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Abstract

We give a compact variation of Seymour’s proof that every 2-edge-connected
graph has a nowhere-zero Z2 × Z3-flow.

Mathematics Subject Classifications: 05C21

All graphs are finite; loops and multiple edges are allowed. For notation not defined
here we use [3]. Let G = (V,E) be a directed graph, A an additively-written abelian group,
and f : E → A a function. We say f is an A-flow whenever

∑
e∈δ+(v) f(e) =

∑
e∈δ−(v) f(e)

holds for every v ∈ V , where δ+(v) (δ−(v)) is the set of edges whose initial (terminal)
vertex is v. If 0 6∈ f(E), then we say f is nowhere-zero. If f is a Z-flow with f(E) ⊆
{0,±1,±2, . . . ,±(k − 1)}, then we say f is a k-flow. Note that reversing an edge e and
replacing f(e) with its negation preserves all of the aforementioned properties; accordingly
the existence of a nowhere-zero A-flow or k-flow depends only on the underlying graph.

A famous conjecture of Tutte [6] asserts that every 2-edge-connected graph has a
nowhere-zero 5-flow. This conjecture remains open with the best result due to Seymour
[5] who proved that such graphs have nowhere-zero 6-flows. His argument involves a
standard reduction due to Tutte equating the existence of a nowhere-zero k-flow and a
nowhere-zero A-flow whenever |A| = k, together with the following central result.

Theorem 1 (Seymour). Every 2-edge-connected digraph has a nowhere-zero Z2×Z3-flow.

We give a compact version of Seymour’s proof using a slightly stronger inductive state-
ment and simple contraction-based arguments. The value of our proof is its simplicity:
our proof uses the same graph structure that Seymour discovered. There are other proofs
of the 6-flow theorem, for example [4, 2, 1] whose arguments offer a different perspective,
however our proof is not a simplification of any of those.

Our proof of Theorem 2 relies on contracting a set of edges S, finding a flow f in the
smaller graph, then uncontracting S and extending the domain of f to include S. Observe
that it is always possible to extend the domain while maintaining that f is a flow; and if
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S is a set of at least two parallel edges, and the abelian group has size at least 3, then it
is possible to extend the domain so that additionally 0 6∈ f(S).

In the following we use G/S to denote the graph obtained from G by contracting the
set of edges S ⊆ E, and δ(u) is the set of edges incident to vertex u.

Theorem 2. If G = (V,E) is a 2-edge-connected digraph, and u ∈ V , then G has a
nowhere-zero flow f2 × f3 : E → Z2 × Z3 so that δ(u) ∩ supp(f2) = ∅.
Proof. We proceed by induction on |V |, with the base case |V | = 1 holding trivially. First,
suppose G−u has a 1-edge-cut E(V1, V2) = {e}. Choose a partition {E1, E2} of E \{e} so
that for i = 1, 2 the edges in Ei have ends in Vi ∪ {u}. Let Gi = G/Ei. By induction, Gi

has a nowhere-zero flow f i2×f i3 : E(Gi)→ Z2×Z3 so the edges incident to the contracted
vertex are not in the support of f i2. By possibly replacing f 1

3 with its negation, we may
assume that f 1

3 (e) = f 2
3 (e) and then the Z2 × Z3-flows in each Gi combine to give the

desired flow in G. Thus we may assume G− u has no cut-edge.

H

x x′

u

G

S

u uu

u1

u2

G1 = G/E(H) G2 = G1/S

Choose distinct edges ux and ux′ so that x and x′ are in the same component of
G − u (possibly x = x′). By our assumptions, we may choose two edge-disjoint paths
P1, P2 ⊆ G − u from x to x′. Set H = P1 ∪ P2, S = E(u, V (H)), G1 = G/E(H) with
contracted vertex u1, and G2 = G1/S with contracted vertex u2. By induction, G2 has a
flow f2×f3 : E(G2)→ Z2×Z3 so that δ(u2)∩ supp(f2) = ∅. Because S is a set of at least
two parallel edges, we may extend f3 to E(G1) so that it remains a flow and f3(e) 6= 0
for all e ∈ S. Because δ(u2) ∩ supp(f2) = ∅, setting f2(e) = 0 for all e ∈ S extends f2
to E(G1) keeping it a flow. Note that δG1(u) ∩ supp(f2) = ∅ = δG1(u1) ∩ supp(f2). Now,
further extend f3 to E(G) so that it remains a flow. Because δ(u1) ∩ supp(f2) = ∅, and
every vertex of H has even degree, we may extend f2 to E(G) by setting f2(e) = 1 for all
e ∈ E(H), keeping it a flow. Now S ⊆ supp(f3), E(H) ⊆ supp(f2) and so f2 × f3 is as
desired.
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