
On Co-Edge-Regular Graphs

with 4 Distinct Eigenvalues

Hong-Jun Gea Jack H. Koolena,b

Submitted: Mar 13, 2025; Accepted: Aug 22, 2025; Published: Sep 19, 2025

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Tan et al. conjectured that connected co-edge-regular graphs with four distinct
eigenvalues and fixed smallest eigenvalue, when having sufficiently large valency,
belong to two different families of graphs. In this paper we construct two new
infinite families of connected co-edge-regular graphs with four distinct eigenvalues
and fixed smallest eigenvalue, thereby disproving their conjecture. Moreover, one of
these constructions demonstrates that clique-extensions of Latin Square graphs are
not determined by their spectrum.

Mathematics Subject Classifications: 05C50, 05B15

1 Introduction

For undefined notions we refer to the next section and [3, 4, 5].
Over the past fifty years, strongly regular graphs have attracted a lot of attention,

see [4]. Notice that a connected non-complete regular graph G is strongly regular if and
only if it has exactly three distinct eigenvalues. In particular, Neumaier classified strongly
regular graphs with fixed smallest eigenvalue in [13].

Theorem 1 (cf. [13, Theorem 5.1]). Let λ > 2 be an integer. Except for finitely many
exceptions, any strongly regular graph with smallest eigenvalue −λ is a Steiner graph, a
Latin Square graph, or a complete multipartite graph.

In this paper, we study co-edge-regular graphs with four distinct eigenvalues and fixed
smallest eigenvalue. We will show that for this class of graphs a result like Theorem 1 is
difficult to obtain.

Notice that clique-extensions of strongly regular graphs are co-edge-regular graphs
with at most four distinct eigenvalues. Hayat et al. [9] and Tan et al. [15] gave spectral
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characterizations of clique-extensions of Square grid graphs and triangular graphs under
the assumption that graphs are co-edge-regular.

Theorem 2 (cf. [9, Theorem 1.1]). Let G be a co-edge-regular graph with spectrum{
(s(2t+ 1)− 1)1, (st− 1)2t, (−1)(s−1)(t+1)2 , (−s− 1)t

2
}
,

where s > 2 and t > 1 are integers. If t > 11(s + 1)3(s + 2), then G is the s-clique
extension of the (t+ 1)× (t+ 1)-grid.

Theorem 3 (cf. [15, Theorem 1]). Let G be a co-edge-regular graph with spectrum{
(2st− 3s− 1)1, (st− 3s− 1)t−1, (−1)

(s−1)t(t−1)
2 , (−s− 1)

t(t−3)
2

}
,

where s > 2 and t > 1 are integers. If t > 48s, then G is the s-clique extension of the
triangular graph T (t).

Theorems 2 and Theorem 3 suggest that similar results may hold in the general case.
Based on these results Tan et al. [15] conjectured the following:

Conjecture 4 (cf. [15, Conjecture 3]). Let G be a connected k-regular graph with
n vertices and co-edge-regular with parameters µ having four distinct eigenvalues. Let
t > 2 be an integer. There exists a constant nt such that, if θmin(G) > −t, n > nt and

k < n− 2− (t−1)2
4

, then either G is the s-clique extension of a strongly regular graph for
2 6 s 6 t− 1 or G is a p× q-grid with p > q > 2.

However, we will show that Conjecture 4 is false, by providing two infinite families
of co-edge-regular graphs. This demonstrates that the class of co-edge-regular graphs is
much more complicated than previously thought. The first family is based on results of
Haemers and Tonchev [8]. The graphs in this family do not have −1 as an eigenvalue.

The second family is much more surprising since they have −1 as an eigenvalue and
cospectral with certain clique-extensions of certain Latin Square graphs. In order to state
the following result we will need to introduce co-edge-regular graphs of level t. For a pair
x, y of adjacent vertices in a graph G, let λ(x, y) be the number of common neighbours
of x and y. We say that a co-edge-regular graph is of level t if #{λ(x, y) | x, y are
adjacent vertices } = t. Note that, in the literature, see for example [6], the notion of a
quasi-strongly regular graph of grade t exists. Such a graph is just the complement of a
co-edge-regular graph of level t.

Theorem 5. Let q be a prime power. For any positive integer s > 2, such that q is a
factor of s, there are infinitely many integers n for which there exists a co-edge-regular
graph with level at least 3 exists that is cospectral with the s-clique extension of each Latin
Square graph LSq+1(qn) and hence has exactly four distinct eigenvalues.
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Note that the s-clique extension of any non-complete connected strongly regular graph
has exactly four distinct eigenvalues and is co-edge-regular with level 2.

Theorem 5 demonstrates that to give a spectral characterization of the
clique-extensions of strongly regular graphs with smallest eigenvalue at most −3 is im-
possible, even if one assumes that the graphs are co-edge-regular.

This paper is organized as follows. In Section 2, we provide definitions and prelimi-
naries. Section 3 presents a combinatorial characterization of connected co-edge-regular
graphs with exactly four distinct eigenvalues. In Section 4, we discuss a result from
Haemers and Tonchev [8] and, as a consequence, construct an infinite family of connected
co-edge-egular graphs of level 2 with exactly four distinct eigenvalues. Finally, in Section
5, we will construct co-edge-regular graphs of level 3 that are cospectral certain clique-
extensions of certain Latin Square graphs. The existence of this family shows Theorem 5.

2 Definitions and Preliminaries

2.1 Graphs

A graph G is an ordered pair (V (G), E(G)), where V (G) is a finite set and E(G) ⊆(
V (G)

2

)
. The set V (G) (resp. E(G)) is called the vertex set (resp. edge set) of G, and

the cardinality of V (G) (resp. E(G)) is called the order (resp. size) of G and is denoted
by n(G) (resp. e(G)). The adjacency matrix of G, denoted by A(G), is a symmetric
(0, 1)-matrix indexed by V (G), such that (A(G))xy = 1 if and only if xy is an edge in G.
The eigenvalues of G are the eigenvalues of A(G), and the spectral radius, i.e. the largest
eigenvalue, of G is denoted by ρ(G). Two graphs are called cospectral if they have the
same spectrum.

If x is a vertex of G then NG(x) := {y ∈ V (G) | x ∼ y}. The subgraph induced on
NG(x) denoted by ∆G(x), is called the local graph at x. If it is clear what the graph G is,
we omit G in the notation. A clique (resp. co-clique) in a graph G is a set of vertices such
that each pair of distinct vertices in it are adjacent (resp. non-adjacent). We sometimes
consider a clique (resp. a co-clique) of G also as an induced subgraph of G.

Let G be a graph. Let π := {V1, . . . , Vm} be a partition of vertex set V (G), and, for
1 6 i, j 6 m and u ∈ Vi, let bij(u) be the number of neighbors of u in Vj. Then partition
π is called equitable if bij(u) is independent from the concrete choice of u ∈ Vi. In this
case, the m × m matrix B := (bij) is called the quotient matrix of π. It is well known
that for an equitable partition of G with quotient matrix B, the eigenvalues of B are also
eigenvalues of A(G), see for example [5, Theorem 9.3.3].

2.2 Edge-regular and co-edge-regular graphs

For an edge xy in a graph G we denote by λ(x, y), the number of common neighbours of
x and y in G. For two non-adjacent vertices x and y we denote by µ(x, y), the number of
common neighbours of x and y in G.
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A regular graph is edge-regular with parameter λ if λ(x, y) = λ for all edges xy of G.
An edge-regular graph has level t if #{µ(x, y) | x, y are non-adjacent distinct vertices} = t.
This notion is also known as a quasi-strongly regular graph with grade t, see for example
[6].

A regular graph is co-edge-regular with parameter µ if any two distinct non-adjacent
vertices have exactly µ common neighbors. We say that a co-edge-regular graph has level
t if #{λ(x, y) | x, y adjacent vertices} = t. Note that the complement of an edge-regular
graph is co-edge-regular and vice versa and that the complement of an edge-regular graph
which has level t is co-edge-regular and has level t and vice versa.

A graph G is called strongly regular with parameters (n, k, λ, µ) if it has n vertices, is
k-regular, is edge-regular with parameter λ and co-edge-regular with parameter µ.

The following result is well-known, see [5, Lemma 10.2.1].

Lemma 6. A connected non-complete regular graph G is strongly regular if and only if it
has exactly three distinct eigenvalues.

This means that a connected non-complete regular graph is a co-edge-regular graph
of level 1 if and only if it has exactly three distinct eigenvalues.

Goldberg [6] conjectured a possible extension of a result from Jurǐsić et al. [11] who
showed it for distance-regular graphs.

Conjecture 7 (cf. [6, Conjecture 1]). Let G be a k-regular and edge-regular graph with
parameter λ, and let θ, θ′ be two distinct eigenvalues of G, different from k. Then

(θ +
k

λ+ 1
)(θ′ +

k

λ+ 1
) > −kλ(k − λ− 1)

(λ+ 1)2
.

However, it is worth mentioning that, for any integer s > 2 and any integer t > 3,
the complement of the s-clique extension of a Latin Square graph LSt(n) (see Subsec-
tion 2.5 for a definition) disproves this conjecture, if n is sufficiently large. Moreover,
the complement of our construction in Section 5 also provides counterexamples to this
conjecture.

2.3 Designs

A pair (P ,B) is a 2-(v, k, λ)-design if the following conditions are satisfied:

1. |P| = v;

2. For all B ∈ B, we have B ⊆ P and |B| = k;

3. For each pair of distinct elements x, y of P there are exactly λ elements B of B such
that both x and y are in B.

We call the elements of P points and the elements of B blocks.
A 2-(v, k, λ)-design D = (P ,B) is called resolvable if we can partition the block set

B into parts B∞,B∈, . . .Bt such that Bi partition P for all i = 1, 2, . . . , t. We call the
partition {B∞,B∈, . . . ,Bt} a resolution of D.
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The block graph of a 2-(v, k, 1)-design (P ,B) is the graph with vertex set B and two
distinct blocks are adjacent if they intersect. Note that the block graph of a 2-(v, k, 1)-
design is a strongly regular graph with smallest eigenvalue −k, see [4, Section 8.5.4A].

2.4 Association schemes

In this section, we introduce the definition of symmetric association schemes. We will
not introduce the Bose-Mesner algebra for them. The reader is referred to [1, 5] for more
information.

Let X be a finite set and let {R0, R1, . . . , RD} be a set of non-empty symmetric binary
relations on X which partition X ×X. For any i (0 6 i 6 D), define the matrix Ai with
entries 0 and 1 such that (Ai)xy = 1 if and only if (x, y) ∈ Ri. The pair X = (X, {Ri}Di=0)
is called a (symmetric) association scheme with D classes if the following conditions hold:

1. A0 = I|X|, which is the identity matrix of order |X|,

2.
∑D

i=0Ai = J|X|, the all-ones matrix of order |X|,

3. A>i = Ai for all i ∈ {0, 1, . . . , D}, where A>i is the transpose of Ai,

4. AiAj =
∑D

h=0 p
h
ijAh, where phij are nonnegative integers, such that for all x, y ∈ X

with (x, y) ∈ Rh the number of z ∈ X with (x, z) ∈ Ri and (z, y) ∈ Rj equals phij.

We call R0 the trivial relation and the other relations are called non-trivial. The integers
phij are called the intersection numbers of X. Any association scheme in this paper is a
symmetric association scheme. We also call X a D-class association scheme. The matrices
Ai, i = 0, 1, . . . , D are called the relation matrices of the association scheme X, and the
graph Gi = (X,Ri), with adjacency matrix Ai, is called the relation graph for the relation
Ri for i = 0, 1, . . . , D. Note that Gi is ki-regular where ki = p0ii, and we say that ki is the
valency of the relation Ri. Note that any relation graph in an association scheme X with
D classes has at most D + 1 distinct eigenvalues.

Van Dam gave a characterization of edge-regular graphs of level 2 with four distinct
eigenvalues in [18].

Theorem 8 (cf. [18, Theorem 5.1]). Let G be a connected regular graph that has four
distinct eigenvalues. Then G is edge-regular of level 2 if and only if G is one of the classes
of a 3-class symmetric association scheme.

2.5 Orthogonal arrays

An orthogonal array O of order (n, t), denoted by OA(n, t), is a t×n2 array such that each
entry is an element of [n] and #{(ri(`), rj(`)) | ` = 1, 2, . . . , n2} = n2 for 1 6 i < j 6 t,
where ri is the i-th row of O. Note that from an OA(n, t), we can construct t − 2
mutually orthogonal Latin Squares of order n for t > 3, and vice versa. A group-divisible
orthogonal array O of order (n, s, t), denoted by GOA(n, s, t) with groups G1, G2, . . . , Gt,
each consisting of distinct s rows is an st × n2-array such that #{(ri(`), rj(`)) | ` =
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1, 2, . . . , n2} = n2, whenever ri belongs to a different group than rj. We allow repeated
rows in a group.

If there exists an OA(n, t), then, for all s > 2, there exists a GOA(n, s, t).
The following theorem is the well known MacNeish’s Theorem [12].

Theorem 9. If n = pα1
1 · · · pαr

r where p1, . . . , pr are distinct primes. Then there exists an
OA(n, r) with r = mini p

αi
i + 1

Now we will define the Latin Square graphs.

Definition 10. Let O be an OA(n,m) with columns c1, c2, . . . , cn2 . The Latin Square
graph LSm(n) with respect to O is the graph on V = {c1, c2, . . . , cn2} and for i 6= j,
ci ∼ cj if there exists an integer ` such that ci(`) = cj(`).

Each Latin Square graph LSm(n) is a strongly regular graph with parameters

(n2, (n− 1)m, (m− 1)(m− 2) + n− 2,m(m− 1))

and has spectrum Spec(LSm(n)) = {[(n − 1)m]1, [n − m](n−1)m, [−m](n−1)(n+1−m)}. For
more background about Latin Square graphs, we refer to [4, 5]

For a positive integer s, the s-clique extension of a graph G is the graph G̃ obtained
from G by replacing each vertex x ∈ V (G) by a clique X̃ with s vertices, such that x̃ ∼ ỹ
(for x̃ ∈ X̃, ỹ ∈ Ỹ ) in G̃ if and only if x ∼ y in G. Note that G̃ has adjacent matrix
A(G̃) = Js⊗(A(G)+Iv)−Isv, where I is the identity matrix, J is the all-ones matrix, and
v is the number of vertices in G. In particular, if Spec(G) = {[θ0]m0 , [θ1]

m1 , . . . , [θr]
mr},

then

Spec(G̃) = {[s(θ0 + 1)− 1]m0 , [s(θ1 + 1)− 1]m1 , . . . , [s(θr + 1)− 1]mr , [−1](s−1)v}.

Note that if G and H have the same spectrum, then the s-clique extension of G has the
same spectrum, as the the s-clique extension of H. For more background about s-clique
extensions, we refer to [9].

2.6 Parallel classes

Let q be a prime power and Fq be the finite field of order q. A plane P is an affine plane
in F3

q. Two planes P1 and P2 are parallel if they are disjoint. A parallel class S is a set
of q mutually parallel planes in F3

q. Bose first considered these sets in [2] to construct
certain designs. In the next result we show that there are special parallel classes in F3

q.
The following result may be known, but we could not find a reference for it.

Theorem 11. There are q + 1 parallel classes S1, . . . ,Sq+1 in F3
q satisfying:

1. |P ∩Q| = q for P ∈ Si and Q ∈ Sj if i 6= j,

2. |P ∩Q ∩R| = 1 for P ∈ Sh, Q ∈ Si and R ∈ Sj, if 1 6 h < i < j 6 q + 1.
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Proof. Let v∞ := (0, 0, 1) and vx := (1, x, x(x + 1)) for each x ∈ Fq. Let x, y, z be three
distinct elements of Fq. Then

det

0 0 1
1 x x(x+ 1)
1 y y(y + 1)

 = y − x

and

det

1 x x(x+ 1)
1 y y(y + 1)
1 z z(z + 1)

 = (x− y)(y − z)(z − x).

This means that any three distinct vectors of {vx | x ∈ Fq}∪{v∞} are linear independent.
Let P b

a := {u ∈ F3
q | uTva = b} for a ∈ Fq ∪ {q + 1} and b ∈ Fq. Then Sa := {P b

a | b ∈ Fq}
is a parallel class as these planes are all orthogonal to va. Let a1, a2, a3 ∈ Fq ∪ {v∞} be
pairwise distinct. Then we have |P b1

a1
∩ P b2

a2
| = q for b1, b2 ∈ Fq, as va1 and va2 are linear

independent, and |P b1
a1
∩ P b2

a2
∩ P b3

a3
| = 1 for b1, b2, b3 ∈ Fq, as va1 , va2 and va3 are linear

independent.

3 A combinatorial characterization of co-edge-regular graphs
with four distinct eigenvalues

In this section we will study connected co-edge-regular graphs with at most four distinct
eigenvalues. Note that by Lemma 6, we have a characterization of connected regular
graphs with 3 distinct eigenvalues. We will generalize this to four distinct eigenvalues.

Let G be a connected k-regular graph on n vertices with exactly four eigenvalues
θ0 = k > θ1 > θ2 > θ3. Let A := A(G) be the adjacent matrix of G, n := |V (G)|, and

` := (k−θ1)(k−θ2)(k−θ3)
n

. Hoffman [10], see also [17], showed (A−θ1I)(A−θ2I)(A−θ3I) = `J .
It follows that

A3 − (θ1 + θ2 + θ3)A
2 + (θ1θ2 + θ1θ3 + θ2θ3)A− θ1θ2θ3I = `J. (1)

Definition 12.

1. A co-edge-regular graph with parameter µ is a (µ, γ)-strongly co-edge-regular, if
every pair of non-adjacent vertices {x, y} satisfies

∑
z∈N(x)∩N(y) λ(x, z) = γ.

2. A regular graph is (α, β)-weakly edge-regular if every pair of adjacent vertices {x, y}
satisfies αλ(x, y) =

∑
z∈N(x)∩N(y) λ(x, z) + β.

Note that a non-complete strongly regular graph with parameters (n, k, λ, µ) is (µ, γ)-
strongly co-edge-regular with γ = λ2, and (α, β)-weakly edge-regular for any pair (α, β)
satisfying β = (α− λ)λ.
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Theorem 13. Let G be a connected non-complete k-regular and co-edge-regular graph on
n vertices with parameter µ. Then G has at most 4 distinct eigenvalues if and only if
it is (α, β)-weakly edge-regular and (µ, γ)-strongly co-edge-regular for some reals α, β, γ.
Furthermore, if G has exactly 4 distinct eigenvalues k > θ1 > θ2 > θ3, then α − µ =
θ1 +θ2 +θ3, µ(α−1)+k−β−γ = θ1θ2 +θ1θ3 +θ2θ3, and µ(k−α)+γ = (k−θ1)(k−θ2)(k−θ3)

n
.

Proof. Let G be a k-regular and co-edge-regular graph with parameter µ.
As G is non-complete, G has at least three distinct eigenvalues. If G has exactly three

distinct eigenvalue, then we have already seen that G is strongly and hence (α, β)-weakly
edge-regular and (µ, γ)-strongly co-edge-regular for some reals α, β, γ. Now assume that
G has at least four distinct eigenvalues.

Notice that (A3)xx = 2e(∆x) = k(k− 1)− µ(n− k− 1), where e(∆x) is the number of
edges in ∆x the local graph at x. For a vertex x of G, let N(x) be the set of neighbours
of x in G.

Let x and y be two distinct non-adjacent vertices. Then

(A3)xy = (k − µ)µ+
∑

z∈N(x)∩N(y)

λ(x, z) and (A2)xy = µ.

Similarly, if u and v are two adjacent vertices, then

(A3)uv =
∑

w∈N(u)∩N(v)

λ(u,w) + (k − 1− λ(u, v))µ+ k and (A2)uv = λ(u, v).

Assume that G has exactly four distinct eigenvalues θ0 = k > θ1 > θ2 > θ3. By
Equation (1), for two distinct non-adjacent vertices x and y, the sum∑

z∈N(x)∩N(y)

λ(x, z) = µ(θ1 + θ2 + θ3 − k + µ) + `

does not depend on the choice of x and y, where ` := (k−θ1)(k−θ2)(k−θ3)
n

. Hence, G is strongly
co-edge-regular with γ = µ(θ1 + θ2 + θ3 − k + µ) + `.

Also by Equation (1), for two adjacent vertices u and v, the sum

(θ1 + θ2 + θ3 + µ)λ(u, v) =
∑

w∈N(u)∩N(v)

λ(u,w) + (k − 1)µ+ k + θ1θ2 + θ1θ3 + θ2θ3 − `

does not depend on the choice of u and v. Hence, G is weakly edge-regular with α =
θ1 + θ2 + θ3 + µ and β = (k − 1)µ+ k + θ1θ2 + θ1θ3 + θ2θ3 − `.

Now let G be a (µ, γ)-strongly co-edge-regular and (α, β)-weakly edge-regular graph.
Let f1 := µ(α− 1) + k − β − γ, f2 := α− µ, f3 := k(k − 1− α) + µα− γ − µ(n− k − 1),
and f4 := µ(k − α) + γ.

Let x be a vertex of G. Then (A3)xx = k(k − 1) − µ(n − k − 1) = f3 + kf2 + f4 =
(f1A+ f2A

2 + +f3I + f4J)xx.
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Let x and y be two distinct non-adjacent vertices. Then

(A3)xy = (k − µ)µ+
∑

z∈N(x)∩N(y)

λ(x, z) and (A2)xy = µ.

As G is a (µ, γ)-strongly co-edge-regular graph, we see that (A3)xy = (k − µ)µ + γ =
f4 + f2µ = f4Jxy + f2(A

2)xy = (f1A+ f2A
2 + f3I + f4J)xy.

Using the fact that G is (α, β)-weakly edge-regular, it can be checked in a similar way
that (A3)uv = (f1A+ f2A

2 + f3I + f4J)uv for adjacent vertices u, v of G. This means that
A3 = f1A

2 + f2A+ f3I + f4J . This implies that A4 − (k+ f1)A
3 + (kf1 − f2)A2 + (kf2 −

f3)A + kf3I = 0, since AJ = kJ . Therefore, the degree of the minimal polynomial of A
is at most four, and thus G has at most 4 distinct eigenvalues.

Of course the above theorem also gives a characterization of edge-regular graphs with
four distinct eigenvalues, by looking at their complements. Note that this characterization
generalizes the following result of Van Dam [18], as relation graphs from d-class association
schemes have at most d+ 1 distinct eigenvalues.

Theorem 14 (cf. [18, Theorem 5.1]). Let G be an edge-regular graph of level 2. Then
G is the relation graph of a 3-class association scheme if and only if it has exactly four
distinct eigenvalues.

4 On a theme of Haemers and Tonchev

In strongly regular graphs, the cliques and co-cliques with the property that every vertex
outside is adjacent with the same number of vertices inside are characterized by the fact
that they satisfy with the equality so-called Hoffman bound :

Theorem 15 (cf. [4, Proposition 1.1.7]). Let G be a strongly regular graph with parame-
ters (n, k, λ, µ) and smallest eigenvalue −m.

1. If C is a clique of G, then |C| 6 m+k
m

, with equality if and only if every vertex x /∈ C
has the same number µ

m
of neighbors in C.

2. If D is a co-clique of G, then |D| 6 m
m+k

n, with equality if and only if every vertex
x /∈ D has the same number m of neighbors in D.

3. If a clique C and a co-clique D both meet the bounds of (i) and (ii), then |C∩D| = 1.

In 2021, Haemers wrote a note [7] clarifying the history of the Hoffman bound. We
call a (co-)clique that meets the Hoffman bound a Hoffman (co-)clique. Note that in the
literature a Hoffman clique is also called a Delsarte clique.

Definition 16. 1. A Hoffman coloring in a strongly regular graph G is a partition of
the vertex set into Hoffman co-cliques;
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2. A Hoffman spread in a strongly regular graph G is a partition of the vertex set into
Hoffman cliques.

Note that a Hoffman coloring in a strongly regular graph G is the same as a Hoffman
spread in its complement G.

In [8], Haemers and Tonchev showed the following result, generalizing a result of
Brouwer.

Theorem 17 (cf. [8, Proposition 4.1]). Let G be a connected non-complete strongly
regular graph with n vertices and spectrum Spec(G) = {[k]1, [r]f , [s]g} having a Hoffman
spread S = {C1, C2, . . . , Ct}. Let E be the edge set of G and Fi be the edge set of Ci for
i = 1, 2, . . . , t. Let G′ be the graph with the same vertex set as G and edge set E \

⋃t
i=1 Fi.

Then G′ is the relation graph of a 3-class association scheme. In particular, G′ is regular
and edge-regular with spectrum

Spec(G′) = {[k +
n− k − 1

r + 1
]1, [r − 1]m1 , [s− 1]m2 , [s+

n− k − 1

r + 1
]m3},

where m1 = f − sn
s−k + 1, m2 = g, and m3 = sn

s−k − 1.

Note that the complement G1 of G1 of Theorem 17, is co-edge-regular and has at most
four distinct eigenvalues. Therefore, each strongly regular graph with a Hoffman spread
can construct a counterexample of Conjecture 4. There are many examples of strongly
regular graphs with Hoffman spreads, see [8, 16].

By using resolvable 2-(v, t, 1)-designs, we give an infinite family of counterexamples of
Conjecture 4 by the above theorem. The complements of these examples were obtained
by Haemers and Tonchev [8]. For the convenience of the reader, we give the details.

Let D = (P ,B) be a resolvable 2-(v, t, 1)-design, say, with resolution
ρ = {B∞,B∈, . . . ,B`}. This means that the block graph G of D is a strongly regular
graph with parameters (n, k, λ, µ) having smallest eigenvalue −t, see [4, Section 8.5.4A],

where n = v(v−1)
t(t−1) , k = t(v−t)

t−1 , λ = t(t − 2) + v−t
t−1 , and µ = t2. Note that each Bi is a

co-clique of G with order v
t
. By Theorem 15, each Bi denotes a Hoffman co-clique of G.

Hence, the resolution ρ gives a Hoffman coloring of G.
Now construct the H with vertex set B such that, for two distinct blocks B1, B2, we

have B1 ∼ B2 if they were adjacent in G or there exists i such that B1, B2 ∈ Bi. Then,
by Theorem 17, we see that H is a co-edge-regular graph with smallest eigenvalue −t− 1
having exactly four distinct eigenvalues.

Theorem 18. The graph H is regular with valency v−t
t−1(t + t−1

t
) and co-edge-regular of

level 2 with parameter t(t+ 2). Moreover, the spectrum of H is

Spec(H) = {[v − t
t− 1

(t+
t− 1

t
)]1, [

v − t
t
− t]f1 , [v − 1

t− 1
− t− 2]f2 , [−t− 1]f3},

where f1 = v−t
t−1 , f2 = v − 1, and f3 = v−1

t
(v−t
t−1 − t).
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Proof. By Theorem 8 and Theorem 17, it suffices to show that H is co-edge-regular
with parameter t(t + 2). Let x, y ∈ V (H) be two non-adjacent vertices. Without loss
of generality, assume that x ∈ B1 and y ∈ B2. Since Bi is a Hoffman co-clique of G
for each i, Theorem 15 implies that x (resp. y) has exactly t neighbors in B2 (resp.
B1). Note that G is co-edge-regular with parameter t2. Therefore, |NH(x) ∩ NH(y)| =
|NG(x)∩NG(y)|+ |NH(x)∩ B2|+ |NH(y)∩ B1| = t(t+ 2). This completes the proof.

Note that for fixed t > 2, there are infinitely many v such that there exists a resolvable
2-(v, t, 1)-design, see for example [14]. These give infinitely many counterexamples to
Conjecture 4.

5 Another construction

In this section, we construct a new family of co-edge-regular graphs with four distinct
eigenvalues of which one is −1. We will use group-divisible orthogonal arrays for this
construction. We will call these new graphs the twisted Latin Square graphs. In the rest
of this section, let q be a prime power and n be a positive integer such that there exists
a GOA(n, q, q + 1), say O with groups G1, G2, . . . , Gq+1. Note that, for a given prime
power q, there are infinitely many n such that exists a GOA(n, q, q + 1), by MacNeish’s
Theorem [12]. For i ∈ [q + 1], order the rows in Gi as rij where j ∈ [q], since there are
exactly q rows in Gi.

By Theorem 11, there are q + 1 parallel classes S1, . . . ,Sq+1 in F3
q satisfying:

1. |P ∩Q| = q for P ∈ Si and Q ∈ Sj if i 6= j,

2. |P ∩Q ∩R| = 1 for P ∈ Sh, Q ∈ Si and R ∈ Sj, if 1 6 h < i < j 6 q + 1.

Let Si = {P i
1, P

i
2, . . . , P

i
q} for i ∈ [q+ 1]. We consider the planes P i

j as subsets of order
q2 of F3

q for i ∈ [q + 1] and j ∈ [q].
Now we are ready to define the twisted Latin Square graphs. As we will see later they

have the same spectra as certain clique-extensions of certain Latin Square graphs.
The twisted Latin Square graph with parameters (q, n) with respect to O, abbreviated

with TLS(q, n), is the graph with vertex set F3
q × [n2]. Two distinct vertices (x, i) and

(y, j) of TLS(q, n) are adjacent if i = j or if there exists a plane P p
` such that x and y

both lie on and rp` (i) = rp` (j).
For s ∈ [q + 1], t ∈ [q] and ` ∈ [n] define the set C(s, t, `) as the set consisting of the

vertices (x, i) such that x ∈ P s
t and rst (i) = `. It is clear that the set C(s, t, `) induces a

clique in TLS(q, n) of order q2n.

5.1 Structure of TLS(q, n)

We denote F (i) := {(x, i) | x ∈ F3
q} for i = 1, 2, . . . , n2 and P s

t (i) := {(x, i) | x ∈ P s
t } for

s ∈ [q + 1], t ∈ [q], and i ∈ [n2].
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Lemma 19. Let s1, s2 ∈ [q + 1], t1, t2 ∈ [q] and `1, `2 ∈ [n]. Assume C(s1, t1, `1) 6=
C(s2, t2, `2). If s1 6= s2, then there exists an integer i such that C(s1, t1, `1)∩C(s2, t2, `2) =
P s1
t1 (i)∩P s2

t2 (i) ⊆ F (i). and |C(s1, t1, `1)∩C(s2, t2, `2)| = q. If s1 = s2, then |C(s1, t1, `1)∩
C(s2, t2, `2)| = 0.

Proof. Assume s1 6= s2. By Theorem 11, the planes P s1
t1 and P s2

t2 intersect in q vectors x1,
x2,. . ., xq. There exists exactly one position i ∈ [n2] such that rs1t1 (i) = `1 and rs2t2 (i) = `2,
by the definition of O. This shows that C(s1, t1, `1) ∩ C(s2, t2, `2) = P s1

t1 (i) ∩ P s2
t2 (i) and

|C(s1, t1, `1) ∩ C(s2, t2, `2)| = q in this case. Now assume s1 = s2. If t1 6= t2, then the
planes P s1

t1 and P s2
t2 are parallel and disjoint, and thus |C(s1, t1, `1) ∩ C(s2, t2, `2)| = 0. If

t1 = t2, then `1 6= `2 and again it is clear that |C(s1, t1, `1)∩C(s2, t2, `2)| = 0. This shows
the lemma.

Lemma 20. Any twisted Latin Square graph TLS(q, n) is regular with valency k = q3 −
1 + (q + 1)(n− 1)q2.

Proof. Let (x, i) be a vertex of TLS(q, n). Then it has q3 − 1 neighbours in F (i). The
vector x lies in the unique plane, say P s

ts , in the parallel class Ss for s ∈ [q + 1]. So
(x, i) has exactly q2(n−1) neighbours in C(s, ts, r

s
ts(i))−F (i) = C(s, ts, r

s
ts(i))−P

s
ts(i). If

s1 6= s2, then, by Lemma 19, C(s1, ts1 , `1)∩C(s2, ts2 , `2) = P s1
ts1

(i)∩P s2
ts2

(i) ⊂ F (i), as (x, i)

is one of them. It follows that the valency of (x, i) is exactly q3− 1 + (q+ 1)(n− 1)q2.

Lemma 21. Let s ∈ [q+1], t ∈ [q] and ` ∈ [n]. Let v = (x, i) be a vertex not in C(s, t, `).
Assume that x lies in planes P j

tj for j ∈ [q+1]. If rst (i) = `, then C(s, t, `)∩N(v) = P s
t (i)

holds. If rst (i) 6= `, then there exists pairwise distinct mp with p ∈ [q + 1]− {s} such that

C(s, t, `) ∩N(v) =

q+1⋃
p=1,p 6=s

P p
tp(mp) ∩ P s

t (mp).

In particular, v has exactly q2 neighbours in C(s, t, `).

Proof. Assume that v = (x, i). The vector x lies in a unique plane, say P j
tj , in the parallel

class Sj for j ∈ [q + 1]. Hence, (x, i) lies in the clique C(j, tj, r
j
tj(i)) for j ∈ [q + 1].

If rst (i) = `, then P s
t (i) = C(s, t, `) ∩ F (i) ⊂ C(s, t, `) ∩ N(v). So v has at least q2

neighbours in C(s, t, `), and ts 6= t as otherwise v ∈ C(s, t, `). As (x, i) lies in the clique
C(j, tj, r

j
tj(i)) for j ∈ [q+ 1] and, by Lemma 19, C(s, t, `)∩C(j, tj, r

j
tj(i)) = P s

t (i)∩P j
tj ⊂

P s
t (i) if j 6= s. This means that |C(s, t, `) ∩N(v)| = |P s

t (i)| = q2 holds.
If rst (i) 6= `, then C(s, t, `) ∩ N(v) = C(s, t, `) ∩ (

⋃
i 6=sC(j, tj, r

j
tj(i))). By Lemma 19,

there exists an integer mj such that C(s, t, `)∩C(j, tj, r
j
tj(i)) = P s

t (mj)∩P j
tj(mj) if j 6= s.

As rst (i) 6= ` and rst (mj) = `, we have i 6= mj for all j 6= s.
Now we show that mj 6= mj′ for distinct j, j′ ∈ [q + 1] − {s}. In fact, we have

(rjtj(mj), r
j′

tj′
(mj)) 6= (rjtj(i), r

j′

tj′
(i)), by the definition of O, as i 6= mj. Thus, mj 6= mj′ for

distinct j, j′ ∈ [q + 1]− {s}.
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This implies that

|C(s, t, `) ∩N(v)| = |C(s, t, `) ∩ (
⋃
i 6=s

C(j, tj, r
j
tj(i)))|

= |
⋃
i 6=s

(P s
t (mj) ∩ P j

tj(mj))|

=
∑
i 6=s

|(P s
t (mj) ∩ P j

tj(mj))| = q2

by Theorem 11.

Lemma 22. Each twisted Latin Square graph TSL(q, n) has q2(n−1)−1 as an eigenvalue.

Proof. Let V be the vertex set of TSL(q, n). By Lemma 20, TLS(q, n) is regular with
valency k = q3 − 1 + (q + 1)(n− 1)q2. By Lemma 21, for s ∈ [q + 1], we have a equitable

partition {C(s, t, `), V − C(s, t, `)} with quotient matrix

(
nq2 − 1 k − nq2 + 1
q2 k − q2

)
having

eigenvalues q2(n−1)−1 and k. Therefore, q2(n−1)−1 is an eigenvalue of TSL(q, s).

Lemma 23. Let u = (x, i) be a vertex in TLS(q, n) where x ∈ F3
q and i ∈ [n2]. If u has

neighbours in F (m) where m 6= i and m ∈ [n2]. Then there exists s ∈ [q + 1] and t ∈ [q]
such that F (m) ∩N(u) = P s

t (m).

Proof. Let v = (y,m) be a neighbour of u in F (m). This means that there exists s ∈
[q + 1], t ∈ [q] and ` ∈ [n] such that u, v ∈ C(s, t, `), which implies ` = rst (i) = rst (m). It
follows that N(u) ∩ F (m) ⊇ P s

t (m). Let s1 ∈ [q + 1], t1 ∈ [q] such that s1 6= s. Then
rs1t1 (i) 6= rs1t1 (m) by the definition of O. As a consequence, we find that N(u) ∩ F (m) =
P s
t (m). This shows the lemma.

5.2 Local graphs of TLS(q, n)

Let u = (x,m) be a vertex of the graph TLS(q, n), where x ∈ F3
q and m ∈ [n2]. The

vector x lies in the unique plane, say P s
ts , in the parallel class Ss for s ∈ [q + 1]. This

means that (x,m) lies in the clique C(s, ts, r
i
ts(m)) for s ∈ [q + 1]. We define the set

Aij = Aij(u) as follows: Let Aij := P i
ti

(m) ∩ P j
tj(m)− {(x,m)} for distinct i, j ∈ [q + 1].

For i ∈ [q + 1], we define the sets Bi = Bi(u), Ci = Ci(u) and R = R(u) by
Bi := P i

ti
(m)−

⋃
j 6=i P

j
tj(m), Ci := C(i, ti, r

i
ti

(m))−P i
ti

(m), and R := F (m)−
⋃q+1
j=1 P

j
tj(m).

We first give the cardinalities of these sets and also show that they are mutually
disjoint.

Proposition 24. Let Aij, Bi, Ci, and R be the sets as defined above. These sets satisfy
the following properties:

1. The sets Aij, Bh, Cp, and R are mutually disjoint for i, j, h, p ∈ [q + 1] and i 6= j;

2. |Aij| = q − 1 for i, j ∈ [q + 1] and i 6= j;
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3. |Bi| = q − 1 for i ∈ [q + 1];

4. |Ci| = (n− 1)q2 for i ∈ [q + 1];

5. |R| = q(q−1)2
2

for i ∈ [q + 1].

Proof. As Aij, Bh, R are all subsets of F (m) and Cp ∩ F (m) = ∅ for i, j, h, p ∈ [q + 1],
i 6= j so Cp is disjoint from Bh, R and Aij. For distinct i, j ∈ [q + 1], by Lemma 19, we
have

C(i, ti, r
i
ti

(m)) ∩ C(j, tj, r
j
tj(m)) ⊂ F (m).

So Ci ∩ Cj = ∅. Clearly the Bi and Bj are disjoint if i 6= j, and Aij ∩ Bh = ∅ if i 6= j. It
is also clear that the set R is disjoint from the sets Aij and Bh.Let i1, i2, j1, j2 ∈ [q + 1]
such that i1 6= j1, i2 6= j2 and {i1, j1} 6= {i2, j2}. Then Ai1,j1 ∩ Ai2,j2 is contained in the
intersection of at least three planes all containing (x,m). This means that Ai1,j1 ∩Ai2,j2 =
∅, by Theorem 11. These show that all the sets in (i) are disjoint.

Now we will determine the order of the sets Aij, Bi, Ci and R. For i 6= j ∈ [q + 1] the
set Aij = P i

ti
(m) ∩ P j

tj(m) \ u, and hence |Aij| = q − 1 by Theorem 11. It follows that

|Bi| = |P i
ti
| −
∑

j 6=i |Aij| − 1 = q2 − q(q − 1)− 1 = q − 1 for i ∈ [q + 1], and thus

|R| = q3−
∑
i

|Bi|−
q+1∑
i=1

q+1∑
j=i+1

|Aij|−|{u}| = q3−(q+1)(q−1)−(q + 1)q

2
(q−1)−1 =

q(q − 1)2

2
.

Note that |Ci| = |C(i, ti, r
i
ti

(m))| − |P i
ti

(m)| = (n − 1)q2 for i ∈ [q + 1]. This shows the
proposition.

As F (m) induces a clique and Aij, Bh, R are subsets of F (m), any two distinct vertices
in any pair of these sets are adjacent.

Now we determine the number of neighbours of w ∈ Ci where i ∈ [q + 1].

Lemma 25. With the above notation, let w ∈ Ci where i ∈ [q + 1]. Then w has exactly

1. q(q − 1) neighbours in Cj for j ∈ [q + 1]− {i},

2. q − 1 neighbours in Ahj if i ∈ {h, j} and 0 otherwise,

3. q − 1 neighbours in Bj if i = j and 0 otherwise,

4. 0 neighbours in R.

Proof. Note that Aij, Bi and Ci are subsets of C(i, ti, r
i
ti

(m)) for i, j ∈ [q + 1] and i 6=
j. This shows (iii) and (ii) for i ∈ {h, j}. Assume that w = (y, p). By Lemma 23,
N(w) ∩ F (m) is the plane P i

ti
(m), and hence w has no neighbours in Ajh if i 6∈ {j, , h}

by Theorem 11. This finishes the proof of (ii). It also follows that w has no neighbours
in R, showing (iv). To show (i), let j ∈ [q + 1] \ {i}. We have riti(p) = riti(m), and thus

rjtj(p) 6= rjtj(m) by the definition of TLS(q, n) and O. We have N(w) ∩ F (m) = P i
ti

(m),
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by Lemma 23, of which exactly q are in Cj
tj(m), namely the elements of P i

ti
(m) ∩ P j

tj(m).

As w has q2 neighbours in C(j, tj, r
j
tj) by Lemma 21, it follows that w has exactly q2 − q

neighbours in Cj. This finishes the proof of the lemma.

Proposition 24 and Lemma 25 implies that there are four kinds of vertices in the local
graph ∆(u). To make this precise:

Proposition 26. With the above notation, let a ∈ Aij, b ∈ Bi, c ∈ Ci, and v ∈ R for
i, j ∈ [q + 1]. Then we have:

1. λ(u, a) = |F (m)− {u, a}|+ |Ci|+ |Cj| = q3 − 2 + 2(n− 1)q2;

2. λ(u, b) = |F (m)− {u, b}|+ |Ci| = q3 − 2 + (n− 1)q2;

3. λ(u, c) =
∑

t6=i |N(c) ∩ Ct| + |C(i, ti, r
i
ti

(m)) − {u, c}| = q(q2 − q) + nq2 − 2 =

q3 − 2 + (n− 1)q2;

4. λ(u, v) = |F (m)− {u, v}| = q3 − 2.

This gives immediately the following:

Proposition 27. With the above notation, let A :=
⋃
i

⋃
j 6=iAij,B =

⋃
iBi, and C :=⋃

iCi. Then the partition {A,B, C, R} is an equitable partition of the local graph ∆(u)
with quotient matrix

Q :=


(
q+1
2

)
(q − 1)− 1 (q + 1)(q − 1) 2(n− 1)q2 q(q−1)2

2(
q+1
2

)
(q − 1) (q + 1)(q − 1)− 1 (n− 1)q2 q(q−1)2

2

q(q − 1) q − 1 (n− 1)q2 + q(q2 − q)− 1 0(
q+1
2

)
(q − 1) (q + 1)(q − 1) 0 q(q−1)2

2
− 1

 .

As a consequence of the above two propositions we have the following result.

Proposition 28. Each twisted Latin Square graph TLS(q, n) is (α, β)-weakly-edge-regular,
where α + 1 = (n− 1)q2 + q3 − 2 and β = (2− q3)− q2(n− 1)(q2 − q + 1).

Proof. It can be directly confirmed by calculation, by using Propositions 26 and 27.

Proposition 29. Each twisted Latin Square graph TLS(q, n) is (µ, γ)-strongly co-edge-
regular, where µ = (q + 1)q2 and γ = µ(q3 − 2 + (n− 1)q2).

Proof. Let u = (x,m) be a vertex of the graph TLS(q, n), where x ∈ F3
q and m ∈ [n2].

We use the above notations Aij, and so on. Let w = (y,m′) be a non-adjacent vertex
to u. Then m′ 6= m. We have to consider two cases for w: either N(w) ∩ F (m) = ∅ or
N(w) ∩ F (m) 6= ∅. In the first case, we have N(w) ∩ N(u) = N(w) ∩ (∪q+1

i=1Ci). This
implies |N(w) ∩N(u)| = (q + 1)q2 and∑

v∈N(w)∩N(u)

λ(u, v) = (q + 1)q2(q3 − 2 + (n− 1)q2)
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by Lemma 21 and Proposition 26.
If N(w)∩F (m) 6= ∅, then, by Lemma 23, there exists s ∈ [q+ 1] and t ∈ [q] such that

N(w) ∩ F (m) = P s
t (m). We obtain that |Aij ∩ P s

t (m)| = 1 for i, j ∈ [q + 1] − {s}, and

hence |Bi ∩ P t
s(m)| = 1 for i ∈ [q + 1] − {s}. So that means |A ∩ P s

t (m)| = q(q−1)
2

and

|B ∩P s
t (m)| = q. We obtain that |R∩P s

t (m)| = q2− q(q−1)
2
− q = q(q−1)

2
. Also this implies

that w has exactly q2 − q neighbours in Ci if i ∈ [q + 1]− {s} and exactly q2 neighbours
in Cs, by Lemma 21 and Proposition 26. As w has exactly q2 neighbours in F (m), we see
that

|N(w) ∩N(u)| = |N(w) ∩ F (m)|+
q+1∑
i=1

|N(w) ∩ Ci| = q2 + q2 + q(q2 − q) = (q + 1)q2.

Now we have∑
v∈N(w)∩N(u)

λ(u, v) =
∑

v∈N(w)∩A

λ(u, v) +
∑

v∈N(w)∩B

λ(u, v) +
∑

v∈N(w)∩C

λ(u, v) +
∑

v∈N(w)∩R

λ(u, v)

=
q(q − 1)

2
(q3 − 2 + 2(n− 1)q2) + q(q3 − 2 + (n− 1)q2)+

(q(q2 − q) + q2)(q3 − 2 + (n− 1)q2) +
q(q − 1)

2
(q3 − 2)

=(q + 1)q2(q3 − 2 + (n− 1)q2).

This shows the proposition.

Corollary 30. Each twisted Latin Square graph TLS(q, n) is a co-edge-regular graph of
level 3 with spectrum

{(q3− 1 + q2(q+ 1)(n− 1))1, (q2(n− 1)− 1)(qn−1)(q+1), (−1)(q−1)q
2n2

, (−q2− 1)(qn−1)(n−1)q}.

Proof. By Proposition 26 and Proposition 29, TLS(q, n) is a co-edge-regular graph of
level 3.

By Lemma 20 and Proposition 28, each twisted Latin Square graph TLS(q, n) is k-
regular where k = q3 − 1 + (q + 1)(n − 1)q2, and weakly-edge-regular with α = (n −
1)q2 + q3 − 3 and β = (2 − q3) − q2(n − 1)(q2 − q + 1). By Proposition 29, TLS(q, n)
is strongly co-edge-regular with µ = (q + 1)q2 and γ = µ(q2 − q)q + nq2 − 2. Note
that TLS(q, n) is not a strongly regular graph as there are three different valencies in
any local graph of TLS(q, n). Therefore, TLS(q, n) has exactly four distinct eigenvalues
k = θ0 > θ1 > θ2 > θ3 by Theorem 13.

It follows from Lemma 22 that θ1 = q2(n−1)−1. By Theorem 13 and Equation (1), we
obtain α−µ = f1 = θ1+θ2+θ3 and µ(α−1)+k−β−γ = f2 = θ1θ2+θ1θ3+θ2θ3. Therefore,
θ2 = −1 and θ3 = −q2 − 1. The multiplicities can be determined by using Tr(A) = 0,
Tr(A2) = q3n2k, and that the sum of multiplicities is equal to q3n2 = |V (TLS(q, n))|.

As a consequence of the above corollary and Theorem 9, we have the following result
which provides a proof of Theorem 5.
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Theorem 31. For a prime power q, there exist infinitely many integers n such that a
twisted Latin Square graph TLS(q, n) exists. The graph TLS(q, n) is a co-edge-regular
graph with level 3 and cospectral with the q-clique extension of each Latin Square graph
LSq+1(qn).

It worth mentioning that TLS(q, n) is not switching equivalent to the q-clique exten-
sion of LSq+1(qn) if n > 6.

The smallest example of a twisted Latin Square graph is TLS(2, 2), which has 32
vertices. Van Dam and Spence [19] provided tables of connected regular graphs with four
distinct eigenvalues and at most 30 vertices.

In particular, we can also consider cliques-extensions of twisted Latin Square graphs.
As a consequence, for any positive integer s > 2, there exist infinitely many co-edge-
regular graphs that are non-isomorphic but cospectral with the s-clique extension of cer-
tain Latin Square graphs

Theorem 32. Let q be a prime power. For any positive integer s > 2, such that q is a
factor of s. If q 6= s, then there exist infinitely many integers n for which a co-edge-regular
graph with level 4 exists that is cospectral with the s-clique extension of each Latin Square
graph LSq+1(qn).

Proof. By Theorem 31, there exists infinitely many integers n such that a twisted Latin
Square graph TLS(q, n) exists. Then the s

q
-clique extension of TLS(q, n) is a co-edge-

regular graph of level at least 3 with the same spectrum as the s-clique extension of
LSq+1(qn). Moreover, if s 6= q, then the s

q
-clique extension of TLS(q, n) is a co-edge-

regular graph of level 4.

Remark 33. Recently we were able to generalize the construction in this paper to obtain
an infinite family of co-edge-regular graphs with unbounded level that are cospectral with
clique-extensions of Latin square graphs. A detailed exposition of these results will be
given in a forthcoming work.

We conclude with some open problems:

Problem 34. 1. Let G be a connected co-edge-regular graph with level t and with
four distinct eigenvalues and smallest eigenvalue −θ. Is t bounded by a function of
θ?

2. Is it possible to construct infinite families of cospectral graphs of certain clique
extensions of certain Steiner graphs in a similar manner as in Section 5?

3. Is it possible to generalize Theorem 1 to the class of co-edge-regular graphs of level
2 with exactly four distinct eigenvalues?
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