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Abstract

Let G be a graph with m edges and λ(G) be the spectral radius of G. Niki-

forov [Combin. Probab. Comput., 2002] proved that if λ(G) >
󰁴

(1− 1
r )2m then

G contains a Kr+1. Bollobás and Nikiforov [J. Combin. Theory, Ser. B, 2007]
proved some spectral counting results for cliques, which is a spectral Moon-Moser
Inequality. Very recently, the present authors proved a counting result of spectral
Rademacher Theorem for triangles.

It is natural to consider counting results for classes of degenerate graphs. A
previous result due to Nikiforov [Linear Algebra Appl., 2009] asserted that every
graph G on m 󰃍 10 edges contains a 4-cycle if λ(G) >

√
m. Define f(m) to be the

minimum number of copies of 4-cycles in such a graph. A consequence of a recent
theorem due to Zhai et al. [European J. Combin., 2021] shows that f(m) = Ω(m).
In this article, by somewhat different techniques, we prove that f(m) = Θ(m2). We
mention some problems for further study.

Mathematics Subject Classifications: 05C50; 05C35

1 Introduction

This is the second paper of our project [26], which aims to study the relationship between
copies of a given substructure and the eigenvalues of a graph. In this article, we study
the supersaturation problem of 4-cycles under the condition of spectral radius and size of
a graph.

The study of 4-cycles plays an important role in the history of extremal graph theory.
The extremal number of C4 (i.e., a 4-cycle), denoted by ex(n,C4), is defined to be the
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maximum number of edges in a graph which contains no 4-cycle as a subgraph. The
study of ex(n,C4) can be at least dated back to Erdős [8] eighty years ago. A longstanding
conjecture of Erdős and Simonovits [9, Conjecture 1] states that every graph on n vertices
and at least ex(n,C4) + 1 edges contains at least

√
n + o(

√
n) copies of 4-cycles. This

topic of counting C4 appeared in some papers of Erdős many times. A weaker one states
that there are at least two copies of C4 under the same condition (see [5, Conjecture 42]
and [6, p. 84]). It seems very uncertain and mysterious to count C4’s for graphs with size
ex(n,C4) + 1.

The original supersaturation problem of subgraphs in graphs focuses on the following
function: for a given graph H and for integers n, t 󰃍 1,

hH(n, t) = min{#H : |V (G)| = n, |E(G)| = ex(n,H) + t},

where ex(n,H) is the Turán function of H. Establishing a conjecture of Erdős, Lovász
and Simonovits [19] proved that hC3(n, k) 󰃍 k⌊n

2
⌋ for all 1 󰃑 k < ⌊n

2
⌋. But the weak

version of Erdős’ conjecture on copies of C4 mentioned above tells us hC4(n, 1) = 2 for
some positive integers n. This means that supersaturation phenomenon of C4 is quite
different from the cases of triangles [19]. On the other hand, counting the copies of 4-
cycles plays a heuristic important role in measuring the quasirandom-ness of a graph (see
Chap. 9 in [1]).

Throught this paper, we use λ(G) to denote the spectral radius of a graph G. As
an important case of spectral Zarankiewicz problem, Nikiforov [23] proved that every n-

vertex C4-free graph satisfies that λ(G) 󰃑 1
2
+

󰁴
n− 3

4
, and the earlier bound of Babai

and Guiduli [2] gives the correct order of the main term. As the counterpart of these
results, we consider sufficient eigenvalue conditions (in terms of the size of a graph) for
the existence of 4-cycles. A pioneer result can be found in [22].

Theorem 1 ([22]). Let G be a graph with m edges, where m 󰃍 10. If λ(G) 󰃍 √
m then

G contains a 4-cycle, unless G is a star (possibly with some isolated vertices).

Recently, Theorem 1 was extended by the following.

Theorem 2 ([29]). Let r be a positive integer and G be a graph with m edges where
m 󰃍 16r2. If λ(G) 󰃍 √

m, then G contains a copy of K2,r+1, unless G is a star (possibly
with some isolated vertices).

Let Br be an r-book, that is, the graph obtained from K2,r by adding one edge within
the partition set of two vertices. Very recently, Nikiforov [25] proved that, if m 󰃍 (12r)4

and λ(G) 󰃍 √
m, then a graph G contains a copy of Br+1, unless G is a complete bipar-

tite graph (possibly with some isolated vertices). This result further extends above two
theorems and solves a conjecture proposed in [29].

The central topic of this article is the following spectral radius version of supersatu-
ration problem of 4-cycles :

Problem 3. Let f(m) be the minimum number of copies of 4-cycles over all labelled
graphs G on m edges with λ(G) >

√
m. Give an estimate of f(m).
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Till now, the only counting result related to Problem 3 is a consequence of Theorem
2. Note that K2,r+1 contains

r(r+1)
2

copies of 4-cycles for r =
√
m
4
. Theorem 2 implies that

f(m) 󰃍 m
32
, unless G is a star (possibly with some isolated vertices).

One may ask for the best answer to Problem 3. In this paper, we make the first
progress towards this problem.

Theorem 4. Let m 󰃍 3.6 × 109 be a positive integer. Let G be an m-edge graph with
λ(G) 󰃍 √

m. Then G has at least m2

2000
copies of C4, unless G is a star (possibly with some

isolated vertices).

Throughout the left part, we also define f(G) to be the number of copies of 4-cycles
in a graph G.

Problem 5. f(m) 󰃑 (m−1)(m−2
√
m)

8
.

Proof. Let s =
√
m + 1 and K+

s be the graph obtained from the complete graph Ks by
adding m −

󰀃
s
2

󰀄
pendent edges to one vertex of Ks. Clearly, λ(K+

s ) 󰃍 λ(Ks) =
√
m.

However, observe that K+
s contains

󰀃
s
4

󰀄
copies of K4 and every K4 contains three copies

of 4-cycles. Consequently, f(K+
s ) = 3

󰀃
s
4

󰀄
= (m−1)(m−2

√
m)

8
.

Together with Theorem 4 and Proposition 5, one can easily find that f(m) = Θ(m2).
In general, for a family F of graphs, a graph G is said to be F-free, if it does not

contain any F ∈ F as a subgraph. Let G(m,F) denote the set of F -free graphs onm edges
without isolated vertices. An interesting variation of Turán-type problem is as follows.

Problem 6. (Brualdi-Hoffman-Turán-type problem) What is the maximum spectral ra-
dius over all graphs in G(m,F)?

The study of Problem 6 can be dated back to 1970, when Nosal [27] showed that
λ(G) 󰃑 √

m for every graph G ∈ G(m,K3). Nikiforov extended Nosal’s result to Kr and
characterized the extremal graphs.

Theorem 7 ([20, 21]). For every graph G ∈ G(m,Kr+1), we have λ(G) 󰃑
󰁴

(1− 1
r
)2m,

with equality if and only if G is a complete bipartite graph for r = 2, and G is a regular
complete r-partite graph for r 󰃍 3.

Let spex(m,K3) denote the maximum spectral radius of an m-edge graph containing
no K3. Since spex(m,K3) can only be attained at complete bipartite graphs, one may ask
what is the maximum spectral radius of a non-bipartite triangle-free graph on m edges?
Let G be a non-bipartite triangle-free graph on m edges without isolated vertices. Lin,
Ning, and Wu [12] showed that λ(G) 󰃑

√
m− 1, with equality if and only if G is a 5-cycle.

Zhai and Shu [30] extended the above result by a sharp upper bound for m 󰃍 5 where
the number of vertices in extremal graphs can tend to be infinite. Later, Li and Peng
[15], and independently, Sun and Li [28] obtained a sharp upper bound for non-bipartite
{C3, C5}-free graphs. Lou, Lu, and Huang [18] gave a sharp upper bound for non-bipartite
{C3, C5, . . . , C2k+1}-free graphs. For a recent work on spectral conditions for cycles with
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consecutive lengths, we refer the reader to the work by Li, Zhai, and Shu [16]. For more
detailed description of development in this direction, we refer to introduction part of
Li-Feng-Peng’s work [14] and the references therein.

Motivated by these papers and a previous result on triangles (see [26]), we would like
to present a counting version of Problem 6 as follows.

Problem 8. Let F be a given graph and λ∗(m) be the maximum spectral radius over
all graphs in G(m,F ). How many copies of F can have in a graph G on m edges with
λ(G) > λ∗(m)?

Let us introduce some necessary notation and terminologies. Let G be a graph with
vertex set V (G) and edge set E(G). For a vertex u ∈ V (G), we denote by NG(u) the set
of neighbors of u, and by dG(u) the degree of u. The symbol G− v denotes the subgraph
induced by V (G)\{v} in G.

The paper is organized as follows. In Section 2, we shall give some necessary prelimi-
naries and prove a key lemma. We present a proof of our main theorem in Section 3. We
conclude this article with one corollary and some open problems for further study.

2 Preliminaries

In this section, we introduce some lemmas, which will be used in the subsequent proof.
The first lemma is known as Cauchy’s Interlace Theorem.

Lemma 9 ([4]). Let A be a symmetric n×n matrix and B be an r×r principal submatrix
of A for some r < n. If the eigenvalues of A are λ1 󰃍 λ2 󰃍 · · · 󰃍 λn, and the eigenvalues
of B are µ1 󰃍 µ2 󰃍 · · · 󰃍 µr, then λi 󰃍 µi 󰃍 λi+n−r for all 1 󰃑 i 󰃑 r.

The following inequality is due to Hofmeistar.

Lemma 10 ([10]). Let G be a graph of order n and M(G) =
󰁓

u∈V (G) d
2
G(u). Then

λ(G) 󰃍
󰁵

1

n
M(G), (1)

with equality if and only if G is either regular or bipartite semi-regular.

The following lemma is due to Liu and Liu [17].

Lemma 11 ([17]). Let G be a graph of order n and size m. Then

f(G) =
1

8

n󰁛

i=1

λ4
i +

m

4
− 1

4
M(G), (2)

where λ1, . . . ,λn are the eigenvalues of A(G) with λ1 󰃍 λ2 󰃍 · · · 󰃍 λn.

The following result is well-known (see [27, 3]).
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Lemma 12 ([27, 3]). Let G be a bipartite graph with m edges, where m 󰃍 1. Then
λ(G) 󰃑 √

m, with equality if and only if G is a complete bipartite graph (possibly with
some isolated vertices).

We need prove the last lemma. A proof of its one special case that m 󰃑 n− 2 can be
found in [11, Lemma 2.4].

Lemma 13. Let G be a graph with m edges. Then M(G) 󰃑 m2 +m.

Proof. Let G be an extremal graph with the maximum M(G) and n := |G|. Let V (G) =
{u1, . . . , un}, and di := dG(ui) for each ui ∈ V (G). We may assume that d1 󰃍 · · · 󰃍 dn 󰃍
1.

If there exists some integer i 󰃍 2 such that uiu1 /∈ E(G), then choose a vertex
uj ∈ NG(ui) and define G′ := G − uiuj + uiu1. Now dG′(u1) = d1 + 1, dG′(uj) = dj − 1
and dG′(uk) = dG(uk) for each k ∈ {2, . . . , n} \ {j}. Consequently,

M(G′)−M(G) = (d1 + 1)2 + (dj − 1)2 − d21 − d2j = 2d1 − 2dj + 2 󰃍 2,

a contradiction. Thus, NG(u1) = V (G) \ {u1}, and so d1 = n− 1.
Let |E(G−u1)| = k. Clearly, |E(G−u1)| = m−d1. If |E(G−u1)| = 0, then G ∼= K1,m,

and so
󰁓n

i=1 d
2
i = m2 +m, as desired. In the following, we assume |E(G− u1)| 󰃍 1.

If |E(G−u1)| 󰃑 d1−2, then di+dj 󰃑 |E(G−u1)|+3 󰃑 d1+1 for each uiuj ∈ E(G−u1).
Now let G′ = G−uiuj+u1u0, where uiuj ∈ E(G−u1) and u0 is a new vertex only adjacent
to u1 in G′. Then

M(G′)−M(G) = (d1 + 1)2 + 1 + (di − 1)2 + (dj − 1)2 − d21 − d2i − d2j
= 2(d1 − di − dj) + 4.

It follows that M(G′) > M(G), a contradiction. Therefore, |E(G− u1)| 󰃍 d1 − 1.
Now define a new graph G′ := K1,d1+k. Then k 󰃍 d1 − 1 and |E(G′)| = d1 + k =

|E(G)| = m. Note that n = d1 + 1 and 2k = 2|E(G − u1)| =
󰁓n

i=2(di − 1). Hence,
2kd1 󰃍

󰁓n
i=2 d

2
i − d21 = M(G)− 2d21. It follows that

M(G′)−M(G) = (k + d1)
2 + (k + d1)−M(G) 󰃍 k2 − d21 + (k + d1) 󰃍 0,

as k 󰃍 d1 − 1. Thus, M(G) 󰃑 M(G′) = m2 +m. This proves Lemma 13.

3 Proof of Theorem 4

In this section, we give a proof of Theorem 4. We would like to point out that the
techniques used in the left part are completely different from [26].
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3.1 A key lemma

We first prove a key lemma.

Lemma 14. Let G be a graph of size m 󰃍 1.8 × 109 and X be the Perron vector of G
with component xu corresponding to u ∈ V (G). If λ(G) 󰃍 √

m and xuxv > 1
9
√
m

for any

uv ∈ E(G), then f(G) 󰃍 m2

500
unless G is a star (possibly with some isolated vertices).

Proof. We may assume that δ(G) 󰃍 1, where δ(G) is the minimum degree of G. Since
xuxv > 1

9
√
m

for any uv ∈ E(G), we can see that X is a positive vector, and hence G

is connected. Let A = {u ∈ V (G) : xu > 1
3 4√m

} and B = V (G) \ A. Clearly, B is an

independent set. Now suppose that f(G) < m2

500
and set λ := λ(G). We will prove a series

of claims.

Claim 15. We have δ(G) 󰃍 2 unless G ∼= K1,m.

Proof. Assume that there exists a vertex u ∈ V (G) with dG(u) = 1 and NG(u) = {ū}.
Then xuxū = x2

ū

λ
󰃑 x2

ū√
m
. Since xuxū > 1

9
√
m
, we have xū > 1

3
. Let u∗ ∈ V (G) with

xu∗ = maxv∈V (G) xv. Then xu∗ > 1
3
.

Now let S := NG(u
∗), T := V (G) \ (S ∪ {u∗}), and NS(v) = NG(v) ∩ S for a vertex

v ∈ V (G). Moreover, we partite S into three subsets S1, S2 and S3, where S1 = {v ∈ S :
1
4
< xv 󰃑 xu∗}, S2 = {v ∈ S : 1

6
< xv 󰃑 1

4
}, and S3 = {v ∈ S : 0 < xv 󰃑 1

6
}.

Choose a vertex u ∈ S1 arbitrarily. By Cauchy-Schwarz inequality,

(λxu)
2 =

󰀓 󰁛

v∈NG(u)

xv

󰀔2

󰃑 dG(u)
󰁛

v∈NG(u)

x2
v 󰃑 dG(u)(1− x2

u). (3)

Since xu > 1
4
and λ 󰃍 √

m, we have dG(u) 󰃍 m
15
. If |NT (u)| 󰃑 m

450
, then |NS(u)| 󰃍 m

15
−

m
450

− 1 󰃍 m
15.6

, and thus G contains a copy of K2,⌈ m
15.6

⌉. Hence, G contains at least
󰀃⌈ m

15.6
⌉

2

󰀄

(󰃍 m2

500
) quadrilaterals, a contradiction. Therefore, |NT (u)| 󰃍 m

450
and |NS(u)| < m

15.6
. Now

let S∗ = {v ∈ S : xv <
1

108
}, T ∗ = {v ∈ T : xv <

1
108

} and V ′ = (S \ S∗) ∪ (T \ T ∗). Since
X is a unit vector, we have |V ′| 󰃑 1082. By Cauchy-Schwarz inequality,

󰁛

v∈V ′

xv 󰃑
󰁶

|V ′|
󰁛

v∈V ′

x2
v 󰃑

󰁳
|V ′| 󰃑 108. (4)

Consequently,

󰁛

v∈NS(u)

xv =
󰁛

v∈NS\S∗ (u)

xv +
󰁛

v∈NS∗ (u)

xv 󰃑 108 +
1

108
|NS∗(u)|.

Recall that |NS∗(u)| 󰃑 |NS(u)| 󰃑 m
15.6

and xu∗ > 1
3
. It follows that

󰁛

v∈NS(u)

xv 󰃑 (324 +
1

36
|NS∗(u)|)xu∗ <

1

36
· m
15

xu∗ .
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On the other hand, note that |NT ∗(u)| 󰃍 |NT (u)| − 1082 󰃍 m
525

and xv < 1
108

< 1
36
xu∗ for

any v ∈ T ∗. Then

󰁛

v∈NT (u)

xv <
󰁛

v∈NT\T∗ (u)

xu∗ +
󰁛

v∈NT∗ (u)

1

36
xu∗ 󰃑 |NT (u)|xu∗ − 35

36
· m

525
xu∗

= |NT (u)|xu∗ − 1

36
· m
15

xu∗ .

It follows that
󰁓

v∈NS∪T (u) xv < |NT (u)|xu∗ . Let e(S, T ) be the number of edges from S to

T , and e(S) be the number of edges within S. Then

󰁛

u∈S1

󰁛

v∈NS∪T (u)

xv < e(S1, T )xu∗ . (5)

Secondly, consider a vertex u ∈ S2 arbitrarily. Note that xu > 1
6
and λ 󰃍 √

m. Then
(3) gives dG(u) 󰃍 m

35
. Since S∗ ⊆ S3 and xu∗ − xu > 1

3
− 1

4
= 1

12
, we have

󰁛

v∈NS∗ (u)

xv 󰃑
1

108
|NS3(u)| 󰃑

1

9
|NS3(u)|(xu∗ − xu),

and by (4) we have
󰁓

v∈NS\S∗ (u) xv 󰃑
󰁓

v∈V ′ xv 󰃑 108. Then

󰁛

v∈NS(u)

xv =
󰁛

v∈NS\S∗ (u)

xv +
󰁛

v∈NS∗ (u)

xv 󰃑 108 +
1

9
|NS3(u)|(xu∗ − xu). (6)

If |NS∗(u)| 󰃍 m
72
, then |NS3(u)| 󰃍 |NS∗(u)| 󰃍 m

72
. Since xu∗ − xu > 1

12
, it follows from (6)

that
󰁓

v∈NS(u)
xv < |NS3(u)|(xu∗ − xu), and thus

󰁛

v∈NS∪T (u)

xv < |NS3(u)|(xu∗ − xu) + |NT (u)|xu∗ . (7)

If |NS∗(u)| 󰃑 m
72
, then

|NT ∗(u)| 󰃍 dG(u)− |NS∗(u)|− 1082 − 1 >
m

72
.

Hence,

󰁛

v∈NT∗ (u)

xv 󰃑 |NT ∗(u)| · 1

108
< |NT ∗(u)|xu∗ − 108,

as xu∗ > 1
3
. It follows that

󰁓
v∈NT (u) xv < |NT (u)|xu∗ − 108. Combining with (6), we can

also obtain (7). Therefore, in both cases we have

󰁛

u∈S2

󰁛

v∈NS∪T (u)

xv < e(S2, S3)xu∗ + e(S2, T )xu∗ −
󰁛

u∈S2

|NS3(u)|xu. (8)
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Thirdly, we consider an arbitrary vertex u ∈ S3. Since xu∗ > 1
3
, we have xv 󰃑 1

6
< 1

2
xu∗

for each v ∈ NS3(u). Thus,
󰁓

u∈S3

󰁓
v∈NS3

(u) xv 󰃑 e(S3)xu∗ , with equality if and only if

e(S3) = 0. Therefore,
󰁛

u∈S3

󰁛

v∈NS∪T (u)

xv 󰃑 e(S3, S1)xu∗ + e(S3)xu∗ + e(S3, T )xu∗ +
󰁛

u∈S3

󰁛

v∈NS2
(u)

xv. (9)

Notice that 󰁛

u∈S2

|NS3(u)|xu =
󰁛

u∈S3

󰁛

v∈NS2
(u)

xv.

Combining with (5), (8) and (9), we have
󰁛

u∈S

󰁛

v∈NS∪T (u)

xv 󰃑 (e(S) + e(S, T ))xu∗ , (10)

where if equality holds then S1 ∪ S2 = ∅ and e(S3) = 0, that is, e(S) = 0. Furthermore,
we can see that

λ2xu∗ =
󰁛

u∈S

󰁛

v∈NG(u)

xv = |S|xu∗ +
󰁛

u∈S

󰁛

v∈NS∪T (u)

xv 󰃑 (|S|+ e(S) + e(S, T ))xu∗ 󰃑 mxu∗ .

Since λ 󰃍 √
m, the above inequality holds in equality, that is, λ =

√
m. Therefore,

m = |S|+ e(S) + e(S, T ), and (10) holds in equality (hence e(S) = 0). This implies that
G is a bipartite graph. By Lemma 12, G is a complete bipartite graph. Since f(G) < m2

500
,

G can only be a star. This completes the proof.

In the following, we may assume that G ≇ K1,m. Then by Claim 15, δ(G) 󰃍 2.

Claim 16. |A| 󰃑 9
√
m.

Proof. Recall that xu > 1
3 4√m

for each u ∈ A. Thus
󰁓

u∈A x2
u > |A|

9
√
m
, and hence |A| 󰃑

9
√
m

󰁓
u∈A x2

u 󰃑 9
√
m.

Claim 17. Let |G| = m
2
+ b. Then − m

125
󰃑 b 󰃑 |A|.

Proof. Set λ′ := λ|G|. Note that λ 󰃍 √
m. By Lemmas 10 and 11,

f(G) 󰃍 1

8
(λ4 + λ′4)− 1

4
M(G) 󰃍 1

8
(λ4 + λ′4)− |G|

4
λ2 󰃍 1

8
λ′4 − b

4
λ2. (11)

If b < − m
125

, then

f(G) 󰃍 − b

4
λ2 󰃍 m

500
λ2 󰃍 m2

500
,

a contradiction. Thus, b 󰃍 − m
125

.
On the other hand, recall that e(B) = 0 and δ(G) 󰃍 2. Then

m 󰃍 e(B,A) 󰃍 2|B| = 2(|G|− |A|) = 2(
m

2
+ b− |A|).

Thus, b 󰃑 |A|, as desired.
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Claim 18. ∆(G) 󰃑 2
15
m, where ∆(G) is the maximum degree of G.

Proof. We know that
󰁓|G|

i=1 λ
2
i = 2m. Thus, λ2 = λ2

1 󰃑 2m. Combining with (11) and
b 󰃑 |A| 󰃑 9

√
m, we have

f(G) 󰃍 1

8
λ′4 − b

4
λ2 󰃍 1

8
λ′4 − 9m

3
2 . (12)

Now if there exists some u ∈ V (G) with dG(u) >
2
15
m, then

|NB(u)| 󰃍 dG(u)− |A| > 2

15
m− 9

√
m.

Since e(B) = 0, G contains K1,|NB(u)| as an induced subgraph. By Lemma 9,

λ′ 󰃑 −
󰁳

|NB(u)| < −
󰁵

2

15
m− 9

√
m,

and by (12) we have

f(G) 󰃍 1

8
λ′4 − 9m

3
2 󰃍 1

8

󰀓 2

15
m− 9

√
m
󰀔2

− 9m
3
2 >

m2

500
,

for m 󰃍 1.8× 109. We have a contradiction. Therefore, ∆(G) 󰃑 2
15
m.

Claim 19. Let B∗ = {u ∈ V (G) : dG(u) = 2}. Then B∗ ⊆ B and

m

2
+ 3(b− |A|) 󰃑 |B∗| 󰃑 m

2
. (13)

Proof. Let u ∈ B∗ and NG(u) = {u1, u2}. Then λxu = xu1 + xu2 󰃑 2. Since λ 󰃍 √
m, we

have xu 󰃑 2√
m

< 1
3 4√m

, and so u ∈ B.

Recall that e(B) = 0. Thus, e(B∗) = 0, and m 󰃍 e(B∗, A) 󰃍 2|B∗|. This gives
|B∗| 󰃑 m

2
. On the other hand, note that |B| = |G|− |A| = m

2
+ b− |A|, then

m 󰃍 e(B,A) 󰃍 2|B∗|+ 3(|B|− |B∗|) = 3

2
m+ 3(b− |A|)− |B∗|.

It follows that |B∗| 󰃍 m
2
+ 3(b− |A|).

Claim 20. Let A∗ = {v ∈ NG(u) : u ∈ B∗}. Then A∗ ⊆ A and |A∗| 󰃑 24.

Proof. Since e(B) = 0, we have NG(u) ⊆ A for any u ∈ B∗. Thus, A∗ ⊆ A. Furthermore,
we will see that 1

25
< x2

v 󰃑 2
17

for each v ∈ A∗.
Let v be an arbitrary vertex in A∗. By Cauchy-Schwarz inequality,

(λxv)
2 =

󰀓 󰁛

u∈NG(v)

xu

󰀔2

󰃑 dG(v)
󰁛

u∈NG(v)

x2
u 󰃑 dG(v)(1− x2

v) 󰃑
2

15
m(1− x2

v),
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as ∆(G) 󰃑 2
15
m. Since λ 󰃍 √

m, we have x2
v 󰃑 2

17
.

If there exists a vertex v ∈ A∗ with x2
v 󰃑 1

25
, then by the definition of A∗, we can find

a vertex u ∈ NB∗(v). Clearly,

λxu 󰃑 xv +

󰁵
2

17
󰃑 1

5
+

󰁵
2

17
<

5

9
.

Consequently,

xuxv <
1

λ
· 5
9
· 1
5
󰃑 1

9
√
m
,

which contradicts the condition of Lemma 14. Therefore, x2
v >

1
25

for any v ∈ A∗, and so
|A∗| 󰃑 24.

Claim 21. Let V ′′ := (A \ A∗) ∪ (B \B∗). Then |V ′′| 󰃑 m
60

and e(V ′′) 󰃑 m
20
.

Proof. Recall that |A ∪ B| = |G| = m
2
+ b. Combining with (13), we obtain that |V ′′| 󰃑

|G|− |B∗| 󰃑 3|A|−2b. Moreover, by Claims 16 and 17, we have |A| 󰃑 9
√
m and b 󰃍 − m

125
.

Thus, |V ′′| 󰃑 27
√
m+ 2

125
m 󰃑 m

60
.

Now we estimate e(V ′′). Again by |A| 󰃑 9
√
m, b 󰃍 − m

125
and (13), we have

e(A∗, B∗) = 2|B∗| 󰃍 m+ 6(b− |A|) 󰃍 m− 6

125
m− 54

√
m.

It follows that e(V ′′) 󰃑 m− e(A∗, B∗) 󰃑 6
125

m+ 54
√
m 󰃑 m

20
.

Now we give the final part of the proof. For convenience, let d′(u) := |NV ′′(u)| for
each u ∈ V ′′. Note that e(V ′′, B∗) = 0. Thus by Claim 20,

dG(u) 󰃑 d′(u) + |A∗| 󰃑 d′(u) + 24

for each vertex u ∈ V ′′. Consequently,

󰁛

u∈V ′′

d2G(u) 󰃑
󰁛

u∈V ′′

(d′(u) + 24)2 = 96e(V ′′) + 242|V ′′|+
󰁛

u∈V ′′

d′2(u). (14)

Since e(V ′′) 󰃑 m
20
, by Lemma 13 we have

󰁓
u∈V ′′ d′2(u) 󰃑 m2

400
+ m

20
. Combining this with

Claim 21 and (14), we have

󰁛

u∈V ′′

d2G(u) 󰃑 96 · m
20

+ 242 · m
60

+
m2

400
+

m

20
<

m2

225
. (15)

On the other hand, by Claim 18, ∆(G) 󰃑 2
15
m, and so

󰁛

u∈A∗

d2G(u) 󰃑 |A∗|(∆(G))2 󰃑 96

225
m2

the electronic journal of combinatorics 32(4) (2025), #P4.1 10



(as |A∗| 󰃑 24). Moreover, by Claim 19 |B∗| 󰃑 m
2
, and thus

󰁛

u∈B∗

d2G(u) = 4|B∗| 󰃑 2m.

Combining with (15), we get

M(G) =
󰁛

u∈V ′′∪A∗∪B∗

d2G(u) 󰃑
1

225
m2 +

96

225
m2 + 2m <

100

225
m2 =

4

9
m2.

Now by Lemma 11, we have

f(G) 󰃍 1

8
λ4 − 1

4
M(G) 󰃍 1

8
m2 − 1

9
m2 =

1

72
m2 >

1

500
m2,

a contradiction. This completes the proof.

3.2 Nikiforov’s deleting small eigenvalue edge method

Over the past decades, Nikiforov developed some novel tools and techniques for solving
problems in spectral graph theory (see [24]). One is the method we called “deleting small
eigenvalue edge method”, or “Nikiforov’s DSEE Method”. Generally speaking, an edge
xy ∈ E(G) is called a small eigenvalue edge, if xuxv is small where xu, xv are Perron
components.

By using this method, Nikiforov [22] successfully proved the following results, of which
some original ideas appeared in [24] earlier:

• Every graph on m edges contains a 4-cycle if λ(G) 󰃍 √
m and m 󰃍 10, unless it is

a star with possibly some isolated vertices (see Claim 4 in [22, pp. 2903]);

• Every graph on m edges satisfies that the booksize bk(G) >
4√m
12

if λ(G) 󰃍 √
m,

unless it is a complete bipartite graph with possibly some isolated vertices (see [25],
this confirmed a conjecture in [29]).

One main ingredient in the proof of Theorem 4 is to use this method.

3.3 Proof of Theorem 4

Now we are ready to give the proof of Theorem 4.

Proof of Theorem 4. Let G be a graph with |E(G)| = m and λ(G) 󰃍 √
m. By using

the Nikiforov DESS Method [25], we first construct a sequence of graphs.

(i) Set i := 0 and G0 := G.
(ii) If i = ⌊m

2
⌋, stop.

(iii) Let X = (x1, x2 . . . , x|Gi|)
T be the Perron vector of Gi.

(iv) If there exists uv ∈ E(Gi) with xuxv 󰃑 1

9
√

|E(Gi)|
, set Gi+1 := Gi − uv and i := i+ 1.

(v) If there is no such edge, stop.

Assume that Gk is the resulting graph of the graph sequence constructed by the above
algorithm. Then k 󰃑 ⌊m

2
⌋. We can obtain the following two claims.
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Claim 22. λ(Gi+1) 󰃍
√
m− i− 1 for each i ∈ {0, 1, . . . , k − 1}.

Proof. Let X be the Perron vector of Gi with component xu corresponding to u ∈ V (Gi).
Then, there exists uv ∈ E(Gi) with xuxv 󰃑 1

9
√

|E(Gi)|
. Thus,

λ(Gi+1) 󰃍 XTA(Gi+1)X = XTA(Gi)X − 2xuxv 󰃍 λ(Gi)−
2

9
󰁳

|E(Gi)|
.

Hence,

λ(G0) 󰃑 λ(G1) +
2

9
√
m

󰃑 · · · 󰃑 λ(Gi+1) +
i󰁛

j=0

2

9
√
m− j

.

It follows that

λ(Gi+1) 󰃍 λ(G0)−
2(i+ 1)

9
√
m− i

󰃍
√
m− 2(i+ 1)

9
√
m− i− 1

. (16)

This implies that λ(Gi+1) 󰃍
√
m− i− 1, as i+ 1 󰃑 k 󰃑 ⌊m

2
⌋.

Now we may assume that all isolated vertices are removed from each Gi, where i ∈
{0, 1, . . . , k}.

Claim 23. Gk cannot be a star unless Gk = G0
∼= K1,m.

Proof. Suppose to the contrary that k 󰃍 1 while Gk is a star. Since |E(Gk)| = m − k,
we have Gk

∼= K1,m−k. Let u0 be the central vertex of Gk and u1, . . . , um−k be the leaves.
We now let Gk = Gk−1 − uv and X be the Perron vector of Gk−1.

If uv is a pendent edge incident to u0, say uv = u0um−k+1, then

λ(Gk−1) =
󰁳

|E(Gk−1)| =
√
m− k + 1

and λ(Gk−1)xui
= xu0 for i ∈ {1, 2, . . . ,m − k + 1}. Hence, 󰀂X󰀂2 =

󰁓m−k+1
i=0 x2

ui
= 2x2

u0
,

which gives x2
u0

= 1
2
. It follows that

xu0xum−k+1
=

x2
u0󰁳

|E(Gk−1)|
>

1

9
󰁳

|E(Gk−1)|
,

which contradicts the definition of Gk.
If uv is an isolated edge or a pendent edge not incident to u0, then Gk−1 is bipartite

but not complete bipartite. By Lemma 12, λ(Gk−1) <
󰁳

|E(Gk−1)|, which contradicts
Claim 22.

Now we conclude that uv is an edge within V (Gk)\{u0}, say uv = u1u2, then xu1 = xu2

and λ(Gk−1)xu1 = xu0 + xu2 . Hence, xu1 =
xu0

λ(Gk−1)−1
< 1

2
xu0 , as λ(Gk−1) 󰃍

√
m− k + 1

by Claim 22. Consequently,

λ2(Gk−1)xu0 =
m−k󰁛

i=1

λ(Gk−1)xui
= (m− k)xu0 + (xu1 + xu2) < (m− k + 1)xu0 .

It follows that λ(Gk−1) <
√
m− k + 1, which also contradicts Claim 22.
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Now we finish the proof of Theorem 4. Assume that G is not a star. Then Gk is not
a star by Claim 23; moreover, λ(Gk) 󰃍

√
m− k =

󰁳
|E(Gk)| by Claim 22. If k < ⌊m

2
⌋,

then xuxv >
1

9
√

|E(Gk)|
for any edge uv ∈ E(Gk). Since |E(Gk)| = m− k > m

2
, by Lemma

14 f(Gk) 󰃍 |E(Gk)|2
500

> m2

2000
, and so f(G) > m2

2000
.

If k = ⌊m
2
⌋, then by (16) we have

λ(Gk) 󰃍
√
m− 2k

9
√
m− k

󰃍
√
m− m

9
󰁳

m
2

=
󰀓
1−

√
2

9

󰀔√
m,

and so

λ4(Gk) 󰃍 (1−
√
2

9
)4m2 > 0.5047m2 > 0.504m2 + 4m.

On the other hand, by Lemma 13,

M(Gk) 󰃑 |E(Gk)|2 + |E(Gk)| =
󰁯m
2

󰁰2
+
󰁯m
2

󰁰
󰃑 0.25m2 + 2m.

Thus by Lemma 11,

f(Gk) 󰃍
1

8
λ4(Gk)−

1

4
M(Gk) >

1

8
(0.504− 0.5)m2 =

1

2000
m2,

and so f(G) > m2

2000
. This completes the proof. 󰃈

4 Concluding remarks

We do not try our best to optimize the constant “ 1
2000

” in Theorem 4. So it is natural to
pose the following problem:

Problem 24. Determine lim
m→∞

f(m)
m2 . (We think that the upper bound in Proposition 5 is

close to the truth.)

By Theorem 4 and an inequality λ(G) 󰃍 2m
n

due to Collatz and Sinogowitz [7], we
deduce the following immediately.

Theorem 25. Let G be a graph on n vertices and m edges. If m > max{n2

4
, 3.6× 109},

then G contains n4

32000
copies of 4-cycles.

An anonymous referee suggested the following improvement of the above theorem:
The number of C4 is equal to 1

2

󰁓
S∈(V2)

󰀃|N(S)|
2

󰀄
, where S takes over all 2-sets of V (G),

and N(S) denotes the set of common neighbors of vertices of S. By Jensen’s inequality,
we have #C4 󰃍 1

2

󰀃
n
2

󰀄󰀃
N
2

󰀄
, where

N =
1󰀃
n
2

󰀄
󰁛

S∈(V2)

|N(S)| = 1󰀃
n
2

󰀄
󰁛

v∈V

󰀕
d(v)

2

󰀖
󰃍 1󰀃

n
2

󰀄 · n
󰀕

1
n

󰁓
v∈V d(v)

2

󰀖
.
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Since m > n2

4
, we get 2m

n
> n

2
and so N 󰃍 n

4
− 1

2
. Therefore, we can get

#C4 󰃍
1

2

󰀕
n

2

󰀖󰀕
n
4
− 1

2

2

󰀖
=

1

128
n4 − 9

128
n3 +

5

32
n2 − 3

32
n >

󰀕
1

128
− o(1)

󰀖
n4.

Let Br,k be the join of an r-clique with an independent set of size k. If k = 1, then
Br,k is the complete graph Kr+1. We conclude this article with a new conjecture appeared
in [13] which extends Theorem 1 and Theorem 7.

Conjecture 26 (Conjecture 1.20 in[13]). Let m be large enough and G be a Br,k-free

graph on m edges without isolated vertices. Then λ(G) 󰃑
󰁴

(1− 1
r
)2m, with equality

if and only if G is a complete bipartite graph for r = 2, and G is a regular complete
r-partite graph for r 󰃍 3.
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