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Abstract

We study the rainbow version of the graph commonness property: a graph H
is r-rainbow common if the number of rainbow copies of H (where all edges have
distinct colors) in an r-coloring of edges of Kn is maximized asymptotically by
independently coloring each edge uniformly at random. H is r-rainbow uncommon
otherwise. We show that if H has a cycle, then it is r-rainbow uncommon for every
r at least the number of edges of H. This generalizes a result of Erdős and Hajnal,
and proves a conjecture of De Silva, Si, Tait, Tunçbilek, Yang, and Young.

Mathematics Subject Classifications: 05C15, 05D10

1 Introduction

1.1 History

In extremal graph theory, a graph H is common if the number of copies of H in any n
vertex graph G and its complement G is minimized asymptotically by the Erdős-Rényi
random graph G(n, 1/2). In other words, the minimum number of monochromatic copies
of H in any 2-edge coloring of Kn is asymptotically achieved by coloring each edge inde-
pendently uniformly at random. Commonness is extensively studied due to its connection
to other homomorphism density inequalities, including the Sidorenko conjecture. In par-
ticular, Sidorenko graphs are common [7].

A similar question is asked in anti-Ramsey theory: instead of minimizing the number
of monochromatic H, we maximize the number of rainbow copies of H, where all edges
have distinct colors [3, 1, 2].

Definition 1. For a graph H and r ∈ N, we say that H is r-rainbow common if the
maximum number of rainbow copies of H in an r-coloring of edges of Kn is achieved
asymptotically by coloring each edge independently with a uniform random color. Oth-
erwise, H is r-rainbow uncommon.

We say that H is rainbow common (resp. rainbow uncommon) if it is r-rainbow
common (resp. r-rainbow uncommon) for all r ⩾ e(H), where e(H) denotes the number
of edges of H.
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All asymptotics are up to a 1 + o(1) factor as n → ∞. This definition of r-rainbow
commonness is called r-anti-common in [2] and r-rainbow uncommon graphs are called
not r-anti-common.

If r < e(H), the condition in Definition 1 is trivial as there is no rainbow H by
the pigeonhole principle. Note that H can be r-rainbow common for some r and s-
rainbow uncommon for s ̸= r, in which case it is neither rainbow common nor uncommon.
However, it is conjectured that no such H exists [2, Conjecture 5.2]

It is an old result of Erdős and Hajnal [3] that K3 is 3-rainbow uncommon: There is
a coloring that beats the 2/9 density of rainbow K3’s obtained by the uniform random
3-coloring. Erdős and Sós posed the question to determine the maximum density [9].
With a flag algebra approach, [1] settled this question and determined that the maximum
density is 2/5 asymptotically.

More recently, [2] showed that disjoint unions of stars K1,s are rainbow common and
introduced the iterated blowup technique to show that Ks is

(
s
2

)
-rainbow uncommon for

all s ∈ N, thereby generalizing the result of Erdős and Hajnal. In [2], it is conjectured
that for every s ⩾ 3, the cycle graph with s edges is s-rainbow uncommon and path graph
with s edges is s-rainbow common.

1.2 Main results

In this paper, we extend the result of Erdős and Hajnal [3] and settle the cycle conjecture
in [2] with a much stronger statement.

Theorem 2. If graph H contains a cycle, then it is rainbow uncommon.

Since graphs without cycles must be forests, the following result is immediate.

Corollary 3. If graph H is r-rainbow common for any r ⩾ e(H), then H is a forest.

In Section 3, we prove Theorem 2 using a graphon perturbation technique inspired by
that of [5, 6] to study local Sidorenko properties.

1.3 Notation

In this paper, we consider simple graphs G with vertex set V (G) and edge set E(G). Let
v(G) and e(G) denote the size of V (G) and E(G), respectively. Let [n] := {1, 2, . . . , n}.
Let (n)k := k!

(
n
k

)
be the falling factorial. Let binomial coefficient

(
n
k

)
= 0 if k > n.

2 Preliminaries

2.1 Graphons

In this section, we introduce the notions of graphons and graph homomorphism densities
that we need for Theorem 2. We will follow [12, 7], where complete expositions are given.

Definition 4. A graphon is a measurable function W : [0, 1]2 → [0, 1], where W (x, y) =
W (y, x) for all x, y ∈ [0, 1].
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• We define the associated graphon WG of a graph G: partition [0, 1] into v(G) equal-
length intervals I1, . . . , Iv(G). For (x, y) ∈ Ii × Ij, define WG = 1{(i, j) ∈ E(G)}.

• For a graphon W , the W -random graph G(n,W ) on [n] is defined by sampling in-
dependently x1, . . . , xn ∈ [0, 1] and putting an edge (i, j) with probability W (xi, xj)
independently.

For graphs G,H and graphon W , define the H-homomorphism density in G and W as

t(H,G) =
hom(H,G)

v(G)v(H)
and t(H,W ) =

∫
[0,1]v(H)

∏
(u,v)∈E(H)

W (xu, xv)
∏

v∈V (H)

dxv,

respectively, where hom(H,G) is the number of graph homomorphisms from H to G.

For example, the Erdős-Rényi random graph G(n, p) is W -random graph G(n,W ),
where W is the constant graphon W (x, y) = p. One can similarly view stochastic block
models as graphons.

In this language, a graph H is Sidorenko if t(H,W ) ⩾ t(K2,W )e(H) for every graphon
W and H is common if t(H,W ) + t(H, 1 − W ) ⩾ 21−e(H) for every W [12, 7]. Note
that t(H,G) is the probability that a uniform random map from V (H) → V (G) is a
graph homomorphism. The following simple observation shows that the two definitions
of homomorphism densities coincide for graphs.

Lemma 5. t(H,WG) = t(H,G) for all graphs G,H and graphon WG associated to G.

The following statement captures the viewpoint that graphons are limits of graphs
in the context of homomorphism densities. This uses the notion of left convergence of
graphs to graphons.

Proposition 6 ([12, Theorem 4.4.2]). Let W be a graphon. For each n ∈ N, let Gn ∼
G(n,W ). Then, Gn left converges to W almost surely, i.e. for all graphs H, t(H,Gn) →
t(H,W ) as n → ∞.

An alternative viewpoint uses the notion of convergence in cut metric δ□ to view
graphons as the completion of the space of graphs with respect to δ□. We refer to [12, 7, 8]
for more details.

2.2 Colorings

We can view graphs as two colorings of complete graphs. This perspective allows us to
naturally extend the notions of graphons and homomorphism densities to edge colorings
by considering the graphons associated to the induced subgraph spanned by each color.

Definition 7. For r ∈ N, we say that W = (W1, . . . ,Wr) is an r-coloring graphon if Wi

is a graphon for every i ∈ [r] and, for every x, y ∈ [0, 1],

r∑
i=1

Wi(x, y) = 1. (1)
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We define the associated r-coloring graphon of a coloring ϕ : E(Kn) → [r] as Wϕ =
((Wϕ)1, . . . , (Wϕ)r), where (Wϕ)i is the associated graphon of graph Gi = (V (G), ϕ−1(i))
spanned by edges of color i.

Similar to the Erdős-Rényi random graph G(n, p), the uniform random r-coloring can
be represented by the r-coloring graphon 1/r = (1/r, . . . , 1/r). We now define an analog
of homomorphism densities to count the density of rainbow copies of H in an r-coloring
graphon W with r ⩾ e(H).

Definition 8. Given a graph H and an r-coloring graphon W = (W1, . . . ,Wr), let H be
the set of injections from E(H) to [r]. We define the rainbow homomorphism density of
H in W as

t(rbH,W ) :=
∑
h∈H

∫
[0,1]v(H)

 ∏
(u,v)∈E(H)

Wh(u,v)(xu, xv)

 ∏
v∈V (H)

dxv. (2)

Note that h(u, v) is the color of edge (u, v), which occurs with probability Wh. The
condition of H that h is injective corresponds exactly to the copy we picked out being
rainbow. The analogs of Lemma 5 and Proposition 6 hold for rainbow graph density. For
brevity, we only state and prove what we need for Theorem 2.

Lemma 9. For any r, n ∈ N, given an r-coloring graphon W = (W1, . . . ,Wr), we define
a random r-coloring ϕ ∼ G(n,W ) of edges of Kn with vertex set [n] as follows.

1. Independently sample x1, x2, . . . , xn uniformly from [0, 1].

2. For every edge (u, v) ∈ E(Kn), independently sample ϕ(u, v) ∈ [r], where ϕ(u, v) = i
with probability Wi(xu, xv). Color edge (u, v) by color ϕ(u, v).

Then, the probability that a uniform random copy of H is rainbow under ϕ is t(rbH,W ).

Proof. Fix a uniform random copy H. We compute the probability that it is rainbow.
The rainbow edge colorings of H are precisely H. For each h ∈ H, the probability that
ϕ colors edge (u, v) of H by color h(u, v) is precisely Wh(u,v)(xu, xv). By independence of
edges (u, v), we take the product and take the expectation over x1, . . . , xn independently
uniform on [0, 1] to prove Lemma 9.

Corollary 10. For a graph H and r ⩾ e(H), H is r-rainbow uncommon if there exists
an r-coloring graphon W = (W1, . . . ,Wr) such t(rbH,W ) > t(rbH,1/r) = r−e(H)(r)e(H).

Proof. By (2), we compute that t(rbH,1/r) = r−e(H)(r)e(H). This is equal to the prob-
ability that a uniform random r-coloring of edges of H is rainbow. The total number of
copies of H in Kn is

(n)v(H)

|Aut(H)|
= Θ

(
nv(H)

)
,

where |Aut(H)| = hom(H,H) is the number of automorphisms of H. By linearity of
expectation and Lemma 9, if t(rbH,W ) > r−e(H)(r)e(H), then the expected number of
rainbow H under ϕ ∼ G(n,W ) is asymptotically greater than that of 1/r. By the proba-
bilistic method, there exists such a coloring ϕ of E(Kn), so H is r-rainbow uncommon.
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We can now pass from asymptotics in n to coloring graphons W .

3 Graphon Perturbation

3.1 Some lemmas

We prove Theorem 2 by constructing a graphon coloring W in Corollary 10 as a pertur-
bation of the uniform random coloring graphon 1/r. To do so, we need a few lemmas.

Lemma 11. Define f : [0, 1]2 → R to be 1 on [0, 1/2]2 ∪ [1/2, 1]2 and −1 otherwise.

1. For every x, y ∈ [0, 1], f(x, y) = f(y, x).

2. For every t ∈ [0, 1], ∫ 1

0

f(x, t)dx =

∫ 1

0

f(t, x)dx = 0.

3. For every s ∈ N, let xs+1 = x1. Then,∫
[0,1]s

s∏
i=1

f(xi, xi+1)dx1 . . . dxs = 1.

Proof. (1) and (2) are clear.
For (3), let Zi be 0 if xi ∈ [0, 1/2] and 1 otherwise, so f(xi, xi+1) = (−1)Zi+Zi+1 . Hence,

with expectation taken over independent Zi ∼ Unif({0, 1}), we have that∫
[0,1]s

s∏
i=1

f(xi, xi+1)dx1 . . . dxs = E

[
s∏

i=1

(−1)Zi+Zi+1

]
= E

[
(−1)2

∑s
i=1 Zi

]
= 1.

Let f be as in Lemma 11. For any graph G, define

If (G) :=

∫
[0,1]v(G)

 ∏
(xu,xv)∈E(G)

f(xu, xv)

 ∏
v∈V (G)

dxv. (3)

Then, Lemma 11(3) says that If (G) = 1 if G is a cycle graph.

Lemma 12. For f defined in Lemma 11, If (G) = 0 if G has a leaf.

Proof. If leaf ℓ is connected to vertex k, then
∫ 1

0
f(xℓ, xk)dxℓ = 0 by Lemma 11(2). Now,

If (G) =

∫
[0,1]v(G)−1

(∫ 1

0

f(xℓ, xk)dxℓ

) ∏
(xu,xv)∈E(G)\{(xk,xℓ)}

f(xu, xv)
∏

v∈V (G)\{ℓ}

dxv = 0.

Lemma 13. For every r ⩾ s ⩾ 3, there exists some k := k(r, s) ∈ [r − 1] such that

F (r, s, k) :=
s∑

i=0

(−1)s−i

(
k

i

)(
r − k

s− i

)(
r − k

k

)i

> 0. (4)
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Proof. Let ℓ = r − s ⩾ 0. For s ⩾ 4, we have that

F (r, s, r − 2) =

(
r − 2

s

)(
2

r − 2

)s

− 2

(
r − 2

s− 1

)(
2

r − 2

)s−1

+

(
r − 2

s− 2

)(
2

r − 2

)s−2

=

(
2

r − 2

)s(
r − 2

s− 2

)(
(r − s)(r − s− 1)

s(s− 1)
− (r − s)(r − 2)

s− 1
+

1

4
(r − 2)2

)
=

(
2

r − 2

)s(
r − 2

s− 2

)(
ℓ(ℓ− 1)

s(s− 1)
− ℓ(s+ ℓ− 2)

s− 1
+

1

4
(s+ ℓ− 2)2

)
=

(
2

r − 2

)s(
r − 2

s− 2

)(
s+ ℓ

4s

)(
(s− 4)ℓ+ (s− 2)2

)
> 0.

For s = 3, we know r ⩾ 3, so

F (r, 3, 1) =

(
r − 1

2

)
(r − 1)−

(
r − 1

3

)
=

r(r − 1)(r − 2)

3
> 0.

3.2 Proof of Theorem 2

Fix any graph H with girth s ∈ N and positive integer r ⩾ e(H),

r ⩾ e(H) ⩾ s ⩾ 3. (5)

Hence, we can apply Lemma 13 to define k = k(r, s) ∈ [r − 1]. Define σ : [r] → R by

σ(i) =

{
1
k

if i ∈ [k]

− 1
r−k

if i ∈ [r] \ [k]
. (6)

Recall f from Lemma 11. For ε ∈ (0, 1/r] chosen later, define Wi : [0, 1]
2 → [0, 1] by

Wi(x, y) =
1

r
+ εσ(i)f(x, y) (7)

for each i ∈ [r]. Clearly, Wi is measurable for each i. For every x, y ∈ [0, 1], Wi(x, y) =
Wi(y, x) as f(x, y) = f(y, x). Since σi ∈ [−1, 1] and f(x, y) ∈ [−1, 1], choosing any
ε ∈ [0, 1/r] satisfies Wi(x, y) ∈ [0, 1]. Hence, Wi is a graphon for each i. Now, for any
x, y ∈ [0, 1], we compute that

r∑
i=1

Wi(x, y) = 1 + εf(x, y)
r∑

i=1

σ(i) = 1,

so W = (W1, . . . ,Wr) is an r-coloring graphon. Recall that H is the set of injections
from E(H) to [r]. By Corollary 10, it suffices to show that t(rbH,W ) > t(rbH,1/r) =
r−e(H)|H|. Note that

t(rbH,W ) =
∑
h∈H

∫
[0,1]v(G)

∏
(u,v)∈E(H)

[
1

r
+ εσ(h(xu, xv))f(xu, xv)

] ∏
v∈V (H)

dxv
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=
∑
h∈H

∫
[0,1]v(G)

∑
G⊂H

re(G)−e(H)εe(G)
∏

(u,v)∈E(G)

σ(h(u, v))f(xu, xv)
∏

v∈V (H)

dxv

=
∑
G⊂H

re(G)−e(H)εe(G)
∑
h∈H

∫
[0,1]v(G)

∏
(u,v)∈E(G)

σ(h(u, v))f(xu, xv)
∏

v∈V (H)

dxv,

where in the second step we expand the first product and index the terms, where we
pick out the second term in the square brackets by subgraph G ⊂ H. The summand
corresponding to G = ∅ is exactly r−e(H)|H| = r−e(H)(r)e(H) = t(rbH,1/r). Since f does
not depend on h and σ does not depend on xv, we can factor out the terms to rewrite

t(rbH,W )− t(rbH,1/r)

=
∑

∅̸=G⊂H

re(G)−e(H)εe(G)
∑
h∈H

∏
(u,v)∈E(G)

σ(h(u, v))

∫
[0,1]v(G)

∏
(u,v)∈E(G)

f(xu, xv)
∏

v∈V (G)

dxv


=
∑

∅̸=G⊂H

re(G)−e(H)εe(G)

∫
[0,1]v(G)

∏
(u,v)∈E(G)

f(xu, xv)
∏

v∈V (G)

dxv

∑
h∈H

∏
(u,v)∈E(G)

σ(h(u, v))


=

∑
∅̸=G⊂H

re(G)−e(H)εe(G)If (G)

∑
h∈H

∏
(u,v)∈E(G)

σ(h(u, v))


by (3). Now, by Lemma 12, If (G) is zero unless G ⊂ H has no leaves. Since H has girth
s, the only subgraphs G ⊂ H such that If (G) ̸= 0 and e(G) ⩽ s are those isomorphic to
the cycle graph on s vertices, written G ≃ Cs. There, If (G) = 1 by Lemma 11(3). We
make the following claim.

Claim 14. Q(G) :=
∑

h∈H
∏

(u,v)∈E(G) σ(h(u, v)) > 0 for all G ⊂ H with G ≃ Cs.

We first show how Claim 14 finishes the proof. For all other G ̸≃ Cs such that
If (G) ̸= 0, e(G) > s. Once we fixed r and H, everything is fixed except for ε ∈ (0, 1/r].
Then, by taking ε sufficiently small, the term with G ≃ Cs dominates and is positive, i.e.

t(rbH,W )− t(rbH,1/r) =
∑

∅̸=G⊂H

re(G)−e(H)εe(G)If (G)

∑
h∈H

∏
(u,v)∈E(G)

σ(h(u, v))


= εs

( ∑
G⊂H:G≃Cs

rs−e(H)Q(G)

)
+Oε→0(ε

s+1)

⩾
1

2
εs

∑
G⊂H:G≃Cs

rs−e(H)Q(G)

> 0,

where the second to last step holds by choosing sufficiently small ε with respect to r and
H, and the last step holds by Claim 14. By Corollary 10, it remains to prove Claim 14.
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Proof of Claim 14. Recall that h(u, v) specifies the color of edge (u, v). By (6), σ(h(u, v))
depends only on whether h(u, v) ∈ [k] or h(u, v) ∈ [r] \ [k]. Suppose h assigns i edges of
G ≃ Cs to have colors in [k], then it assigns colors among [r] \ [k] to the other s− i edges
of G. For each such h ∏

(u,v)∈E(G)

σ(h(u, v)) =

(
1

k

)i(
− 1

r − k

)s−i

.

We count the number of such h ∈ H. Since h is injective, there are
(
k
i

)
ways to pick

out i colors in [k] and
(
r−k
s−i

)
ways to pick out s − i colors in [r] \ [k]. Then, there are

s! ways to assign these s total colors to edges of G. Now, it remains to assign colors to
E(H) \ E(G). There are (r − s)e(H)−e(G) ways. In total, the number of such h ∈ H is(

k

i

)(
r − k

s− i

)
· s! · (r − s)e(H)−s.

Therefore, for G ≃ Cs, we have that

Q(G) =
s∑

i=1

(
1

k

)i(
− 1

r − k

)s−i(
k

i

)(
r − k

s− i

)
· s! · (r − s)e(H)−s

= (r − k)−s · s! · (r − s)e(H)−sF (r, s, k),

where we recall F from (4). By (5), the conditions of Lemma 13 hold, so k ∈ [r − 1]
satisfies F (r, s, k) > 0. Clearly, ks, (r − k)s and s! are all strictly positive. We show that
falling factorial (r − s)e(H)−s > 0. This is clear combinatorially since it is the number of
ways to extend h from E(G) to E(H). More carefully, it is obvious if r > s. If r = s, then
as r ⩾ e(H) ⩾ s by (5), so (r− s)e(H)−s = (0)0 = 1. Therefore, Q(G) > 0 for G ≃ Cs.

This concludes the proof of Theorem 2.
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