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Abstract

Let S = (d1, d2, d3, . . .) be an infinite sequence of rolls of independent fair dice.
For an integer k > 1, let Lk = Lk(S) be the smallest i so that there are k integers
j 6 i for which

∑j
t=1 dt is a prime. Therefore, Lk is the random variable whose

value is the number of dice rolls required until the accumulated sum equals a prime
k times. It is known that the expected value of L1 is close to 2.43. Here we show
that for large k, the expected value of Lk is (1 + o(1))k loge k, where the o(1)-term
tends to zero as k tends to infinity. We also include some computational results
about the distribution of Lk for k 6 100.

Mathematics Subject Classifications: 60C05, 11A41, 60G40

1 Results

Let S = (d1, d2, d3, . . .) be an infinite sequence of rolls of independent fair dice. Thus the
di are independent, identically distributed random variables, each uniformly distributed
on the integers {1, 2, . . . , 6}. For each i > 1 put si =

∑i
j=1 dj. The sequence S hits a

positive integer x if there exists an i so that si = x. In that case it hits x in step i.
For any positive integer k, let Lk = Lk(S) be the random variable whose value is the

smallest i so that the sequence S hits k primes during the first i steps (∞ if there is no
such i, but it is easy to see that with probability 1 there is such i). The random variable
L1 is introduced and studied in [1], see also [4], [3] for several variants and generalizations.

Here we consider the random variable Lk for larger values of k, focusing on the estimate
of its expectation.

1.1 Computational results

This article is accompanied by a Maple package PRIMESk, available from https://sites.

math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/primesk.html, where there are
also numerous output files.
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We used symbolic computation (via Maple) to study the process. The model was
encoded as a probability generating function, represented by an infinite series. This
series was approximated by truncating it at a given finite maximal number of rolls, R.
Our computations produced exact values conditioned on the process of finishing within
R rolls. The exact probability of finishing, along with the corresponding value of R, is
provided at https://sites.math.rutgers.edu/~zeilberg/tokhniot/oPRIMESk1.txt

and exceeds 0.99999997739315056535.
Using our Maple package, we computed the expected values of Lk for k 6 30, as

shown in Table 1.

k E(Lk) k E(Lk) k E(Lk)
1 2.428497914 11 48.14320555 21 106.3962997
2 5.712240468 12 53.61351459 22 112.5650207
3 9.498878119 13 59.16406655 23 118.7684092
4 13.65059271 14 64.79337350 24 125.0081994
5 18.05408931 15 70.50517127 25 131.2881683
6 22.64615402 16 76.30284161 26 137.6114097
7 27.42115902 17 82.18566213 27 143.9783110
8 32.37752852 18 88.14757626 28 150.3859881
9 37.50029903 19 94.17811256 29 156.8292462
10 42.76471868 20 100.2648068 30 163.3025173

Table 1: Expected values of Lk for k=1,. . . ,30.

The table suggests that the asymptotic value of this expectation is (1+o(1))k log k, where
the o(1)-term tends to zero as k tends to infinity, and the logarithm here and throughout
the manuscript is in the natural basis. This is confirmed in the results stated in the next
subsection and proved in Section 2.
The values of the standard deviation of Lk for k 6 30 are given in Table 2.

k σ(Lk) k σ(Lk) k σ(Lk)
1 2.4985553 11 14.9184147 21 23.3873070
2 4.2393979 12 15.8185435 22 24.0816339
3 5.7679076 13 16.7109840 23 24.7769981
4 7.1185391 14 17.6115574 24 25.4821834
5 8.3598784 15 18.5197678 25 26.1952166
6 9.5715571 16 19.4227324 26 26.9055430
7 10.7618046 17 20.3022748 27 27.5997195
8 11.9062438 18 21.1419697 28 28.2678482
9 12.9824596 19 21.9329240 29 28.9080719
10 13.9823359 20 22.6771846 30 29.5276021

Table 2: Standard deviation of Lk for k=1,. . . ,30.
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We recall the definitions of skewness and kurtosis of the distribution of a random variable
X. These are defined under the assumption that X has at least three finite moments for
skewness and at least four for kurtosis. The skewness is given by

Skw =
E[(X − E(X))3]

σ3
,

where σ2 = Var(X). It measures the asymmetry of the distribution of X.
The kurtosis is given by

Kur =
E[(X − E(X))4]

σ4
.

It quantifies the heaviness of the tails of the distribution. For the normal distribution,
Kur = 3.

The values of the skewness and kurtosis of Lk for k 6 30 are presented in Tables 3
and 4, respectively.

k Skw(Lk) k Skw(Lk) k Skw(Lk)
1 3.3904247 11 0.7569428 21 0.5205173
2 2.1496468 12 0.7362263 22 0.5148284
3 1.6420771 13 0.7250716 23 0.5134409
4 1.3892778 14 0.7131387 24 0.5108048
5 1.2554076 15 0.6939289 25 0.5029053
6 1.1503502 16 0.6657344 26 0.4888319
7 1.0474628 17 0.6307374 27 0.4707841
8 0.9487703 18 0.5936550 28 0.4528198
9 0.8625227 19 0.5601812 29 0.4391145
10 0.7974496 20 0.5351098 30 0.4324204

Table 3: Skewness of Lk for k=1,. . . ,30.

k Kur(Lk) k Kur(Lk) k Kur(Lk)
1 20.6214485 11 3.9630489 21 3.4553514
2 10.0475452 12 3.9427896 22 3.4675149
3 7.2098904 13 3.9031803 23 3.4566369
4 6.1044828 14 3.8308431 24 3.4199435
5 5.5085380 15 3.7314241 25 3.3679599
6 5.0273441 16 3.6223695 26 3.3183350
7 4.6151697 17 3.5254483 27 3.2873677
8 4.2993763 18 3.4590869 28 3.2835481
9 4.0978890 19 3.4312823 29 3.3051186
10 3.9989275 20 3.4359883 30 3.3414988

Table 4: Kurtosis of Lk for k=1,. . . ,30.
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We end this section with some figures (Figure 1) and a table (Table 5) of the scaled
probability density functions for the number of rolls of a fair die until visiting the primes
k times for various k values. (Recall that the scaled version of a random variable X with
expectation µ and variance σ2 is (X − µ)/σ).

k E(Lk) σ(Lk) Skw(Lk) Kur(Lk)
20 100.2648068 22.6771846 0.5351098 3.4359883
40 229.8903783 36.1271902 0.3777949 3.1278526
60 370.5241578 46.0245135 0.1406763 2.6164507
80 520.2899340 57.8152360 0.2910580 2.9707515
100 676.3153763 65.2765933 0.2230411 3.0704308

Table 5: Expectation, standard deviation, skewness and kurtosis of Lk.

k = 20 k = 40

k = 60 k = 80 k = 100

Figure 1: Scaled probability density function for the number of rolls of a fair die until
visiting the primes k times.

Based on the available data above, the argument described in the next section, and the
known results about the function π(n) which is the number of primes that do not exceed n,
a possible guess for a more precise expression for E(Lk) may be k(log k+log log k+c1)+c2.
This is also roughly consistent with the computational evidence (see also Section 3 for
further discussion).
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1.2 Asymptotic results

In the next section we prove the following two results.

Theorem 1. For any fixed positive reals ε, δ there exists k0 = k0(ε, δ) so that for all
k > k0 the probability that |Lk − k log k| > εk log k is smaller than δ.

Theorem 2. For any fixed ε > 0 and any k > k0(ε), the expected value of the random
variable Lk satisfies |E(Lk)− k log k| < εk log k.

2 Proofs

In all proofs we omit all floor and ceiling signs whenever these are not crucial, in order
to simplify the presentation.

Lemma 3. There are fixed positive C and µ, 0 < µ < 1 so that the following holds. Let
S = (d1, d2, . . .) be a random sequence of independent rolls of fair dice. For any positive
integer x, let p(x) denote the probability that S hits x. Then |p(x) − 2/7| 6 C(1 − µ)x,
that is, as x grows, p(x) converges to the constant 2/7 with an exponential rate.

Proof. Define p(−5) = p(−4) = p(−3) = p(−2) = p(−1) = 0, p(0) = 1 and note that for
every i > 1,

p(i) =
1

6

6∑
j=1

p(i− j).

Indeed, S hits i if and only if the last number it hits before i is i−j for some j ∈ {1, . . . , 6},
and the die rolled after that gives the value j. The probability of this event for each specific
value of j is p(i − j) · (1/6), providing the equation above. (Note that the definition of
the initial values is consistent with this reasoning, as before any dice rolls the initial sum
is 0). Thus, the sequence (p(i)) satisfies the homogeneous linear recurrence relation given
above. The characteristic polynomial of that is

P (z) = z6 − 1

6
(z5 + z4 + z3 + z2 + z + 1).

One of the roots of this polynomial is z = 1, and its multiplicity is 1 as the derivative of
P (z) does not vanish at 1. It is also easy to check that the absolute value of each of the
other roots λj, 2 6 j 6 6 of P (z) is at most 1 − µ for some absolute positive constant
µ, 0 < µ < 1. Therefore, there are constants cj so that

p(i) = c1 · 1i +
6∑
j=2

cjλ
i
j,

implying that
|p(i)− c1| 6 C(1− µ)i

for some absolute constant C. It remains to compute the value of c1. By the last estimate,
for any positive n, ∣∣∣ n∑

i=1

p(i)− c1n
∣∣∣ 6 C/(1− µ).

the electronic journal of combinatorics 32(4) (2025), #P4.16 5



Note that the sum
∑n

i=1 p(i) is the expected number of integers in [n] = {1, 2, . . . , n} hit
by the sequence S.

For each fixed f , d1 + d2 + · · ·+ df is a sum of f independent identically distributed
random variables, each uniform on {1, 2, . . . , 6}. By the standard estimates for the distri-
bution of sums of independent bounded random variables, see., e.g., [2], Theorem A.1.16,
this sum is very close to 7f/2 with high probability. Therefore for large n the expectation
considered above is (1 + o(1))(2/7)n. Dividing by n and taking the limit as n tends to
infinity shows that c1 = 2/7, completing the proof.

Note that the lemma above implies that there exists an absolute positive constant c
so that for any (large) integer g the following holds:

For any x > c log g − 5,

p(x) =
2

7
eε1(x), 1− p(x) =

5

7
eε2(x) where |ε1(x)| < 1/g, |ε2(x)| 6 1/g. (1)

It will be convenient to apply this estimate later.

Let Ym(S) denote the number of primes in [m] = {1, 2, . . . ,m} hit by S. In the next
lemma we use the letters H and N to represent “hit” and “not-hit”, respectively.

Lemma 4. For any sequence of integers 1 6 x1 < x2 < · · · < xg that satisfy x1 > c log g
and xi+1 − xi > c log g for all 1 6 i 6 g − 1, where c is the constant from (1), and for
every ν ∈ {H,N}g the following holds. Let h be the number of H coordinates of ν. Then,

P (S hits xi iff νi = H) =

(
2

7

)h(
5

7

)g−h
eε(ν),

where |ε(ν)| 6 1.

Proof. The probability of the event (S hits xi iff νi = H) is a product of g terms. The
first term is the probability that S hits x1 (if ν1 = H) or the probability that S does not
hit x1 (if ν1 = N). Note that since x1 > c log g this probability is 2

7
eε1 in the first case

and 5
7
eε2 in the second case, where both |ε1| and |ε2| are at most 1/g.

The second term in the product is the conditional probability that S hits x2 (if
ν2 = H), or that it does not hit x2 (if ν2 = N), given the first value it hit in the interval
x1, x1 +1, . . . , x1 +5. If ν1 = H, this first value is x1 itself, and then the probability to hit
x2 is exactly p(x2− x1). If ν1 = N , then this first value is one of the 5 possibilities x1 + j
for some 1 6 j 6 5. Subject to hitting x1 + j, the conditional probability to hit x2 is
exactly p(x2−x1− j), which by the assumption on the difference x2−x1, is very close to
2
7
. By the law of total probability it follows that in any case the conditional probability

to hit x2 is 2
7
eε

′
and the conditional probability not to hit it is 5

7
eε” where the absolute

value of ε′ and of ε” is at most 1/g. Continuing in this manner we get a product of g
terms, h of which are very close to 2/7 and g−h are very close to 5/7, where the product
of all error terms eε

′′′
is of the form eε for some |ε| 6 g · (1/g) = 1. This completes the

proof of the lemma.
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Proposition 5. For any sequence x1 < x2 < · · · < xn of positive integers and any
a >
√
n log(n)

P

(∣∣∣#xi hit − 2

7
n
∣∣∣ > a

)
6 e−c

′ a2

n log(n) ,

for some absolute positive constant c′, where #xi denotes the number of times S hits the
values x1 < x2 < · · · < xn.

Proof. Split x1, . . . , xn into c log(n) subsequences, where subsequence number j consists
of all xi with index i ≡ j mod (c log n) where c is the constant from (1). Note that the
difference between any two distinct elements in the same subsequences is at least c log n
and that each of these subsequences can contain at most one element smaller than c log n.
Each one of the subsequences contains r := n

c log(n)
elements xi. In each subsequence,

the probability to deviate in absolute value from 2
7
r hits by more than a

c log(n)
can be

bounded by the Chernoffs bound for binomial distributions, up to a factor of e. Indeed,
Lemma 4 shows that the contribution of each term does not exceed the contribution of
the corresponding term for the binomial random variable with parameters r and 2/7 by
more than a factor of e. Note that although each subsequence may contain one element
smaller than c log n, the contribution of this single element to the deviation is negligible
and can be ignored. Plugging in the standard bound, see, e.g. [2], Theorem A.1.16, we
get that the probability of the event considered is at most

2e · e−c
′( a
c log(n))

2
/( n

c log(n)) 6 e−c
′′ a2

n log(n)

for appropriate absolute constants c′, c′′. Here we used the fact that since a is large the
constant 2e can be swallowed by the choice of c′′. Therefore, the probability to deviate
in at least one of the subsequences by more than a/(c log n) is at most

c log(n)e−c
′′ a2

n log(n) 6 e−c
′′′ a2

n log(n) ,

where in the last inequality we used again the fact that a >
√
n log(n).

Recall that Lk is the minimum i so that S hits k primes in the first i steps.

Corollary 6. (1) If 2
7
π(m1) 6 k − a and a >

√
π(m1) log(π(m1)), then

P (Ym1 > k) 6 e
−c′′′ a2

π(m1) log(π(m1)) .

(2) If 2
7
π(m2) > k + a and a >

√
π(m2) log(π(m2)) then

P (Ym2 6 k) 6 e
−c′′′ a2

π(m2) log(π(m2)) .
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Proof. (1) The event {Ym1 > k} means that the number of primes that are at most m1

and are hit by the infinite sequence of the initial sums of dice rolls is a least k. Therefore,
if 2

7
π(m1) 6 k − a, we have

P (Ym1 > k) = P

(
Ym1 −

2

7
π(m1) > k − 2

7
π(m1)

)
6 P

(∣∣∣Ym1 −
2

7
π(m1)

∣∣∣ > a

)
6 e

−c′′′ a2

π(m1) log(π(m1)) ,

where the last inequality follows from Proposition 5.

(2) Similarly, if 2
7
π(m2) > k + a, we have

P (Ym2 6 k) = P

(
Ym2 −

2

7
π(m2) 6 k − 2

7
π(m2)

)
6 P

(
Ym2 −

2

7
π(m2) 6 −a

)
6 P

(∣∣∣Ym2 −
2

7
π(m2)

∣∣∣ > a

)
6 e

−c′′′ a2

π(m2) log(π(m2)) ,

where the last inequality follows from Proposition 5.

Corollary 7. (1) For a given (large) k, let m1 be the smallest integer so that

π(m1) =
⌊7

2
(k − 2

√
k log k

⌋
.

Then for any i satisfying 7
2
i 6 m1 − a, where a > 2

√
k log(k),

P (Lk 6 i) 6 P (d1 + · · ·+ di > m1) + P (Ym1 > k) 6 e−c
′′′′ a2

i + e
−c′′′ k log2 k

π(m1) log(π(m1)) 6 k−α

for some absolute constant α > 0.

(2) For a given (large) k and for a >
√
k log2 k let m2 be the smallest integer so that

π(m2) =
⌈7

2
(k + a)

⌉
.

Then for any i satisfying 7
2
i > m2 + b, where b > a

P (Lk > i) 6 P (d1 + · · ·+ di 6 m2) + P (Ym2 6 k) 6 e−c
′′′′ b2

i + e
−c′′′ a2

π(m2) log(π(m2)) .

Proof. (1) If both events {d1 + · · ·+ di > m1} and {Ym1 > k} do not occur, then the
event {Lk 6 i} does not occur. Therefore, for 7

2
i 6 m1 − a we have

P (Lk 6 i) 6 P (d1 + · · ·+ di > m1) + P (Ym1 > k)

6 P

(
d1 + · · ·+ di −

7

2
i > a

)
+ P (Ym1 > k)

6 e−c
′′′′ a2

i + e
−c′′′ k log2 k

π(m1) log(π(m1)) ,
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where the last inequality follows from Chernoff’s bound and the first part of Corollary
6. Note that here 2

√
k log k >

√
π(m1) log(π(m1)) and therefore the corollary can be

applied.

(2) Similarly, if both events {d1 + · · ·+ di 6 m2} and {Ym2 6 k} do not occur, then
the event {Lk > i} does not occur. Therefore, for 7

2
i > m2 + b, we have

P (Lk > i) 6 P

(
d1 + · · ·+ di −

7

2
i 6 −b

)
+ P (Ym2 6 k) 6 e−c

′′′′ b2
i + e

−c′′′ a2

π(m2) log(π(m2)) ,

where the last inequality follows again from Chernoff’s bound and the second part of
Corollary 6. Indeed the corollary can be applied since it is not difficult to check that for
large k and any a >

√
k log2 k,

a >
√
π(m2) log(π(m2)) =

√⌈7

2
(k + a)

⌉
log

(⌈7

2
(k + a)

⌉)
.

Proof of Theorem 1. Note that by the Prime Number Theorem in the first part of Corol-
lary 7,

m1 =

(
7

2
+ o(1)

)
k log k.

Taking a = 2
√
k log k and letting i1 be the largest integer so that 7

2
i 6 m1 − a it follows

from this first part that i1 = (1 + o(1))k log k and that the probability that Lk is smaller
than i1 is smaller than some negative power of k, that is, tends to 0 as k tends to infinity.

Similarly, substituting in the second part of the corollary a = b =
√
k log2 k and

letting i2 be the smallest integer so that 7
2
i > m2 + a it is easy to see that i2 is also

(1 + o(1))k log k (since

m2 =

(
7

2
+ o(1)

)
k log k,

by the Prime Number Theorem). By the second part of the corollary the probability that
Lk is larger than i2 is smaller than any fixed negative power of k, and hence tends to 0
as k tends to infinity. Therefore Lk is (1 + o(1))k log k with probability tending to 1 as k
tends to infinity, completing the proof of the theorem.

Proof of Theorem 2. The expectation of Lk is the sum over all positive integers i, of the
probabilities P (Lk > i). Taking a =

√
k log2 k and defining m1 and m2 as before we

break this sum into three parts,

S1 =
∑

i: 7
2
i6m1−a

P (Lk > i) ,

S2 =
∑

i: 7
2
i>m2+a

P (Lk > i) ,

and
S3 =

∑
i:m1−a< 7

2
i<m2+a

P (Lk > i) .
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By the first part of Corollary 7 each summand in the first sum S1 is 1−o(1) and therefore
S1 = (1 + o(1))k log k, as the number of summands is (1 + o(1))k log k, since m1 =(

7
2

+ o(1)
)
k log k. By the second part of the corollary (applied to an appropriately chosen

sequence of a,m2 and b) it is not difficult to check that the infinite sum S2 is only o(1).
Indeed, it is possible, for example, to choose a0 =

√
k log2 k and aj = jk for all j > 1.

The corresponding value m2,j of m2 for each aj is defined as the smallest integer satisfying

π(m2,j) =
⌈

7
2
(k + aj)

⌉
. Taking bj = aj we can apply the estimate in the second part of

the corollary to all values of i satisfying m2,j + aj 6 7
2
i < m2,j+1 + aj+1. The sum of the

probabilities P (Lk > i) for these values of i is thus at most ke−Ω(log3 k) for j = 0, and at
most ke−Ω(jk/ log(jk)) for each j > 1. The sum of all these quantities is smaller than any
fixed negative power of k, and is therefore o(1), as needed.

The sum S3 is a sum of at most m2 − m1 + 2a terms, and each of them is at most
1, implying that 0 6 S3 6 m2 − m1 + 2a = o(k log k), since both m1 and m2 are(

7
2

+ o(1)
)
k log k, and 2a = O

(√
k log2 k

)
. This completes the proof of the theorem.

3 Concluding remarks and extensions

• Extensions for biased r-sided dice and arbitrary subsets of the integers.
The proofs in the previous section use very little of the specific properties of the
primes and the specific distribution of each di. It is easy to extend the result to
any r-sided dice with an arbitrary discrete distribution on [r] in which the values
obtained with positive probabilities do not have any nontrivial common divisor.
The constants 3.5 and 2/7 will then have to be replaced by the expectation of
the random variable di and by its reciprocal, respectively. It is interesting to note
that while for different dice the expectation of Lk for small values of k can be very
different from the corresponding expectation for a standard fair die, once the die is
fixed, for large k the expectation is always (1 + o(1)) k log k, where the o(1)-term
tends to 0 as k tends to infinity.

It is also possible to replace the primes by an arbitrary subset T of the positive
integers, and repeat the arguments to analyze the corresponding random variable
for this case, replacing the Prime Number Theorem by the counting function of T .
We omit the details.

• Heuristic suggestion for a more precise expression for E(Lk). If we sub-
stitute for π(n) its approximation n/ log n and repeat the analysis described here
with this approximation, the more precise value for the expectation E(Lk) that
follows is k (log k + log log k +O(1)). Since at the beginning there are some fluc-
tuations, we tried to add another constant and consider an expression of the form
k (log k + log log k + c1) + c2. Choosing c1 and c2 that provide the best fit for our
(limited and therefore maybe overfitted) computational evidence we obtained the
heuristic expression f(k) = k(log k+ log log k+ 0.543) + 8.953. For the record, here
are the ratios of E[Lk]/f(k) for k = 20, 40, 60, 80, 100, respectively:

0.9861651120, 0.9976101939, 0.9966486957, 0.998338113, 0.9997448512.
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One can also replace n/ log n by the more precise approximation Li(n) for π(n), but
the difference between these two estimates does not change the expression obtained
for E(Lk) in a significant way.
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