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Abstract

Let N be the number of copies of a small subgraph H in an Erdős-Rényi graph
G ∼ G(n, pn) where pn → 0 is chosen so that EN = c, a constant. Results of
Bollobás [4] show that for regular graphs H, the count N weakly converges to a
Poisson random variable. For large but finite n, and for the specific case of the
triangle, investigations of the upper tail P(N > kn) by Ganguly, Hiesmayr and
Nam [Combinatorica 44, 2024] revealed that there is a phase transition in the tail
behavior and the associated mechanism. Smaller values of kn correspond to disjoint
occurrences of H, leading to Poisson tails, with a different behavior emerging when
kn is large, guided by the appearance of an almost clique. We show that a similar
phase transition also occurs for the tail probabilities when H is any regular graph,

at the point where k
1−2/q
n log kn = log n (q is the number of vertices in H). This

establishes universality of this transition, previously known only for the case of the
triangle.

Mathematics Subject Classifications: 05C80, 60F10

1 Introduction

Let G(n, p) be the Erdős-Rényi random graph where each edge is present independently
with probability p. Over the last few decades, various properties of these graphs have been
investigated, resulting in a very fine understanding of this model. For a fixed graph H, let
QH(G) be the number of copies of H in G ∼ G(n, p). Starting with the seminal paper of
Erdős and Rényi [12], the distribution of QH(G), both for fixed p and for p varying with
n at different rates, has been the subject of intense research. For example, the probability
of QH(G) > 0 was studied by [22] where H was a complete graph. This work was later
extended to other subgraphs by Bollobás [4]. In addition to this, in many cases we also
know asymptotic distributions of QH(G). A criterion for asymptotic normality of QH(G)
was obtained by Ruciński [21]. This however must exclude the regime of pn where we
expect Θ(1) copies of the subgraph in expectation where asymptotic normality cannot
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hold. A natural guess for the limiting distribution in this case is Poisson, but it turns out
that it is not true in general. However, for the large class of strictly balanced graphs (which
includes all regular graphs), asymptotic Poisson behavior was established by Bollobás [4]
(see the discussion at the beginning of Section 3 for the definition of strictly balanced
graphs).

A particularly active direction of research has been the study of the upper tail probabil-
ity P(QH(G) > kn), the so-called “infamous upper tail”. The seminal paper of Chatterjee
and Varadhan [8] achieved asymptotically sharp estimates on this for the case of fixed
pn = p > 0, using the theory of dense graph limits and graphons (see [18] or [6]) as well as
the celebrated Szemerédi regularity lemma [23], by reducing the computation of the up-
per tail probability to a natural “mean-field” variational problem. However, due to poor
quantitative estimates in the regularity lemma, arguments in [8] could only be extended
to pn decaying as a negative power of log n, see [20]. The most widely studied case is of
H = K3, the triangle. To allow pn vanishing polynomially in n, Chatterjee and Dembo
[7] developed the powerful nonlinear large deviations machinery, which, in the case of
triangles, established the validity of the mean-field problem for pn to decay slightly slower
than n−1/42 (a subsequent work of Eldan [11] improved to pn � n−1/18). However, the
mean-field variational formulation is expected to hold as long as pn � log n/n. Major
progress towards this was achieved by Augeri [1] and Cook and Dembo [9], extending the
range of valid pn to � n−1/2, overcoming a significant barrier in this problem. Finally, a
breakthrough by Harel, Mousset and Samotij [15] essentially solved the upper tail problem
in the regime pn � 1/n, using methods inspired by the classical moment arguments of
Janson, Oleszkiewicz and Ruciński [16], leaving the interesting case of pn = Θ(1/n) still
open. Sharp understanding of the upper tail (for the case of K3) in this sparse regime was
finally achieved by Ganguly, Hiesmayr and Nam [14] and Chakraborty, van der Hofstad
and den Hollander [5], thereby completing our understanding of the upper tail in the case
of the triangle.

Let us now turn our attention to the upper tail problem for general graphs, results
for which go back to [16]. The results established in [7] and [11] certified the validity
of the mean-field variational problem for general graphs, sharp estimates for which were
obtained by [3]. In this context, regular graphs turn out to be easier to analyze, and
consequently the results obtained are sharper in this case. For instance, refining the
techniques of [15], [2] proved an upper-tail result for general regular graphs H whenever

np
∆/2
n � (log n)1/(q−2), where ∆ is the degree of H and q is the number of vertices of

H. In contrast to this, our primary focus in this paper is to consider the case when the
expected count is Θ(1) instead. Note that the expected number of copies of H in an
Erdős-Rényi graph G is simply

EQH(G) =

(
n

q

)
pq∆/2n = Θ

((
np∆/2

n

)q)
, as n→∞.

which is Θ(1) when np
∆/2
n = Θ(1).

As discussed earlier, the results of [4] show that QH(G) is asymptotically Poisson in
this case (hence the term “Poisson regime”). However, the arguments there do not yield
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effective quantitative prelimiting tail estimates, which are quantities of the form

P(QH(G) > kn),

for an arbitrary sequence kn →∞. (A point worth noting here is that since, in our regime,
the subgraph count is Poisson with constant mean, probabilities of the form

P(QH(G) > (1 + δ)EQH(G)),

for δ fixed, is given by the Poisson tail. Thus, our primary interest is in kn growing as
a function of n.) In the case of H = K3, the triangle, this prelimiting upper tail was
investigated only recently in [14], where it was shown that the behavior of this upper
tail probability undergoes a transition when kn is around O(log3 n) (that the behavior
for kn larger than this persists till the maximum of kn = Θ(n3) was proved in [5]). The
structural reason for the transition is the following: when kn is smaller than the threshold,
the dominant mechanism is the occurrence of many disjoint copies, but when kn is above
the threshold, the mechanism changes to having an (almost) clique.

In this paper we show that the tail probabilities exhibit a similar phase transition also
happens when H is any regular graph. As above, we will fix H to be a connected q-vertex
∆-regular graph (with q > 3) throughout this paper. Our main result is the following.

Theorem 1. Let kn > 2 and pn = n−2/∆. If G ∼ G(n, pn), the probability of QH(G) > kn
satisfies

C1 exp (−C2Ln) 6 P(QH(G) > kn) 6 C3 exp (−C4Ln) , where,

Ln
def
= min(kn log kn, k

2/q
n log n).

Here the constants C1, C2, C3, C4 > 0 only depend on H. (This choice of pn = n−2/∆

ensures that EQH(G) = Θ(1).)

It is easy to extend this result for pn = dn−2/∆ for any constant d > 0, but we
choose d = 1 for notational simplicity. Theorem 1 almost (up to the constant preceding
the exponent) achieves the sharp phase transition for the upper-tail probability at kn
satisfying k

1−2/q
n log kn = log n, as obtained in [14] for the special case of H = K3. Note

that although our result is a significant first step, it does not indicate the precise constant
in the exponent, or produce a structure theorem analogous to [14]. These questions are of
great relevance, and we hope to address them in future work.

Remark: Throughout this paper, a copy of a graph H in G is counted only up to
automorphisms. Equivalently, it is a subset of edges of G forming a graph isomorphic to
H.

2 Idea of proof

We begin by setting up the notation. For any graph G, we will use V (G), E(G) to denote
the vertex set and the edge set respectively, while v(G), e(G) will be the respective sizes

the electronic journal of combinatorics 32(3) (2025), #P3.54 3



of these sets. We will write dv to denote the degree of a vertex v. C = C(H) will always
denote a constant that depends only on H.

There are two main subparts to the proof. The first part deals with the case when kn
is small, and the second part is for the case of large kn. It turns out that arguments in
the first part works for all kn 6 nc for some small c that depends on H, and the second
part works for all kn that grow faster than everything that is poly log n. It is then clear
that these two proofs cover all possible values of kn. The phase transition will occur in
the former case, while the purpose of the latter is to show that the behavior shown in
the first part persists after the phase transition all the way up to the maximum possible
value of kn.

The proof for the case of small kn is via a reduction to the analysis of the structure of
“spanned graphs”. This is inspired by [14] which treats the same problem in the case of the
triangle. However, informally, that paper uses the fact that since the critical probability
for a triangle is pn = O(1/n), the probability that a given subgraph with v vertices and
e edges occurs as an isomorphic copy is at most(

n

v

)
p−en 6 n−(e−v).

Thus this probability is directly related to the quantity e−v+1 which can be interpreted
as the number of “excess edges” in the subgraph after a spanning tree has been chosen.
Such an idea fails in our case because for a general ∆-regular graph the critical probability
is instead pn = n−2/∆, so that the above bound is now n−(2e/∆−v), for which a similar
interpretation is not available. To circumvent this issue, we prove that even in this
general case, any “spanned graph” G′ must satisfy 2e(G′)/∆ − v > Ce(G′) for some
constant C, see Lemma 12. Armed with this inequality, we bound the probability that
the graph contains a certain spanned graph G′ which has many copies of H. Due to
the last inequality, this is now related to the minimal number of edges in a candidate G′

containing, say, ` copies of H, which is at least `2/q up to constants (due to Lemma 7). It
turns out that the concavity of this map ` 7→ `2/q implies that it is either optimal to have
all the copies be in a large spanned component, or occur disjointly, depending on how
large kn is. As a consequence of this dichotomy, we obtain our phase transition. However,
a formal proof requires one to also control the entropy stemming from the number of
possible ways to distribute kn copies of H among spanned graphs. This is done using a
dyadic decomposition argument where we classify spanned components into logarithmic
many collections depending on the number of copies they contain. See Lemma 14 for
more details.

In the case of large kn, the main idea is that if a graph has too many copies of H, then
there must occur certain subgraphs, such that the expected count of H conditioned on
their occurrence in the random graph is near optimal (see Lemma 16 for more details).
This idea first appeared in [15] (who called such subgraphs “cores”), and was adopted by
[5] to prove a result similar to ours but only for the triangle. However a näive implementa-
tion of the approaches found in these papers fail in our case. As Lemma 16 will show, the
upper tail bound essentially boils down to upper bounding the occurrence probability of
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a core. This involves an efficient union bound over all cores. To illustrate the difficulties
involved, let us see why a näive direct count approach already fails for the case of H = C4,
the cycle on 4 vertices. In the case kn ∼ n, it turns out that all the complete bipartite
graphs K2,m (i.e. 2 vertices on one side) with m = O(

√
n) qualify as cores. Note that

their count is of the order of
(
n
m

)
= exp(O(

√
n log n)) whose exponent exactly matches

the probability bound of C ′ exp(−C
√
n log n) as claimed by Theorem 1 in this case. This

reduces the direct union bound approach to a delicate game of constants.
Our proof avoids these issues, and instead crucially uses two estimates:

1. an upper bound on the number of copies of H in another graph G in terms of e(G),

2. and, a lower bound on the product of degrees dudv for all edges (u, v) in a core.

It turns out that for simple graphs H, these estimates can follow from direct combinatorial
arguments that exploit the specific structure of H. For example, in the case of cycles, a
standard spectral argument is sufficient to deduce an (essentially optimal) upper bound
on the number of copies of it in a graph with e edges. Further, the inequality involving the
product of degrees can also be established via direct combinatorial methods. We expect
other simple classes of graphs to also yield to similar arguments. Note that this is similar
in spirit to [5] whose analysis also crucially relied on the geometry of the triangle. But
since we wish to deal with all regular graphs at once, we must employ alternate means to
deduce information about the structure of these cores. For this reason, we develop a novel
strategy invoking Finner’s inequality [13]. This is a form of Hölder’s inequality which has
proved to be particularly useful in the context of graphons, as demonstrated, for example,
in [19] (see section 4). A straightforward application of this inequality yields the desired
bound on the number of copies of H in a graph with e edges, as proved in Lemma 7.
But this alone is not sufficient for the proof. A much more involved analysis also allows
us to also prove bounds on the expected count of H in a graph containing a specific
edge (Lemma 9). These results allow us to not only show that cores themselves contain
many copies of H (Lemma 19), but also that each edge in the core has the interesting
property of having a large product of degrees (Lemma 20), as asserted in point (2) above.
All these facts are finally combined in the dyadic decomposition argument of Lemma
21, which essentially exploits the fact that since the product of degrees is high, very low
degree vertices can only have edges to vertices with very high degree. Since there are few
vertices with very high degree, this allows us to cheaply account for the neighbor sets of
these low degree vertices, which are the main sources of trouble in the proof.

We end this section with a word about asymptotic notation. In addition to the usual
O(·),Ω(·),Θ(·), we also use Õ(g(n)) 3 f(n) to mean that f(n)/poly log n = O(g(n)), and

Ω̃(g(n)) 3 f(n) to mean that f(n)poly log n = Ω̃(g(n)). Finally, õ(g(n)) 3 f(n) if and
only if f(n)h(n) = o(g(n)) for every h(n) that is poly log n. So, for example, n0.9 = õ(n)

but n/ log100 n 6= õ(n). In fact n/ log100 n = Ω̃(n).
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3 Lower bounds

This short section collects the necessary results allowing us to assert the lower bound in
our main theorem.

Define the density of a graph H to be the ratio d(H)
def
= e(H)/v(H) (see [17, Chapter

3]), and call a connected graph strictly balanced if for any proper subgraph H ′ ( H,
d(H ′) < d(H). It is easy to see that ∆-regular graphs are strictly balanced, because
the entire graph has density ∆/2, but any proper subgraph must have some vertex with
degree < ∆, so that the density is strictly smaller than ∆/2. By the Poisson limit theorem
for subgraph counts at the threshold1 due to Bollobás [4], the asymptotic distribution of
QH(G(n, pn)) is therefore Poisson. This fact is also used in the proof of the lemma below,
which asserts a lower bound on the probability of having disjoint copies of H.

Lemma 2 (Disjoint occurrence). Let Ds denote the event that there are s disjoint copies
of H in G ∼ G(n, p = pn). Fix ε > 0. If s 6 n1−ε,

P(Ds) > C exp (−C ′s log s)

for all sufficiently large n depending on ε. Here C,C ′ are constants depending on H.

The matching upper bound is stated in Lemma 11.

Proof. Divide the vertex set [n] of Kn into s (almost) equal sized groups of size either

bn/sc or dn/se. Set m
def
= bn/sc. Then,

P(s disjoint copies of H) > P(G(m, pn) has a copy of H)s (1)

To lower bound the probability of the latter, let q = m−2/∆, and observe that pn =
n−2/∆ > (2ms)−2/∆, as long as

2ms > n ⇐⇒ 2bn/sc > n/s,

which happens for all sufficiently large n depending on s (and uniformly in s 6 n1−ε

depending on ε). We assume this holds below. Then

P(G(m, pn) has a copy of H) > P(G(m, (2ms)−2/∆) has a copy of H). (2)

We now employ a two stage sampling procedure as follows: to sample a G(m, (2ms)−2/∆),
we first sample a G(m,m−2/∆), and then keep each of its edges independently with proba-
bility (2s)−2/∆. It is clear that the resulting graph is a sample from G(m, (2ms)−2/∆). But
crucially, since the expected number of copies of H in G(m,m−2/∆) is Θ(1), we can employ
the classical fact that the distribution of subgraph counts at the threshold is Poisson for
strictly balanced H (see, for instance, [4] or [17, Theorem 3.19]), to conclude that

P(G(m,m−2/∆) has a copy of H) > c,

1This terminology is often used in the literature to mean a choice of pn for which EQH(G(n, pn)) = Θ(1).
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for a constant c depending on H for all sufficiently large m. A given copy of H in
G(m,m−2/∆) survives the second round of the procedure only if all its edges survive,
which happens with probability(

(2s)−2/∆
)e(H)

= (2s)−
2
∆
q∆
2 = (2s)−q.

Putting these together,

P(G(m, (2ms)−2/∆) has a copy of H) > c(2s)−q,

so that we can invoke (1) and (2) to obtain

P(s disjoint copies of H) >
(
c(2s)−q

)s
> C exp (−C ′s log s) ,

for sufficiently large n depending on ε.

The next lemma is a lower bound on clique occurrence probabilities.

Lemma 3 (Clique). The probability that there is a clique of size s > 2 in G ∼ G(n, p = pn)
is at least exp (−cs2 log n) where c depends only on ∆.

Proof. The probability of having a clique of size s is at least that of the event that any
fixed set of s vertices have all edges in between themselves. The probability of this latter
event is exactly:

p
(s2)
n > exp

(
−1

2
(s− 1)2 log(1/pn)

)
= exp

(
−cs2 log n

)
,

where c = c(∆). This proves the result.

These two results together imply

Lemma 4 (Lower bound of Theorem 1). In the notation above,

P(QH(G) > kn) > C exp (−C ′Ln) = C exp
(
−C ′min(kn log kn, k

2/q
n log n)

)
for constants C,C ′ depending on H.

Proof. Given the lemmas above, the only remaining part is that the smallest clique con-
taining at least kn copies of H is of size Ck

2/q
n , but this is immediate from a counting

argument.
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4 Finner’s inequality

As described earlier, one of the most important results we require throughout the sequel
is the following variant of Hölder’s inequality. As far as we could tell, applications of this
inequality in the context of large deviations on random graphs first appeared in [19], where
they used it to analyze the variational problem associated with the upper tail deviations
for G(n, p) with fixed p.

Lemma 5 (Finner’s inequality, [13]). Let µ1, µ2, . . . , µn be probability measures
on Ω1,Ω2, . . . ,Ωn respectively and define Ω =

∏n
i=1 Ωi and µ =

∏n
i=1 µi. Also let

A1, A2, . . . , Am be nonempty subsets of [n] = {1, . . . , n}, and for any subset A ⊆ [n],
denote µA =

∏
i∈A µi and ΩA =

∏
i∈A Ωi. Suppose fi ∈ Lpi(ΩAi , µAi) for each i ∈ [m],

such that for all x ∈ [n], ∑
i:x∈Ai

p−1
i 6 1.

Then we have the inequality∫ m∏
i=1

|fi|dµ 6
m∏
i=1

(∫
|fi|pidµAi

)1/pi

.

Here, on the left-hand side, one should think of each fi extended to a function on Ω which
depends only on the coordinates in Ai.

Our primary application of this will be to count homomorphisms from H to G, using
the graphon representation of G.

Definition 6 (Graphon representation of a finite graph G). Let G be a finite graph on n
vertices, and without loss of generality, suppose its vertices are v0, . . . , vn−1. The graphon
(representation) of G is defined as a function fG : [0, 1]2 → {0, 1} as follows.

fG(x, y) = 1 ⇐⇒ ∃ 0 6 i, j < n :
i

n
6 x <

i+ 1

n
,
j

n
6 y <

j + 1

n
, (vi, vj) ∈ E(G)

else it is zero.

It is a classical result following from direct computation that the number of homo-
morphisms from H to G is given by (see, for instance, [18]*Chapter 7, or [6]*Chapter
3),

nq
∫

[0,1]q

∏
(u,v)∈E(H)

f(tu, tv)
∏

u∈V (H)

dtu.

This would enable us to bound the number of homomorphisms from H to G, and therefore
the number of copies of H in G.

Later, we will need a slightly more general result relaxing the regularity requirement
for H. While it may also be deduced from [19]*Corollary 3.2, we provide a proof for
completeness.
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Lemma 7. Let H be q-vertex e-edge (not necessarily connected) graph with each degree
bounded above by ∆. Let G be a graph with graphon fG. Write n = |V (G)|, and m =
|E(G)|. Then the number of homomorphisms of H in G, NH(G) is at most

NH(G) 6 Cnq−2e/∆me/∆.

In particular for a regular H, 2e/∆ = q, so we have NH(G) 6 Cmq/2.

Proof. We apply Finner’s inequality with Ωi = [0, 1] for all i ∈ [n], and µi being the
uniform measure on [0, 1]. For each edge e = (u, v) of H we choose Ae = {u, v} and
pe = ∆. Then the conditions are satisfied, and we get∫

[0,1]q

∏
(u,v)∈E(H)

fG(tu, tv)
∏

u∈V (H)

dtu 6
∏

(u,v)∈E(H)

(∫
[0,1]2

fG(tu, tv)
∆dtudtv

)1/∆

=

(
2m

n2

)e/∆
6 Cme/∆n−2e/∆,

where we use the fact that fG is zero-one valued, so, f∆
G = fG. This finishes the proof.

The graphon representation and the formula for homomorphism density is also useful
in bounding the expected number of copies of a particular graph H in a random graph G
with independent edges. For a given collection of probabilities 0 6 puv 6 1 for u < v ∈ [n],
consider the random graph model on the vertex set [n] where the edge (u, v) is present
with probability puv, independently of other edges (undirected edges). For such a model
we define:

Definition 8 (Graphon representation of a finite random graph G with independent
edges). For the model described above, the associated graphon is defined as a function
fG : [0, 1]2 → [0, 1] satisfying

fG(x, y) = pij ⇐⇒ ∃ 0 6 i, j < n :
i

n
6 x <

i+ 1

n
,
j

n
6 y <

j + 1

n
, (i, j) ∈ E(G)

else it is zero.

A particular application of Finner’s inequality also produces the following result about
the number of copies of H in G containing a given edge e ∈ G, which, as alluded to in
section 2, will be crucial in our analysis of the core, see Lemma 20. While similar results
have appeared in the literature, this precise form appears to be new.

Lemma 9. Let G∗ be a subgraph of Kn (with vertex set [n]). Consider the random graph
model G on [n] where the edges in G∗ are present with probability 1 and every other edge
is present with probability p independently. Suppose G∗ has a distinguished edge (a, b),
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and let H be a ∆-regular graph with q vertices. Then, the expected number of copies of H
in G containing (a, b) is at most

EQH(G) 6 C(H)
(
da + np∆

)∆−1
∆
(
db + np∆

)∆−1
∆
(
e+ n2p∆

)q/2−2+1/∆

where C(H) is a constant depending only on H, e = e(G∗) and da, db are the degrees of
a, b respectively in G∗.

In addition, if Q′H(G) is the number of expected number of copies of H in G containing
(a, b) where some edge must come from outside G∗, then

EQ′H(G) 6 C(H) max(B1, B2, B3)

where

B1
def
=
(
da + np∆

)∆−2
∆
(
db + np∆

)∆−1
∆
(
e+ n2p∆

)q/2−2+1/∆
pn1/∆,

B2
def
=
(
da + np∆

)∆−1
∆
(
db + np∆

)∆−2
∆
(
e+ n2p∆

)q/2−2+1/∆
pn1/∆,

B3
def
=
(
da + np∆

)∆−1
∆
(
db + np∆

)∆−1
∆
(
e+ n2p∆

)q/2−2
pn2/∆.

The terms B1, B2, B3 correspond to the cases when the edge coming from outside G∗

is adjacent to a, b or none, respectively.

Proof. We begin by proving the first claim. Observe that

QH(G) 6
∑
u∼v

N(u, v),

where

N(u, v)
def
=

∑
φ:V (H)→[n]

φ(u)=a,φ(v)=b,
φ injective

∏
x∼u

1(φ(u),φ(x))∈E(G)

∏
y∼v

1(φ(v),φ(y))∈E(G)

∏
w∼z

w,z 6=u,v

1(φ(w),φ(z))∈E(G). (3)

N(u, v) counts all (injective) mappings φ : H → [n] preserving edges in H, such that the
edge (u, v) maps to (a, b). Here by x ∼ y we mean (x, y) ∈ E(H) (for brevity, in this
proof we also adopt the convention that for u, if we write x ∼ u, we assume that x 6= v,
and similarly for v). Therefore, it is sufficient to fix u ∼ v and prove the result, because
summing over all distinct u ∼ v will only change the constant C(H). For fixed u ∼ v we
have

EN(u, v) 6
∑
φ

E

∏
x∼u

1(φ(u),φ(x))∈E(G)

∏
y∼v

1(φ(v),φ(y))∈E(G)

∏
w∼z

w,z 6=u,v

1(φ(w),φ(z))∈E(G)

 ,
the electronic journal of combinatorics 32(3) (2025), #P3.54 10



where φ is understood to satisfy the conditions in (3). Since φ is injective, all the edge
random variables in the expectation above are independent, so we can write:

=
∑
φ

∏
x∼u

E
[
1(φ(u),φ(x))∈E(G)

]∏
y∼v

E
[
1(φ(v),φ(y))∈E(G)

] ∏
w∼z

w,z 6=u,v

E
[
1(φ(w),φ(z))∈E(G)

]
.

For any vertex α ∈ [n], define the block of α as Bα
def
= [α/n, (α + 1)/n). Then note that,

for instance, E
[
1(φ(x),φ(y))∈E(G)

]
= f(tx, ty) for any tx ∈ Bφ(x), ty ∈ Bφ(y), where f is the

graphon associated with the random graph model G. For any collection {tx ∈ Bφ(x) : x ∈
H}, we then have that:

=
∑
φ

∏
x∼u

f(tu, tx)
∏
y∼v

f(tv, ty)
∏
w∼z

w,z 6=u,v

f(tw, tz).

Fix tu ∈ Ba, tv ∈ Bb. Since the summand is a constant over all choices of (tx)x6=u,v as long
as (tx)x 6=u,v ∈

∏
x 6=u,v Bφ(x), the above sum is the same as

= nq−2
∑
φ

∫
∏
x 6=u,v Bφ(x)

∏
x∼u

f(tu, tx)
∏
y∼v

f(tv, ty)
∏
w∼z

w,z 6=u,v

f(tw, tz)
∏
x 6=u,v

dtx,

where the factor of nq−2 is because the volume of each block Bφ(x) is n−1. Finally observe
that across various choices of φ, the domains

∏
x 6=u,v Bφ(x) are disjoint, so that the above

is

6 nq−2

∫
[0,1]q−2

∏
x∼u

f(tu, tx)
∏
y∼v

f(tv, ty)
∏
w∼z

w,z 6=u,v

f(tw, tz)
∏
x 6=u,v

dtx.

At this point we apply Finner’s inequality with the sets given by {x} for all x ∼ u, {y}
for all y ∼ v, and {w, z} for all w ∼ z with w, z 6= u, v. We use the weights pi ≡ ∆ for all
these sets. It is easy to verify that the conditions in Lemma 5 hold, and therefore:

6 nq−2
∏
x∼u

(∫
f(tu, tx)

∆dtx

)1/∆∏
y∼v

(∫
f(tv, ty)

∆dty

)1/∆

∏
w∼z

w,z 6=u,v

(∫
f(tw, tz)

∆dtwdtz

)1/∆

.

In these products, the values for x, y, w, z do not matter because the integrals are always
over [0, 1] for each variable, so we can simplify to (we drop the domains [0, 1] and [0, 1]2

from the notation):

= nq−2

(∫
f(tu, tx)

∆dtx

)∆−1
∆
(∫

f(tv, ty)
∆dty

)∆−1
∆
(∫

f(tw, tz)
∆dtwdtz

) q
2
−2+ 1

∆

,
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where we use the fact that the number of edges with no endpoint among u, v is q∆/2 −
(2∆ − 1) = q∆/2 − 2∆ + 1. As the last step, we use the fact that f(tu, tx) is 1 when
tx ∈ Bc with c ∼ a in G∗ and otherwise it is p. Similar observations also hold for f(tv, ty)
and f(tw, tz). Therefore the above is

6 nq−2

(
da
n

+ p∆

)∆−1
∆
(
db
n

+ p∆

)∆−1
∆
(

2e

n2
+ p∆

) q
2
−2+ 1

∆

,

because f(tu, tx) = 1 if and only if φ(u) ∼ φ(x) = a in G∗ (otherwise it is p). A similar
argument holds for the other two integrals. The factor of 2 (in 2e) in the last integral is
because each edge in G∗ is counted twice. Simplifying the above,

= nq−2 · n−2 ∆−1
∆
−2( q2−2+ 1

∆)︸ ︷︷ ︸
=1

(
da + np∆

)∆−1
∆
(
db + np∆

)∆−1
∆
(
2e+ n2p∆

) q
2
−2+ 1

∆ ,

which completes the proof by absorbing the factor of 2 in front of e into the constant
C(H).

We now modify this to prove the second claim. Similar to (3), define

Nα,β(u, v)
def
=

∑
φ:V (H)→[n]

φ(u)=a,φ(v)=b,
φ injective

∏
x∼u

1(φ(u),φ(x))∈E(G)

∏
y∼v

1(φ(v),φ(y))∈E(G)

∏
w∼z

w,z 6=u,v

1(φ(w),φ(z))∈E(G) · 1(φ(α),φ(β))/∈E(G∗)

for all (α, β) ∈ E(H) such that (α, β) 6= (u, v). This counts the same quantity as N(u, v),
except now, (α, β) maps to an edge outside G∗. Observe that

Q′H(G) 6
∑

(α,β)∈E(H)

∑
E(H)3(u,v)6=(α,β)

Nα,β(u, v)

so that it is again sufficient to prove the bound in question for Nα,β(u, v) for fixed
α, β, u, v ∈ H instead of Q′H(G). Using calculations similar to the above we then ob-
tain that

ENα,β(u, v) 6 nq−2

∫
[0,1]q−2

∏
x∼u

f(tu, tx)
∏
y∼v

f(tv, ty)
∏
w∼z,

w,z 6=u,v

f(tw, tz) · 1f(tα,tβ)=p

∏
x

dtx,

because f(tα, tβ) = p if and only if (φ(α), φ(β)) /∈ E(G∗). As indicated in the remark after
the statement, now there are several cases depending on if α = u, α = v or α, β 6= u, v
(the cases for β being similar).
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• Case α = u, β 6= v: The integral is then bounded by Finner’s inequality similar to
the above to obtain

ENα,β(u, v) 6 nq−2
∏

β 6=x∼u

(∫
f(tu, tx)∆dtx

)1/∆ ∏
y∼v

(∫
f(tv, ty)

∆dty

)1/∆

∏
w∼z

w,z 6=u,v

(∫
f(tw, tz)

∆dtwdtz

)1/∆(∫
f(tu, tβ)∆1f(tu,tβ)=pdtβ

)1/∆

.

Observe that the last factor is 6 p, so the above is bounded by

6 nq−2

(
da
n

+ p∆

)∆−2
∆
(
db
n

+ p∆

)∆−1
∆
(

2e

n2
+ p∆

) q
2
−2+ 1

∆

· p

=
(
da + np∆

)∆−2
∆
(
db + np∆

)∆−1
∆
(
2e + n2p∆

) q
2
−2+ 1

∆ pn1/∆.

• Case α = v, β 6= u: A calculation similar to the previous case will yield:

ENα,β(u, v) 6
(
da + np∆

)∆−1
∆
(
db + np∆

)∆−2
∆
(
2e+ n2p∆

) q
2
−2+ 1

∆ pn1/∆.

• Case α, β 6= u, v: Then,

ENα,β(u, v) 6 nq−2
∏
x∼u

(∫
f(tu, tx)∆dtx

)1/∆ ∏
y∼v

(∫
f(tv, ty)∆dty

)1/∆

∏
w∼z

w,z 6=u,v
(w,z)6=(α,β)

(∫
f(tw, tz)

∆dtwdtz

)1/∆(∫
f(tα, tβ)∆1f(tα,tβ)=pdtαdtβ

)1/∆

.

Again the last factor is at most p, so that the above is bounded by

6 nq−2

(
da
n

+ p∆

)∆−1
∆
(
db
n

+ p∆

)∆−1
∆
(

2e

n2
+ p∆

) q
2−2

· p

=
(
da + np∆

)∆−1
∆
(
db + np∆

)∆−1
∆
(
2e + n2p∆

) q
2−2

pn2/∆.

Taking a maximum over these three cases and modifying C = C(H), we obtain the
desired result.

5 Few copies

In this section, we will prove our main theorem for “small” values of kn. Henceforth we
will abbreviate Q = QH(G).

Definition 10 (Spanned Graph). A graph G is called an H-spanned graph (or
“spanned graph” for short) if G is connected and each edge is contained in a copy of
H in G. We say it is spanned by ` copies of H if there are ` copies of H in G such that
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each edge of G is contained in one of these copies. We will often use `∗ = `∗(G) to indicate
the smallest possible value of ` given G.

For brevity, we will often say that a graph is spanned by ` copies of H if it is a spanned
graph and it is spanned by ` copies of H.

This is the analog of “triangle-induced subgraphs” as defined in [14]. Also note that
`∗ = 1 if and only if G = H up to isomorphism.

Next we define some useful events. Informally, the purpose of these events is to
decompose the occurrences of H in G into connected components (where two components
are adjacent if they share a vertex).

• F`: there is a spanned subgraph of G which is spanned by ` copies of H.

• Ds: there are s vertex-disjoint copies of H in G (for brevity we will write “disjoint”
to mean vertex-disjoint).

• Es
`1,...,`m

: there are (at least) s+m disjoint spanned subgraphs of G, with s of them
containing exactly one copy of H, and the remaining m of them each spanned by
`i copies for 1 6 i 6 m. Since the order of the `i are immaterial, we will always
assume that 2 6 `1 6 `2 6 . . . 6 `m. When s = 0, we drop s, and simply write
E`1,...,`m . (Here s stands for “singleton” copies, and m stands for “multiple” copies)

Using ◦ for the “disjoint occurrence” operator on events (see [24, Section 3] for the
definition), it is easy to see that

Es
`1,...,`m

= Ds ◦ F`1 ◦ · · · ◦ F`m ,

and so

P(Es
`1,...,`m

) 6 P(Ds)
m∏
i=1

P(F`i), (4)

due to the BK-inequality, see [24]. To see why such a bound is useful, observe that if
a graph G satisfies Q = QH(G) > kn, one can drop edges in G not contained in any
copy of H, and decompose the remaining graph into connected components. Clearly each
remaining component is H-spanned, and no copies of H were deleted, so that there are
numbers s, `1, . . . , `m such that G ∈ Es

`1,...,`m
. The rest of this section will be devoted to

efficiently union bounding over various choices of these numbers. But first we bound the
probabilities of Ds and F` individually.

Lemma 11. P(Ds) 6 C exp (−s log s) for some C = C(H).

Proof. The number of ways we can pick s disjoint subsets of [n] is at most

1

s!

(
n

q

)(
n− q
q

)
· · ·
(
n− (s− 1)q

q

)
=

n!

s!(q!)s(n− qs)!
6

nqs

s!(q!)s
.
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Given a fixed set of vertices S of size q, the probability of it having a copy of H is at most

Cp−en = Cn−2e/∆ = Cn−q,

where the constant C = C(H) is due to the number of isomorphic copies of H in Kq.
Then by a union bound, the probability of Ds satisfies

P(Ds) 6 C exp(qs log n− s log(q!)− log(s!)− qs log n) = C exp(−s log(q!)− log(s!)).

By Stirling’s formula, we have log(s!) = s log s− s+O(log s). Therefore

s log(q!) + s log s− s+O(log s) > s log s, ∀s > 1,

(using q > 3 and log 6 > 1) finishing the proof.

The next lemma delivers the control on 2
∆
e(S) − v(S), serving as a replacement for

the “tree-excess edges” interpretation of e(S) − v(S) + 1 in [14] as described in the idea
of proof section. This will be useful for furnishing a bound on P(F`).

Lemma 12. If S is a graph spanned by ` > 2 copies of H then 2
∆
e(S) − v(S) > Ce(S),

where C = C(H).

Proof. Since each copy of H contains at most q2 edges, the optimal number of copies
`∗ = `∗(S) needed to span S satisfies `∗ > Ce(S) with C = 1/q2. Order these copies of H
in S as H1, . . . , H`∗ , such that for each i, V (Hi)∩ V (Si−1) 6= ∅, where Si is the subgraph
of S spanned by H1, . . . , Hi (this can be done because S is spanned and connected). Note
that in general Si is distinct from the subgraph of S induced by V (Si). Each edge incident
on any x ∈ V (Hi)−V (Si−1) comes from Hi, and hence the degree of any such x is exactly
∆ in Si. For each i > 1, also write bi > 1 for the number of edges between V (Hi)−V (Si−1)
and V (Si−1) (the number of boundary edges), and let vi = |V (Hi)−V (Si−1)| (the number
of new vertices). See Figure 1 below for an illustration of these definitions.

We track the quantity fi
def
= 2

∆
e(Si)−v(Si). Observe that e(Si) > e(Si−1)+ bi+e(Hi−

Si−1), where Hi − Si−1 is the subgraph of Si induced by V (Hi)− V (Si−1) (the inequality
is due to ignoring edges in Hi with both endpoints in V (Si−1)). Crucially, note that

2e(Hi − Si−1) + bi = ∆vi

because both sides count the edges within V (Hi)− V (Si−1) twice. Therefore

e(Si) > e(Si−1) + bi +
∆vi − bi

2
= e(Si−1) +

bi
2

+
∆vi
2
,

and so,

fi =
2

∆
e(Si)− v(Si) >

2

∆
e(Si−1) +

bi
∆

+ vi − v(Si)

=
2

∆
e(Si−1) +

bi
∆

+ vi − v(Si−1)− vi
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V (H4)− V (S3)

S2
H1

H2

H3

H4

b2

b3

b4

Figure 1: Variables in the proof of Lemma 12 with four copies of H.

(substituting v(Si) = v(Si−1) + vi). Therefore, the above is

= fi−1 +
bi
∆

> fi−1 +
1

∆
(since bi > 1).

Since f1 = 0 we get f`∗ >
`∗−1

∆
> `∗

2∆
as long as `∗ > 2 which holds if ` > 2 (this is because

` > 2 implies that there are more than e(H) edges in S). To conclude the proof, recall
that `∗ > e(S)/q2 = Ce(S).

Using this structural result, we can now provide an upper bound on P(F`).

Lemma 13. P(F`) 6 exp(−C`2/q log n) for all 2 6 ` 6 nc and all sufficiently large n,
where c = c(H), C = C(H) are constants.

Proof. For a fixed graph S spanned by ` copies of H, the probability of its occurrence in
G ∼ G(n, p = n−2/∆) is at most(

n

v(S)

)
pe(S) 6 nv(S)− 2

∆
e(S),

and as we saw above in Lemma 12, for such a graph, 2
∆
e(S) − v(S) > Ce(S). Therefore

this probability is at most exp(−Ce(S) log n).
Let F`,v,e be the event that there is a subgraph of G with v vertices, e edges, and

spanned by ` copies of H (note that v 6 q`). The number of such S is at most
(
v2

e

)
6 v2e,

so by a direct union bound,

P(F`,v,e) 6 exp(−Ce log n)v2e

6 exp(−Ce log n) exp(2e log(q`)),

6 exp(−Ce log n),
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by a different choice of C, as long as ` 6 nc for some small c depending on H. Finally,
using the fact that ` 6 Ceq/2 (using Lemma 7) we see that the above is

6 exp(−C`2/q log n).

For a graph spanned by ` copies of H we have v, e 6 C`, so by union bounding over
all such possibilities, we get

P(F`) 6 C`2 exp(−C`2/q log n) 6 exp(−C`2/q log n),

(up to changing C) for sufficiently large n.

As alluded to earlier, we will now combine the estimates above using a union bound.
The following definition will be useful.

Definition 1. For a tuple (c1, c2, . . . , ct), define Ẽc1,...,ct to be the event that in the random
graph G ∼ G(n, pn), there are c1+· · ·+ct disjoint spanned graphs, with ci of them spanned
by 2i copies of H, for all i.

Observe that Ẽc1,...,ct is a special case of events of the form E`1,...,`m where m =
∑t

i=1 ci
and the `is are powers of 2. Also, if a graph G satisfies E`1,...,`m , then there is a tuple

(c1, . . . , ct) such that it also satisfies Ẽc1,...,ct , with

t∑
i=1

ci2
i >

1

2

m∑
j=1

`j.

This is essentially done via “dropping” copies of H till the components are spanned by 2i

components for some i. More precisely, for each valid i, define

ci
def
= |{j : 2i 6 `j < 2i+1}|. (5)

We claim that G ∈ Ẽc1,...,ct . Let U1, . . . , Um be some choice of disjoint spanned subgraphs
of G witnessing E`1,...,`m . Choose j such that Uj is spanned by `j copies of H and let i
be such that 2i 6 `j < 2i+1. Order these copies of H such that the subgraph induced by
any number of copies from the beginning is connected (which can always be done because
Uj is connected). Then take the union of the first 2i copies. By construction this is a
connected subgraph spanned by 2i copies of H. Doing this for each j proves the claim.

As we will shortly see, P(E`1,...,`m) is comparable to P(Ẽc1,...,ct), whereas the number
of possible choices is a lot less for (c1, . . . , ct) than for (`1, . . . , `m), facilitating an efficient
union bound.

Lemma 14. For 2 6 kn 6 nc (for a sufficiently small c = c(H)), we have

P(Q > kn) 6 C exp
(
−C ′min(kn log kn, k

2/q
n log n)

)
,

where C = C(H), C ′ = C ′(H) are constants depending only on H.
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As described earlier, this lemma demonstrates the transition in tail behavior promised
in our main theorem. However, this result only holds for kn at most a small polynomial
of n, and one must show that there are no other transitions, i.e., this behavior persists
all the way up to the maximum possible value of kn. This is achieved in the next section
after this proof.

Proof. We abbreviate k = kn throughout this proof. Recall from the discussion below (4)
that the event {Q > k} is equivalent to⋃

s,m>0,`i>2
s+

∑
i6m `i>k

Es
`1,...,`m

.

However any graph satisfying this also satisfies the event⋃
s,m>0,`i>2
s+

∑
i6m `i=k

Es
`1,...,`m

,

because a spanned graph spanned by ` copies of H has a subgraph spanned by `′ copies
of H for any `′ 6 ` by reasoning as below (5). We therefore focus on bounding the
probability of the latter.

Using the BK inequality (4) and the bound on P(F`) we obtain

P(Ẽc1,...,ct) 6
t∏
i=1

P(F2i)
ci

6 exp

(
−C log n

t∑
i=1

ci2
2i/q

)

We use this bound and the fact that for each collection `1, . . . , `m (with each `i > 2),
we can find a vector c1, . . . , ct with∑

i6m

`i >
∑
j6t

ci2
i >

1

2

∑
i6m

`i, (6)

such that E`1,...,`m ⊆ Ẽc1,...,ct . This allows us to conclude that for any k,

P

 ⋃
m>1,`i>2∑
i6m `i=k

E`1,...,`m

 6 P

 ⋃
t>1,ci>0

k>
∑
i ci2

i>k/2

Ẽc1,...,ct


6 exp((log k)2) exp

(
−C log n ·min

∑
i>1

ci2
2i/q

)
,
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where the min is over all possible cis satisfying the condition in (6). The exp((log k)2)
term is a simple upper bound on the number of possible tuples (c1, . . . , ct) where t 6 log2 k
and 0 6 ci 6 k/2. By an elementary inequality (see Lemma 22 in the Appendix) we see
that the above is

6 exp
(
C
(
log2 k − k2/q log n

))
.

Now observe that Es
`1,...,`m

= Ds ◦E`1,...,`m . Another application of the BK inequality and
our estimate of P(Ds) from Lemma 11 yields

P

 ⋃
s,m>0,`i>2
s+

∑
i6m `i=k

Es
`1,...,`m

 6
∑
s6k

P(Ds)P

 ⋃
m>0,`i>2∑
i6m `i=k−s

E`1,...,`m


6 C exp(log2 k + log k) exp

(
−C min

16s6k

(
s log s+ (k − s)2/q log n

))
,

at which point we invoke Lemma 23 from the Appendix to obtain that the above is

6 C exp(2 log2 k) exp
(
−C min(k log k, k2/q log n)

)
.

Finally observe that since 2 log2 k � min(k log k, k2/q log n) as k → ∞, by modifying
constants we may drop the prefactor of exp(2 log2 k), yielding the required result.

6 Many copies

In this section we will consider the case of large kn and demonstrate that the behavior
described in Lemma 14 actually persists all the way up to the maximum possible value
of kn. However our results here will only hold for kn such that kn � f(n) for all f(n) =
poly log n (we will assume this lower bound on kn throughout this section). But this
suffices to complete the proof of our main theorem since Lemma 14 holds even for kn that
are small polynomial powers of n.

Our arguments here will adapt a version of the techniques from [15] and hence is related
to the ideas in [5]. The main idea is to consider a class of subgraphs (called “cores”) which
are present with high probability in G when conditioned to have kn triangles. Once such a
subgraph is planted in G, the expectation of Q is almost as much as the required number
of kn. As in [15], before defining a “core” we define a relaxed version called a “seed”.

Let wn = 1/ log n in the sequel. In principle, wn can be taken to be anything that is
1/poly log n, but we fix it so for concreteness.

Definition 15 (Seed). Let S ⊆ Kn be a (labeled) graph on the vertex set V with |V | = n.
We call S a seed if and only if:

1. ESQ > (1− wn)kn,
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2. e(S) 6 Csw
−1
n k

2/q
n log(1/pn),

where e(S) is the number of edges in S. Here ESQ = E [Q | S ⊆ Kn] is the conditional
expectation of the number of copies of H in G given that the edges in S are present in
G, and Cs is a constant depending on H that will be fixed later.

Following the arguments of [15] one can deduce the following.

Lemma 16 (Must have a seed). There is a sequence ξn → 0 such that

P(Q > kn) 6 (1 + ξn)P(G has a seed)

where G ∼ G(n, pn).

Proof. For a subgraph S ⊆ Kn, set ZS
def
= 1{G∩S has no seed} (we will also let Z

def
= ZKn)

and for any H, a subset of edges of Kn forming an isomorphic copy of H, denote YH
def
=

1{all edges in H are present in G}. Then observe that

P(Q > kn, G has no seed) = P(QZ > kn) 6
E
[
Q`Z

]
k`n

, (7)

for any ` > 1 (we will choose ` later). Since Q =
∑

H YH (sum over all possible edge
subsets of Kn which are isomorphic to H).

E
[
Q`Z

]
=

∑
H1,...,H`

E [YH1 · · ·YH` · Z]

6
∑

H1,...,H`

E
[
YH1 · · ·YH` · ZH1∪...∪H`−1

]
, because ZS > ZT if S ⊆ T ,

=
∑

H1,...,H`

P(H1, . . . ,H` are present,H1 ∪ . . . ∪ H`−1 has no seed),

But H1∪ . . .∪H`−1 having (or not having) a seed is a deterministic fact, so we can reduce
the sum over all collections of Hi where this holds. We can group the terms in the sum
above by H1, . . . ,H`−1 to obtain

=
∑

H1,...,H`−1 with no seed

P(H1, . . . ,H`−1 are present)
∑
H`

E [YH` | YHi = 1,∀i 6 `− 1]

=
∑

H1,...,H`−1 with no seed

E
[
YH1 · · ·YH`−1

ZH1∪...∪H`−1

]
EH1∪...∪H`−1

Q︸ ︷︷ ︸
6(1−wn)kn

,

where we use the fact that H1 ∪ . . . ∪ H`−1 has no seed, and in particular, is not a seed
itself. But we can only apply this reasoning if the total number of edges in H1∪ . . .∪H`−1

is at most Cw−1
n k

2/q
n log(1/pn) (see Definition 15) which happens at least as long as

` 6 Csq
−2w−1

n k2/q
n log(1/pn), (8)
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because H1 ∪ . . .∪H`−1 has at most q2` edges (and thus the only reason it is not a seed is
that the conditional expectation condition is violated). Observe that the bound obtained
for E

[
Q`Z

]
has a recursive structure, which we can iterate in ` to obtain

E
[
Q`Z

]
6 (1− wn)`k`n,

giving us the eventual upper bound via (7)

P(Q > kn, G has no seed) 6 (1− wn)`

for all ` satisfying the bound in (8). Now observe that a clique of size ck
1/q
n has at least

kn copies of H (where c = c(H) is a constant), and it has Ck
2/q
n many edges. Therefore

by choosing Cs in the definition of a seed large enough, we can make this clique a seed.
The probability of its occurrence is

P(ck1/q
n clique in G) > exp

(
−Ck2/q

n log n
)

(recall that various occurrences of C can mean different H-dependent constants). Choose

` = bCsq−2w−1
n k

2/q
n log(1/pn)c to get:

P(Q > kn, G has no seed) 6 (1− wn)`

6 exp
(
−Cq−2k2/q

n log(1/pn)
)

6 ξnP(ck1/q
n clique)

where ξn → 0 as long as Cs/q
2 is large enough. But as we saw above, this is a seed, so

we can replace the bound above by

6 ξnP(Gn has seed),

which finishes the proof.

The previous lemma reduces our task to upper bounding P(G has a seed). This is
essentially achieved via union-bounding over all possible seeds. But the number of possible
seeds is extremely high, so we instead consider a more restrictive structure called “cores”,
as defined below. Each seed contains a core, so we have a version of the preceding lemma
with {G has a seed} replaced by {G has a core}.

Definition 17 (Core). Let G∗ ⊆ Kn be a (labeled) graph on a vertex set V with |V | = n.
We call it a core if it has no isolated vertices and,

1. EG∗Q > (1− 2wn)kn,

2. e(G∗) 6 Csw
−1
n k

2/q
n log(1/pn),

3. EG∗Q− EG∗−fQ > tn
def
=

w2
nk

(q−2)/q
n

Cs log(1/pn)

(
= Ω̃(k(q−2)/q

n )
)

, for all edges f ∈ E(G∗),
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that is, it is a (slightly weaker) seed, but now each edge has to contribute significantly.

As indicated earlier, every seed contains a core:

Lemma 18. If G is a seed, then there is a subset G∗ ⊆ G which is a core.

Proof. We iteratively delete edges violating (3). Removing such an edge does not reduce
EGQ by more than tn. Therefore over all e(G) edges, the maximum possible decrease is
tne(G) 6 wnkn, so that the reduced graph still satisfies (1). If we cannot remove an edge,
it is already a core.

The strict restrictions on cores allow us to prove a few crucial structural results about
them.

Lemma 19 (Cores have many copies of H). For a core G∗, let QH(G∗) be the number
of copies of H in G∗. Then QH(G∗) > kn− o(kn). In particular, via Lemma 7, there is a

C such that e(G∗) > Ck
2/q
n .

Proof. We denote by H an isomorphic copy of H in Kn, i.e. a subset of edges which are
isomorphic to H. Then we know that

(1− 2wn)kn 6 EG∗Q =
∑
H

p|H−G
∗|

n 6 QH(G∗) +
∑

|H−G∗|>1

p|H−G
∗|

n ,

where H − G∗ is the collection of edges in H that are not in G∗. For a given copy H in
Kn, fix an isomorphism φH mapping E(H)→ H. Let c be the number of edges in H−G∗
with both endpoints in V (G∗), b be the number of edges in H − G∗ with one endpoint
in V (Kn)− V (G∗) and other in V (G∗), and let x be the number of vertices in H outside
G∗. Also denote by X ⊆ H the subgraph which is mapped (under φH) to outside G∗ (so
that x = |V (X)|), and let Y ⊆ H be the subgraph of H whose vertices are mapped
(under φH) to G∗ and whose edges are mapped to E(G∗) (so that V (X) ∪ V (Y ) =
V (H) but E(X) ∪ E(Y ) is not E(H); the edges counted in b and c are the ones in
E(H) − (E(X) ∪ E(Y ))). Observe that Y may contain isolated vertices. Denote by
y = |V (Y )|. See Figure 2 for an illustration of these definitions. We will now upper-bound
the contribution of all copies H which satisfy the configuration specified by (b, c,X, Y ).
Observe that

x+ y = q,

|E(Y )|+ |E(X)|+ b+ c = E(H) = q∆/2,

2|E(X)|+ b = ∆|V (X)| = x∆.

Solving these equations we get

|E(X)| = x∆− b
2

,

|E(Y )| = q∆

2
− b− c− x∆

2
+
b

2
=
q∆− x∆− b− 2c

2
.
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X

Y

G∗

H

b

c

Figure 2: Variables in the proof of Lemma 19.

Since b+ |E(X)|+ c edges come from outside G∗, for each such H, p
|H−G∗|
n is at most

Cn−
2
∆
·(b+|E(X)|+c) = Cn−

2
∆
·x∆+b+2c

2 = Cn−x−
b
∆
− 2c

∆ .

Now we need to count the number of such copies of H. Firstly, the image of X can be
chosen in (at most) nx ways, which can be included in the “cost” to obtain n−

b
∆
− 2c

∆ . The
final cost will be the product of this with the number of copies of Y in G∗ (fixing it will
fix all the vertices, and therefore all the edges counted in b and c).

To count the number of copies of Y in G∗, observe that Y being a subgraph of H has
max-degree ∆. So we can apply Lemma 7 to obtain that the count is at most

Ce|E(Y )|/∆vy−2|E(Y )|/∆

where v = v(G∗) and e = e(G∗). Putting everything together, the total cost is at most

Ce
q−x

2
− b+2c

2∆ vq−x−2 q−x
2

+ b+2c
∆ n−

b
∆
− 2c

∆ = Ce
q−x

2
− b+2c

2∆ v
b+2c

∆ n−
b+2c

∆ 6 Ce
q
2
−x+b+2c

2∆

as v 6 n and ∆ > 1. If b + 2c + x > 1, then this is õ(kn) because e = Õ(k
2/q
n ) (and

kn � poly log n as assumed at the beginning of this section). But this is indeed the case
since H is connected and |H−G∗| > 1, implying that the contribution of the part of the
sum corresponding to the configuration (b, c,X, Y ) is õ(kn).

Considering all possible distinct configurations of (b, c,X, Y ) (of which there are C =
C(H) many), we see that the total contribution of the second term in the first display of
the proof is õ(kn). This concludes the proof.

As indicated in the idea of proof section, the following “product of degrees” lemma is
a key combinatorial input in our proof, derived via an application of Finner’s inequality.

Lemma 20 (Product of degrees). There is a function g(n) = Ω̃(k
1/q
n ), depending only on

H, such that the following holds for all sufficiently large n. Suppose G∗ is a core. For
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every edge f = (a, b) ∈ E(G∗), we have dadb > g2(n) and da, db > ∆ (here da, db are the
degrees of a, b respectively in G∗). Therefore every vertex in a core has degree at least ∆
since none of them are isolated.

Every vertex which is a part of some copy of H in G∗ must have degree at least ∆.
But the lemma above does not claim that every vertex in G∗ is a part of some copy of H,
just the weaker statement that every vertex has degree at least ∆. Specifically, it does
not rule out the case of a vertex which has a very large degree in G∗ but is not part of
any copy of H in G∗.

Proof. This proof is a direct application of Lemma 9. Observe that

EG∗Q− EG∗−fQ =
∑
H

p|H−G
∗|

n −
∑
H

p|H−(G∗−f)|
n

where |H − G∗| is again a shorthand for the number of edges in H not in G∗. Therefore
the above is

=
∑
H

p|H−G
∗|

n − p|H−(G∗−f)|
n .

Now observe that for any H which does not contain f , the term is zero, and for any H
containing f , |H− (G∗ − f)| = 1 + |H−G∗|. Therefore, the above is

= (1− pn)
∑
H3f

p|H−G
∗|

n ,

where we sum over all H containing f . This is bounded by

6
∑
H3f

p|H−G
∗|

n .

This last expression is the expected number of copies of H containing the edge f given
that G∗ ⊆ G. We may now invoke Lemma 9 to bound the above by:

6 C(H)(da + np∆
n )

∆−1
∆ (db + np∆

n )
∆−1

∆ (e+ n2p∆
n )

q
2
−2+ 1

∆ ,

where e = e(G∗). Recall that p∆
n = n−2, so that by modifying the constants, we can write

6 C(H)(dadb)
∆−1

∆ e
q
2
−2+ 1

∆ .

Since G∗ is a core, e = Õ(k
2/q
n ), so that

6 (dadb)
∆−1

∆ Õ

(
k

1− 4
q

+ 2
q∆

n

)
.
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Definition 17 and the preceding chain of inequalities then imply

tn = Ω̃

(
k

1− 2
q

n

)
6 EG∗Q− EG∗−fQ 6 (dadb)

∆−1
∆ Õ

(
k

1− 4
q

+ 2
q∆

n

)
,

and therefore,

(dadb)
∆−1

∆ > Ω̃

(
k

2
q
− 2
q∆

n

)
⇐⇒ dadb > Ω̃(k2/q

n ).

Observe that this lower bound is uniform over all cores, and just depends on H. We define
this function to be g2(n), completing the proof of the first claim.

For the other part, we apply the second half of Lemma 9. Suppose da < ∆. Then (given
G∗ ⊆ G) there is no copy of H in G∗ containing f because H is ∆-regular. Then every copy
of H in G containing f must have some other edge coming from outside G∗. The number
of such copies is bounded above in expectation, using Lemma 9, by C(H) max(B1, B2, B3)

where B1, B2, B3 are as defined in the lemma. Observe that db 6 e(G∗) = Õ(k
2/q
n ), so

that we can bound B1, B2, B3 as follows:

B1
def
= (da + np∆)

∆−2
∆ (db + np∆)

∆−1
∆ (e+ n2p∆)q/2−2+1/∆pn1/∆

6 Õ

((
k2/q
n

)∆−1
∆

+ q
2
−2+ 1

∆

)
n−1/∆ = Õ(k1−2/q

n )n−1/∆ = õ(k1−2/q
n ),

B2
def
= (da + np∆)

∆−1
∆ (db + np∆)

∆−2
∆ (e+ n2p∆)q/2−2+1/∆pn1/∆

6 Õ

((
k2/q
n

)∆−2
∆

+ q
2
−2+ 1

∆

)
n−1/∆ = Õ(k1−2/q

n )n−1/∆ = õ(k1−2/q
n ),

B3
def
= (da + np∆)

∆−1
∆ (db + np∆)

∆−1
∆ (e+ n2p∆)q/2−2pn2/∆

6 Õ

((
k2/q
n

)∆−1
∆

+ q
2
−2
)

= Õ

(
k

1− 2
q
− 2
q∆

n

)
= õ(k1−2/q

n ),

because kn grows superpolylogarithmically. Therefore the expectation is bounded by
õ(k

1−2/q
n ). But, as in the proof of the first claim, this must be at least tn = Ω̃(k

1−2/q
n ).

This is a contradiction (for sufficiently large n), proving the claim.

The next lemma proves the theorem of this paper in the case of large kn. As mentioned
earlier, combined with Lemma 14, this will complete the proof of the main theorem.

The following is a high-level overview of the main steps involved. The proof proceeds
via successively specializing the class of cores whose (collective) probability we have to
bound. We bi-partition the vertices of the core into high degree and low degree vertices and
using Lemma 20 ensure that edges from low degree vertices can only go to sufficiently high
degree vertices. Since there are a relatively small number of high degree vertices, we can
fix all of them in V (Kn) = [n] (without incurring too high a cost from the union bound).
At this point the case where at least half of the edges in the core comes from the edges
within this high-degree set is dealt with using straightforward binomial tail probabilities,
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leaving us with the more complicated case when at least half of the edges go between
the high and low degree sets. The remainder of the proof assumes that this is the case.
Now we attempt to fix all the low degree vertices as well. But the straightforward bound
of e = E(G∗) on their count is too lossy, thus necessitating further control. However,
by a dyadic decomposition, we can fix all of them except the ones with very low degree.
But vertices with extremely low degree can have edges only to vertices with very high
degree, again by Lemma 20, whose number is very small allowing us to also fix all the
neighbor sets of these low degree vertices (and therefore their degrees as well). However,
since each vertex in the core has degree at least ∆ (Lemma 20), the number of such low
degree vertices cannot exceed 1/∆ times the number of edges between the high and low
degree sets. This improved bound by a factor of 1/∆ indeed turns out to be sufficient to
balance the cost of fixing the low degree vertices against the probability of these edges
actually existing (recall that we have already fixed the neighbor sets for these vertices).
A calculation then shows that this works out favorably, finishing the proof.

Lemma 21. Assume kn grows fast enough (as described at the beginning of this section).

The probability that G(n, pn) has a core is at most C exp(−C ′k2/q
n log n) for constants C,C ′

depending on H. As a consequence, the probability of Q > kn also satisfies the same bound
(up to changing C).

Proof. Let g(n) = Ω̃(k
1/q
n ) be the function in Lemma 20, and suppose G∗ ⊆ Kn is a core.

Let L be the set of high-degree vertices in G∗ defined to be those with degree > g(n) in
G∗, and set R = V (G∗) − L. By Lemma 20 every edge in G∗ must have an endpoint in

L. Also we have |L| 6 Lmax where Lmax = Õ(k
1/q
n ) because e(G∗) = Õ(k

2/q
n ). Note that

the implicit poly log n factor in Õ(k
1/q
n ) does not depend on G∗.

Now recall that a core has at least Ck
2/q
n edges as was proved in Lemma 19. For

brevity let e = e(G∗). Since all these edges have an endpoint in L, either at least e/2 of
them have both their endpoints in L or at least e/2 of them have one endpoint in L and
the other in R. The probability that at least e/2 edges come from within L is bounded

by the probability that there is a set of size at most Lmax containing at least Ck
2/q
n edges

(with a different C). For a fixed set of size at most Lmax, the probability it has so many
edges is at most

P
(

Bin

((
Lmax

2

)
, pn

)
> Ck2/q

n

)
6 P

(
Bin(L2

max/2, pn) > Ck2/q
n

)
which may be upper bounded using Lemma 24 from the Appendix (since pn � Ck

2/q
n

L2
max

) to obtain

6 exp

(
−C ′k2/q

n log

(
Ck

2/q
n

L2
maxpn

))
, C, C ′ constants.

Recalling that Lmax = Õ(k
1/q
n ), we can conclude that the above is therefore at most

6 exp
(
−Ck2/q

n log n
)
, because Ck2/q

n /L2
max > 1/poly log n,
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for sufficiently large n. The total number of ways of picking such a subset of size at most
Lmax from V (Kn) is at most

nLmax 6 exp
(
k1/q
n poly log n

)
,

so that the probability that there is a subset of vertices of size at most Lmax with at least
e/2 edges inside it is at most

exp
(
k1/q
n poly log n− Ck2/q

n log n
)
6 C ′ exp

(
−Ck2/q

n log n
)
. (9)

Therefore for the class of cores satisfying this condition, we have the desired bound.
In the sequel we will prove a similar bound for cores which do not satisfy this condition

and hence have fewer than e/2 edges coming from within L so that there are at least e/2
edges between L and R. Partition L into m = O(log n) pieces dyadically depending on
the degree, i.e., define the (disjoint) sets

Li
def
= {v ∈ L : g(n)2i−1 6 dv < g(n)2i}, i = 1, 2, . . . ,m

where dv is the degree of v in G∗. Note that in fact, we can choose m such that

10ρ(n) < 2mg(n) 6 20ρ(n) (10)

where ρ(n) is the maximum number of edges in a core as in Definition 17, because this
ensures that the sets Lm+1, . . . are empty by the bound dv 6 e for all v ∈ G∗ (observe
that this definition does not depend on the choice of core, but only on n, H and kn). Also
define the nested sets:

Ri
def
= {v ∈ R : dv > g(n)2−i}, i = 1, 2, . . . ,m

so that R1 ⊆ R2 ⊆ . . . (see Figure 3). Invoking Lemma 20, observe that every edge (a, b)
between L and R goes from a vertex in Li to one in Ri, for some i, and that

|Ri| 6
2i+1e

g(n)
. (11)

First we fix m, e and all the {eij}i,j6m defined as

eij
def
= number of edges between Li and Rj −Rj−1, R0

def
= ∅.

The total number of such distinct sequences is at most exp(poly log n) because each of
these is at most n2, and there are O(log2 n) numbers to fix. This factor will be negligible
while applying a union bound, and hence it suffices to consider the class of cores which
satisfy these choices. In the sequel we also use the notation

ei
def
= number of edges between Li and Ri

=
i∑

j=1

eij.

the electronic journal of combinatorics 32(3) (2025), #P3.54 27



Now fix the sets L1, . . . , Lm. Since the total number of distinct choices of each Li is
at most

nLmax 6 exp
(
Ck1/q

n log n
)
,

the total number of ways to choose L1, . . . , Lm is only

exp
(
Ck1/q

n log2 n
)

= exp
(
o(k2/q

n )
)

so that we can fix these and bound the probability of the resulting subclass of cores, again
using the fact that this factor will be negligible in a union bound.

Note that by definition (see (10))

2m 6 C
ρ(n)

g(n)
6
Õ(k

2/q
n )

Ω̃(k
1/q
n )

= Õ(k1/q
n ).

Then there is a function h(n) = o(k
2/q
n ) depending only on H such that we can choose

s = Θ(log log n) satisfying

m−s∑
i=1

|Ri| 6
m−s∑
i=1

2i+1 e

g(n)
6 2m−s+2 e

g(n)
=
Õ(k

1/q
n )Õ(k

1/q
n )

2s
6 h(n), (12)

and also for all i > m− s,

|Li| 6
Ce

2ig(n)
6 C ′

e

g(n)
· g(n)

ρ(n)
· 2s 6 C ′ · 2s 6 poly log n, C,C ′ constants. (13)

Observe that s only depends on n and H, and is fixed beforehand. For this choice of s, we
can similarly fix R1, . . . , Rm−s by first fixing the sizes of all the Ri (which is a sequence of
length O(log n) each of value at most n, so that total number of ways is exp(poly log n))
satisfying the constraint that

m−s∑
i=1

|Ri| 6 h(n), (same as in (12))

and then choosing these sets as subsets of [n] in

exp

(
m−s∑
i=1

|Ri| log n

)
= exp

(
o(k2/q

n log n)
)

ways.

Denote by L′
def
= ∪i>m−sLi, R′

def
= R − Rm−s, and e′ for the number of edges between

L′ and R′ (see Figure 3). Observe that

e′ =
∑

m−s<i,j6m

eij.
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R1
L1

R2

L2

R3

L3

R′
L′

e′

e3

e2

e1

Figure 3: Variables in the proof of Lemma 21 where m− s = 3.

Since |L′| 6 poly log n and |Rm−s| 6 h(n), we may exclude the case of at least e/4 edges
between L′ and Rm−s by bounding the probability that there is any pair of sets A,B ⊆ [n]

of size at most poly log n and h(n) 6 o(k
2/q
n ) (respectively) such that they have at least

e/4 > Ck
2/q
n edges between them. We may choose the sizes of A and B and then A and

B themselves in at most

exp (poly log n)

(
n

poly log n

)(
n

h(n)

)
6 exp

(
o(k2/q

n ) log n
)

ways, and after fixing A and B, the probability of there being at least Ck
2/q
n edges between

them is at most

P(Bin(poly log n · h(n), pn) > Ck2/q
n ) 6 exp

(
−Ck2/q

n log
Ck

2/q
n

poly log n · h(n) · n−2/∆

)
6 exp

(
−Ck2/q

n log n
)

using Lemma 24 and the bound h(n) 6 o(k
2/q
n ). Therefore, by a union bound over all

A,B, this probability is at most of the same order as our eventual bound, so we may
restrict ourselves to the case when the number of edges between L′ and Rm−s is at most
e/4. Therefore, since

m−s∑
i=1

ei + e′ + (number of edges between L′ and Rm−s)

= (number of edges between L and R) > e/2,

we can restrict ourselves to the case when
∑m−s

i=1 ei + e′ > e/4. We assume this in the
sequel.

Note that due to our choices, L′ and e′ are fixed (since all the Li and eij were fixed
earlier), but R′ depends on the core. However every edge between L and R with an
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endpoint in R′ must go to L′. Fix the size r′ = |R′| (in n ways) and then fix the degrees
of the vertices in R′, say d1, . . . , dr′ . Since we must ensure d1 + . . . + dr′ = e′, and each
degree di 6 |L′| 6 poly log n, the number of ways to choose these is at most

(poly log n)e
′
6 exp(ce′ log log n),

where c is an absolute constant. Being in a core, vertices in R′ must have degree at least
∆ (due to Lemma 20). Now we also fix the neighbor sets Si (with |Si| = di) of each these
vertices, the number of ways of which is at most

|L′|
∑r′
i=1 di 6 exp (e′ log |L′|) 6 exp (ce′ log log n) .

Therefore, we can fix r′, d1, . . . , dr′ , S1, . . . , Sr′ in a total of

n exp (ce′ log log n)

ways. We will prove a final probability bound of exp(−ce log n) on this class of cores, so

we can ignore these factors (observe that this bound is sufficient because e > Ck
2/q
n as

claimed earlier).
For the final step of the proof, we first summarize the information we have now. For

each distinct class of cores, we know

• m = O(log n), the number of dyadic pieces,

• e, the number of edges in the core,

• L1, . . . , Lm, all the pieces in the high-degree set,

• R1, . . . , Rm−s, all except the last s pieces in the low-degree set,

• e1, . . . , em, the number of edges between every Li and Ri (in fact we know all the
eij),

•
∑m−s

i=1 ei + e′ > e/4. Define e′′ =
∑m−s

i=1 ei.

• r′, the size of R′.

• d1, . . . , dr′ , the degrees of vertices in R′.

• and S1, . . . , Sr′ , their associated neighbor sets (which are known to be subsets of
L′).

with a total count of exp
(
o(k

2/q
n log n)

)
many such classes. We now wish to show a total

probability bound of exp
(
−Ck2/q

n log n
)

on each such class of cores. Note that this is

sufficient to complete the proof. For the rest of this argument, we fix such a class and
show this claimed upper bound.
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Choose R′ and a bijection ψ : [r′]→ R′ in at most exp(r′ log n) ways. But each degree
is at least ∆, therefore e′ > r′∆ =⇒ r′ 6 e′/∆, so that the total number of ways is
at most exp( e

′

∆
log n). Fixing R′ and ψ also fixes all the edges between R′ and L′ via the

information about S1, . . . , Sr′ so that the probability of this class is then at most

exp (−e′ log(1/pn))
m−s∏
i=1

P(Bin(|Li||Ri|, pn) > ei),

where the second factor accounts for ei edges between Li and Ri. Multiplying the number
of ways to fix R′ and ψ we get

exp

(
e′

∆
log n− 2

∆
e′ log n

)m−s∏
i=1

P(Bin(|Li||Ri|, pn) > ei),

where we substitute pn = n−2/∆. If e′ > e/8, we are done, because the first factor itself is

at most exp(−ce log n) 6 exp
(
−Ck2/q

n log n
)

. If not, we must have e′′
def
=
∑m−s

i=1 ei > e/8.

In that case the first term is at most 1 and the second term is at most

P

(
Bin

(
m−s∑
i=1

|Li||Ri|, pn

)
> e/8

)
6 P

(
Bin

(
Õ(k2/q

n ), pn

)
> e/8

)

because from (11) and (13) we have |Li||Ri| 6 C e2

g(n)2 = Õ(k
2/q
n ) and m = O(log n).

Applying Lemma 24 we bound the above by

6 exp

(
−Ce log

(
e

8Õ(k
2/q
n )n−2/∆

))

using the fact that pn = n−2/∆ � e/Õ(k
2/q
n ) = Ω̃(1). So the quantity inside the log is

Ω̃(n2/∆) yielding the bound,

6 exp (−Ce log n)

for a constant C, as required.

Combining the results of Lemma 14 and Lemma 21 finishes the proof of our main
theorem, Theorem 1.
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7 Appendix

This appendix collects useful lemmas that were required in the proofs above.

Lemma 22. Let p > 1 be a real. Then for any sequence of nonnegative reals (xi)
n
i=1 we

have
∑

i x
1/p
i > (

∑
i xi)

1/p.

Proof. Let s =
∑
xi, and yi = xi/s for i ∈ [n]. Then yi 6 1, so y

1/p
i > yi. Therefore∑

i y
1/p
i >

∑
i yi = 1. Substituting back the values of yi, we obtain the result.

Lemma 23. For any k > 2 and A > 0,

min
06s6k

(
s log s+ A(k − s)2/q

)
> cmin(k log k,Ak2/q),

where c is an absolute constant.

Proof. Let s∗ be the optimal value of s. If s∗ > k/2, then the above quantity is at least

1

2
k log(k/2) >

1

10
k log k,

as long as k > 3. If not, k − s∗ > k/2 in which case the result is clear. Finally if k = 2,
the result can be verified manually.

Next we prove an estimate about the tails of the binomial distribution. Similar results
are already present in the literature, for instance in [20, Lemma 3.3], but we include a
short proof for completeness.

Lemma 24 (Binomial tails). Suppose N = N(n),M = M(n) → ∞ and pn = o(M/N).
Then

P(Bin(N, pn) >M) 6 exp

(
−(1− o(1))M log

(
M

Npn

))
.

Proof. It follows from usual Chernoff bounds that

P(Bin(N, pn) >M) 6 exp (−NHpn(M/N)) ,

where Hp(t) = DKL(Ber(t) ‖ Ber(p)), so it suffices to show that Hpn

(
M

N

)
> (1 −

o(1))M
N

log

(
M

Npn

)
, which can be reduced to proving that for p� x < 1, we have

Hp(x) > (1− o(1))x log(x/p).
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It is indeed well-known that Hp(x) ∼ x log(x/p) in this regime, see for instance [20,
Lemma 3.3]. However, our weaker variant admits a simple argument, which we describe
next. Observe that

Hp(x) = x log

(
x

p

)
+ (1− x) log

(
1− x
1− p

)
︸ ︷︷ ︸

<0

,

so it suffices to show that

(1− x) log
1− p
1− x

= o(1) · x log
x

p
⇐⇒ 1− x

x

log 1−p
1−x

log x
p

→ 0 ⇐⇒ 1− x
x

log
(
1 + x−p

1−x

)
log x

p

→ 0.

Now log(1 + x) 6 x, so this is implied by

1− x
x

x− p
1− x

log−1(x/p)→ 0

which is clear because x− p 6 x and x/p→∞.
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[21] Andrzej Ruciński. When are small subgraphs of a random graph normally dis-
tributed? Probability Theory and Related Fields, 78(1):1–10, 1988.

[22] Klaus Schürger. Limit theorems for complete subgraphs of random graphs. Periodica
Mathematica Hungarica, 10:47–53, 1979.

[23] Endre Szemerédi. Regular partitions of graphs. Technical report, Stanford Univ Calif
Dept of Computer Science, 1975.

[24] Jacob Van Den Berg and Harry Kesten. Inequalities with applications to percolation
and reliability. Journal of Applied Probability, 22(3):556–569, 1985.

the electronic journal of combinatorics 32(3) (2025), #P3.54 34


	Introduction
	Idea of proof
	Lower bounds
	Finner's inequality
	Few copies
	Many copies
	Appendix

