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Abstract

Let G be a graph of order n with eigenvalues λ1 > · · · > λn. Let

s+(G) =
∑
λi>0

λ2i , s−(G) =
∑
λi<0

λ2i .

The smaller value, s(G) = min{s+(G), s−(G)} is called the square energy of G. In
2016, Elphick, Farber, Goldberg, and Wocjan conjectured that for every connected
graph G of order n, s(G) > n− 1. No linear bound for s(G) in terms of n is known.
Let H1, . . . ,Hk be disjoint induced subgraphs of G. In this note, we prove that

s+(G) >
k∑
i=1

s+(Hi) and s−(G) >
k∑
i=1

s−(Hi),

and then use this result to prove that s(G) > 3n
4 for every connected graph G of

order n > 4.

Mathematics Subject Classifications: 05C50

1 Introduction

We use standard graph theory notation throughout the paper. All graphs are simple, i.e.
with no loops or multiple edges. Let G = (V,E) be a graph of order n and size m. The
adjacency matrix of G is an n × n matrix A(G) = [aij], where aij = 1 if the vertices vi
and vj are adjacent and aij = 0, otherwise. The eigenvalues of G are the eigenvalues of
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A(G). Since A(G) is a real symmetric matrix, all eigenvalues of A(G) are real and can be
listed as

λ1(G) > · · · > λn(G).

Let B = {x1, . . . , xn} be an orthonormal basis for Rn that contains the eigenvectors of
A(G), where xi is the eigenvector corresponding to the eigenvalue λi for i = 1, . . . , n. By
the spectral decomposition (see [6, Theorem 4.1.5]), we have A(G) =

∑n
i=1 λixix

T
i . Define

A+ =
∑
λi>0

λixix
T
i , A− = −

∑
λi<0

λixix
T
i .

Both A+ and A− are positive semidefinite matrices, and the following equalities hold:

A+A− = A−A+ = 0, A(G) = A+ − A−.

The energy of a graph G, E(G), is defined to be the sum of absolute values of all
eigenvalues of G, i.e.

E(G) =
n∑
i=1

|λi(G)|.

Define
s+(G) =

∑
λi>0

λ2i (G) and s−(G) =
∑
λi<0

λ2i (G).

The parameters s+(G) and s−(G) are called the positive square energy and the negative
square energy of G, respectively. Define s(G) = min{s+(G), s−(G)} and call it square
energy of G. Clearly, s+(G) = tr((A+)2) and s−(G) = tr((A−)2).

Based on the fact that s(G) = |E(G)| for every bipartite graph, Elphick, Farber,
Goldberg and Wocjan [4] proposed the following conjecture.

Conjecture 1 ([4]). For every connected graph G of order n,

s(G) > n− 1.

The above conjecture has been verified for several graph classes, including all regular
graphs, but the general case is wide open (see [5, 1, 7] for partial results). The best
known general lower bound for s(G) is

√
n as observed by Elphick and Linz [5], and is a

consequence of a result on the chromatic number of graphs by Ando and Lin [3]. In this
paper, our main result is a linear lower bound for the square energy of connected graphs.
In particular, we show that for any connected graph G of order n > 4, s(G) > 3n

4
.

We believe that the above bound can be improved to 4n
5

using a more intricate parti-
tioning of the graph G and applying Theorem 3. We avoid doing this and content ourselves
with the slightly weaker 3n

4
bound because we believe that more ideas are needed to resolve

Conjecture 1.
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2 Main Results

An important result concerning the energy of graphs is the following.

Theorem 2 ([2]). Let H1, . . . , Hk be disjoint induced subgraphs of a graph G. Then

E(G) >
k∑
i=1

E(Hi).

We prove a similar result for the square energy of graphs.

Theorem 3. Let H1, . . . , Hk be disjoint induced subgraphs of a graph G. Then

s+(G) >
k∑
i=1

s+(Hi) and s−(G) >
k∑
i=1

s−(Hi).

Equality holds in both simultaneously if and only if G is the disjoint union of H1, . . . , Hk.

Proof. It is sufficient to prove the assertion when G is partitioned into two disjoint induced

subgraphs H1 and H2. So, let A(G) =

[
A11 A12

A21 A22

]
, where A11 and A22 are the adjacency

matrices of the induced subgraphs H1 and H2, respectively. We show that

s+(G) > s+(H1) + s+(H2).

If we apply this inequality to −A, we get the second inequality.
Let A+ = [Bij] and A− = [Cij], 1 6 i, j 6 2, partitioned conformally as A(G). We

have Aii = Bii − Cii, for i = 1, 2. Since A+ and A− are positive semidefinite matrices,
both Bii and Cii are also positive semidefinite for i = 1, 2 (see [6, Theorem 7.7.7]). Now,
we have

s+(G) = tr((A+)2) = tr(B2
11) + tr(B2

22) + 2 tr(B12B
T
12).

Since B12B
T
12 is a positive semidefinite matrix, we have

tr(B12B
T
12) > 0.

Since Bii = Aii + Cii and Cii is a positive semidefinite matrix, λr(Bii) > λr(Aii) for
1 6 r 6 pi, where pi is the number of positive eigenvalues of Aii for i = 1, 2. This implies

s+(G) > tr(B2
11) + tr(B2

22) > s+(H1) + s+(H2).

Note that if equality holds simultaneously, then tr(B12B
T
12) = 0 = tr(C12C

T
12) which

implies B12 = 0 = C12 and so B21 = BT
12 = 0 = CT

12 = C21. Hence, H1 and H2 are disjoint.
Conversely, if G is the disjoint union of H1 and H2, the equality is clearly satisfied. The
proof is complete.

We recall the following well-known fact (cf. [6, Theorem 4.3.17]).
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Figure 1: Spanning tree T

Theorem 4 (Interlacing Theorem). Let A be a real symmetric matrix of order n. Let B
be a principal submatrix of A of order n− 1. Then, for 1 6 i 6 n− 1,

λi(A) > λi(B) > λi+1(A).

We now give a linear lower bound for the square energy of connected graphs using
Theorem 3.

Theorem 5. For any connected graph G of order n > 4,

s(G) >
3n

4
.

Proof. For n 6 10, one can use a computer to verify the stronger claim that s(G) > n−1.
So, assume n > 11. We proceed by induction on n.

The assertion is true if G is a bipartite graph or a cycle (see [1]). So, assume G is not
bipartite and has maximum degree ∆ > 3. Let T be a spanning tree of G rooted at a
vertex v, where degT (v) = ∆. If ∆ = 3, we can find an edge e in T such that T − e has
two components T1 and T2, both of order at least 4 since n > 11. Using Theorem 3 and
the induction hypothesis,

s(G) > s(G[V (T1)]) + s(G[V (T2)]) >
3|V (T1)|

4
+

3|V (T2)|
4

=
3n

4
.

Now, let ∆ > 4. Suppose T − v has a component C of order at least 4. Since C
and T − V (C) are connected and have order at least 4, we are done by the induction
hypothesis. So, we may assume that every component of T − v has at most 3 vertices.
Hence, T is a tree, as shown in Figure 1.

First, suppose that G − v has a subgraph H ∼= P4. Let e be an edge in H. Suppose
T −v+e has a component C of order at least 4. Since |V (C)| 6 6, G−V (C) is connected
and has order at least 5. Thus, by the induction hypothesis and Theorem 3, s(G) > 3n

4
.

So we may assume that every component of T − v + e has order at most 3. This implies
that the component (say C) of the graph T − v +E(H) (i.e., the graph T − v with extra
edges E(H)), which contains H, has order at most 6. Again, applying the induction
hypothesis to C and G− V (C) gives s(G) > 3n

4
.
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Now, consider the case that G− v has no P4 as a subgraph. Then G− v is the disjoint
union of some K3, P3, K2 and K1. Let the number of K3, P3, K2 and K1 in G− v be `1,
`2, `3 and `4, respectively. Then n = 3`1 + 3`2 + 2`3 + `4 + 1. Moreover, the spectrum of
G− v is

{2(`1),
√

2
(`2)
, 1(`3), 0(`2+`4), (−1)(2`1+`3), (−

√
2)(`2)}.

Note that G is not bipartite, so it contains an odd cycle. Since G − v does not have
P4 as a subgraph, all odd cycles in G are triangles.

Now, if n = 11, then we can find an edge uw (where u,w 6= v) in G such that G−u−w
is connected. Then, using the stronger claim for n 6 10, we have

s(G) > s(K2) + s(G− u− w) > n− 2 >
3n

4
.

Now assume n > 12. Note that min{λ1(G), |λn(G)|} >
√
`1 + `2 + `3 + `4 since G has

an induced star of order `1 + `2 + `3 + `4 + 1. Using the Interlacing Theorem,

s−(G) > λ2n(G) + s−(G− v)− λ2n−1(G− v)

> (`1 + `2 + `3 + `4) + (2`1 + `3 + 2`2)− 2

> n− 3 >
3n

4
.

This proves the assertion for s−(G).
Now, if `1 > 1, then λ1(G− v) = 2. Using the Interlacing Theorem,

s+(G) > λ21(G) + s+(G− v)− λ21(G− v)

> (`1 + `2 + `3 + `4) + (4`1 + 2`2 + `3)− 4

= n− 3 + (2`1 − 2) > n− 3 >
3n

4
.

On the other hand, if `1 = 0, then λ1(G− v) 6
√

2. Again,

s+(G) > λ21(G) + s+(G− v)− λ21(G− v)

> (`2 + `3 + `4) + (2`2 + `3)− 2

= n− 3 >
3n

4
.

This proves the assertion for s+(G), and the proof is complete.
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