . ,M`) with respect to the weak order
mentioned above. We consider decomposition properties of q-matroids with respect to the
free product and show that reducibility is equivalent to the existence of free separators.
We show, through a sequence of results, that any q-matroid can be factorised (up to
isomorphism) uniquely into irreducible components (with respect to the free product).
As a corollary, we obtain a positive result on a q-analogue of Welsh’s conjecture. In
section 5, we investigate the representability of the free product. We show that if the free
product is representable then it is so by a block upper triangular matrix whose diagonal
blocks are representations of the factors. Then we focus on the representation of the free
product of uniform q-matroids. We study its geometric description and we show that a
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q-system is a representation of the free product of rank one uniform q-matroids if and
only if it gives rise to a club on the projective line. As a byproduct of our investigation,
we obtain an example of a 2-club of rank 5, which, to the best of our knowledge, had not
been known before. This also suggests promising directions for future research in both
finite geometry and q-matroid theory. In section 6, we conclude with some open problems.

2 Background

In this section we establish the notation and provide the background material for the
rest of the paper. We start by recalling some definitions concerning lattices. For a more
detailed treatment, we refer the interested reader to [6].

Definition 1. Let (L,6) be a partially ordered set (poset). Let a, b, v ∈ L. We say that a
and b are comparable if a 6 b or b 6 a. Otherwise, we say that they are incomparable.
We say that v is an upper bound (resp. lower bound) of a and b if a 6 v and b 6 v
(resp. v 6 a and v 6 b) and furthermore, we say that v is a least upper bound (resp.
greatest lower bound) of a and b if v 6 u for any u ∈ L that is also an upper bound of
a and b (resp. u 6 v for any u ∈ L that is also a lower bound of a and b). If a least upper
bound (resp. greatest lower bound) of a and b exists, then it is unique, is denoted by a∨ b
(resp. a ∧ b), which is called the join of a and b (resp. meet). The poset L is called a
lattice if each pair of elements has a least upper bound and a greatest lower bound and
it is denoted by (L,6,∨,∧). An element in L that is not smaller than any other element
is called maximal element of L and it is denoted by 1L and an element that is not bigger
than any other element is called minimal element of L and it is denoted by 0L. If there
is no confusion, we simply write 1 and 0.

Definition 2. Let L be a lattice with meet ∧ and join ∨. Let a, b ∈ L be such that a 6 b.

1. An interval [a, b] ⊆ L is the set of all x ∈ L such that a 6 x 6 b. It defines the
interval sublattice ([a, b],6,∨,∧).

2. If [a, b] ⊆ L is such that for any x ∈ L, x ∈ [a, b] implies that x = a or x = b, then
b is called a cover of a and we write al b. An atom of L is any element that is a
cover of 0. We define At([a, b]) := {x ∈ [a, b] : al x} to be the set of atoms of the
interval [a, b]. We also write At(L) := {x ∈ L : 0l x}. A finite chain from a to b
is a sequence of the form a = x1 < · · · < xk+1 = b with xj ∈ L for j ∈ {1, . . . , k}, in
which case we say that the chain has length k.

Let Fq be the finite field with q elements and let E be an n-dimensional vector space
over Fq. In this paper, we are interested in the subspace lattice (L(E),6,∨,∧), which
is the lattice of Fq-subspaces of E, ordered with respect to inclusion and for which the
join is the usual vector space sum and the meet is the subspace intersection. That is,
for all subspaces A,B ∈ L(E) we have: A ∨ B = A + B, A ∧ B = A ∩ B. The minimal
element of L(E) is 0 = 〈0〉 and its maximal element is 1 = E. For the sake of simplicity,
we write 0 to denote the minimal element of a subspace lattice of a vector space of any
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dimension. For each U ∈ L(E), we write U⊥ to denote the orthogonal complement of
U with respect to a fixed non-degenerate bilinear form on E. The map U 7→ U⊥ is an
involutory anti-automorphism of L(E).

Definition 3. A q-matroid with ground space E is a pair M = (E, r), where r is an
integer-valued function defined on L(E) with the following properties:

(R1) Boundedness: 0 6 r(A) 6 dim(A), for all A ∈ L(E).

(R2) Monotonicity: A 6 B ⇒ r(A) 6 r(B), for all A,B ∈ L(E).

(R3) Submodularity: r(A+B) + r(A ∩B) 6 r(A) + r(B), for all A,B ∈ L(E).

The function r is called rank function and the value r(M) := r(E) is the rank of the
q-matroid.

Definition 4. Let E1 and E2 be Fq-vector spaces of finite dimension n. Two q-matroids
M1 = (E1, r1) and M2 = (E2, r2) are called isomorphic if there exists an Fq-isomorphism
τ : E1 −→ E2 such that r2(τ(V )) = r1(V ) for all V ∈ L(E1). We also say that M1

and M2 are equivalent q-matroids. We say that M1 and M2 are lattice-equivalent if
there exists a lattice isomorphism ξ : L(E1) −→ L(E2) such that r2(ξ(V )) = r1(V ) for all
V ∈ L(E1). If M1 and M2 are lattice-equivalent, we write M1

∼= M2.

Let M = (E, r) be a q-matroid. A one-dimensional space x ∈ L(E) is a loop if
r(x) = 0. A codimension 1 subspace of E that has rank less than r(E) is called a coloop.
A subspace A ∈ L(E) is independent if r(A) = dim(A) and dependent otherwise.
The inclusion-maximal independent spaces are called bases and the inclusion-minimal
dependent spaces are called circuits. A space A ∈ L(E) is a flat if it is inclusion-
maximal in the set {V ∈ L(E) : r(V ) = r(A)}, and a space is cyclic or open if it is the
sum of circuits. Finally, a subspace which is both a flat and cyclic is called a cyclic flat.

For a given q-matroid M = (E, r), we have the following two operators. For each
A ∈ L(E), define

Clr(A) := {x ∈ L(E) : r(A+ x) = r(A)}.

The closure operator of a q-matroid (E, r) is the function defined by

clr : L(E)→ L(E), A 7→ clr(A) :=
∑

x∈Clr(A)

x.

The cyclic operator of M is the function defined by

cycr : L(E)→ L(E), A 7→ cycr(A) :=
∑
C6A

C is cyclic

C.

If M = (E, r), we denote by I(M) and Z(M) the collection of independent spaces
and cyclic flats of M and by clr and cycr its closure and cyclic operators. If it is clear
from the context, we will simply write I,Z, cl, cyc.
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It is well known that the collection of independent spaces uniquely determines the
q-matroid, and the same is true for the collections of dependent spaces, open spaces, flats
and circuits.

For our purposes, we recall the following version of the independence axioms.

Notation 5. Let A be a collection of subspaces of E. For any subspace X ∈ L(E),
we define then the collection of maximal subspaces of X in A to be the collection of
subspaces

max(X,A) := {A ∈ A : A 6 X and B < X,B ∈ A ⇒ dim(B) 6 dim(A)}.

Definition 6 ([10]). Let I be a collection of subspaces of E. We define the following
independence axioms.

(I1) I 6= ∅.
(I2) For all I, J ∈ L(E), if J ∈ I and I 6 J , then I ∈ I.

(I4”) Let A ∈ L(E) and let I ∈ max(A, I). Let x ∈ L(E) be a one-dimensional space.
Then there exists J ∈ max(A+ x, I) such that J 6 I + x.

If I satisfies the independence axioms, we say that I is a collection of independent
spaces and we denote by (E, I) the q-matroid defined by I.

Remark 7. The original independence axioms ([26]) included a weaker version of (I4”)
and an additional axiom:

(I3) Let I, J ∈ I with dim I < dim J. There exists x 6 J, x � I such that I + x ∈ I.

Recently, in [10], Ceria and Jurrius showed that given (I1) and (I2), (I4”) implies (I3),
making it superfluous.

In [2] it is shown that the cyclic flats, together with their rank values, uniquely deter-
mine the q-matroid. We recall the following cyclic flat axioms.

Definition 8 ([2, Definition 3.1]). Let Z be a collection of subspaces of E and let f :
Z → Z be a map. We define the following cyclic flat axioms.

(Z0) (Z,6,∨,∧) is a lattice with join ∨ and meet ∧, such that for every Z1, Z2 ∈ Z, we
have that Z1 + Z2 6 Z1 ∨ Z2 and Z1 ∧ Z2 6 Z1 ∩ Z2, respectively.

(Z1) We have that f(0Z) = 0, where 0Z is the minimal element of Z.

(Z2) For every F,G ∈ Z such that G < F , we have:

0 < f(F )− f(G) < dim(F )− dim(G).

(Z3) For every F,G ∈ Z we have:

f(F ) + f(G) > f(F ∨G) + f(F ∧G) + dim((F ∩G)/(F ∧G)).
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If (Z, f) satisfies the cyclic flat axioms, we say that Z is a lattice of cyclic flats with
respect to f .

The following result explains how to determine the rank function of the entire q-
matroid from the cyclic flats together with their rank values; see [2, 23].

Lemma 9 ([2, Corollary 3.12]). Let M = (E, r) be a q-matroid and Z be its collection of
cyclic flats. For all A ∈ L(E), we have that

r(A) = min{r(Z) + dim((A+ Z)/Z) : Z ∈ Z}.

The independent spaces and the cyclic flats of a q-matroid are related by the following
result.

Lemma 10 ([2, Lemma 2.28]). Let M = (E, r) be a q-matroid. Then I ∈ I(M) if and
only if for every cyclic flat Z ∈ Z(M), dim(I ∩ Z) 6 r(Z).

We recall the restriction and the contraction operations for q-matroids; see [9, 26].

Definition 11. Let M = (E, r) be a q-matroid and A ∈ L(E). For every space T 6 A,
we define rM |A(T ) := r(T ). The q-matroid M |A := (A, rM |A) is called the restriction of
M to A. Define a map

rM/A : L(E/A)→ N0, T 7→ r(π−1(T ))− r(A),

where π : E → E/A is the canonical projection. Then the q-matroid M/A := (E/A, rM/A)
is called the contraction of M by A. For an arbitrary interval [A,B] ⊆ L(E), we denote
by M [A,B], the q-matroid minor with rank function rM [A,B] defined on the interval [A,B]
by rM [A,B](X) = r(X)− r(A) for X ∈ [A,B].

We recall the notion of dual matroid and some basic properties, which we will use in
section 4.

Definition 12. Let M = (E, r) be a q-matroid. The dual q-matroid of M is the
q-matroid (M, r∗), where

r∗ : L(E)→ N0, A 7→ dim(A)− r(E) + r(A⊥).

Lemma 13 ([8, Lemma 11]). Let M = (E, r) be a q-matroid and let T ∈ L(E). Then,

M∗/T ∼= (M |T⊥)∗, (M/T )∗ ∼= M∗|T⊥.

As in the classical case, a well-known construction of a q-matroid arises from matrices;
see [26]. LetG be a k×nmatrix with entries in the finite field Fqm and for every U ∈ L(Fnq ),
let AU be a matrix whose columns form a basis of U . Then the map

rG : L(Fn
q )→ N0, U 7→ rk(GAU),

is the rank function of a q-matroid, which we denote by M [G] and we call the q-
matroid represented by G. A q-matroid M with ground space Fnq and rank k is
Fqm-representable if M = M [G] for some full rank k× n matrix G with entries in Fqm .
The q-matroid M is called representable if it is Fqm-representable over the finite field
Fqm .
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Example 14. Let Uk,n(q) be the uniform q-matroid of rank k with ground space Fn
q

that is, the q-matroid whose rank function is given by r(A) = min{k, dim(A)} for all
A ∈ L(Fnq ). Then U0,n(q) is represented by the 1 × n zero matrix, Un,n(q) is represented
by the n× n-identity matrix Idn, and, for 0 < k < n, Uk,n(q) is Fqm-representable if and
only if m > n. This is because such a representation generates an MRD code, which
exists if and only if m > n; see e.g. [18].

Finally, we recall a characterization of uniform q-matroids in terms of their cyclic flats.

Lemma 15 ([2, Proposition 3.30]). Let M = (E, r) be a q-matroid of rank k, with 0 <
k < n. Let Z be the lattice of cyclic flats of M . Then M ∼= Uk,n(q) if and only if
Z = {0Z = 0,1Z = E} and r(1Z) = k.

3 The free product of q-matroids

In this section, we introduce the free product of a pair of q-matroids. We provide crypto-
morphic definitions of this product in terms of its independent spaces, its rank function
and its lattice of cyclic flats. We note that while the independent spaces and the cyclic
flats are similar to the matroid case, the rank function is somewhat different. We further
establish some fundamental properties of the free product, including a duality result and
associativity.

3.1 Independent spaces of the free product

Notation 16. For the remainder, we let E1 and E2 denote a pair of Fq-vector spaces. For
the direct sum E = E1 ⊕ E2 we denote by πi : E −→ Ei the canonical projection maps
and by

ι1 : E1 −→ E, ι1(a1) = (a1, 0, . . . , 0) and ι2 : E2 −→ E, ι2(a2) = (0, . . . , 0, a2) ∀ai ∈ Ei

the canonical embeddings of Ei into E. In particular, ι1(E1) = E1⊕0 and ι2(E2) = 0⊕E2.
For A 6 E1 and B 6 E2 we may denote ι1(A) ⊕ ι2(B) by A ⊕ B, when there is no risk
of confusion. For instance, we may denote A 6 E1 by A ⊕ 0 6 E. For an arbitrary set
V ⊆ L(E2) and an arbitrary space A ∈ L(E1), we denote by A⊕V the set {A⊕V : V ∈ V}.
The notation V⊕A is similarly defined. Analogously, we will denote by ι1(V) (resp. ι2(V))
the set {ι1(V ) : V ∈ V} (resp. {ι2(V ) : V ∈ V}).

For a q-matroid M = (E, r) let λ be the rank-lack function and ν be the nullity
function, defined respectively by

λ(A) = r(E)− r(A), (1)

ν(B) = dim(B)− r(B), (2)

for every A,B ∈ L(E).
Let M1 = (E1, I1) and M2 = (E2, I2) be q-matroids. Let r1, λ1, ν1 and r2, λ2, ν2 be the

rank, rank-lack and nullity functions of M1 and M2, respectively.
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Define the set

I := {I 6 E1 ⊕ E2 : π1(I ∩ ι1(E1)) ∈ I1, λ1(π1(I ∩ ι1(E1))) > ν2(π2(I))}. (3)

We now show that the set I forms the collection of the independent spaces of a q-
matroid. We will use the following results from linear algebra.

Lemma 17. Let A ∈ L(E1⊕E2). We have that dim(A) = dim(A∩ ι1(E1))+dim(π2(A)).

Proof. For every A ∈ L(E1 ⊕ E2), consider the linear map φ : A → π2(A), defined by
φ(x) = π2(x), for every x ∈ A. It is straightforward to check that ker(φ) = A∩ ι1(E1). By
the rank-nullity theorem, we thus have that dim(A) = dim(A∩ ι1(E1)) + dim(π2(A)).

Lemma 18. Let A,B 6 E1 ⊕ E2 be such that B 6 A. Then the following hold.

1. πi(B ∩ ιi(Ei)) 6 πi(A ∩ ιi(Ei)), for i = 1, 2.

2. πi(B) 6 πi(A), for i = 1, 2.

Theorem 19. The set I defined in (3) is the collection of independent spaces of a q-
matroid with ground space E1 ⊕ E2.

Proof. Let L := L(E1⊕E2). We will prove that I satisfies the independence axioms from
Definition 6. Clearly, 0 ∈ I, hence (I1) is satisfied. Further, by Lemma 18, (I2) is also
satisfied.

In order to show (I4”), let A ∈ L, let β ∈ max(A, I) and let x ∈ At(L). Assume that
x � A. Since β ∈ I, we have that π1(β∩ ι1(E1)) ∈ I1 and λ1(π1(β∩ ι1(E1))) > ν2(π2(β)).
We distinguish between two cases.
Case 1: Let λ1(π1(β ∩ ι1(E1))) > ν2(π2(β)). Then we must have that π1(β ∩ ι1(E1)) ∈
max(A∩ι1(E1), I) and π2(β) = π2(A), since otherwise there would exist a one-dimensional
space e < π2(A) not in π2(β) such that β < β + e ∈ I, which contradicts the maximality
of β in A.

• Let x 6 ι1(E1).

– If π1((β + x) ∩ ι1(E1)) ∈ I1 we have that β + x ∈ I. Furthermore, we have that
π2(A + x) = π2(A) = π2(β) = π2(β + x). Therefore, β + x ∈ max(A, I). This
contradicts the maximality of β in A.

– Suppose now that π1((β + x) ∩ ι1(E1)) /∈ I1. Let α 6 A+ x such that β l α and
β+x 6= α. If β∩ι1(E1) < α∩ι1(E1), then α /∈ I. If β∩ι1(E1) = α∩ι1(E1), then by
Lemma 17, we have that π2(β) < π2(α). Therefore, π2(α) = π2(A+x) = π2(β+x),
which yields a contradiction since x 6 A ∩ ι1(E1). Therefore, β ∈ max(A+ x, I).

• Let x � ι1(E1).

– Let π1(β ∩ ι1(E1)) < π1((β + x) ∩ ι1(E1)). We then have that β + x = β + y for
some y ∈ ι1(E1), which means we are in a case that we have already dealt with.
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– Let π1(β ∩ ι1(E1)) = π1((β + x) ∩ ι1(E1)). By Lemma 17 we have that π2(β) <
π2(β + x). Therefore, we have that π2(β + x) = π2(A + x). By Lemma 17,
we have that (A + x) ∩ ι1(E1) = A ∩ ι1(E1), which means that β ∩ ι1(E1) ∈
max((A+ x) ∩ ι1(E1), I). This means that β + x ∈ max(A+ x, I).

Case 2: Let λ1(π1(β ∩ ι1(E1))) = ν2(π2(β)).

• Let x 6 ι1(E1). By Lemma 17 we have that π2(β) = π2(β + x) and π2(A) = π2(A+ x).

– If π1((β + x) ∩ ι1(E1)) ∈ I1 we have that λ1((β + x) ∩ ι1(E1)) < ν2(π2(β)) =
ν1(π2(β + x)) and thus β + x /∈ I. Let α 6 A+ x such that β l α and α 6= β + x.
If β ∩ ι1(E1) < α ∩ ι1(E1), then similarly, α /∈ I. If π2(β) < π2(α), then since
x 6 ι1(E1) we have that π2(α) 6 π2(A), which means that λ1(α ∩ ι1(E1)) =
λ1(β∩ι1(E1)) < ν2(π2(α)). Therefore, α /∈ I, which means that β ∈ max(A+x, I).

– π1((β + x) ∩ ι1(E1)) /∈ I1 we have that β + x /∈ I. By similar reasoning as in the
last point, we have that β ∈ max(A+ x, I).

• Let x � ι1(E1).

– Let π2(β) < π2(β + x). If ν2(π2(β)) = ν2(π2(β + x)), then β + x ∈ I. If there
exists α 6 π2(A + x) such that π2(β + x) l α and ν2(π2(β + x)) = ν2(α), then
there must exist e ∈ At(π2(A)) such that π2(β) l π2(β + e) 6= π2(β + x) and
ν2(π2(β)) = ν2(π2(β + e)) by the q-matroid properties of M2. This contradicts
the maximality of β, so therefore no such atom e can exist. Hence, we have that
β + x ∈ max(A+ x, I).

– Let π2(β) = π2(β + x). By Lemma 17 we have that β ∩ ι1(E1) < (β + x)∩ ι1(E1).
Therefore, β + x = β + y for some y 6 ι1(E1), which puts us in a case that we
already dealt with.

In all the above cases we get that β or β + x belong to max(A + x, I), and this shows
(I4”). Hence, this concludes the proof.

Definition 20. For q-matroids M1 = (E1, I1) and M2 = (E2, I2) we call the q-matroid
with ground space E1 ⊕ E2 and collection of independent spaces I as defined in (3) the
free product of M1 and M2 and we denote it by M1 �M2.

The following immediate result is the first important property of the free product of
q-matroids. It is the q-analogue of [13, Proposition 3]. We include the proof for the sake
of completeness.

Lemma 21. For all q-matroids M1 and M2 on ground spaces E1 and E2, respectively, it
holds that

(M1 �M2)|(E1 ⊕ 0) ∼= M1, and (M1 �M2)/(E1 ⊕ 0) ∼= M2.
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Proof. Let A ∈ L(E1). Then A is independent in M1 if and only if ι1(A) = A ⊕ 0 is
independent in M1 �M2. Hence (M1 �M2)|(E1 ⊕ 0) ∼= M1. Let B ∈ L(E1) be a basis of
M1. The independent spaces of (M1�M2)/(E1⊕0) are the subspaces 0⊕T of 0⊕E2 such
that B⊕T is independent in M1�M2. Since λ1(B) = 0, the space B⊕T is independent
in M1 �M2 if and only if ν2(T ) = 0, i.e. if and only if T is independent in M2. Hence,
(M1 �M2)/(E1 ⊕ 0) ∼= M2.

Remark 22. We notice that the equivalences stated in Lemma 21 have to be considered
with respect to canonical projections. More specifically, let (E1⊕0, rA) = (M1�M2)|(E1⊕
0) and ((E1 ⊕ E2)/(E1 ⊕ 0), rB) = (M1 � M2)/(E1 ⊕ 0). For all X ∈ E1 ⊕ 0 and
Y ∈ (E1 ⊕ E2)/(E1 ⊕ 0), we have that rA(X) = r1(π1(X)) and rB(Y ) = r2(π2(Y )).

For the rest of the section, we will continue to use Notation 16.

3.2 The rank function of the free product

In this subsection, we derive a compact expression for the rank function of the free product.
Given the collection I as in (3), define the rank function of M1�M2 as rI : L(E1⊕E2)→
N0, such that for every X ∈ L(E1 ⊕ E2),

rI(X) = max{dim(X ∩ I) : I ∈ I}.

Theorem 23. The function rI satisfies

rI(X) = r1(π1(X ∩ ι1(E1))) + r2(π2(X)) + min{λ1(π1(X ∩ ι1(E1))), ν2(π2(X))},

for every X ∈ L(E1 ⊕ E2).

Proof. Let X ∈ L(E1 ⊕ E2). Since M1 �M2 is a q-matroid, we have that all bases of
X have equal dimension. Therefore we choose β ∈ max(X, I) such that β ∩ ι1(E1) ∈
max(X ∩ ι1(E1), I). By Lemma 17 we have the following.

rI(X) = dim(β) = dim(β ∩ ι1(E1)) + dim(π2(β))

= r1(X ∩ ι1(E1)) + r2(π2(X)) + ν2(π2(β)). (4)

Note that λ1(X ∩ ι1(E1)) = λ1(β ∩ ι1(E1)) and that λ1(β ∩ ι1(E1)) > ν2(π2(β)) since
β ∈ I. If λ1(β∩ ι1(E1)) = ν2(π2(β)), then we can substitute λ1(X∩ ι1(E1)) into (4) to get
the result. If λ1(β ∩ ι1(E1)) > ν2(π2(β)), then we must have that π2(β) = π2(X), since
otherwise there would exist an atom e ∈ At(π2(X))\At(π2(β)) such that β < β + e ∈ I,
which contradicts the maximality of β in X. The result follows.

From now on, we write r in place of rI , unless it is needed.
The following statement follows from a straightforward computation and hence we

omit a proof.

Lemma 24. Let X ∈ L(E1 ⊕ E2). The following holds.

1. If X = X ⊕ 0, for some X ∈ L(E1), then r(X) = r1(X).
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2. If X = E1 ⊕X, for some X ∈ L(E2), then r(X) = r1(E1) + r2(X).

From Lemma 24 we immediately get the next result.

Corollary 25. Let Mi = (Ei, ri) be q-matroids for i = 1, 2. Let E = E1 ⊕ E2. Let
X, Y ∈ L(E). Then the following hold.

1. If X = X ⊕ 0 and Y = Y ⊕ 0 for some X,Y ∈ L(E1), then clr(X + Y ) =
clr1(X + Y )⊕ 0 and cycr(X ∩ Y ) = cycr2(X ∩ Y )⊕ 0.

2. If X = E1 ⊕ X and Y = E1 ⊕ Y , for some X,Y ∈ L(E2), then clr(X + Y ) =
E1 ⊕ clr2(X + Y ) and cycr(X ∩ Y ) = E1 ⊕ cycr2(X ∩ Y ).

3. If X = X ⊕ 0 and Y = E1 ⊕ Y for some X ∈ L(E1) and Y ∈ L(E2), then
clr(X + Y ) = E1 ⊕ clr2(Y ) and cycr(X ∩ Y ) = cycr1(X)⊕ 0.

3.3 The cyclic flats of the free product

In this subsection, we describe the lattice structure of the cyclic flats of the free product
of two q-matroids, in terms of the cyclic flats of the two factors. In order to do this, we
recall some basic properties of the cyclic flats of a q-matroid. For more details we refer
the interested reader to [2].

We let Z1 and Z2 be the cyclic flats of M1 and M2 respectively. Let

Z := ι1(Z1 \ {E1}) ∪ {E1 ⊕ Z : Z ∈ Z2 \ {0}} ⊆ L(E1 ⊕ E2), (5)

Z ′ := Z ∪ ι1(E1) ⊆ L(E1 ⊕ E2). (6)

We are going to show that the set Z ′ is the set of cyclic flats of the free product of a
coloopless q-matroid and a loopless q-matroid. If M1 has coloops or M2 has loops, then
Z is the collection of cyclic flats of the free product of M1 �M2. The proof consists in
two steps. In Theorem 28 we prove that Z ′ and Z satisfy the cyclic flat axioms from
Definition 8. In Theorem 30, we show that either Z ′ or Z is the set of cyclic flats of
M1�M2, according to the presence of loops and coloops. We first illustrate this with the
following example.

Example 26. Let F = F2. Consider the following three q-matroids. Let M = (F5, rM) be
the q-matroid over the ground space F5 with collection of cyclic flats {F0, . . . , F4}, where

F0 = 〈e1 + e3 + e5〉, F1 = 〈e1 + e5, e2 + e4 + e5, e3〉,
F2 = 〈e1 + e4, e2 + e4, e3 + e4 + e5〉, F3 = 〈e1 + e3, e2, e5〉, F4 = F5,

and rM(F0) = 0, rM(Fi) = 1 for i = 1, 2, 3 and rM(F4) = 2. Let N = (F8, rN) be the
q-matroid over F8 given in [23, Example 4.7]. Its cyclic flats are given by {G0, . . . , G4},
where

G0 = 0, G1 = 〈e1, e2〉, G2 = 〈e1, e2, e3, e4〉, G3 = 〈e5, e6, e7, e8〉, G4 = F8,
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and rN(Gi) = i for i = 0, 1, 2, 3, 4. Let L be the q-matroid (F5, rL), whose cyclic flats are
given by {Z0, . . . , Z4}, where

Z0 = 0, Z1 = 〈e1 + e4 + e5, e2 + e4〉, Z2 = 〈e1 + e3, e4〉,
Z3 = 〈e3 + e5, e1 + e2 + e4 + e5〉, Z4 = 〈e1 + e5, e2, e3 + e4, e4〉,

with rL(Z0) = 0, rL(Z1) = rL(Z2) = rL(Z3) = 1 and rL(Z4) = 2. In particular, M has no
coloop and N has no loops. Hence Z ′ := (Z(M)⊕0)∪ (F5⊕Z(N)) is as shown in Figure
1. Since L has a coloop and M has a loop, we have that Z := (Z(L)⊕ 0)∪ (F5⊕Z(M))
is as shown in Figure 2.

F0 ⊕ 0

F1 ⊕ 0 F2 ⊕ 0 F3 ⊕ 0

F5 ⊕ 0

F5 ⊕G1

F5 ⊕G2F5 ⊕G3

F5 ⊕ F8

Figure 1: Lattice of cyclic flats Z ′.

0

Z1 ⊕ 0 Z2 ⊕ 0 Z3 ⊕ 0

Z4 ⊕ 0

F5 ⊕ F0

F5 ⊕ F1 F5 ⊕ F2 F5 ⊕ F3

F5 ⊕ F5

Figure 2: Lattice of cyclic flats Z.

We recall the following preliminary result.

Lemma 27 ([2, Lemma 2.17]). Let (E, r) be any q-matroid. Then, for every X ∈ L(E),
we have that r(X)− r(cyc(X)) = dim(X)− dim(cyc(X)).

Theorem 28. Let r be the rank function of M1 �M2. If M1 is coloopless and M2 is
loopless then (Z ′, r) is a lattice of cyclic flats with respect to r. If M1 has coloops or M2

has loops, then (Z, r) is a lattice of cyclic flats with respect to r.

Proof. For Z1, Z2 ∈ Z we define Z1∨Z2 := clr(Z1 +Z2) and Z1∧Z2 := cycr(Z1∩Z2). We
first assume that M1 does not have a coloop and M2 has a loop. With this assumption, E1

is a cyclic flat of M1 and 0 is not a cyclic flat of M2.
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(Z0) (Z,6,∨,∧) is a lattice. To see this, let Z1, Z2 ∈ Z. We distinguish three cases.

• If Z1, Z2 ∈ ι1(Z1), then for i = 1, 2, Zi = Zi ⊕ 0, with Zi 6= E1. In this case
we have nothing to show since Z1 is a lattice and Z1 ∨ Z2 = (Z1 ∨Z1 Z2) ⊕ 0
and Z1 ∧ Z2 = (Z1 ∧Z1 Z2)⊕ 0. If Z̄1 ∨ Z̄2 = E1, then Z1 ∨ Z2 = E1 ⊕ ι2(0Z2).

• If Zi = E1 ⊕ Zi, with Zi ∈ Z2 for i = 1, 2, then by Corollary 25

Z1 ∨ Z2 = (E1 ⊕ Z1) ∨ (E1 ⊕ Z2) = E1 ⊕ (Z1 ∨Z2 Z2),

Z1 ∧ Z2 = (E1 ⊕ Z1) ∧ (E1 ⊕ Z2) = E1 ⊕ (Z1 ∧Z2 Z2).

Since Z2 is a lattice, we have that (Z1∨Z2 Z2), (Z1∧Z2 Z2) ∈ Z2, then Z1∨Z2

and Z2 ∧ Z2 belong to Z.

• Let Z1 = Z1 ⊕ 0, with Z1 ∈ Z1 and let Z2 = E1 ⊕ Z2, with Z2 ∈ Z2. Then

Z1 ∨ Z2 = (Z1 ⊕ 0) ∨ (E1 ⊕ Z2) = E1 ⊕ Z2 ∈ Z,
Z1 ∧ Z2 = (Z1 ⊕ 0) ∧ (E1 ⊕ Z2) = Z1 ⊕ 0 ∈ Z.

Moreover notice that 0Z = 0Z1 ⊕ 0 and 1Z = E1 ⊕ 1Z2 .

(Z1) This is clearly satisfied since r(0Z) = r(0Z1 ⊕ 0) = 0.

(Z2) Let Z1, Z2 ∈ Z. If they both belong to ι1(Z1) or E1 ⊕ Z2 then there is nothing to
show. The only case to prove is when Z1 = Z1⊕0 and Z2 = E1⊕Z2, with Z1 ∈ Z1

and Z2 ∈ Z2. Note that Z1 < Z2. Then by Lemma 24

r(Z2)− r(Z1) = r(E1 ⊕ Z2)− r(Z1 ⊕ 0)

= r1(E1) + r2(Z2)− r1(Z1)

< dim(E1)− dim(Z1) + r2(Z2)

6 dim(E1)− dim(Z1) + dim(Z2)

= dim(E1 ⊕ Z2)− dim(Z1)

= dim(Z2)− dim(Z1),

where the strict inequality follows since (Z2) holds in Z1.

(Z3) By the submodularity of r, we have that for every F,G ∈ Z

r(F ) + r(G) > r(F +G) + r(F ∩G).

Now, (Z3) follows directly from the fact that r(F +G) = r(F ∨G) and Lemma 27
applied to F ∩G.

We assume now that M1 has no coloops and M2 has no loops. In this case, E1 ∈ Z1

and 0 ∈ Z2. We want to show that the collection Z ′ = Z ∪ ι1(E1) satisfies the axioms
(Z0)–(Z3). Note that (Z1) and (Z3) can be proved as before.
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(Z0) Let Z ∈ ι1(Z1 \ {0}). Then Z ∨ ι1(E1) = ι1(E1) ∈ Z ′ and Z ∧ ι1(E1) = Z ∈ Z ′. If
Z ∈ E1⊕Z2\{0}, then Z∨ι1(E1) = Z ∈ Z ′ and Z∧ι1(E1) = ι1(E1) ∈ Z ′. The other
cases have already been covered before. Moreover, also in this case 0Z′ = 0Z1 ⊕ 0
and 1Z′ = E1 ⊕ 1Z2 .

(Z2) Let Z1, Z2 ∈ Z ′ be such that Z1 < Z2. As before, the only non-trivial case to show
is when Z1 ∈ ι1(Z1)\(E1 ⊕ 0) and Z2 ∈ E1 ⊕ Z2. However, in this case, we have
that Z1, Z2 ∈ Z, so the proof follows from the previous case for (Z2).

The case where M1 has a coloop and M2 has a loop is proved in a similar way to the
above. The only difference is that ι1(1Z1), E1 ⊕ ι2(0Z2) ∈ Z and ι1(1Z1) < E1 ⊕ 0 <
E1 ⊕ ι2(0Z2).

Remark 29. Note that if M1 has no coloop and M2 has no loop, then Z ′ is given by
“stacking” Z1 and Z2 on top of each other as lattices and identifying the maximal element
of Z1 and the least element of Z2; see Example 26 and Figure 1.

We now describe the lattice of cyclic flats of M1�M2 for a pair of q-matroids M1 and
M2. This is the q-analogue of [14, Proposition 6.1], however our approach is different.

Theorem 30. Let M1 and M2 be q-matroids over the ground spaces E1 and E2, respec-
tively. Then

Z(M1 �M2) =

{
Z ∪ ι1(E1) if M1 has no coloops and M2 has no loops,

Z otherwise,

where Z is defined as in (5).

Proof. As before, we will denote the rank function of M1�M2 by r. By Theorem 28 there
exists a q-matroid L = (E1 ⊕ E2, rL) such that Z(L) = Z. We will show that r = rL.
Clearly, we have that L|E1

∼= M1 and L/E1
∼= M2. Let X ∈ L(E1 ⊕ E2). By Lemma 9,

we have that
rL(X) = min{rL(Z) + dim((X + Z)/Z) : Z ∈ Z(L)}.

Suppose that Z ′ ∈ Z(L) is such that rL(X) = rL(Z ′) + dim(X/X ∩ Z ′). If Z ′ 6 E1 ⊕ 0,

then there exists Z
′ ∈ Z1 such that Z ′ = ι1(Z

′
) and rL(Z ′) = r1(Z

′
) by Lemma 24.

Therefore,

rL(Z ′) + dim(X/X ∩ Z ′) = r1(Z
′
) + dim(X/X ∩ Z ′)

= r1(Z
′
) + dim(X)− dim(X ∩ Z ′)

= r1(Z
′
) + dim(X ∩ (E1 ⊕ 0)) + dim(π2(X))

− dim(X ∩ Z ′)− dim(π2(Z
′ ∩X))

= r1(Z
′
) + dim((X ∩ (E1 ⊕ 0))/(Z ′ ∩X)) + r2(π2(X)) + ν2(π2(X))

= r1(π1(X ∩ (E1 ⊕ 0))) + r2(π2(X)) + ν2(π2(X)),
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Where the third equality follows from Lemma 17. If Z ′ > E1 ⊕ 0, then Z ′ = E1 ⊕ Z,
with Z ∈ Z2. Then by Lemma 24, we have

rL(Z ′) + dim(X/X ∩ Z ′) = rL(E1 ⊕ Z) + dim(X/X ∩ Z ′)
= r1(E1) + r2(Z) + dim(X/X ∩ Z ′)
= r1(E1) + r2(Z) + dim(X)− dim(X ∩ Z ′)
= r1(E1) + r2(π2(Z

′)) + dim(X)− dim(X ∩ Z ′)
= r1(π1(X ∩ (E1 ⊕ 0)) + λ1(π1(X ∩ (E1 ⊕ 0))

+ r2(π2(Z
′)) + dim(π2(X)/π2(X ∩ Z ′))

= r1(π1(X ∩ (E1 ⊕ 0)) + λ1(π1(X ∩ (E1 ⊕ 0)) + r2(X).

By Theorem 23, we get that rL = r.

We can characterise the free product of two uniform q-matroids in terms of cyclic flats
as follows.

Theorem 31. Let k1, k2, n1, n2 be integers and let k = k1 + k2, n = n1 + n2, 0 < k < n.
Let M = (Fnq , r) be a q-matroid of rank k. The following are equivalent.

1. M ∼= Uk1,n1(q)� Uk2,n2(q).

2. Z(M) = {0,Fn1
q ⊕0,Fnq } whose corresponding ranks are equal to 0, k1, k, respectively.

Proof. The results easily follows from Lemma 15 and Theorem 30.

3.4 Fundamental properties of the free product

In this subsection, we establish some relevant properties about the free product of q-
matroids.

It is well-known that the dual of a q-matroid is unique up to lattice-equivalence, regard-
less of which lattice anti-isomorphism is used. We will define a lattice anti-isomorphism
ϕ that is convenient for our notation, but the reader could be aware that, with the use
of additional lattice isomorphisms, the following results can hold for arbitrary lattice
anti-isomorphisms (but the statements would include slightly heavier notation).

Notation 32. We fix 〈·, ·〉E1 and 〈·, ·〉E2 to be arbitrary non-degenerate bilinear forms
on E1 and E2 respectively. We let 〈·, ·〉 = 〈·, ·〉E1 ⊕ 〈·, ·〉E2 be the non-degenerate bilinear
forms on E1⊕E2 defined by 〈a, b〉 = 〈π1(a), π1(b)〉E1+〈π2(a), π2(b)〉E2 for all a, b ∈ E1⊕E2.
For each V 6 E1 ⊕ E2, we let V ⊥ denote the orthogonal complement of V with respect
to 〈·, ·〉. Then (E1 ⊕ 0)⊥ = 0⊕ E2 and (0⊕ E2)

⊥ = E1 ⊕ 0.

Definition 33. We define the function rev : L → L by rev(X) = {(xn, . . . , x1) :
(x1, . . . , xn) ∈ X}, which is a lattice automorphism. Now we define the lattice anti-
isomorphism ϕ : L → L by ϕ(X) = rev(X⊥). Then for L = L(E1 ⊕ E2) and ⊥ as in
Notation 32, we have ϕ(E1 ⊕ 0) = E2 ⊕ 0.
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For the remainder of this section, we will use the lattice anti-isomorphism ϕ to map a
q-matroid to its dual. The following duality result is a q-analogue of [13, Proposition 4],
which the authors prove via the bases of a matroid. We prove it by examining the lattice
of cyclic flats.

Proposition 34. Let M1 and M2 be q-matroids on the spaces E1 and E2 respectively.
We have that (M1 �M2)

∗ ∼= M∗
2 �M

∗
1 .

Proof. Recall from Definition 33 that ϕ(E1⊕0) = E2⊕0. We will prove the statement of
this proposition by considering the lattices of cyclic flats Z((M1�M2)

∗) and Z(M∗
2�M

∗
1 ).

Recall that the dual of a cyclic flat of a q-matroid is a cyclic flat of the dual q-matroid.
We have the following:

Z ∈ Z((M1 �M2)
∗)

⇐⇒ ϕ(Z) ∈ Z(M1 �M2)

⇐⇒ ϕ(Z) ∈ Z((M1 �M2)|(E1 ⊕ 0)) or ϕ(Z) ∈ Z((M1 �M2)/(E1 ⊕ 0))

⇐⇒ Z ∈ Z((M1 �M2)
∗|ϕ(E1 ⊕ 0)) or Z ∈ Z((M1 �M2)

∗/ϕ(E1 ⊕ 0))

⇐⇒ Z ∈ Z((M1 �M2)
∗|(E2 ⊕ 0)) or Z ∈ Z((M1 �M2)

∗/(E2 ⊕ 0)). (7)

By Lemma 13, we have

(M1 �M2)
∗|ϕ(E1 ⊕ 0) ∼= ((M1 �M2)/(E1 ⊕ 0))∗ ∼= M∗

2

and
(M1 �M2)

∗/ϕ(E1 ⊕ 0) ∼= ((M1 �M2)|(E1 ⊕ 0))∗ ∼= M∗
1 .

We thus deduce from (7) and Theorem 30 that Z((M1�M2)
∗) = Z(M∗

2 �M
∗
1 ). Moreover,

(M1 �M2)
∗|ϕ(E1 ⊕ 0) ∼= M∗

2
∼= (M∗

2 �M
∗
1 )|ϕ(E1 ⊕ 0) ∼= (M∗

2 �M
∗
1 )|(E2 ⊕ 0)

and

(M1 �M2)
∗/ϕ(E1 ⊕ 0) ∼= M∗

1
∼= (M∗

2 �M
∗
1 )/ϕ(E1 ⊕ 0) ∼= (M∗

2 �M
∗
1 )/(E2 ⊕ 0).

We thus deduce that the ranks of the cyclic flats of (M1 �M2)
∗ and M∗

2 �M
∗
1 coincide.

By Lemma 9, the result follows.

Proposition 35. The free product on q-matroids is associative.

Proof. For i = 1, 2, 3, let Mi be a q-matroid with ground space Ei. Let (E1⊕E2⊕E3, rA) =
A = M1 � (M2 �M3) and (E1 ⊕ E2 ⊕ E3, rB) = B = (M1 �M2) �M3. Let V0 = 0,
V1 = E1 ⊕ 0⊕0, V2 = E1 ⊕ E2 ⊕ 0, and V3 = E1 ⊕ E2 ⊕ E3.

We now examine the cyclic flats of A with repeated use of Theorem 30. We observe
that Z ∈ Z(A) if and only if one of the following is satisfied:

(1) Z = Z ′ ⊕ 0 for Z ′ ∈ Z(M1) \ {E1},
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(2) Z = E1 ⊕ Z ′ for Z ′ ∈ Z(M2 �M3) \ {0},
(3) Z = V1 and E1 ∈ Z(M1) and 0 ∈ Z(M2 �M3).

Observe in the above list that 0 ∈ Z(M2 �M3) if and only if 0 ∈ Z(M2). Moreover,
Z ′ ∈ Z(M2 �M3) if and only if one of the following is satisfied:

(4) Z ′ = Z ′′ ⊕ 0 for Z ′′ ∈ Z(M2) \ {E2},
(5) Z ′ = E2 ⊕ Z ′′ for Z ′′ ∈ Z(M3) \ {0},
(6) Z ′ = V2 and E2 ∈ Z(M2) and 0 ∈ Z(M3).

We thus conclude that Z ∈ Z(A) if and only if one of the conditions (1), (3), (4), (5), (6)
(where M2�M3 in (3) is replaced by M2) is satisfied. In a similar way, it is straightforward
to verify that Z ∈ Z(B) if and only if the same conditions are satisfied. We thus conclude
that Z(A) = Z(B). Furthermore, it is clear from the above that Z(A) ⊆

⋃3
i=1[Vi−1, Vi].

By Lemma 21, we deduce that

A[V1, V2] = (A/V1)|V2 ∼= (M2 �M3)|(0⊕E2) ∼= M2 and

B[V1, V2] = (B|V2)/V1 ∼= (M1 �M2)/(E1 ⊕ 0) ∼= M2.

It follows from Remark 22 that A[Vi−1, Vi] = B[Vi−1, Vi] for i = 1, 2, 3. Therefore, we
deduce that rA(X) = rB(X) for all X ∈

⋃3
i=1[Vi−1, Vi]. We thus conclude that rA(Z) =

rB(Z) for all Z ∈ Z(A). By Lemma 9, we conclude that rA = rB, which is to say that
A = B.

We end this section by recalling the notion of direct sum of q-matroids and by estab-
lishing a relation between the free product and the direct sum of q-matroids M1 and M2

on ground spaces E1 and E2.

Definition 36. Let Mi = (Ei, ri), i = 1, 2, be a pair of q-matroids and set E = E1 ⊕E2.
For i = 1, 2, let r′i be the map defined by r′i : L(E) −→ N0, V 7−→ ri(πi(V )) for all
V ∈ L(E). Let r be the map defined by:

r : L(E) −→ N0, V 7−→ dimV + min
X6V

(
r′1(X) + r′2(X)− dimX

)
∀ V ∈ L(E).

Then M := (E, r) is a q-matroid, called the direct sum of M1 and M2, and is denoted
by M1 ⊕M2.

Lemma 37 ([23, Theorem 6.2]). For each i = 1, 2, let Mi = (Ei, ρi), be a q-matroid and
let Zi be the lattice of cyclic flats of Mi. Let Z1 ⊕ Z2 = {Z1 ⊕ Z2 : Z1 ∈ Z1, Z2 ∈ Z2}.
Then

Z(M1 ⊕M2) = Z1 ⊕Z2.

Proposition 38. Let M1 = (E1, r1) and M2 = (E2, r2). Assume r1(M1) = 0 or ν2(M2) =
0, then M1 �M2 = M1 ⊕M2.
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Proof. If r1(M1) = 0, then Z1 = {E1} and hence the lattice of cyclic flats of M1 �M2 is
equal to

{E1 ⊕ Z : Z ∈ Z2} = {Z1 ⊕ Z2 : Z1 ∈ Z1, Z2 ∈ Z2}.
Similarly, if ν2(M2) = 0, then Z2 = {0}, hence the lattice of cyclic flats of M1 �M2 is
equal to

{Z ⊕ 0 : Z ∈ Z1} = {Z1 ⊕ Z2 : Z1 ∈ Z1, Z2 ∈ Z2}.
By Lemma 37, the result follows.

4 Weak ordering and unique factorisation

In section 4.1 we establish that the free product of q-matroids M1, . . . ,Mk on ground
spaces E1, . . . , Ek respectively is the unique (up to isomorphism) q-matroid with the
maximum number of independent spaces among all q-matroids N on E1 ⊕ · · · ⊕ Ek such
that N [Ei−1, Ei] ∼= Mi for i ∈ {1, . . . , k}. This gives the q-analogue of one of the main
results of [14, section 4]. Furthermore, in [14] it is noted that the direct sum of matroids
is the “most dependent” way of combining two matroids (in a sense that we will make
precise later). We will show that, somewhat surprisingly, the q-analogue of this result
does not hold.

In section 4.2 we show that any q-matroid can be factorised uniquely (up to isomor-
phism) into irreducible components with respect to the free product, which gives the
q-analogue of another one of the main results found in [14, section 6].

4.1 The weak ordering

In [14] the free product of matroids, as well as the direct sum of matroids, are discussed
relative to weak maps of matroids. In the same paper, it is shown that the free product
of two matroids M and N on ground sets S and T is the maximal element in the weak
ordering of the class of matroids on S ∪ T whose restrictions to S and complementary
contraction by S are M and N , respectively. Further, the direct sum of M and N is
the minimal element in this weak ordering. In this section we extend these results to
q-matroids, as well as observe a difference that occurs in the q-analogue. Namely, that
the direct sum is not always minimal in the weak ordering.

The definition of weak map for matroids can be found in [28]. In the following definition
we include the q-analogue, as well as a definition of weak isomorphism.

Definition 39. Let M1 = (E1, r1) and M2 = (E2, r2) be q-matroids, let L1 = L(E1) and
L2 = L(E2) and let τ : L1 → L2 be a function. We say that τ is a weak map from M1

to M2 if r1(X) > r2(τ(X)) for every X ∈ L1. If τ is also a lattice isomorphism, then we
call τ a weak isomorphism from M1 to M2.

The following definition is the (q-analogue) of a weak order on matroids; see [14].

Definition 40. Let M1 = (E1, r1) and M2 = (E2, r2) be q-matroids, let L1 = L(E1) and
L2 = L(E2). We say that M2 is below M1 in the weak ordering and we write M2 �M1

if there exists a weak isomorphism from M1 to M2.
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It is clear that the weak order of q-matroids is a partial order on the set of q-matroids
supported on the same subspace lattice (up to isomorphism). For the remainder of this
section, we fix a positive integer k and a collection of q-matroids M1, . . . ,Mk.

Definition 41. We denote byMq(M1, . . . ,Mk) the partially ordered set of (isomorphism
classes of) q-matroids M on a vector space E for which there exists a chain 0 = V0 <
V1 < · · · < Vk = E such that M [Vi−1, Vi] ∼= Mi for all i ∈ {1, . . . , k}, and for which the
order on Mq(M1, . . . ,Mk) is the weak order �. For the partially ordered set of matroids
with these same conditions, we denote the corresponding poset by M(M1, . . . ,Mk) (in
which case M1, . . . ,Mk are assumed to be matroids).

Clearly, M1 ⊕ · · · ⊕Mk and M1 � · · ·�Mk belong to Mq(M1, . . . ,Mk).
In Theorem 43 we generalise a result in [14, section 4] by showing that M1� · · ·�Mk

is maximal inMq(M1, . . . ,Mk). Our proof is different from the matroid case and heavily
relies on the properties of cyclic flats. We first prove a technical lemma.

Lemma 42. Let M = (E, r) be a q-matroid and let X, Y ∈ L(E). We have

r(Y ) + dim((X + Y )/Y ) > r(cyc(cl(Y ))) + dim((X + cyc(cl(Y )))/ cyc(cl(Y ))).

Proof. From the definitions of cl and cyc and Lemma 27, for any W ∈ L we have that
r(W ) = r(cl(W )) and r(W ) = r(cyc(W )) + dim(W ) − dim(cyc(W )). Let U, V ∈ L(E)
and U 6 V . Then,

dim((W + V )/V ) 6 dim((W + U)/U) 6 dim((W + V )/V ) + dim(V )− dim(U).

We therefore get the following:

r(Y ) + dim((X + Y )/Y ) = r(cl(Y )) + dim((X + Y )/Y )

> r(cl(Y )) + dim((X + cl(Y ))/ cl(Y ))

= r(cyc(cl(Y ))) + dim(cl(Y ))− dim(cyc(cl(Y ))

+ dim((X + cl(Y ))/ cl(Y ))

> r(cyc(cl(Y ))) + dim((X + cyc(cl(Y )))/ cyc(cl(Y ))).

The following, Theorem 43, is the main result of this section, which is the q-analogue
of [14, Proposition 4.7]. Once again, we leverage the structure of the cyclic flats of the
free product to obtain a straightforward proof.

Theorem 43. Let M = (E, r) be a q-matroid and 0 = V0 < V1 < · · · < Vk = E be a
chain. Let Mi = M [Vi−1, Vi]. The identity map on E is a weak map from M1 � · · ·�Mk

to M .

Proof. Let N := M1� · · ·�Mk. By Theorem 30 and the associativity of the free product
given in Proposition 35, we deduce that

Z(N) ⊆
k⋃

i=1

[Vi−1, Vi]. (8)
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Let rN be the rank function of N . Since N [Vi−1, Vi] = Mi for all i ∈ {1, . . . , k} (by the
definition of the free product as well as its associativity), we have that r(X) = rN(X) for
X ∈ [Vi−1, Vi] for i ∈ {1, . . . , k}. Therefore, by (8), we have that rN(Z) = r(Z) for all
Z ∈ Z(N). By Lemma 9, for any X ∈ L(E) we have that rN(X) = min{rN(Z)+dim((X+
Z)/Z) : Z ∈ Z(N)}. Let Z ′ ∈ Z(N) be such that rN(X) = rN(Z ′) + dim((X + Z ′)/Z ′).
We thus obtain the following:

rN(X) = rN(Z ′) + dim((X + Z ′)/Z ′)

= r(Z ′) + dim((X + Z ′)/Z ′)

> r(cyc(cl(Z ′))) + dim((X + cyc(cl(Z ′)))/ cyc(cl(Z ′))) (9)

> min{r(Z) + dim((X + Z)/Z) : Z ∈ Z(M)} = r(X),

where (9) follows from Lemma 42.

The following is an immediate consequence of Theorem 43.

Corollary 44. M1 � · · ·�Mk is maximal in Mq(M1, . . . ,Mk).

The following, Lemma 45, gives a convenient sufficient condition for the existence of
a weak isomorphism between (q-)matroids.

Lemma 45. Let M1 = (E, r1) and M2 = (E, r2) be q-matroids. If Z1 ⊆ Z2 and r1(Z) =
r2(Z) for all Z ∈ Z1, then the identity map on L(E) is a weak isomorphism from M1 to
M2.

Proof. For any X ∈ L(E), by Lemma 9 ([2, Corollary 3.12]) we have

r2(X) = min{r2(Z) + dim(X/X ∩ Z) : Z ∈ Z2}
6 min{r1(Z) + dim(X/X ∩ Z) : Z ∈ Z1} = r1(X)

since Z1 ⊆ Z2. The result follows from the definition of a weak isomorphism.

It is noted in [14] that M1 ⊕ · · · ⊕Mk is minimal in M(M1, . . . ,Mk). Interestingly,
this is not always the case for q-matroids, which we show in the following example.

Example 46. Let M ∼= N ∼= U1,2(q). Choose a basis {e1, e2, e3, e4} of F4q such that
(M ⊕ N)|〈e1, e2〉 ∼= M and (M ⊕ N)|〈e3, e4〉 ∼= N . We then have Z(M ⊕ N) =
{0, 〈e1, e2〉, 〈e3, e4〉,F4q}. Let L be a q-matroid on L(F4q) such that

Z(L) = {0, 〈e1, e2〉, 〈e3, e4〉, 〈e1 + e3, e2 + e4〉,F4q}.

It is not difficult to see that Z(L) satisfies the cyclic flat axioms from Definition 8, when we
give 〈e1 +e3, e2 +e4〉 a rank value of 1. It is clear that L|〈e1, e2〉 ∼= M and L/〈e1, e2〉 ∼= N .
Furthermore, we have that Z(M⊕N) ⊂ Z(L), which by Lemma 45 means that L ≺M⊕N
in the weak order on Mq(M,N).
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4.2 Unique factorisation

Definition 47. We say that a q-matroid is �-irreducible if it cannot be written as
the free product of two non-trivial q-matroids, i.e. q-matroids whose ground space has
dimension at least one.

A natural question that arises is whether a q-matroid can be decomposed uniquely
into �-irreducible components. We answer this question in the affirmative.

We remark that many properties of the lattice of cyclic flats of a (q-)matroid do not
depend on whether or not the ambient lattice is a Boolean or a subspace lattice. Some
arguments that employ the cyclic flats of matroids in [14] hold true also for q-matroids.
Therefore, in this section, we provide only the proofs of the results that do not immediately
follow as in the matroid case.

Definition 48. An element A ∈ L(E) is a free separator of a q-matroid M = (E, r) if
every cyclic flat in Z(M) is comparable to A in L(E).

Observe that, trivially, 0 and E are free separators. We refer to any other free separator
as a non-trivial free separator.

Example 49. Let M and L be taken from Example 26. By Theorem 30, we observe that
the lattice of cyclic flats of L �M is the lattice pictured in Figure 2. In this instance,
the non-trivial free separators of this q-matroid are precisely the elements of the interval
[Z4 ⊕ 0,F5 ⊕ F0]. Moreover, we may observe that

L�M = (L�M)[0, Z4 ⊕ 0]� (L�M)[Z4 ⊕ 0,F5 ⊕ F0]� (L�M)[F5 ⊕ F0,F5 ⊕ F5],

which hints at a relationship between free separators and factorisations of q-matroids via
the free product. We formalise this connection in the remainder of this section.

We include the following useful notation for lattices of cyclic flats. Note that it does
not equate to taking the lattice of cyclic flats of minors of the q-matroid.

Notation 50. Let M = (E, r) be a q-matroid. For X ∈ L(E) we will let Z(M)|X =
{Z ∈ Z(M) : Z 6 X} and Z(M)/X = {Z ∈ Z(M) : Z > X}.

The following result is the q-analogue of [14, Theorem 6.3]. We will rely heavily on
our characterization result on the lattice of cyclic flats of the free product of a pair of
q-matroids (Theorem 30) in order to prove it.

Theorem 51. For any q-matroid M = (E1 ⊕ E2, r), the following are equivalent:

(i) M = (M |(E1 ⊕ 0))� (M/(E1 ⊕ 0)).

(ii) E1 ⊕ 0 is a free separator of M .
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Proof. (i) =⇒ (ii) This follows from Theorem 30.
(ii) =⇒ (i) Assume that E1 ⊕ 0 is a free separator of M and let N = (M |(E1 ⊕

0)) � (M/(E1 ⊕ 0)). It is clear that we have Z(M)|(E1 ⊕ 0) ⊆ Z(M |(E1 ⊕ 0)) and
Z(M)/(E1 ⊕ 0) ⊆ Z(M/(E1 ⊕ 0)). We thus have that

Z(M) ⊆ {ι1(Z) : Z ∈ Z(M |(E1 ⊕ 0))}∪̇{(E1 ⊕ 0) + ι2(Z) : Z ∈ Z(M/(E1 ⊕ 0))}. (10)

By Theorem 30, we deduce that E1⊕0 ∈ Z(N) if and only if E1⊕0 ∈ Z(M). Therefore,
using (10) we conclude that Z(M) ⊆ Z(N). By Lemma 45 we now have that the identity
map on L(E1 ⊕ E2) is a weak map from M to N . Since N |(E1 ⊕ 0) = M |(E1 ⊕ 0) and
N/(E1 ⊕ 0) = M/(E1 ⊕ 0), Theorem 43 gives us that the identity map on L(E1 ⊕ E2) is
a weak map from N to M . Therefore, M = N .

Clearly, if a q-matroid M = (E, r) is reducible with respect to the free product, then
there exist subspaces E1 and E2 such that E = E1⊕E2 and M = (M |(E1⊕0))�(M/(E1⊕
0)), in which case E1 ⊕ 0 is a free separator of M . We therefore have the following.

Corollary 52. For any non-zero q-matroid M , the following are equivalent:

1. M is �-irreducible.

2. M has no non-trivial free separator.

Definition 53. We say that a q-matroid is ⊕-reducible if it can be written as direct
sum of a pair of non-trivial q-matroids.

The following conveys a relationship between a q-matroid being ⊕-reducible and �-
irreducible. Namely, if a q-matroid can be written as a direct sum of (non-trivial) loopless
and coloopless q-matroids, then it cannot be written as a free product of (non-trivial)
q-matroids.

Corollary 54. Let M be loopless and coloopless. If M is ⊕-reducible, then it is �-
irreducible.

Proof. If M is ⊕-reducible, then there exist non-trivial q-matroids M1 and M2 on the
spaces E1 and E2 respectively such that M = M1 ⊕M2. By [11, Proposition 13] and its
dual statement, we have that M1 and M2 are both loopless and coloopless. In particular,
{0, E1} ⊆ Z(M1) and {0, E2} ⊆ Z(M2). By Lemma 37 ([23, Proposition 6.2]) we have
that E1 ⊕ 0,0⊕ E2 ∈ Z(M). By Corollary 52 the result follows.

We recall the definition of a pinchpoint from [14].

Definition 55. Let P be an arbitrary poset and let x ∈ P . We say that x is a pinchpoint
if all other elements of P are comparable to x. A pinchpoint different from 0 and 1 is
called non-trivial.

We recall the following convenient definitions from [14], endowing them with the ob-
vious q-analogue.
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Definition 56. Let M = (L, r) be a q-matroid and Z its lattice of cyclic flats. Define
the sublattice D(M) of L by

D(M) :=

{⋂
Z∈S

Z : S ⊆ Z

}
∪

{∑
Z∈T

Z : T ⊆ Z

}
.

That is, the elements of D(M) are formed by taking all intersections and all unions of the
elements of Z.

We remark that the elements of Z are contained in D(M), however, as the intersection
of two cyclic flats is not necessarily a cycle, and since the sum of two cyclic flats is not
necessarily a flat, this containment can be strict.

Definition 56 is used to facilitate the following definition, which will be central to the
decomposition of a q-matroid by the free product. The following is the q-analogue of
[14, Definition 6.14].

Definition 57. The primary flag TM of a q-matroid M is the chain T0 < · · · < Tk of
all pinchpoints of D(M).

The following proposition is the q-analogue of [14, Proposition 6.9], and follows im-
mediately from Lemma 15.

Proposition 58. A non-trivial q-matroid M is uniform if and only if D(M) = {0,1}.

The following, Theorem 59, is the q-analogue of [14, Theorem 6.11].

Theorem 59. For any non-uniform q-matroid M with ground space E, the following are
equivalent:

1. M is �-irreducible.

2. The lattice D(M) contains no non-trivial pinchpoint.

Proof. By Theorem 51, M is reducible if and only if M has a non-trivial free separator
A ∈ L(E), which is equivalent to saying that there exist some Z1,Z2 ⊂ Z(M) such that
Z(M) = Z1 ∪ Z2 and Z1 6 A 6 Z2 for all Z1 ∈ Z1 and Z2 ∈ Z2. That is equivalent to
saying that ∑

Z∈Z1

Z 6 A 6
⋂

Z∈Z2

Z,

which is possible if and only if the lattice D(M) contains a non-trivial pinchpoint when
M is not uniform.

We observe that any uniform q-matroid Uk,n(q) can be decomposed as Uk,k(q) �
U0,n−k(q). Moreover, Uk,k(q) and U0,n−k(q) can each be written as a free product of q-
matroids on one-dimensional spaces.

Notation 60. We denote by FS(M) the set of free separators of M . We denote [A,B]∩
FS(M) by [A,B]FS .
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The following result, Lemma 61, is the q-analogue of [14, Lemma 6.12]. We offer an
alternative method of proof using cyclic flats.

Lemma 61. Let A,B ∈ FS(M) and A 6 B. The map from [A,B]FS to FS(M [A,B])
defined by X 7→ X/A is a lattice isomorphism.

Proof. It suffices to show Z(M [A,B])\{A,B} ⊆ Z(M)∩ [A,B] since A and B are clearly
in [A,B]FS and FS(M [A,B]), and it is clear that Z(M) ∩ [A,B] ⊆ Z(M [A,B]).

Suppose that there exists some X ∈ Z(M [A,B]), X /∈ \(Z(M) ∩ [A,B]). Then
either X̄1 := cl(cyc(X)) /∈ [A,B] or X̄2 := cyc(cl(X)) /∈ [A,B]. Since A and B are free
separators, we must have X̄i < A or X̄i > B for i = 1 or 2. Therefore, we have X < X̄i or
X̄i < X. Since X is a cyclic flat in M [A,B], we thus have that X = A or B, because all
other such cyclic flats Y in [A,B] would give cl(Y ) = cyc(Y ) = Y . Since all cyclic flats
not equal to A or B are in one-to-one correspondence, so must be the free separators.
The result follows.

The following lemma is the q-analogue of [14, Lemma 6.13] and follows immediately
from Proposition 58 and the definitions of D(M) and FS(M).

Lemma 62. The q-matroid M on the lattice L(E) is uniform if and only if FS(M) =
L(E).

The next result, Lemma 63, is the q-analogue of [14, Proposition 6.15]. Our proof does
not differ significantly from that in [14], and therefore we omit it. We include Lemmas
62 and 63 because their Boolean analogues in [14] are used in the proof of [14, Theorem
6.16], whose q-analogue is Theorem 65.

Lemma 63. Suppose the q-matroid M has the primary flag T0 < · · · < Tk. Then the
lattice FS(M) of free separators is equal to the union

⋃k
i=1[Ti−1, Ti]FS , where for each

i ∈ {1, . . . , k}, the interval [Ti−1, Ti]FS is a sublattice of L(E) satisfying:

[Ti−1, Ti]FS =

{
[Ti−1, Ti] if Ti covers Ti−1 in D(M),
{Ti−1, Ti} otherwise.

Note that the following primary factorisation is made possible due to an iterative
application of Theorem 51, as well as the associativity of the free product (Proposition 35).

Definition 64. Let M be a q-matroid with primary flag T0 < · · · < Tk. The minor
M [Ti−1, Ti] is called a primary factor of M . The factorisation

M = M [T0, T1]� · · ·�M [Tk−1, Tk],

is called the primary factorisation of M .

The following is the q-analogue of [14, Theorem 6.16]. By changing the characterisation
of a uniform matroid M from one that has FS(M) equal to a Boolean lattice, to one such
that FS(M) is isomorphic to an interval of the ambient lattice L(E) (given in Lemma 62),
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it is a direct q-analogue of [14, Theorem 6.16]. We will provide a proof for clarity and
self-containment. While the overall argument we provide here follows the result of [14],
we remark that different approaches were required here to obtain the preceding results
applied in its proof.

Theorem 65. The sequence of primary factors of a q-matroid M is the unique sequence
M1, . . . ,Mk such that M = M1�· · ·�Mk where each Mi is either uniform or �-irreducible,
and no free product of consecutive elements in the sequence is uniform.

Proof. Let M = M1 � · · · � M`, and let U = {U0, . . . U`} be the corresponding set
of free separators such that Ui−1 < Ui and Mi = M [Ui−1, Ui] for i ∈ {1, . . . , `}. Let
T = {T0, . . . , Tk}, with Tj−1 < Tj for j ∈ {1, . . . , k} be the primary flag of M . We will
show that the statement of the theorem is satisfied if and only if U = T .

Suppose first that U = T . By Lemma 61 we have FS(Mi) = FS(M [Ti−1, Ti]) ∼=
[Ti−1, Ti]FS , for i ∈ {1, . . . , k}. By Lemma 63, combined with Proposition 58 and Theo-
rem 59, we deduce that Mi is either uniform, or �-irreducible. For i ∈ {1, . . . , k − 1} we
have FS(Mi �Mi+1) ∼= [Ti−1, Ti+1]FS , which has a non-trivial pinchpoint at Ti. Proposi-
tion 58 then gives us that Mi �Mi+1 is not uniform.

For the converse, suppose first that T is not a subset of U . Since U is composed of free
separators, there then must exist Tj ∈ [Ui, Ui+1]FS\{Ui, Ui+1} for some i, j. This means
that Mi is neither uniform nor �-irreducible.

Finally, suppose that T is a proper subset of U . Then for some i and j there exists
Uj ∈ [Ti, Ti+1]FS\{Ti, Ti+1}. By Lemma 61 we must have that M [Ti, Ti+1] is uniform.
Since T ⊆ U , we must have that Ti 6 Uj−1 and Uj+1 6 Ti+1, which means that Mj�Mj+1

is a minor of M [Ti, Ti+1], which means that it must be uniform.

As in the matroid case, we have thus shown that any q-matroid factors uniquely into
minors that are either �-irreducible or maximally uniform (i.e. maximal with respect to
inclusion among the minors).

The following two results are the q-analogues of [14, Theorem 6.17, Theorem 6.18],
which we state here as corollaries (of Theorem 65), and require no further proof than
what is given in [14].

Corollary 66. If M ∼= M1� · · ·�Mk
∼= N1� · · ·�Nr, where each factor is �-irreducible,

then k = r and Mi = Ni for all i ∈ {1, . . . , k}.

Corollary 67. Let M1,M2, N1, N2 be q-matroids on the spaces E1, E2, E
′
1, E

′
2. Suppose

that M1 �M2
∼= N1 �N2 and E1

∼= E ′1. Then M1
∼= N1 and M2

∼= N2.

By Corollary 67 we can derive a q-analogue of [13, Corollary 9], which gives a recursive
lower bound for the number of isomorphism classes of matroids on a set with n elements.
The proof does not differ significantly from the proof found in [13], so we omit it.

Corollary 68. LetMq,n denote the set of isomorphism classes of q-matroids on the vector
space Fnq . We have |Mq,n| > |Mq,n1| · |Mq,n2| if n = n1 + n2.
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To give an example of an �-irreducible q-matroid, we include the following definition,
taken from [8, Example 17], which is the q-analogue of the well-known Vámos matroid.

Definition 69. Let e1, . . . , e8 be the canonical basis of F8q. Define the set

C = {〈e1, e2, e3, e4〉, 〈e1, e2, e5, e6〉, 〈e3, e4, e5, e5〉, 〈e3, e4, e7, e8〉, 〈e5, e6, e7, e8〉}.

The Vámos q-matroid is the q-matroid on the lattice L(F8q) with rank function r : L(F8q)→
Z defined by

r(A) =


dim(A) dim(A) 6 3

3 A ∈ C
4 dim(A) > 4 and A /∈ C.

Example 70. It is clear that the lattice of cyclic flats of the Vámos q-matroid contains
the set C. It is easily observed that C is an antichain, that

∧
C = 0, and that

∨
C = F8

q.
Therefore, there are no non-trivial pinchpoints in its lattice of cyclic flats, which means
that it is �-irreducible by Theorem 59.

Remark 71. Example 70 is not surprising, because the Vámos matroid has the same
lattice of cyclic flats as the Vámos q-matroid. Therefore, if the Vámos q-matroid was
reducible, then the Vámos matroid would also be reducible. This would mean that the
Vámos matroid is the free product of two smaller matroids, which must then both be
representable since the Vámos matroid is the smallest non-representable matroid [32,
Propositions 6.1.10 and 6.4.10]. By [14, Proposition 4.13], this would imply that the
Vámos matroid is representable, which as stated is not the case.

5 Representability of the free product

In this section we study the representability of the free product of Fqm-representable q-
matroids. Using the geometric point of view introduced in [2] for representable q-matroids,
we focus on the free product of two uniform q-matroids, with particular attention to the
case for which both factors have rank one. It will be convenient for us to set E1 =
〈e1, . . . , en1〉 and E2 = E⊥1 = 〈en1+1, . . . , en1+n2〉, where {ej : 1 6 j 6 n1 + n2} is the
standard basis of Fn1+n2

q .
We recall a geometric description of representable q-matroids; see also [1–3].

Definition 72. An [n, k]qm/q system S is an n-dimensional Fq-subspace of Fkqm , such that
〈S〉Fqm = Fkqm . Two [n, k]qm/q systems S and S ′ are called equivalent if there exists an
Fqm-isomorphism τ ∈ GL(k,Fqm) such that τ(S) = S ′. If the parameters are not relevant
or clear from the context, we simply say that S is a q-system.

Let G ∈ Fk×nqm nondegenerate full rank matrix, i.e. with Fq-linearly independent
columns. Then the Fq-span of the columns of G is an [n, k]qm/q-system and we call it the
q-system associated with G; see [1, 35].

the electronic journal of combinatorics 32(3) (2025), #P3.52 26



Definition 73. For an Fq-subspace V 6 Fkqm , we define the Fqm-rank of V to be the
integer

r(V ) = dimFqm (〈V 〉Fqm ).

We write rS to denote the restriction of the map r : L(Fkqm) −→ N0 to L(S).

It is not difficult to see that for a q-system S, rS is a rank function and hence (S, rS)
defines the q-matroid (S, rS). The next geometric interpretation of a representable q-
matroid in terms of q-systems was proved in [2, Theorem 5.6], whose original statement
may look slightly different. However, it is equivalent to the following reformulation.

Theorem 74 ([2, Theorem 5.6]). Let G ∈ Fk×nqm be a nondegenerate full rank matrix, and
let SG be the [n, k]qm/q system associated with it, i.e. the Fq-span of the columns of G.
Then the q-matroid M [G] arising from G is equivalent to the q-matroid (SG, rSG).

Remark 75. Let M = (S, rS) be the representable q-matroid arising from the [n, k]qm/q-
system S. We recall that in [2], it has been shown that the independent spaces of M
are the Fqm-independent subspaces of S. An Fq-subspace I of S is Fqm-independent
if rS(I) = dimFq(I). In other words, Theorem 74 characterises representable q-matroids
as those coming from a q-system. More precisely, we say that a q-matroid M of rank k
without loops is Fqm-representable if and only if it is equivalent to a q-matroid (S, rS),
for some [n, k]qm/q system S.

We turn to the representability of the free product, with the following result.

Proposition 76. Let M1 = (E1, r1) and M2 = (E2, r2) be q-matroids of rank k1 and k2,
respectively. If M1�M2 is Fqm-representable, then M1 and M2 are Fqm-representable, and
M1 �M2 = M [G] for some matrix

G =

(
G1 X
0 G2

)
,

where G1 represents M1, G2 represents M2, and X ∈ Fk1×n2
qm is such that |{U 6 SG :

dimFq(U) = dimFqm (〈U〉Fqm )}| is maximal, over all such choices of X.

Proof. Suppose that M1 � M2 is Fqm-representable. Then there exists a matrix G ∈
F(k1+k2)×(n1+n2)
qm that represents M1 �M2 and which may be assumed to have the form

G =

(
G1 X
0 G2

)
,

for some Gi ∈ Fki×ni
qm and X ∈ Fk1×n2

qm . Clearly, (M1 �M2)|E1 and (M1 �M2)/E1 are
represented by G1 and G2, respectively. Since (M1 � M2)|(E1 ⊕ 0) ∼= M1 and (M1 �
M2)/(E1 ⊕ 0) ∼= M2, we have that Mi is represented by Gi for each i. The rest follows
from Corollary 44, since M1 � M2 is maximal with respect to the weak ordering on
Mq(M1,M2).

For the rest of this section, we will adopt the following notation.
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Notation 77. Let S1 and S2 be two [n1, k1]qm/q and [n2, k2]qm/q-systems, respectively. Let

{u1, . . . , un1} be a basis of S1 and {w1, . . . , wn2} be a basis of S2. Let x1, . . . , xn2 ∈ Fk1qm
be some fixed vectors and let X ∈ Fk1×n2

qm be the matrix whose columns are x1, . . . , xn2 .

For i = 1, . . . , n1, we define ui := (ui, 0, . . . , 0) ∈ Fk1+k2
qm and for every j = 1, . . . , n2, we

define w̃j := (xj, wj) ∈ Fk1+k2
qm . We define the following embeddings:

ϕ1 : S1 ↪→ Fk1+k2
qm ,

n1∑
j=1

ajuj 7→
n1∑
j=1

ajuj ∀ aj ∈ Fq; (11)

ϕX
2 : S2 ↪→ Fk1+k2

qm ,

nw∑
j=1

bjwj 7→
nw∑
j=1

bjw̃j ∀ bj ∈ Fq. (12)

Moreover, we define:

σX : S2 → 〈x1, . . . , xn2〉Fq , wi 7→ xi.

Let M1,M2 be two (loopless) Fqm-representable q-matroids with ground spaces Fn1
q

and Fn2
q and let G1 ∈ Fk1×n1

qm , G2 ∈ Fk2×n2
qm be matrix representations of M1 and M2,

respectively. Let S1,S2 be the q-systems associated with G1 and G2 (i.e. the respective Fq-
spans of their columns). In particular, {u1, . . . , un1} can be chosen as the set of columns of
G1 and {w1, . . . , wn2} can be chosen as the set of columns of G2. Define the isomorphisms
ψG1 : Fn1

q → S1, v 7→ G1v
> and ψG2 : Fn2

q → S2, v 7→ G2v
>. Consider the q-system S

associated with

G =

(
G1 X
0 G2

)
. (13)

Note that S is an (n1+n2)-dimensional Fq-subspace of Fk1+k2
qm and hence there is a natural

isomorphism ψG : Fn1+n2
q → S.

Clearly, dimFq(S1) = dimFq(ϕ1(S1)) and dimFq(S2) = dimFq(ϕ
X
2 (S1)). Moreover,

〈ϕ1(S1), ϕX
2 (S2)〉Fq ∼= S for every X ∈ Fk1×n2

qm .
We also make the following observation.

Lemma 78. Given Notation 77, let A 6 Fn1
q and B 6 Fn2

q . The space

〈ϕ1(ψG1(A)), ϕX
2 (ψG2(B))〉Fq

is an Fq-subspace of S.

Proof. Note that a basis of S is given by {ū1, . . . , ūn1 , w̃1, . . . , w̃n2}, as defined in Notation
77. We have that ϕ1(ψG1(A)) is an Fq-subspace of 〈ū1, . . . , ūn1〉Fq and ϕX

2 (ψG2(B)) is an
Fq-subspace of 〈w̃1, . . . , w̃n2〉Fq . Hence, the statement follows.

the electronic journal of combinatorics 32(3) (2025), #P3.52 28



5.1 The free product of uniform q-matroids

This subsection is inspired by the results of [3], in which the representability of the direct
sum of uniform q-matroids is investigated from a geometric point of view. We will give
a necessary condition for a q-system to be the representation of the free product of two
uniform q-matroids. It turns out that for both the direct sum and the free product of
uniform q-matroids, the cyclic flats play a key role. We then restrict our attention to the
special case of the free product of a pair of rank one uniform q-matroids. In this case, we
show that a necessary condition for representability is equivalent to the existence of clubs
on the Fqm-projective line.

We denote by PG(k− 1, qm) the (k− 1)-dimensional projective space with underlying
vector space Fkqm . For a vector space V , we denote by PG(V,Fqm), its associated projective
space.

Definition 79. Let S be an [n, k]qm/q system. For each Fq-subspace V 6 Fkqm , we define
the weight of V in S to be the integer

wtS(V ) := dimFq(S ∩ V ).

The set
LS := {〈v〉Fqm : v ∈ S \ {0}}

is called the linear set of S of rank dimFq(S) in PG(k − 1, qm). We also define the
weight of the projective space PG(V,Fqm) in LS to be wtS(V ), which we denote by
wtLS (PG(V,Fqm)).

We could say that a q-system is the vectorial counterpart of a linear set. For our
purposes, we do not need a deep background in finite geometry. However, for a nice
treatment of linear sets, we refer the interested reader to [33].

We now introduce the concept of an evasive space, which is a q-system with special
intersection properties. These objects have been studied in [4] as a q-analogue of evasive
sets. An evasive subspace is a natural generalization of an h-scattered subspace; see [7,15].
Moreover, there are connections to rank-metric codes; see [4, 29].

Definition 80. Let h be a positive integer. Let A be a collection of Fq-subspaces of Fkqm ,
and let S be an [n, k]qm/q system. We say that S is (A, h)-evasive if

wtS(A) 6 h for all A ∈ A.

Definition 81. Let S be an [n, k]qm/q system and let h, r be positive integers such that
0 6 h 6 k. We denote by Λh the set of all the h-dimensional Fqm-subspaces of Fkqm .
We say that S is (h, r)-evasive if S is (Λh, r)-evasive. When h = r, we say that S is
h-scattered. Finally, for h = 1, a 1-scattered q-system will be simply called scattered.

Let k1, k2, k, h be positive integers such that k = k1 + k2 and 1 6 h 6 k − 1. We
denote by Λh,k1 the set of all the h-dimensional Fqm-subspaces of Fkqm that do not contain

Fk1qm ⊕ 0.
From Theorem 31 and Lemma 10, we have the following result.
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Corollary 82. Let Uki,ni
(q), i = 1, 2 be uniform q-matroids. Let M = Uk1,n1(q)�Uk2,n2(q).

Then I ∈ I(M) if and only if

dim(I) 6 k1 + k2, and dim(I ∩ (Fn1
q ⊕ 0)) 6 k1.

Notation 83. Let S1 be an [n1, k1]qm/q-system and let S2 be an [n2, k2]qm/q-system. Let

X ∈ Fk1×n2
qm and define the [n1+n2, k1+k2]qm/q-system S1�XS2 to be 〈ϕ1(S1), ϕX

2 (S2)〉Fq 6
Fk1+k2
qm , where ϕ1 and ϕX

2 are defined as in (11) and (12), respectively.

The following result characterises the independent spaces of an Fqm-representation of
the free product of Uk1,n1(q) and Uk2,n2(q).

Proposition 84. Let k1, k2, k, n1, n2,m be positive integers satisfying 1 6 ki < ni 6 m for
i = 1, 2 and k = k1 + k2. Let Si be an Fqm-representation of Uki,ni

(q) for each i ∈ {1, 2}.
The following statements are equivalent.

(i) (S1 �X S2, rS1�XS2) is an Fqm-representation of Uk1,n1(q)� Uk2,n2(q).

(ii) For any Fq-subspace I ⊆ S1 �X S2 we have that

rS1�XS2(I) = dimFq(I)⇐⇒

{
dimFq(I) 6 k and

dimFq(I ∩ (S1 ⊕ 0)) 6 k1.

Proof. Let M1 = (S1 �X S2, rS1�XS2) and M2 = Uk1,n1(q) � Uk2,n2(q). Then, M1
∼= M2 if

and only if there exists an invertible Fq-linear map ψ : Fn1+n2
q −→ S1 �X S2 such that

I(M1) = I(ψ(M2)). Let G be any generator matrix associated with S1�X S2 of the form

G =

(
G1 X
0 G2

)
,

where G1 ∈ Fk1×n1
qm , G2 ∈ Fk2×n2

qm are matrices whose columns are bases of S1 and S2,
respectively. The statement now follows from the characterization of independent spaces
of M1 given in Remark 75, and the characterization of independent spaces of M2 derived
in Corollary 82.

The following result illustrates a necessary condition for S1 �X S2 to be an Fqm-
representation of Uk1,n1(q)� Uk2,n2(q).

Theorem 85. Let k1, k2, k, n1, n2,m be positive integers, with 1 6 ki < ni 6 m for
i ∈ {1, 2} and k = k1 +k2. Let Si be an Fqm-representation of Uki,ni

(q) for each i ∈ {1, 2}.
If S1�XS2 is an Fqm-representation of Uk1,n1(q)�Uk2,n2(q), then S1�XS2 is (Λk−1,k1 , k−1)-
evasive.

Proof. Assume, towards a contradiction, that S1 �X S2 is not (Λk−1,k1 , k − 1)-evasive.
Then, there exists an Fqm-hyperplane H ⊆ Fk1+k2

qm , such that H does not contain Fkqm ⊕ 0
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and dimFq(H ∩ (S1�X S2)) > k1 + k2. Set V = H ∩ (S1�X S2) and consider I 6 V , such
that dimFq(I) = k1 + k2. Since 〈I〉Fqm 6 H, we have that

rS1�XS2(I) = dimFmq 〈I〉Fqm < k1 + k2.

Hence, I is not independent and so by Proposition 84, S1�XS2 cannot be a representation
of Uk1,n1(q)� Uk2,n2(q).

Theorem 85 shows that in order to find a representation of Uk1,n1(q) � Uk2,n2(q), for
which each component Uki,ni

(q) has an Fqm-representation Si, we must find a (k1 × n2)
matrix X such that S1 �X S2 is (Λk1+k2−1,k1 , k1 + k2 − 1)-evasive.

For the remainder of this section, we set k1 = k2 = 1. In this case, we will observe
that the linear set associated with a (Λ1,1, 1)-evasive (n1 +n2)-dimensional Fq-subspace of
F2qm is an n1-club of rank (n1 + n2) in PG(1, qm). These are well-studied objects in finite
geometry, which were introduced in 2006 by Fancsali and Sziklai in the seminal paper
[19].

Definition 86. An i-club of rank n in PG(1, qm) is an Fq-linear set LS of rank k for
which all but one of its elements have weight one, while exactly one element has weight i.

It is known that in order for a club to exist, we must have n 6 m. In the case that
the rank is maximal, i.e. n = m, LS is simply called an i-club. In the literature, i-clubs
are the most studied among clubs. The interest in clubs was renewed when De Boeck
and Van de Voorde in [16] characterised the translation KM-arcs [27] exactly as those
that can be described by i-clubs in even characteristic. A first algebraic construction
was already given in [27] and the corresponding geometrical construction can be found
in [20]. Moreover, i-clubs also define linear blocking sets of Rédei type and they define
Hamming metric codes with few weights; see [30]. The algebraic description of i-clubs
has been recently investigated in [5], under the name of 1-fat polynomials; see also [34].
Constructions of (n−1)- and (n−2)-clubs in PG(1, qn), as well as t(`−1)- and t(`−1)+1-
clubs in PG(1, qrt) are known; see [31] and the references therein. Finally, we observe that
in [17] it has been shown that 2-clubs of rank 5 in PG(1, q5) do not exist.

The following result is a specialization of Theorem 85 when k1 = k2 = 1.

Theorem 87. Let n1, n2,m be positive integers, with 1 6 ni 6 m for i ∈ {1, 2} and
n = n1 + n2. Let Si be an Fqm-representation of U1,ni

(q) for each i ∈ {1, 2} and let
S := S1 �X S2. The following are equivalent.

(i) (S, rS) is an Fqm-representation of U1,n1(q)� U1,n2(q).

(ii) LS is an n1-club of rank n in PG(1, qm).

Proof. (i) =⇒ (ii): By Theorem 85, S is (Λ1,1, 1)-evasive. This means that every point in
LS has weight equal to 1, except the point 〈(1, 0)〉Fqm , which has weight n1. Hence, LS is
an n1-club of rank n in PG(1, qm).

(ii) =⇒ (i): Let P = 〈(1, 0)〉Fqm ∈ PG(1, qm). Without loss of generality, we may
assume that P is the element of LS of weight equal to n1. By the definition of a club,
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all the other points 〈(x, y)〉Fqm in LS have multiplicity 1, hence S is (Λ1,1, 1)-evasive. Let
P1 = 〈(x1, y1)〉Fqm , P2 = 〈(x2, y2)〉Fqm ∈ LS , with y1, y2 6= 0 and y1 6= y2. If y2 = λy1, with
λ ∈ Fq, then we can assume without loss of generality that P1 = 〈(0, 1)〉Fqm . Then the
point wtS(P2) > 2, since x2(P + λP1) = P2. This implies that for every pair of points
〈(x1, y1)〉Fqm , and 〈(x2, y2)〉Fqm that are different from P , it must be the case that y1, y2 are
linearly independent over Fq. Hence, (S, rS) is a representation of U1,n1(q)�U1,n2(q).

From Theorem 87, we see that if S1 �X S2 represents U1,n1(q) � U1,n2(q), then it has
to be an n1-club of rank n1 + n2 in PG(1, qn). We remark that this condition is not easy
to handle and, in particular, depends on the choice of representations S1 and S2 as the
next example illustrates.

Example 88. Consider U1,2(q), which is known to be Fqm-representable for m > 2; see
[24, Example 2.4]. Moreover, for every m > 2, any matrix

(
1 α

)
, with α ∈ Fqm \ Fq, is

a representation of U1,2(q). Suppose that U1,2(q)� U1,2(q) is represented over Fqm by the
matrix

G =

(
G1 X
0 G2

)
,

where G1 and G2 represent U1,2(q) and X =
(
x1 x2

)
. As we observed before, the linear

set arising from the q-system associated with G must be a 2-club of rank 4 in PG(1, qm)
and hence m > 4. Moreover, we may assume that x1 = 0. Let q = 2, m = 4 and
F24 = F2(α) with α4 = α + 1. Choose G1 =

(
1 α

)
, G2 =

(
1 α4

)
and x2 = α11. We

obtain that

G =

(
1 α 0 α11

0 0 1 α4

)
is an F24-representation of U1,2(2) � U1,2(2). In order to check this, we considered the
q-matroid arising from G and with the aid of magma we found that its cyclic flats are
exactly 0,F2

2 ⊕ 0,F42, whose ranks are 0, 1, 2, respectively. Hence, they are the cyclic flats
of the free product of two uniform q-matroids, by Theorem 31. In the same way can
observe that it is not possible to find any x2 such that the matrix

G =

(
1 α 0 x2
0 0 1 α2

)
∈ F2×424

represents U1,2(2)� U1,2(2) over F24 .

We conclude this section by providing an example of a 2-club of rank 5 in PG(1, 27).
To the best of our knowledge, such clubs have not been constructed previously.

Example 89. By Theorem 87, constructing a club LS ⊆ PG(1, 27) is equivalent to finding
an F27-representation (S, rS) of U1,2(2)� U1,3(2).

Let F27 = F2(α), where α7 + α+ 1 = 0. Let U1,2(2) be represented over F27 by
(
1 α

)
and let U1,3(2) be represented over F27 by

(
1 α2 α8

)
. Let S be the q-system associated

with

G =

(
1 α 0 α36 α24

0 0 1 α2 α8

)
.
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With the aid of magma, we find that the cyclic flats of M [G] are exactly 0,F22 ⊕ 0,F52.
By Theorem 31, we have that S is an F27-representation of U1,2(2)�U1,3(2) and hence LS
is a 2-club of rank 5 in PG(1, 27).

6 Open Problems

We have initiated the study of the free product and on the representibility of the free
product. Our study gives rise to several research questions. We list a few of them.

1. We showed in Example 46 that M1⊕M2 is not in general minimal inMq(M1,M2).
In fact, if 2 6 min{|Z(M1)|, |Z(M2)|}, then it is not minimal. This marked differ-
ence between matroids and q-matroids raises the question of deriving a formula (if
possible) for the number of isomorphism classes of q-matroids on Fnq with variables
the number of isomorphism classes of matroids on n elements, as well as q.

2. We showed in Example 88 that the existence of X depends on the choice of the
representations of M1 and M2 and on the field size qm. In particular, it would be
interesting to establish the properties that a matrix X should satisfy in order to
provide conditions for the representability of the free product.

3. In Theorem 85 we showed that in order to provide a representation of the free
product of two uniform q-matroids of ranks k1 and k2, it is necessary to find a q-
system which is also (Λk1+k2−1,k1 , k1 +k2−1) evasive. It is an open problem to know
if this condition is also sufficient.

4. Most of the literature on i-clubs involves clubs of maximum rank, which do not exist
for all parameters. Most relevant to our results, is to know the smallest field qm, for
which it is possible to find an i-club on PG(1, qm). This will provide the smallest
field over which the free product of rank one uniform q-matroids is representable.
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