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Abstract

The degree matrix of a graph is the diagonal matrix with diagonal entries equal
to the degrees of the vertices of X. If X1 and X2 are graphs with respective adja-
cency matrices A1 and A2 and degree matrices D1 and D2, we say that X1 and X2

are degree similar if there is an invertible real matrix M such that M−1A1M = A2

and M−1D1M = D2. If graphs X1 and X2 are degree similar, then their adjacency
matrices, Laplacian matrices, unsigned Laplacian matrices and normalized Lapla-
cian matrices are similar. We first show that the converse is not true. Then, we
provide a number of constructions of degree-similar graphs. Finally, we show that
the matrices A1 −µD1 and A2 −µD2 are similar over the field of rational functions
Q(µ) if and only if the Smith normal forms of the matrices tI − (A1 − µD1) and
tI − (A2 − µD2) are equal.

Mathematics Subject Classifications: 05C50

1 Introduction

Let X be a graph with vertex set V (X) and edge set E(X). We use A = A(X) to denote
the adjacency matrix of X and D = D(X) to denote the degree matrix, the diagonal
matrix with Di,i equals to the valency of the vertex i in X. If X1 and X2 are graphs with
respective adjacency matrices A1 and A2 and degree matrices D1 and D2, we say that X1

and X2 are degree similar if there is an invertible real matrix M such that

M−1A1M = A2, M−1D1M = D2. (1)

Clearly, if X1 and X2 are degree similar, then their adjacency matrices, Laplacians D−A,
unsigned Laplacians D + A, and their normalized Laplacians D−1/2AD−1/2 are similar.
(When using the normalized Laplacian, we assume the underlying graph has no isolated
vertices.) Thus we have a hierarchy of conditions on a pair of graphs:
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(a) They are degree similar.

(b) Their adjacency matrices and the three Laplacians are similar.

(c) Their adjacency matrices are similar.

We note that these three conditions are equivalent for regular graphs.
We discuss some related earlier work. Butler et al. [1] constructed graphs that

are cospectral with respect to adjacency, Laplacian, unsigned Laplacian and normalized
Laplacian matrices. In [14], by using local switching, Wang et al. gave a construction
of pairs of degree-similar graphs. Guo et al. [6] derived six reduction procedures on the
Laplacian, unsigned Laplacian and normalized Laplacian characteristic polynomials of a
graph which can be used to construct larger Laplacian, unsigned Laplacian and normalized
Laplacian cospectral graphs, respectively.

Tutte [13] defined the idiosyncratic polynomial of a graph to be

p(x,α) := det(A+ α(J − I − A)− xI),

where I is the identity matrix and J is the all 1s matrix of appropriate size. van Dam and
Haemers [11] worked with the generalized adjacency matrix sI+tA+µJ , the characteristic
polynomial of this matrix is a form of the idiosyncratic polynomial.

Wang et al. [14] defined the generalized characteristic polynomial ψ(X, t, µ) of a graph
X as follows:

ψ(X, t, µ) := det(tI − (A− µD).

Note that if ψ(X1, t, µ) = ψ(X2, t, µ), the adjacency matrices of X1 and X2 are similar,
along with the three Laplacians. They observed that if X1 and X2 are degree similar,
then ψ(X1, t, µ) = ψ(X2, t, µ), and asked if the converse was true. Our results in Section 3
show that it is not. Hence if the adjacency and the three Laplacian matrices of two graphs
are similar, it does not follow that the graphs are degree similar.

In Section 4, we prove that if X and Y are connected graphs and are degree similar,
then their complements X and Y are degree similar. In Sections 5-8, we provide a number
of constructions of pairs of (non-isomorphic) degree-similar graphs, for example, graph
products, adding or deleting vertices and so on. In Section 9, we study the relation
between similarity and Smith normal forms of matrices. In the last section, we provide
some further discussions.

2 Ihara zeta function

In this section, we note one further consequence of degree similarity.
A walk in a graph X is reduced if it does not contain any subsequence of the form

uvu; such walks may also be called non-backtracking. If |V (X)| = n, then pr(A) denotes
the n× n matrix where (pr(A))u,v is the number of reduced walks in X from u to v. So

p0(A) = I, p1(A) = A, p2(A) = A2 −D.
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When r 󰃍 3, we have the recurrence

Apr(A) = pr+1(A) + (D − I)pr−1(A),

from which it follows that pr(A) is a polynomial in A and D. These observations are due
to Biggs. For details, and for the following theorem, see Chan and Godsil [2].

Theorem 1. For any connected graph on at least two vertices,

󰁛

r󰃍0

trpr(A) = (1− t2)(I − tA+ t2(D − I))−1.

The determinant of the generating function on the left in this identity is the Ihara zeta
function of the graph, and therefore if X1 and X2 are degree similar and have no isolated
vertices, their Ihara zeta functions are equal. (This fact was noted by Wang et al. in [14],
with a sketch of a proof. For more on Ihara zeta functions, see [12].)

3 Trees

Firstly, we describe some notation. For a graph X and a vertex u ∈ V (X), we use dX(u)
to denote the degree of u in X. For a vertex subset U ⊆ V (X), denote the induced
subgraph of X on U by X[U ], and the induced subgraph of X on V (X) \U by X\U . For
an n× n matrix M and a set U ⊂ {1, . . . , n}, we use M(U) to denote a matrix obtained
from M by deleting the rows in U and the columns in U . When U = {u}, we use X\u
and M(u) instead. If x and y are two column vectors, we use [M |x,y] to denote the
bordered matrix

󰀕
0 xT

y M

󰀖
.

Assume that S is a graph and T is a rooted tree. The coalescence S • T is the graph
formed by identifying the root of T and a vertex of S.

Let T1 and T2 be the rooted trees shown in Figure 1, whose roots are v and w re-
spectively. Clearly, T1 and T2 are two isomorphic trees with different roots. In 1977,
McKay [9] showed that for any tree S with at least two vertices, S • T1 and S • T2 are
not isomorphic, but they are cospectral with respect to several graph matrices (in partic-
ular, adjacency matrix, Laplacian matrix and unsigned Laplacian matrix). Osborne [10]
showed that their normalized Laplacian matrices are also similar.

In fact, we can prove a more general result: for any graph S with at least two vertices,
ψ(S • T1, t, µ) = ψ(S • T2, t, µ), i.e., S • T1 and S • T2 are cospectral with respect to the
matrix A− µD. For convenience, put Aµ(X) := A(X)− µD(X).

Lemma 2. Let T1 and T2 be the two trees depicted in Figure 1, and let Si = S • Ti for
i = 1, 2, where S is a non-trivial graph. Then ψ(S1, t, µ) = ψ(S2, t, µ).
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Figure 1: T1 and T2.

Proof. Without loss of generality, assume that Si is obtained by identifying the root of Ti

and a vertex r of S, here i = 1, 2. It is routine to check that

Aµ(S1) =

󰀳

󰁃
−µ(dS(r) + 2) xT

T1
yT
S

xT1 Aµ(T1)(v) 0
yS 0 Aµ(S)(r)

󰀴

󰁄

for some column vectors xT1 and yS. For convenience, denote φ(M) := det(tI − M).
Based on [9, Lemma 2.2(i)], one has

ψ(S1, t, µ) =φ(Aµ(T1)(v))φ([Aµ(S)(r)|yS,yS]) + φ(Aµ(S)(r))φ([Aµ(T1)(v)|xT1 ,xT1 ])

− (t− µ(dS(r) + 2))φ(Aµ(T1)(v))φ(Aµ(S)(r)).

Similarly, one may write ψ(S2, t, µ) as follows:

ψ(S2, t, µ) =φ(Aµ(T2)(w))φ([Aµ(S)(r)|yS,yS]) + φ(Aµ(S)(r))φ([Aµ(T2)(w)|xT2 ,xT2 ])

− (t− µ(dS(r) + 2))φ(Aµ(T2)(w))φ(Aµ(S)(r)).

By a direct calculation, we obtain

φ(Aµ(T1)(v)) = φ(Aµ(T2)(w))

and
φ([Aµ(T1)(v)|xT1 ,xT1 ]) = φ([Aµ(T2)(w)|xT2 ,xT2 ]).

It follows that ψ(S1, t, µ) = ψ(S2, t, µ).

Obviously, if X1 and X2 are degree similar, then ψ(X1, t, µ) = ψ(X2, t, µ). Wang et
al. [14] proposed a problem: Is the converse true? Next, we give some examples to show
that it is not.

The following result is a reformulation of [9, Theorem 5.3].

Theorem 3. Two trees are degree similar if and only if they are isomorphic.

Combining Lemma 2 with Theorem 3, we have the following corollary.

Corollary 4. For any tree S with at least two vertices, we have ψ(S • T1, t, µ) = ψ(S •
T2, t, µ), but S • T1 and S • T2 are not degree similar.
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4 Subgraphs and complements

In this section, we study the subgraphs and complements of degree-similar graphs. Re-
calling the definition of degree-similar graphs, we first present a basic property of the
invertible real matrix M in (1).

Lemma 5. Let X1 and X2 be graphs with degree matrices D1 and D2 respectively. If
there is an invertible real matrix M such that

M−1D1M = D2.

Then M is block diagonal.

Proof. Assume that d1, . . . , dt are all distinct vertex degrees of X1. Partition the vertex
set of X1 as follows: V (X1) = V1 ∪ V2 ∪ · · · ∪ Vt, where Vi = {w : dX1(w) = di} for
i ∈ {1, . . . , t}. Since D1 is a diagonal matrix, after reordering the vertices of X1, we can
write D1 as follows:

D1 =

󰀳

󰁅󰁅󰁅󰁃

d1I|V1|
d2I|V2|

. . .

dtI|Vt|

󰀴

󰁆󰁆󰁆󰁄
.

Notice that D1 and D2 are diagonal matrices. Together with M−1D1M = D2, there exists
a permutation matrix P such that P TM−1D1MP = P TD2P = D1. Let Q = MP . Then
Q−1D1Q = D1, i.e., D1Q = QD1. Therefore, Q is a block diagonal matrix with respect
to the partition V1 ∪ V2 ∪ · · · ∪ Vt, which implies that M is block diagonal.

The following result is an immediate consequence of Lemma 5, which gives some
cospectral graphs with respect to the adjacency matrix.

Lemma 6. Let X1 and X2 be two degree-similar graphs, and let d be the degree of some
vertex in X1. Assume that Vi = {w : dXi

(w) = d} for i ∈ {1, 2}. Then the induced
subgraphs X1[V1] and X2[V2] are adjacency cospectral.

Remark 7. In fact, Lemma 6 is more useful in determining two graphs that are not degree
similar. For example, let X be a strongly regular graph with parameters SRG(25, 12, 5, 6).
In fact, there are exactly 15 non-isomorphic strongly regular graphs with such parameters.
Here, we assume the adjacency matrix of X is the first one described in Spence’s website:
http://www.maths.gla.ac.uk/~es/srgraphs.php.

Assume that the first two rows of A(X) are indexed by u and v respectively. One may
check

det(xI12 − A(X\NX [u]))− det(xI12 − A(X\NX [v]))

=− 2x9 + 2x8 + 64x7 + 39x6 − 372x5 − 135x4 + 648x3 − 324x2,

here NX [u] denotes the closed neighborhood of u in X. This implies that X\NX [u] and
X\NX [v] are not adjacency cospectral. Together with Lemma 6, we know X\u and X\v
are not degree similar.
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Next, we show that degree similar is preserved under taking the complement of the
underlying graphs. Let X denote the complement of a graph X.

Lemma 8. If X is connected, X and Y are degree-similar, then their complements are
degree similar.

Proof. Assume that X and Y have n vertices. Since X and Y are degree similar, there
exists an invertible real matrix M such that

M−1A(X)M = A(Y ), M−1D(X)M = D(Y ).

Since the Laplacians of X and Y are cospectral, Y is connected. Then there is a polyno-
mial p, determined by the spectrum of D(X)− A(X), such that p(D(X)− A(X)) = Jn.
Therefore p(D(Y )− A(Y )) = Jn. Consequently,

M−1JnM = M−1p(D(X)− A(X))M = p(D(Y )− A(Y )) = Jn, (2)

from which it follows that Jn − In − A(X) and Jn − In − A(Y ) are cospectral.
Notice that A(X) = Jn − In − A(X) and D(X) = (n− 1)In −D(X). Then,

M−1A(X)M = M−1(Jn − In − A(X))M = Jn − In − A(Y ) = A(Y ),

M−1D(X)M = M−1((n− 1)In −D(X))M = (n− 1)In −D(Y ) = D(Y ).

It follows that X and Y are degree similar.

5 Local switching

There is a powerful and productive method called local switching [4], which can produce
numerous pairs of cospectral graphs. Wang et al. [14] constructed a family of degree-
similar graphs by using local switching. In this section, we generalize their result, and use
local switching to construct a large family of degree-similar graphs. Firstly, we describe
local switching.

Local switching. Let X be a graph and let π := C1∪C2∪ · · ·∪Ck∪C be a partition
of V (X). Suppose that, whenever 1 󰃑 i, j 󰃑 k and v ∈ C, we have

(a) any two vertices in Ci have the same number of neighbors in Cj, and

(b) v has either 0, |Ci|
2

or |Ci| neighbors in Ci.

The graph Xπ formed by local switching in X with respect to π is obtained from X as
follows. For each v ∈ C and 1 󰃑 i 󰃑 k such that v has |Ci|

2
neighbors in Ci, delete those

|Ci|
2

edges and join v instead to the other |Ci|
2

vertices in Ci.

Godsil and McKay [4] showed that if Xπ is the graph formed by local switching in X
with respect to a partition π, then X and Xπ are cospectral, with cospectral complements.
Now, we use local switching to construct a large family of degree-similar graphs.
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Lemma 9. Let X be a graph and let π := C1 ∪C2 ∪ · · ·∪Ck ∪C be a partition of V (X).
Put c := |C| and ci := |Ci| for 1 󰃑 i 󰃑 k. Suppose that, whenever 1 󰃑 i, j 󰃑 k, we have

(i) every vertex in Ci has dij neighbors in Cj,

(ii) for any u ∈ C, u has ci
2
neighbors in Ci, and

(iii) for any v ∈ Ci, v has c
2
neighbors in C.

If Xπ is formed by local switching in X with respect to π, then X and Xπ are degree
similar.

Proof. Assume that the vertices of X are labelled in an order consistent with π. For i ∈
{1, . . . , k}, let Qi =

2
ci
Jci − Ici . Clearly, Qi is an orthogonal matrix and Qi = QT

i = Q−1
i .

Define an orthogonal matrix Q as follows:

Q =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

Q1

Q2

. . .

Qk

Ic

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
. (3)

According to the proof of [4, Theorem 2.2], we know Q−1A(X)Q = A(Xπ).
On the other hand, based on the partition π, we can write the degree matrices of X

and Xπ as follows:

D(X) = D(Xπ) =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

g1Ic1
g2Ic2

. . .

gkIck
D(X[C]) + (

󰁓k
i=1

ci
2
)Ic

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
,

where gi =
󰁓k

j=1 dij +
c
2
for i ∈ {1, 2, . . . , k}. It is routine to check that Q−1D(X)Q =

D(Xπ). Thus, X and Xπ are degree similar.

Example 10. In Figure 2, X1,2 can be obtained from X1,1 by using local switching. Let

R1 =

󰀕
1
2
J4 − I4

I6

󰀖
.

Then R−1
1 A(X1,1)R1 = A(X1,2) and R−1

1 D(X1,1)R1 = D(X1,2). Hence X1,1 and X1,2 are
degree similar.
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degree similar.

� �

�

�C1

C

X1,1 X1,2

Figure 2: Local switching.

6 Joins and Products

In this section, we will investigate how other standard graph theoretic operations can be
used to get examples of degree-similar graphs.

Let X be a graph with two induced subgraphs Y and Z such that V (X) is the disjoint
union of V (Y ) and V (Z), E(X) is the disjoint union of E(Y ) and E(Z). We will say that
X is the union of Y and Z, and denote it by Y ∪ Z. The join of Y and Z, written as
X ∨Y , is the graph obtained from Y ∪Z by joining each vertex in Y to each vertex in Z.

Now, we construct degree-similar graphs by using union and join operations. The
following results can be proved directly by the definition of degree-similar graphs.

Lemma 11. Let X and Y be two connected degree-similar graphs. For any graph H, the
following hold.

(i) X ∪H and Y ∪H are degree similar;

(ii) If X is regular, then X ∨H and Y ∨H are degree similar.

Lemma 12. Let X and Xπ be graphs defined in Lemma 9 with vertex partition π := C1∪
C2∪ · · ·∪Ck∪C, and let Y be any graph. For convenience, put Ck+1 := C. In X and Xπ,
if we add all edges between Y and Ci1∪Ci2∪ · · ·∪Cil, where 1 󰃑 i1 < i2 < · · · < il 󰃑 k+1,
then the two graphs obtained are degree similar.

Proof. Denote by Γ1 and Γ2 the graphs obtained from X and Xπ by adding all edges
between Y and Ci1 ∪ Ci2 ∪ · · · ∪ Cil respectively. Assume |V (X)| = n and |V (Y )| = m.
Let Q be the matrix defined in (3). Based on the proof of Lemma 9, we know

Q−1A(X)Q = A(Xπ), Q−1D(X)Q = D(Xπ).

Notice that

A(Γ1) =

󰀕
A(X) B
BT A(Y )

󰀖
, D(Γ1) =

󰀕
D(X) +mC

D(Y ) + (
󰁓l

j=1 |Cij |)Im

󰀖
.

where B = (buv)n×m with buv = 1 if u ∈ Ci1 ∪ Ci2 ∪ · · · ∪ Cil and buv = 0 otherwise;
C = (cuv)n×n is a diagonal matrix with cuu = 1 if u ∈ Ci1 ∪ Ci2 ∪ · · · ∪ Cil and cuu = 0
otherwise.
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Now, we define an orthogonal matrix as follows:

R =

󰀕
Q

Im

󰀖
.

Clearly, RT = R−1 = R. By a direct calculation, one has ( 2
ci
Jci − Ici)1ci = 1ci for all

i ∈ {1, . . . , k}, where 1ci denotes the all 1s column vector of order ci. Therefore, QB = B.
Hence

R−1A(Γ1)R =

󰀕
A(Xπ) QB
BTQ A(Y )

󰀖
=

󰀕
A(Xπ) B
BT A(Y )

󰀖
= A(Γ2),

R−1D(Γ1)R =

󰀕
D(Xπ) +mC

D(Y ) + (
󰁓l

j=1 |Cij |)Im

󰀖
= D(Γ2).

That is, Γ1 and Γ2 are degree similar.

Example 13. In Figure 3, X2,i is a graph obtained from X1,i by adding a path P3 and
join it to all vertices of C1 in X1,i for i ∈ {1, 2}.

Figure 3: Joins of P3 with a vertex subset C1 of X1,i.

Define

R2 =

󰀳

󰁃
1
2
J4 − I4

I6
I3

󰀴

󰁄 .

It is routine to check that R−1
2 A(X2,1)R2 = A(X2,2) and R−1

2 D(X2,1)R2 = D(X2,2). There-
fore, X2,1 and X2,2 are degree similar.

Recall that ψ(X, t, µ) = ψ(Y, t, µ) is a necessary condition for two graphs X and Y
being degree similar. In fact, there is more we can say about ψ(X, t, µ). The following
theorem is a generalization of Johnson and Newman’s result in [7]. For the detailed proof,
one may see [5].

Theorem 14. Assume X and Y are graphs with ψ(X, t, µ) = ψ(Y, t, µ) and ψ(X, t, µ) =
ψ(Y , t, µ), then there is an orthogonal matrix Q such that

QTAµ(X)Q = Aµ(Y ) and Q1 = 1.
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Based on the above theorem, by using join operator, we may obtain a family of cospec-
tral graphs with respect to the A− µD matrix.

Lemma 15. If X and Y are graphs such taht ψ(X, t, µ) = ψ(Y, t, µ) and ψ(X, t, µ) =
ψ(Y , t, µ), then ψ(X ∨ H, t, µ) = ψ(Y ∨ H, t, µ) and ψ(X ∨H, t, µ) = ψ(Y ∨H, t, µ),
where H is any graph.

Proof. Assume X and Y have n vertices, H has m vertices. In view of Theorem 14, there
is an orthogonal matrix Q such that

QTAµ(X)Q = Aµ(Y ) and Q1n = 1n.

Then QT1n = 1n, which implies QTJn×m = Jn×m. Clearly,

Aµ(X ∨H) =

󰀕
Aµ(X)− µnIm Jn×m

Jm×n Aµ(H)− µmIn

󰀖
.

It is routine to check that
󰀕
QT

I

󰀖
Aµ(X ∨H)

󰀕
Q

I

󰀖
= Aµ(Y ∨H).

Hence Aµ(X∨H) and Aµ(Y ∨H) are similar. It follows that ψ(X∨H, t, µ) = ψ(Y ∨H, t, µ).
Obviously, X ∨H = X ∪ H and Y ∨H = Y ∪ H. Together with the fact that

ψ(X, t, µ) = ψ(Y , t, µ), then ψ(X ∨H, t, µ) = ψ(Y ∨H, t, µ) holds obviously.

Our next contribution involves constructions of degree-similar graphs using alternative
graph products, namely Cartesian product, tensor product, strong product and lexico-
graphic product.

Let A and B be matrices of order m×n and p×q, respectively. The Kronecker product
of two matrices A and B, denoted A⊗ B, is the mp× nq block matrix [aijB]. It can be
verified from the definition that

(A⊗ B)(C ⊗D) = AC ⊗ BD.

Let X and Y be graphs with vertex sets V (X) and V (Y ), respectively. Put n :=
|V (X)| and m := |V (Y )|. The Cartesian product of X and Y , denoted by X□Y , is the
graph defined as follows. The vertex set of X□Y is V (X) × V (Y ). The vertices (u, v)
and (u′, v′) are adjacent if either u = u′ and v is adjacent to v′ in Y , or v = v′ and u is
adjacent to u′ in X. It is well known that

A(X□Y ) = (A(X)⊗ Im) + (In ⊗ A(Y )), D(X□Y ) = (D(X)⊗ Im) + (In ⊗D(Y )).

The tensor product of X and Y , denoted by X ⊗ Y , is the graph defined as follows.
The vertex set of X ⊗ Y is V (X)× V (Y ). The vertices (u, v) and (u′, v′) are adjacent if
u is adjacent to u′ in X and v is adjacent to v′ in Y . Notice that

A(X ⊗ Y ) = A(X)⊗ A(Y ), D(X ⊗ Y ) = D(X)⊗D(Y ).

the electronic journal of combinatorics 32(4) (2025), #P4.12 10



The strong product of X and Y , denoted by X ⊠ Y , is the graph defined as follows.
The vertex set of X ⊠ Y is V (X)× V (Y ). The vertices (u, v) and (u′, v′) are adjacent if
either u = u′ and v is adjacent to v′ in Y , or v = v′ and u is adjacent to u′ in X, or u is
adjacent to u′ in X and v is adjacent to v′ in Y . Then

A(X ⊠ Y ) = (A(X)⊗ Im) + (In ⊗ A(Y )) + A(X)⊗ A(Y ),

D(X ⊠ Y ) = (D(X)⊗ Im) + (In ⊗D(Y )) +D(X)⊗D(Y ).

The lexicographic product of X and Y , denoted by X ⊙ Y , is the graph defined as
follows. The vertex set of X ⊙ Y is V (X) × V (Y ). The vertices (u, v) and (u′, v′) are
adjacent if either u is adjacent to u′ in X, or u = u′ and v is adjacent to v′ in Y . It is
easy to obtain

A(X ⊙ Y ) = (A(X)⊗ Jm) + (In ⊗ A(Y )),

D(X ⊙ Y ) = (mD(X)⊗ Im) + (In ⊗D(Y )).

Lemma 16. If X1 and X2 are two degree-similar graphs with order n, Y1 and Y2 are two
degree-similar graphs with order m, then X1□Y1 and X2□Y2 (resp. X1 ⊗ Y1 and X2 ⊗ Y2,
X1 ⊠ Y1 and X2 ⊠ Y2) are degree similar. Furthermore, if Y1 is connected, then X1 ⊙ Y1

and X2 ⊙ Y2 are also degree similar.

Proof. Here, we only prove X1□Y1 and X2□Y2 are degree similar, the remaining cases
can be proved similarly. By assumption, there exist two invertible real matrices M1 and
M2 such that

M−1
1 A(X1)M1 = A(X2), M−1

1 D(X1)M1 = D(X2),

and
M−1

2 A(Y1)M2 = A(Y2), M−1
2 D(Y1)M2 = D(Y2).

Let M = M1 ⊗M2. By applying the properties of Kronecker product, one has

M−1A(X1□Y1)M = (M1 ⊗M2)
−1((A(X1)⊗ Im) + (In ⊗ A(Y1)))(M1 ⊗M2)

= (M−1
1 A(X1)M1 ⊗M−1

2 ImM2) + (M−1
1 InM1 ⊗M−1

2 A(Y1)M2)

= (A(X2)⊗ Im) + (In ⊗ A(Y2))

= A(X2□Y2),

and

M−1D(X1□Y1)M = (M1 ⊗M2)
−1((D(X1)⊗ Im) + (In ⊗D(Y1)))(M1 ⊗M2)

= (M−1
1 D(X1)M1 ⊗M−1

2 ImM2) + (M−1
1 InM1 ⊗M−1

2 D(Y1)M2)

= (D(X2)⊗ Im) + (In ⊗D(Y2))

= D(X2□Y2).

It follows that X1□Y1 and X2□Y2 are degree similar.
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7 k-sum and rooted product

In this section, we show how to use k-sum and rooted product of graphs to build families
of degree-similar graphs. The k-sum of graphs X and Y is obtained by merging k distinct
vertices in X with k distinct vertices in Y .

Lemma 17. Let X1 and X2 be two degree-similar graphs, and Y be an n-vertex graph
with {w1, . . . , wk} ⊆ V (Y ). Choose u1, . . . , uk ∈ V (X1) and v1, . . . , vk ∈ V (X2) such that
for i ∈ {1, . . . , k},

(i) the degree of ui (resp. vi) is different with that of all other vertices in X1 (resp.
X2);

(ii) dX1(ui) = dX2(vi);

(iii) X1[{u1, . . . , uk}] is connected.

Denote by Γ1 (resp. Γ2) the k-sum of X1 (resp. X2) and Y , which is obtained by merging
{u1, . . . , uk} of X1 (resp. {v1, . . . , vk} of X2) with {w1, . . . , wk} of Y in order. Then Γ1

and Γ2 are degree similar.

Proof. Since X1 and X2 are two degree-similar graphs, there exists an invertible matrix
M such that

M−1A(X1)M = A(X2), M−1D(X1)M = D(X2).

In view of Lemma 5, M is block diagonal with respect to the partition (V (X) \ {u1}) ∪
{u1} ∪ · · · ∪ {uk}. Therefore, M can be written as

M =

󰀳

󰁅󰁅󰁅󰁃

M1

a1
. . .

ak

󰀴

󰁆󰁆󰁆󰁄

for some invertible matrix M1 and nonzero real numbers a1, . . . , ak. The adjacency matrix
of Γ1 is

A(Γ1) =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

A(X1\{u1, . . . , uk}) x1 x2 · · · xk 0
x1

T 0 a12 · · · a1k y1
T

x2
T a21 0 · · · a2k y2

T

...
...

...
. . .

...
...

xk
T ak1 ak2 · · · 0 yk

T

0 y1 y2 · · · yk A(Y \{w1, . . . , wk})

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,
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for some column vectors xi, yi and aij ∈ {0, 1} for 1 󰃑 i, j 󰃑 k. The degree matrix of Γ1

is

D(Γ1) =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

D(X1)({u1, . . . , uk})
b1

b2
. . .

bk
D(Y )({w1, . . . , wk})

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

where bi = dX1(ui) + dY (wi)− |{j : uiuj ∈ E(X1) and wiwj ∈ E(Y )}|. Furthermore, the
adjacency matrix and degree matrix of Γ2 have the similar forms.

Recall that M−1A(X1)M = A(X2). Then a−1
i aijaj = 0 if aij = 0, and a−1

i aijaj = 1 if
aij = 1. Therefore, X1[{u1, . . . , uk}] ∼= X2[{v1, . . . , vk}]. Together with X1[{u1, . . . , uk}]
is connected, one has a1 = · · · = ak. Let

Q =

󰀳

󰁃
M1

a1Ik
a1In−k

󰀴

󰁄 .

It is straightforward to check that

Q−1A(Γ1)Q = A(Γ2), Q−1D(Γ1)Q = D(Γ2),

i.e., Γ1 and Γ2 are degree similar.

Taking a base graph X and a sequence Y of rooted graphs Y1, . . . , Yk, and then merge
the k roots of graphs in Y with k distinct vertices u1, . . . , uk of X. We refer to it as the
rooted product of X with Y at u1, . . . , uk. By a similar discussion as Lemma 17, we can
get the following result.

Lemma 18. Let X1 and X2 be two degree-similar graphs, and let Y = (Y1, . . . , Yk) be a
sequence of rooted graphs. Choose u1, . . . , uk ∈ V (X1) and v1, . . . , vk ∈ V (X2) such that
for i ∈ {1, . . . , k},

(i) the degree of ui (resp. vi) is different with that of all other vertices in X1 (resp.
X2);

(ii) dX1(ui) = dX2(vi).

Then the rooted product of X1 with Y at u1, . . . , uk and the rooted product of X2 with Y
at v1, . . . , vk are degree similar.

Example 19. In Figure 4, for i ∈ {1, 2}, X3,i is the 2-sum of X1,i + uv and a cycle C3.
Notice that the degree of u (resp. v) is different with that of all other vertices in X1,i+uv.
Let

R3 =

󰀳

󰁃
1
2
J4 − I4

I6
1

󰀴

󰁄 .
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Figure 4: 2-sum.

One may check that R−1
3 A(X3,1)R3 = A(X3,2) and R−1

3 D(X3,1)R3 = D(X3,2). Hence X3,1

and X3,2 are degree similar.
In Figure 5, for i ∈ {1, 2}, X4,i is the rooted product of X1,i+uv with (P3, C3) at u, v.

Let

R4 =

󰀳

󰁅󰁅󰁃

1
2
J4 − I4

I6
I2

I2

󰀴

󰁆󰁆󰁄 .

By a direct calculation, one has R−1
4 A(X4,1)R4 = A(X4,2) and R−1

4 D(X4,1)R4 = D(X4,2).
Thus, X4,1 and X4,2 are degree similar.

Figure 5: Rooted product.

8 Adding or deleting vertices

Butler et al. [1] showed that: if X1 and X2 are two graphs with ψ(X1, t, µ) = ψ(X2, t, µ),
then the graphs resulting from attaching an arbitrary rooted graph Y to each vertex of X1

and each vertex of X2 will be cospectral with respect to the matrix A − µD. Motivated
by this, in this section, we construct degree-similar graphs by adding or deleting vertices.

Lemma 20. Let X1 and X2 be two degree-similar graphs. Assume d1, . . . , dk are all
distinct vertex degrees in X1. For each i ∈ {1, . . . , k}, attach si pendant vertices to each
vertex with degree di in X1 and X2 respectively, then the two graphs obtained are degree
similar.
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Proof. For convenience, denote by Γ1 and Γ2 the two graphs obtained from X1 and X2

respectively. Firstly, we reorder the vertices of X1 and X2 such that their degree matrices
can be written as

D(X1) = D(X2) =

󰀳

󰁅󰁅󰁅󰁃

d1In1

d2In2

. . .

dkInk

󰀴

󰁆󰁆󰁆󰁄
,

where ni is the number of vertices in Vi := {v : dX1(v) = di} for i ∈ {1, . . . , k}.
Since X1 and X2 are degree similar, there exists an invertible real matrix M such that

M−1A(X1)M = A(X2), M−1D(X1)M = D(X2).

In view of Lemma 5, M is block diagonal with respect to the partition V1∪ · · ·∪Vk. That
is,

M =

󰀳

󰁅󰁅󰁅󰁃

M1

M2

. . .

Mk

󰀴

󰁆󰁆󰁆󰁄

for some invertible matrices M1, . . . ,Mk. For i ∈ {1, . . . , k}, assume

Vi = {vn1+···+ni−1+1, vn1+···+ni−1+2, . . . , vn1+···+ni−1+ni
},

and for j ∈ {1, . . . , ni}, assume {ui
(j−1)si+1, . . . , u

i
jsi
} are all pendant vertices attached to

vn1+···+ni−1+j. Next, partition the vertex set of Γ1 as follows:

{u1
1, u

1
s1+1, . . . , u

1
(n1−1)s1+1} ∪ {u1

2, u
1
s1+2, . . . , u

1
(n1−1)s1+2} ∪ · · · ∪ {u1

s1
, u1

2s1
, . . . , u1

n1s1
}

∪{u2
1, u

2
s2+1, . . . , u

2
(n2−1)s2+1} ∪ {u2

2, u
2
s2+2, . . . , u

2
(n2−1)s2+2} ∪ · · · ∪ {u2

s2
, u2

2s2
, . . . , u2

n2s2
}

∪ · · ·
∪{uk

1, u
k
sk+1, . . . , u

k
(nk−1)sk+1} ∪ {uk

2, u
k
sk+2, . . . , u

k
(nk−1)sk+2} ∪ · · · ∪ {uk

sk
, uk

2sk
, . . . , uk

nksk
}

∪V1 ∪ V2 ∪ · · · ∪ Vk.

It is routine to check that for i ∈ {1, 2}, the adjacency matrix of Γi is

A(Γi) =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0

1s1 ⊗ In1 0 · · · 0
0 1s2 ⊗ In2 · · · 0
...

...
...

...
0 0 · · · 1sk ⊗ Ink

1T
s1
⊗ In1 0 · · · 0
0 1T

s2
⊗ In2 · · · 0

...
...

...
...

0 0 · · · 1T
sk
⊗ Ink

A(Xi)

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

the electronic journal of combinatorics 32(4) (2025), #P4.12 15



the degree matrix of Γi is

D(Γi) =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

In1s1+···+nksk

(d1 + s1)In1

(d2 + s2)In2

. . .

(dk + sk)Ink

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
.

Let Q be a matrix defined by

Q =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

Is1 ⊗M1

Is2 ⊗M2

. . .

Isk ⊗Mk

M

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
.

By a direct calculation, one has

Q−1A(Γ1)Q = A(Γ2), Q−1D(Γ1)Q = D(Γ2),

i.e., Γ1 and Γ2 are degree similar.

Lemma 21. Let X1 and X2 be two degree-similar graphs. Assume d1, . . . , dk are all
distinct vertex degrees in X1, and Vi = {v : dX1(v) = di} with cardinality ni. For each
i ∈ {1, . . . , l} with l 󰃑 k, add ni isolated vertices and join each of them to all vertices with
degree di in X1 and X2 respectively, then the obtained graphs are degree similar.

Proof. Denote by Γ1 and Γ2 the two graphs obtained from X1 and X2. Firstly, we reorder
the vertices of X1 and X2 such that their degree matrices can be written as

D(X1) = D(X2) =

󰀳

󰁅󰁅󰁅󰁃

d1In1

d2In2

. . .

dkInk

󰀴

󰁆󰁆󰁆󰁄
.

Since X1 and X2 are degree similar, there exists an invertible real matrix M such that

M−1A(X1)M = A(X2), M−1D(X1)M = D(X2).

In view of Lemma 5, M is block diagonal with respect to the partition V1∪ · · ·∪Vk. That
is,

M =

󰀳

󰁅󰁅󰁅󰁃

M1

M2

. . .

Mk

󰀴

󰁆󰁆󰁆󰁄

the electronic journal of combinatorics 32(4) (2025), #P4.12 16



for some invertible matrices M1, . . . ,Mk. For i ∈ {1, . . . , l}, assume

Vi = {vn1+···+ni−1+1, vn1+···+ni−1+2, . . . , vn1+···+ni−1+ni
},

and assume {ui
1, . . . , u

i
ni
} are all added vertices that are adjacent to vertices in Vi. Parti-

tion the vertex set of Γ1 as follows:

{u1
1, . . . , u

1
n1
} ∪ {u2

1, . . . , u
2
n2
} ∪ · · · ∪ {ul

1, . . . , u
l
nl
} ∪ V1 ∪ V2 ∪ · · · ∪ Vl ∪ (Vl+1 ∪ · · · ∪ Vk).

For i ∈ {1, 2}, it is routine to check that the adjacency matrix of Γi is

A(Γi) =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0

Jn1 0
. . .

...
Jnl

0
Jn1

. . .

Jnl

0 · · · 0

A(Xi)

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

and the degree matrix of Γi is

D(Γi) =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

n1In1

. . .

nlInl

(d1 + n1)In1

. . .

(dl + nl)Inl

dl+1Inl+1

. . .

dkInk

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

Let

Q =

󰀳

󰁅󰁅󰁅󰁃

M1

. . .

Ml

M

󰀴

󰁆󰁆󰁆󰁄
.

Together with (2), and by a direct calculation, one has

Q−1A(Γ1)Q = A(Γ2), Q−1D(Γ1)Q = D(Γ2),

i.e., Γ1 and Γ2 are degree similar.

Finally, we construct degree-similar graphs by deleting a vertex.
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Lemma 22. Let X1 and X2 be two degree-similar graphs. For i ∈ {1, 2}, choose ui ∈
V (Xi) such that

(i) the degree of ui in Xi is different with that of all other vertices in Xi;

(ii) dX1(u1) = dX2(u2);

(iii) w ∈ NX1(u1) implies {w′ : dX1(w
′) = dX1(w)} ⊆ NX1(u1).

Then X1\u1 and X2\u2 are degree similar.

Proof. Since X1 and X2 are two degree-similar graphs, there exists an invertible real
matrix M such that

M−1A(X1)M = A(X2), M−1D(X1)M = D(X2).

In view of Lemma 5, M is block diagonal with respect to the partition {u1} ∪NX1(u1) ∪
(V (X1) \NX1 [u1]). That is, M can be written as follows:

M =

󰀳

󰁃
a

M1

M2

󰀴

󰁄 ,

for some invertible matrices M1, M2 and a nonzero real number a. Furthermore, we can
partition A(X1) and D(X1) as follows:

A(X1) =

󰀳

󰁃
0 1T 0
1 A11 A12

0 A21 A22

󰀴

󰁄 , D(X1) =

󰀳

󰁃
dX1(u1)

D1

D2

󰀴

󰁄 .

Notice that the adjacency matrix and the degree matrix of X1\u1 are

A(X1\u1) =

󰀕
A11 A12

A21 A22

󰀖
, D(X1\u1) =

󰀕
D1 − I

D2

󰀖
.

Recall that M−1A(X1)M = A(X2) and M−1D(X1)M = D(X2), then

A(X2) =

󰀳

󰁃
0 a−11TM1 0

M−1
1 1a M−1

1 A11M1 M−1
1 A12M2

0 M−1
2 A21M1 M−1

2 A22M2

󰀴

󰁄 ,

and

D(X2) =

󰀳

󰁃
dX1(u1)

M−1
1 D1M1

M−1
2 D2M2

󰀴

󰁄 .

Clearly, the first row of D(X2) is indexed by u2. Together with Item (ii), we know each
entry of a−11TM1 is equal to 1. Thus, A(X2) is partitioned according to {u2}∪NX2(u2)∪
(V (X2) \NX2 [u2]). Let Q = diag(M1,M2). Then

Q−1A(X1\u1)Q = A(X2\u2), Q−1D(X1\u1)Q = D(X2\u2),

i.e., X1\u1 and X2\u2 are degree similar.
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Example 23. In Figure 6, for i ∈ {1, 2}, X5,i is a graph obtained from X1,i + uv by
adding one pendant vertex to each vertex with degree 4, adding two pendant vertices to
u and adding three pendant vertices to v. Let

R5 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1
2
J4 − I4

I4
I2

I3
1
2
J4 − I4

I6

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
.

It is straightforward to check thatR−1
5 A(X5,1)R5 = A(X5,2) andR−1

5 D(X5,1)R5 = D(X5,2).
Hence X5,1 and X5,2 are degree similar.

Figure 6: Adding pendant vertices.

In Figure 7, by using Lemma 9, we know X6,1\{w1, w2} and X6,2\{w1, w2} are degree
similar. Let

R6 =

󰀳

󰁃
I2

1
2
J4 − I4

I6

󰀴

󰁄 .

By a direct calculation, one has R−1
6 A(X6,1)R6 = A(X6,2) and R−1

6 D(X6,1)R6 = D(X6,2).
Then X6,1 and X6,2 are degree similar.

Figure 7: Adding complete graphs.

In Figure 8, for i ∈ {1, 2}, X7,i can be viewed as a graph obtained from X2,i by deleting
the unique vertex with degree 6. Notice that the neighborhood of this vertex contains all
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vertices with degree 5 and 7 in X2,i. Let

R7 =

󰀳

󰁃
1
2
J4 − I4

I6
I2

󰀴

󰁄 .

Then R−1
7 A(X7,1)R7 = A(X7,2) and R−1

7 D(X7,1)R7 = D(X7,2). Hence X7,1 and X7,2 are
degree similar.

Figure 8: Deleting a vertex.

9 Similarity

Recall that
ψ(X, t, µ) = det(tI − (A− µD)).

Here we view A − µD as a matrix over the field of rational functions Q(µ), and then
ψ(X, t, µ) is the characteristic polynomial of A− µD.

We are accustomed to the fact that symmetric matrices over R are similar if and only
if their characteristic polynomials are equal. In general though, equality of characteristic
polynomials is not enough to ensure similarity. Instead we have the following. (For a
proof and more details, see Lancaster and Tismenetsky [8, Theorem 7.6.1] or Friedland
[3, Theorem 2.1.4].)

Theorem 24. Two matrices B1 and B2 over the field F are similar if and only if the
matrices tI − B1 and tI − B2 have the same Smith normal form.

If A and D are integer matrices, then the Smith normal form of tI − (A − µD) is
determined by the determinants of submatrices of tI − (A − µD), and by the greatest
common divisors of sets of these polynomials. Thus all calculations are carried out in the
principal ideal domain Q(µ)[t]. This yields the following:

Lemma 25. Matrices A1 − µD1 and A2 − µD2 are similar over R(µ) if and only if they
are similar over Q(µ).
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If X1 and X2 are degree-similar graphs with adjacency matrices A1, A2 and degree
matrices D1, D2, then in view of Theorem 24, the Smith normal forms of tI− (A1−µD1)
and tI − (A2 − µD2) are equal. For the converse, if tI − (A1 − µD1) and tI − (A2 − µD2)
have the same Smith normal form, then A1 − µD1 and A2 − µD2 are similar over Q(µ).
Furthermore, we have the following result.

Lemma 26. Let X1 and X2 be graphs with adjacency matrices A1, A2 and degree matrices
D1, D2 respectively. If A1 − µD1 and A2 − µD2 are similar over Q(µ), then A1 and A2

are similar over Q, as are D1 and D2.

Proof. Assume A1 − µD1 and A − µD2 are similar over Q(µ). Then there is a matrix
M(µ), with entries rational functions in µ, such that

M(µ)−1(A1 + µD1)M(µ) = A2 + µD2. (4)

The set of poles of the entries of M is finite, and therefore for all sufficiently large rational
numbers γ, the real matrix M(γ) is invertible. Hence it follows from Equation (4) that
D1 and D2 are similar.

Next, there is a sequence of rational numbers (γi)i󰃍0 converging to zero such that
M(γi) is defined and invertible, and it follows that A1 and A2 are similar.

10 Problems

In Sections 4-8, we provide a number of constructions of pairs of (non-isomorphic) degree-
similar graphs. It will be interesting to get more degree-similar graphs. In particular, the
result in [9, Theorem 5.3] implies that two trees are degree similar if and only if they are
isomorphic. A unicyclic graph can be viewed as a graph obtained from a tree by adding
one edge. So, we present the first problem:

Problem 27. Find more degree-similar graphs. In particular, are there non-isomorphic
degree-similar unicyclic graphs?

Based on Lemma 26, we know that if tI − (A1 − µD1) and tI − (A2 − µD2) have the
same Smith normal form, then A1 and A2 are similar over Q, as are D1 and D2. Then, a
natural problem arises.

Problem 28. Let X and Y be two graphs. Assume that tI − (A(X) − µD(X)) and
tI − (A(Y )− µD(Y )) have the same Smith normal form. Are X and Y degree similar?

For a graph X and an edge e ∈ E(X), denote by X\e the graph obtained from
X by deleting the edge e. In [5], the authors showed that if X is a strongly regular
graph, then for any two edges e and f of X, the graphs X\e and X\f are cospectral with
cospectral complements, with respect to the adjacency, Laplacian, unsigned Laplacian and
normalized Laplacian matrices. Motivated by this, we consider a more general problem.

Problem 29. Let X be a strongly regular graph with two different edges e and f . Are
X\e and X\f degree similar?
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