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Abstract

We give a compact variation of Seymour’s proof that every 2-edge-connected
graph has a nowhere-zero Zs x Zs-flow.

Mathematics Subject Classifications: 05C21

All graphs are finite; loops and multiple edges are allowed. For notation not defined
here we use [3]. Let G = (V, E) be a directed graph, A an additively-written abelian group,
and f: B — A a function. We say f is an A-flow whenever > ., f(€) = > c5-(,) f(€)
holds for every v € V, where 6" (v) (6~ (v)) is the set of edges whose initial (terminal)
vertex is v. If 0 € f(FE), then we say f is nowhere-zero. If f is a Z-flow with f(E) C
{0,4+1,+2,...,+(k — 1)}, then we say f is a k-flow. Note that reversing an edge e and
replacing f(e) with its negation preserves all of the aforementioned properties; accordingly
the existence of a nowhere-zero A-flow or k-flow depends only on the underlying graph.

A famous conjecture of Tutte [6] asserts that every 2-edge-connected graph has a
nowhere-zero 5-flow. This conjecture remains open with the best result due to Seymour
[5] who proved that such graphs have nowhere-zero 6-flows. His argument involves a
standard reduction due to Tutte equating the existence of a nowhere-zero k-flow and a
nowhere-zero A-flow whenever |A| = k, together with the following central result.

Theorem 1 (Seymour). Every 2-edge-connected digraph has a nowhere-zero Zg X Zs-flow.

We give a compact version of Seymour’s proof using a slightly stronger inductive state-
ment and simple contraction-based arguments. The value of our proof is its simplicity:
our proof uses the same graph structure that Seymour discovered. There are other proofs
of the 6-flow theorem, for example [4, 2, 1] whose arguments offer a different perspective,
however our proof is not a simplification of any of those.

Our proof of Theorem 2 relies on contracting a set of edges .S, finding a flow f in the
smaller graph, then uncontracting S and extending the domain of f to include S. Observe
that it is always possible to extend the domain while maintaining that f is a flow; and if
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S is a set of at least two parallel edges, and the abelian group has size at least 3, then it
is possible to extend the domain so that additionally 0 € f(.5).

In the following we use G/S to denote the graph obtained from G by contracting the
set of edges S C F, and d(u) is the set of edges incident to vertex w.

Theorem 2. If G = (V,E) is a 2-edge-connected digraph, and u € V, then G has a
nowhere-zero flow fo X f3: E — Zy X Z3 so that §(u) Nsupp(fz) = 0.

Proof. We proceed by induction on |V|, with the base case |V| = 1 holding trivially. First,
suppose G —u has a 1-edge-cut E(V, V,) = {e}. Choose a partition { £, Es} of E\ {e} so
that for ¢ = 1,2 the edges in E; have ends in V; U {u}. Let G; = G/E;. By induction, G;
has a nowhere-zero flow fi x fi: E(G;) — Zy x Z3 so the edges incident to the contracted
vertex are not in the support of fi. By possibly replacing fi with its negation, we may
assume that f1(e) = fi(e) and then the Z, x Zs-flows in each G; combine to give the
desired flow in G. Thus we may assume G — u has no cut-edge.

G G, = G/E(H) Gy =G1/S

x x! %ul

Choose distinct edges uxr and ux’ so that x and z’ are in the same component of
G — u (possibly x = 2’). By our assumptions, we may choose two edge-disjoint paths
P,P,CG—ufromaxtoa. Set H=PUP, S=FEV(H)), Gy =G/E(H) with
contracted vertex u;, and Gy = G1/S with contracted vertex uy. By induction, G has a
flow fo x f3: E(G2) — Za X Zs so that 6(ug) Nsupp(f2) = (. Because S is a set of at least
two parallel edges, we may extend fs3 to E(G;) so that it remains a flow and f3(e) # 0
for all e € S. Because §(uz) N supp(fz2) = 0, setting fo(e) = 0 for all e € S extends fo
to E(G,) keeping it a flow. Note that d¢, (u) Nsupp(f2) = 0 = dg, (u1) Nsupp(f2). Now,
further extend f3 to E(G) so that it remains a flow. Because §(ui) N supp(f2) = 0, and
every vertex of H has even degree, we may extend fs to E(G) by setting fa(e) = 1 for all
e € E(H), keeping it a flow. Now S C supp(f3), E(H) C supp(fz2) and so fo X f3 is as
desired. O
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