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Abstract

Zykov and Erdős showed independently that for 2 6 s 6 r, the maximum
number of copies of Ks among all Kr+1-free n-vertex graphs is achieved uniquely on
the complete balanced r-partite n-vertex graph (Turán graph Tn,r). When s = 2,
it is the classical theorem of Turán. Nikiforov proved a spectral version of Turán’s
Theorem. In this paper, we give a spectral version of the theorem by Zykov and
Erdős. Our result is a generalization of Nikiforov’s Theorem and a theorem of Liu
and Bu.

Mathematics Subject Classifications: 05C50, 05C35

1 Introduction

For a graph G, let V (G) and E(G) denote its vertex set and edge set respectively. The
number of edges and the spectral radius of G is denoted by e(G) and ρ(G) respectively.
Let Ks be a complete graph with s vertices. A Ks contained in a graph G is called an
s-clique in G. For an integer s > 1, let Cs(G) be the set of all s-subsets of V (G) which
form s-cliques in G and let cs(G) = |Cs(G)|. The Turán graph, denoted by Tn,r, is the
balanced complete r-partite graph with n vertices. For a given graph F , we say that G
is F -free if G contains no subgraph isomorphic to F . The Turán number of F , denoted
by ex(n, F ), is the maximum number of edges an F -free graph on n vertices can have. A
classical theorem of Turán [40] determines ex(n,Kr+1).

Theorem 1 (Turán [40], 1941). Let G be a Kr+1-free graph on n vertices, then e(G) 6
e(Tn,r), and equality holds if and only if G ∼= Tn,r.

In 2007, Nikiforov [27] proved the spectral version of Turán’s Theorem.

Theorem 2 (Nikiforov [27], 2007). Let G be a Kr+1-free graph on n vertices, then ρ(G) 6
ρ(Tn,r), and equality holds if and only if G ∼= Tn,r.
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In fact, it is easy to see that Theorem 2 implies Theorem 1 by using the facts ρ(G) >
2e(G)

n
and e(Tn,r) = bn

2
ρ(Tn,r)c.

Zykov [52] and Erdős [8] generalized the theorem of Turán by replacing the maximum
number of edges in a Kr+1-free graph by the maximum number of copies of Ks in a
Kr+1-free graph for all 2 6 s 6 r.

Theorem 3 (Zykov [52], 1949, Erdős [8], 1962). Let G be a Kr+1-free graph with n
vertices. Then for any 2 6 s 6 r, cs(G) 6 cs(Tn,r), and equality holds if and only if
G ∼= Tn,r.

The spectral Turán problems have also attracted considerable attentions in the last
two decades, see, e.g., [2, 23, 28] for cliques, [11] for matchings, [7, 16, 17, 29] for cycles,
[30] for color-critical graphs, [1, 33] for complete bipartite graphs, [25, 38] for planar and
outerplanar graphs, [9, 42, 50] for more extremal problems of planar graphs, [3, 13, 39,
48, 51] for graphs without minors, [31] for a spectral Erdős–Stone–Bollobás theorem, [32]
for the spectral stability theorem, [6] for a spectral Erdős–Sós theorem, [46] for a spectral
Erdős–Pósa theorem, [19] for a spectral Erdős—Rademacher theorem, [20] for a spectral
Erdős–Faudree–Rousseau theorem, [22] for a spectral Lovász–Simonovits theorem. [4, 47]
for friendship graphs, [18, 21] for bowties, [34, 49] for book graphs, [5] for odd wheels and
[10, 41] for a characterization of spectral extremal graphs for a class of graphs.

The purpose of this paper is to establish a spectral version of Theorem 3, which can
be viewed as a spectral counterpart of results on generalized Turán numbers of cliques.
We do this via the concept of s-clique tensor introduced by Liu and Bu [26].

For a matrix A, let AT denote the transpose of A. An m-order n-dimensional real
tensor over R is a multi-dimensional array with nm entries, and every entry is a real
number. The concepts of eigenvalue and eigenvector of tensors is independently introduced
by Qi [35] and Lim [24] as follows.

Definition 4 (Qi [35], 2005. Lim [24], 2005). Let A = (ai1i2···im) be an m-order n-
dimensional real tensor with m > 2. If there exist a number λ ∈ C and a nonzero vector
x = (x1, x2, . . . , xn)T ∈ Cn satisfying

n∑
i2,··· ,im=1

aii2···imxi2 · · ·xim = λxm−1i , for any 1 6 i 6 n,

then λ is called an eigenvalue of A, and x is an eigenvector of A corresponding to λ.

The adjacency spectral radius of A, denoted by ρ(A), is the maximum modulus of
the eigenvalues of A. For an n-dimensional vector x = (x1, x2, . . . , xn)T and an m-order
n-dimensional tensor A = (ai1i2...im), let

xTAx :=
n∑

i1,··· ,im=1

ai1i2···imxi1xi2 · · ·xim .

Let Rn
+ and Rn

++ be the set of nonnegative real vectors and positive real vectors with
dimension n, respectively. A symmetric tensor is a tensor whose entry is invariant under
any permutation of its indices.
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Lemma 5 (Qi [36], 2013). Let A be an m-order n-dimensional nonnegative symmetric
tensor with m > 2. Then ρ(A), the spectral radius of A, satisfies

ρ(A) = max

{
xTAx : x = (x1, x2, . . . , xn)T ∈ Rn

+,
n∑

i=1

xmi = 1

}
.

As a generalization of adjacency matrix, Liu and Bu [26] introduced the definition of
s-clique tensor.

Definition 6 (Liu–Bu [26], 2023). Let G be a graph with n vertices. The s-clique tensor
of G is an s-order n-dimensional tensor As(G) = (ai1···is), where the entry ai1···is satisfies

ai1···is =

{ 1
(s−1)! , {i1, . . . , is} ∈ Cs(G),

0, otherwise.

The s-clique spectral radius of G is defined as the spectral radius of the s-clique tensor
As(G), denoted by ρs(G). Obviously, when s = 2, A2(G) is the adjacency matrix, and
ρ2(G) is the spectral radius of G. From Definition 6 and Lemma 5, we get that

ρs(G) = max

s ∑
{i1,··· ,is}∈Cs(G)

xi1xi2 · · ·xis : x = (x1, x2, . . . , xn)T ∈ Rn
+,

n∑
i=1

xsi = 1

 . (1)

Besides, Liu and Bu [26] proved an analogous result of Turán’s Theorem for s-clique

tensor. They also got the extension of the inequality of ρ(G) > 2e(G)
n

.

Theorem 7 (Liu–Bu [26], 2023). Let G be a Kr+1-free graph with n vertices. Then
ρr(G) 6 ρr(Tn,r), and equality holds if and only if G ∼= Tn,r.

Theorem 8 (Liu–Bu [26], 2023). Let G be a graph with n vertices. Then cr(G) 6 n
r
ρr(G).

Furthermore, if the number of r-cliques containing i is equal for all i ∈ V (G), then the
equality holds.

Let Mt denote a matching of size t. Recently, we established a spectral version of the
generalized Erdős-Gallai’s Theorem, that is, determining the maximum s-clique spectral
radius among all Mt-free n-vertex graphs. Let n, t be positive integers, where t > 2 and
n > 2t. Define Ft−1(n) = ([n], E), where E = {{a, b} : {a, b} ∩ {1, . . . , t− 1} 6= ∅.} .

Theorem 9 (Yu–Peng [45], 2026). Let G be an Mt-free graph with n vertices. Then for
any s > 2 and sufficiently large n, ρs(G) 6 max{ρs(K2t−1), ρs(Ft−1(n))}.

A spectral generalized Alon-Frankl theorem is given in [43]. In this paper, we extend
Theorem 7 from s = r to 2 6 s 6 r. Our result is also a generalization of Theorem 2.

Theorem 10. Let G be a Kr+1-free graph with n vertices. Then for any 2 6 s 6 r,
ρs(G) 6 ρs(Tn,r), and equality holds if and only if G ∼= Tn,r.
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Remark 11. For any 2 6 s 6 r, the number of s-cliques containing i is equal for all
i ∈ V (Tn,r) when r|n. In this case, by Theorem 8, cs(Tn,r) = n

s
ρs(Tn,r). Therefore,

combining Theorems 8 and 10, we have that for a Kr+1-free graph G of order n, cs(G) 6
n
s
ρs(G) 6 n

s
ρs(Tn,r) = cs(Tn,r).

The main idea of the proof is to apply Zykov symmetrization method as in [23] and
[26] (we need to overcome some obstacles not appearing in [26]). The motivation to write
this note is that Theorem 10 can be viewed as a spectral version of the theorem of Zykov
[52] and Erdős [8] (Theorem 3) on generalized Turán numbers.

2 Preliminaries

In this section, we will introduce some necessary lemmas for the proof.

Definition 12 (Yang–Yang [44], 2011). Let A be an m-order n-dimensional tensor. If
there exists some nonempty proper subset I ⊆ [n] such that ai1i2···im = 0 holds for any
i1 ∈ I and {i2, . . . , im} * I, thenA is called weakly reducible. IfA is not weakly reducible,
then A is weakly irreducible.

Lemma 13 (Friedland–Gaubert–Han [12], 2013). Let A be an m-order n-dimensional
nonnegative tensor. If A is weakly irreducible, then ρ(A) is the unique eigenvalue of A
which corresponds to an eigenvector x ∈ Rn

++, and the eigenvector is unique up to a
positive scaling coefficient.

For two m-order n-dimensional real tensors A and B, if A − B is a nonnegative but
nonzero tensor, then we write B < A.

Lemma 14 (Khan-Fan [15], 2015). Let A and B be two m-order n-dimensional nonneg-
ative tensors. If A < B and B is weakly irreducible, then ρ(A) < ρ(B).

Let A and B be two m-order n-dimensional tensors. If there exists a permutation
matrix P of order n such that B = PAPT, then we say that A and B are permutational
similar. In [14], Hu et al. defined the (triangular) block tensors. Subsequently, Shao et
al. [37] generalized the concept.

Definition 15 (Hu–Huang–Ling–Qi [14], 2013). Let A be a tensor with dimension n and
order m. If there exists some integer k with 1 6 k 6 n− 1 such that ai1i2...im = 0 if i1 6 k
and at least one of {i2, . . . , im} is greater than k. Then A is called a k-lower triangular
block tensor, or simply lower triangular block tensor.

Definition 16 (Shao–Shan–Zhang [37], 2013). Let A be a tensor with dimension n and
order m. Let n1, . . . , nr be positive integers with n1 + · · · + nr = n, where r > 1. For
1 6 i 6 r, let

Ii =

{
(
i−1∑
j=1

nj) + 1, . . . ,
i∑

j=1

nj

}
⊆ [n]
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and write A[Ii] = Ai. Suppose that for each 1 6 i 6 r − 1, the subtensor A[Ii ∪ · · · ∪ Ir]
is an ni-lower triangular block tensor, then A is called an (n1, . . . , nr)-lower triangular
block tensor with the diagonal blocks A1, . . . ,Ar.

Lemma 17 (Shao–Shan–Zhang [37], 2013). Let A be an m-order n-dimensional sym-
metric tensor with m > 2. Then there exists a positive integer r > 1 such that A is
permutational similar to some (n1, n2, . . . , nr)-lower triangular block tensor, where all the
diagonal blocks A1, . . . ,Ar are weakly irreducible, and all the entries of A not in these
diagonal blocks are zero. Furthermore, we have ρ(A) = max{ρ(A1), . . . , ρ(Ar)}.

In [26], Liu and Bu also introduced the concept of s-clique walk and s-clique con-
nectedness. An s-clique walk of a graph G is a sequence of vertices,where each pair of
consecutive vertices are contained in some s-clique of G. G is s-clique connected if for any
pair of vertices u, v ∈ V (G), there exists an s-clique walk connecting them. The following
lemma indicates that there is a relation between s-clique connectedness of G and weakly
irreducibility of As(G).

Lemma 18 (Liu–Bu [26], 2023). For an n-vertex graph G and its s-clique tensor As(G),
As(G) is weakly irreducible if and only if G is s-clique connected.

3 Proof of Theorem 10

Let G∗ be an n-vertex Kr+1-free graph attaining the maximum s-clique spectral radius,
our goal is to show that G∗ = Tn,r. We can assume that each edge of G∗ is contained
in at least one s-clique. Indeed, if there are some edges in G∗ that are not contained
in any s-clique, then we can obtain a new Kr+1-free graph G′ from G∗ by deleting all of
them. Since an edge not contained in any s-clique contributes 0 to the value of As(G

∗), by
Definition 6, As(G

∗) = As(G
′). Moreover, ρs(G

∗) = ρs(G
′). Suppose that we have shown

the conclusion of Theorem 10 under the assumption that edges of G∗ not contained in an
s-clique has been deleted, i.e., suppose that we have shown that G′ = Tn,r. Since G∗ and
G′ have the same vertex set, E(G′) ⊆ E(G∗) and G′ = Tn,r is a maximal Kr+1-free graph,
we have G∗ must be Tn,r. From now on, we assume that G∗ is an n-vertex Kr+1-free graph
attaining the maximum s-clique spectral radius and each edge of G∗ is contained in at
least one s-clique.

For any u ∈ V (G∗), the set of all vertices adjacent to u is denoted by NG∗(u). Some-
times, we will eliminate the subscript and write N(u) if it does not cause confusion. If
u and v are adjacent in G∗, we will abbreviate the edge {u, v} ∈ E(G∗) as uv. For an
edge subset E ⊆ E(G∗), G∗ − E denotes the graph obtained by deleting all edges of E.
Similarly, G∗ + E denotes the graph obtained by adding all edges of E.

Lemma 19. G∗ is s-clique connected, and As(G
∗) is weakly irreducible.

Proof. We will prove it by contradiction. If G∗ is not s-clique connected, then there
must exist an s-clique connected component G1 with ρs(G1) = ρs(G

∗) by Lemmas 17
and 18. Since G∗ is not s-clique connected, there are two vertices u and v which cannot
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be connected by an s-clique walk. Obviously, u ∈ V (G1) and v ∈ V (G1) cannot hold
simultaneously as G1 is s-clique connected. Without loss of generality, assume that v /∈
V (G1). Since v /∈ V (G1), |NG∗(v)∩V (Ks)| 6 s−2 holds for any s-clique Ks of G1. Let K∗s
be an s-clique which contains the maximum number of vertices of NG1(v) and V (K∗s ) =
{w1, w2, . . . , ws}. Without loss of generality, let NG1(v) ∩ V (K∗s ) = {w1, w2, . . . , wt}.
Clearly, t 6 s− 2. Let G′ = G∗[V (G1) ∪ {v}] + {vwt+1, . . . , vws−1}. We claim that G′ is
Kr+1-free. Otherwise, there is a subgraph H isomorphic to Kr+1 in G′. This Kr+1 contains
v and possibly contains some or all vertices in {wt+1, wt+2, . . . , ws−1}. Since r + 1 > s,
remove v from this Kr+1, G1 has an s-clique containing at least s−(s−1−t) = t+1 vertices
of NG1(v), a contradiction to the choice of K∗s . Let G

′′
be the graph obtained from G1 by

adding a new isolated vertex. Obviously ρs(G
′′) = ρs(G1) and As(G

′′
) < As(G

′). Hence,
by Lemma 14, ρs(G

′) > ρs(G
′′
) = ρs(G1) = ρs(G

∗), a contradiction to the choice of G∗.
Therefore, G∗ is s-clique connected. Then by Lemma 18, As(G

∗) is weakly irreducible.

By Lemmas 19 and 13, we know that up to a positive scaling coefficient, there exists a
unique positive eigenvector corresponding to the s-clique spectral radius ρs(G

∗), denoted
by x. Let x = (x1, x2, . . . , xn)T. For any vertex i ∈ [n], we have

ρs(G
∗)xs−1i =

∑
{i,i2,...,is}∈Cs(G∗)

xi2 · · ·xis . (2)

For simplicity, for any i ∈ [n], define

W s
G∗(i,x) =

∑
{i,i2,...,is}∈Cs(G∗)

xi2 · · ·xis . (3)

Lemma 20. G∗ is a complete r-partite graph.

Proof. First of all, we can assume that n > r + 1. Otherwise, it is a trivial case and
Lemma 20 holds obviously.

Claim. For any two non-adjacent vertices u and v, N(u) = N(v).
Suppose on the contrary, there are two non-adjacent vertices u and v with N(u) 6=

N(v). Without loss of generality, let w ∈ N(u) \N(v).
Case 1. W s

G∗(v,x) < W s
G∗(u,x) or W s

G∗(v,x) < W s
G∗(w,x). If W s

G∗(v,x) < W s
G∗(u,x),

let G′ = G∗ − {vi|i ∈ NG∗(v)}+ {vi|i ∈ NG∗(u)}. Obviously, G′ is Kr+1-free, and

ρs(G
′) > xTAs(G

′)x

= xTAs(G
∗)x− sxvW s

G∗(v,x) + sxvW
s
G∗(u,x)

> xTAs(G
∗)x = ρs(G

∗).

If W s
G∗(v,x) < W s

G∗(w,x), let G′ = G∗−{vi|i ∈ NG∗(v)}+{vi|i ∈ NG∗(w)}. Obviously,
G′ is Kr+1-free, and

ρs(G
′) > xTAs(G

′)x
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= xTAs(G
∗)x− sxvW s

G∗(v,x) + sxvW
s
G∗(w,x)

> xTAs(G
∗)x = ρs(G

∗).

Case 2. W s
G∗(v,x) > W s

G∗(u,x) and W s
G∗(v,x) > W s

G∗(w,x).
Let G

′′
= G∗−{ui|i ∈ NG∗(u)}−{wi|i ∈ NG∗(w)}+{ui|i ∈ NG∗(v)}+{wi|i ∈ NG∗(v)}.

Obviously, G
′′

is Kr+1-free, and

ρs(G
′′
) > xTAs(G

′′
)x

= xTAs(G
∗)x− sxuW s

G∗(u,x) + sxuW
s
G∗(v,x)

− sxwW s
G∗(w,x) + sxwW

s
G∗(v,x) +

∑
{u,w,i3,...,is}∈Cs(G∗)

xuxwxi3 · · ·xis

> xTAs(G
∗)x = ρs(G

∗).

The last inequality derives from the fact that x is positive and each edge of G is contained
in at least one s-clique.

So, in both Cases 1 and 2, we can always get a Kr+1-free graph with larger s-clique
spectral radius, a contradiction. The claim holds. Hence there is a vertex-disjoint partition
of V (G∗) such that any two non-adjacent vertices are in the same set. Therefore, G is
a complete multipartite graph. Let G∗ be a complete t-partite graph with partition sets
V1, V2, . . . , Vt and t 6 r. We claim that t = r. If t < r, then we can assume that t > s.
Otherwise, there is no s-clique in G∗ and ρs(G

∗) = 0. Clearly this is a contradiction. Since
t < r, we know that at least one partition set contains at least two vertices. Without loss
of generality, let V1 be the partition set with at least two vertices in it and u, v ∈ V1. We
can construct a complete (t+ 1)-partite graph G′ with partition u, V1 \ {u}, V2, . . . , Vt. It
is clear that As(G

∗) < As(G
′), so ρs(G

∗) < ρs(G
′) by Lemma 14. And since t < r, G′

is also Kr+1-free, This is a contradiction. So it can be concluded that G∗ is a complete
r-partite graph.

Lemma 21. G∗ ∼= Tn,r.

Proof. From Lemma 20, G∗ is a complete r-partite graph. Let V (G∗) = V1 ∪ · · · ∪ Vr
be the vertex partition of G∗ and the size of each part be n1, n2, . . . , nr, respectively. If
G∗ � Tn,r, then there exists a pair of parts with the difference in sizes at least 2. Without
loss of generality, let n1 − n2 > 2, u ∈ V1 and v ∈ V2. Since all vertices in the same part
have the same neighborhood, by the property of an eigenvector, all vertices in the same
part have the component with the same value in x. Consequently,

ρs(G
∗)xs−1u = n2xvA+B (4)

ρs(G
∗)xs−1v = n1xuA+B, (5)

where

A =
∑

{u,v,i3,...,is}∈Cs(G∗)

xi3 · · ·xis ,
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and

B =
∑

{u, i2, . . . , is} ∈ Cs(G
∗),

{i2, . . . , is} ∩ V2 = ∅

xi2 · · ·xis =
∑

{v, i2, . . . , is} ∈ Cs(G
∗),

{i2, . . . , is} ∩ V1 = ∅

xi2 · · ·xis .

Subtracting (5) from (4), we get

ρs(G
∗)xs−1u + n1xuA = ρs(G

∗)xs−1v + n2xvA. (6)

Thus, we get xu < xv as n1 − n2 > 2. And from (4) and xu < xv, we obtain

ρs(G
∗)xs−2u = n2A

xv
xu

+
B

xu
> n2A. (7)

Let G′ be the graph obtained from G∗ by deleting all edges incident with u, and adding
edges connecting u with all vertices in NG∗(v) \ {u}. Since n1−n2 > 2, we have G′ � G∗.
Obviously, G′ is Kr+1-free. Furthermore,

ρs(G
′)− ρs(G∗) > xTAs(G

′)x− xTAs(G
∗)x

= (n1 − 1)x2uA− n2xuxvA

= ((n1 − 1)xu − n2xv)xuA.

However, by (6),

((n1 − 1)xu − n2xv)(ρs(G
∗)xs−1v + n2xvA)

= (n1 − 1)xu(ρs(G
∗)xs−1v + n2xvA)− n2xv(ρs(G

∗)xs−1u + n1xuA)

= xuxv((n1 − 1)(ρs(G
∗)xs−2v + n2A)− n2(ρs(G

∗)xs−2u + n1A))

= xuxv(ρs(G
∗)xs−2v (n1 − 1)− n2(ρs(G

∗)xs−2u + A))

> xuxv(ρs(G
∗)xs−2v (n2 + 1)− n2(ρs(G

∗)xs−2u + A))

= xuxv(n2ρs(G
∗)(xs−2v − xs−2u ) + ρs(G

∗)xs−2v − n2A) > 0,

where the first inequality comes from n1−n2 > 2 and the second inequality is derived from
the fact xv > xu and (7). So (n1−1)xu−n2xv > 0, which implies that ρs(G

′)−ρs(G∗) > 0.
This leads to a contradiction. So G∗ ∼= Tn,r and the proof is complete.

Remarks. The concept ρs(G) can be viewed as the spectral counterpart of the number
of copies of Ks in G. Thus, Theorem 10 can be viewed as the spectral counterpart of the
theorem of Erdős and Zykov on ex(n,Ks, Kr+1) (the maximum number of copies of Ks

in an n-vertex Kr+1-free graphs), where s 6 r. It would be interesting to obtain spectral
counterparts of generalized Turán numbers ex(n,H, F ) for general structures F and H
rather than complete graph. In the case r|n, the conclusion in this paper can imply the
theorem of Zykov and Erdős, we do not see any reason why this is not true for the case
that r does not divide n. With more technical estimation, it is possible to obtain the
implication, but we will not go through tedious and technical calculations.
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