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Abstract

Let S = (dy,d2,ds,...) be an infinite sequence of rolls of independent fair dice.
For an integer k > 1, let Ly = Li(S) be the smallest i so that there are k integers
7 < i for which Z{Zl dy is a prime. Therefore, L; is the random variable whose
value is the number of dice rolls required until the accumulated sum equals a prime
k times. It is known that the expected value of L is close to 2.43. Here we show
that for large k, the expected value of Ly is (1 + o(1))klog, k, where the o(1)-term
tends to zero as k tends to infinity. We also include some computational results
about the distribution of Ly for k& < 100.

Mathematics Subject Classifications: 60C05, 11A41, 60G40

1 Results

Let S = (dy,ds, ds, . ..) be an infinite sequence of rolls of independent fair dice. Thus the
d; are independent, identically distributed random variables, each uniformly distributed
on the integers {1,2,...,6}. For each i > 1 put s; = 23‘21 d;. The sequence S hits a
positive integer x if there exists an ¢ so that s; = x. In that case it hits x in step 1.

For any positive integer k, let Ly = Li(S) be the random variable whose value is the
smallest 7 so that the sequence S hits k primes during the first ¢ steps (oo if there is no
such 4, but it is easy to see that with probability 1 there is such 7). The random variable
L, is introduced and studied in [1], see also [4], [3] for several variants and generalizations.

Here we consider the random variable L, for larger values of k, focusing on the estimate
of its expectation.

1.1 Computational results

This article is accompanied by a Maple package PRIMESk, available from https://sites.
math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/primesk.html, where there are
also numerous output files.
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We used symbolic computation (via Maple) to study the process. The model was
encoded as a probability generating function, represented by an infinite series. This
series was approximated by truncating it at a given finite maximal number of rolls, R.
Our computations produced exact values conditioned on the process of finishing within
R rolls. The exact probability of finishing, along with the corresponding value of R, is
provided at https://sites.math.rutgers.edu/~zeilberg/tokhniot/oPRIMESk].txt
and exceeds 0.99999997739315056535.

Using our Maple package, we computed the expected values of L, for £ < 30, as
shown in Table 1.

E(Ly) k E(Ly) k E(Ly)
2.428497914 | 11 | 48.14320555 | 21 | 106.3962997
5.712240468 | 12 | 53.61351459 | 22 | 112.5650207
9.498878119 | 13 | 59.16406655 | 23 | 118.7684092
13.65059271 | 14 | 64.79337350 | 24 | 125.0081994
18.05408931 | 15 | 70.50517127 | 25 | 131.2881683
22.64615402 | 16 | 76.30284161 | 26 | 137.6114097
27.42115902 | 17 | 82.18566213 | 27 | 143.9783110
32.37752852 | 18 | 88.14757626 | 28 | 150.3859881
37.50029903 | 19 | 94.17811256 | 29 | 156.8292462
42.76471868 | 20 | 100.2648068 | 30 | 163.3025173

O 0| || T b= W DN | T

—_
)

Table 1: Expected values of L, for k=1,...,30.

The table suggests that the asymptotic value of this expectation is (14+0(1))k log k, where
the o(1)-term tends to zero as k tends to infinity, and the logarithm here and throughout
the manuscript is in the natural basis. This is confirmed in the results stated in the next
subsection and proved in Section 2.

The values of the standard deviation of L for k < 30 are given in Table 2.

k O'(Lk) k O'(Lk) k O'(Lk>

1 | 2.4985553 | 11 | 14.9184147 | 21 | 23.3873070
2 | 4.2393979 | 12 | 15.8185435 | 22 | 24.0816339
3 | 5.7679076 | 13 | 16.7109840 | 23 | 24.7769981
4 | 7.1185391 | 14 | 17.6115574 | 24 | 25.4821834
5 | 8.3598784 | 15 | 18.5197678 | 25 | 26.1952166
6 | 9.5715571 | 16 | 19.4227324 | 26 | 26.9055430
7 | 10.7618046 | 17 | 20.3022748 | 27 | 27.5997195
8 | 11.9062438 | 18 | 21.1419697 | 28 | 28.2678482
9 |12.9824596 | 19 | 21.9329240 | 29 | 28.9080719
10 | 13.9823359 | 20 | 22.6771846 | 30 | 29.5276021

Table 2: Standard deviation of Lj for k=1,...,30.
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We recall the definitions of skewness and kurtosis of the distribution of a random variable
X. These are defined under the assumption that X has at least three finite moments for
skewness and at least four for kurtosis. The skewness is given by

E[(X — E(X))’]

o3

Skw =

Y

where 0% = Var(X). It measures the asymmetry of the distribution of X.

The kurtosis is given by
E[(X — E(X))"]

ot '

It quantifies the heaviness of the tails of the distribution. For the normal distribution,
Kur = 3.

The values of the skewness and kurtosis of L for £ < 30 are presented in Tables 3
and 4, respectively.

Kur =

Skw(Ly) | k | Skw(Ly) | k | Skw(Ly)
3.3904247 | 11 | 0.7569428 | 21 | 0.5205173
2.1496468 | 12 | 0.7362263 | 22 | 0.5148284
1.6420771 | 13 | 0.7250716 | 23 | 0.5134409
1.3892778 | 14 | 0.7131387 | 24 | 0.5108048
1.2554076 | 15 | 0.6939289 | 25 | 0.5029053
1.1503502 | 16 | 0.6657344 | 26 | 0.4888319
1.0474628 | 17 | 0.6307374 | 27 | 0.4707841
0.9487703 | 18 | 0.5936550 | 28 | 0.4528198
0.8625227 | 19 | 0.5601812 | 29 | 0.4391145
0.7974496 | 20 | 0.5351098 | 30 | 0.4324204

O 0| | O T = W[ DO | T

—_
e}

Table 3: Skewness of Ly for k=1,...,30.

Kur(Lg) | k | Kur(Lg) | k& | Kur(Lg)
20.6214485 | 11 | 3.9630489 | 21 | 3.4553514
10.0475452 | 12 | 3.9427896 | 22 | 3.4675149
7.2098904 | 13 | 3.9031803 | 23 | 3.4566369
6.1044828 | 14 | 3.8308431 | 24 | 3.4199435
5.5085380 | 15 | 3.7314241 | 25 | 3.3679599
5.0273441 | 16 | 3.6223695 | 26 | 3.3183350
4.6151697 | 17 | 3.5254483 | 27 | 3.2873677
4.2993763 | 18 | 3.4590869 | 28 | 3.2835481
4.0978890 | 19 | 3.4312823 | 29 | 3.3051186
3.9989275 | 20 | 3.4359883 | 30 | 3.3414988

O 0| || T b= W DN | T

—
]

Table 4: Kurtosis of Ly for k=1,...,30.
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We end this section with some figures (Figure 1) and a table (Table 5) of the scaled
probability density functions for the number of rolls of a fair die until visiting the primes
k times for various k values. (Recall that the scaled version of a random variable X with

expectation p and variance o2 is (X — u) /o).

20 | 100.2648068 | 22.6771846 | 0.5351098 | 3.4359883
40 | 229.8903783 | 36.1271902 | 0.3777949 | 3.1278526
60 | 370.5241578 | 46.0245135 | 0.1406763 | 2.6164507
80 | 520.2899340 | 57.8152360 | 0.2910580 | 2.9707515
100 | 676.3153763 | 65.2765933 | 0.2230411 | 3.0704308

Table 5: Expectation, standard deviation, skewness and kurtosis of Ly.

1 2 3

k =100

Figure 1: Scaled probability density function for the number of rolls of a fair die until
visiting the primes k times.

Based on the available data above, the argument described in the next section, and the
known results about the function 7(n) which is the number of primes that do not exceed n,
a possible guess for a more precise expression for E(Ly) may be k(log k+loglog k+c;)+cs.
This is also roughly consistent with the computational evidence (see also Section 3 for
further discussion).

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.16 4



1.2 Asymptotic results
In the next section we prove the following two results.

Theorem 1. For any fized positive reals €,0 there exists kg = ko(g,0) so that for all
k > ko the probability that | Ly — klogk| > eklogk is smaller than 9.

Theorem 2. For any fized € > 0 and any k > ko(e), the expected value of the random
variable Ly satisfies |E(Ly) — klogk| < eklog k.

2 Proofs

In all proofs we omit all floor and ceiling signs whenever these are not crucial, in order
to simplify the presentation.

Lemma 3. There are fized positive C' and p, 0 < p < 1 so that the following holds. Let
S = (dy,ds,...) be a random sequence of independent rolls of fair dice. For any positive
integer x, let p(x) denote the probability that S hits x. Then |p(x) —2/7| < C(1 — p)*,
that is, as x grows, p(x) converges to the constant 2/7 with an exponential rate.

Proof. Define p(—5) = p(—4) = p(=3) = p(—2) = p(—1) = 0, p(0) = 1 and note that for

every 1 > 1,
6

1
p(i) = 5 2_pli— ).
7=1
Indeed, S hits i if and only if the last number it hits before i is i—j for some j € {1,...,6},
and the die rolled after that gives the value 5. The probability of this event for each specific
value of j is p(i — j) - (1/6), providing the equation above. (Note that the definition of
the initial values is consistent with this reasoning, as before any dice rolls the initial sum
is 0). Thus, the sequence (p(7)) satisfies the homogeneous linear recurrence relation given
above. The characteristic polynomial of that is

1
P(z)226—6(25—1—24—1—,234—22—1—2—1—1).

One of the roots of this polynomial is z = 1, and its multiplicity is 1 as the derivative of
P(z) does not vanish at 1. It is also easy to check that the absolute value of each of the
other roots Aj, 2 < 7 < 6 of P(2) is at most 1 — p for some absolute positive constant
i, 0 < p < 1. Therefore, there are constants c¢; so that

6
p(i) =c - 1"+ ch/\;,
=2

implying that A
p(i) —e1| < C(1 = p)’

for some absolute constant C'. It remains to compute the value of ¢;. By the last estimate,
for any positive n,

‘ip(i) = cm‘ < C/(1— p).
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Note that the sum )., p(¢) is the expected number of integers in [n] = {1,2,...,n} hit
by the sequence S.

For each fixed f, dy +dy +---+dy is a sum of f independent identically distributed
random variables, each uniform on {1,2,...,6}. By the standard estimates for the distri-
bution of sums of independent bounded random variables, see., e.g., [2], Theorem A.1.16,
this sum is very close to 7f/2 with high probability. Therefore for large n the expectation
considered above is (1 + 0(1))(2/7)n. Dividing by n and taking the limit as n tends to
infinity shows that ¢; = 2/7, completing the proof. O

Note that the lemma above implies that there exists an absolute positive constant c
so that for any (large) integer g the following holds:

For any x > clogg — 5,

2 5
pla) = 20, 1= p(o) = 2e=0) where [e1(a)] < 1/glea(@) < 1g. (1)

It will be convenient to apply this estimate later.

Let Y,,(S) denote the number of primes in [m] = {1,2,...,m} hit by S. In the next
lemma we use the letters H and N to represent “hit” and “not-hit”, respectively.

Lemma 4. For any sequence of integers 1 < x1 < xg < --- < x4 that satisfy x1 = clogg
and x4 — x; = clogg for all 1 < i < g — 1, where ¢ is the constant from (1), and for
every v € {H, N}’ the following holds. Let h be the number of H coordinates of v. Then,

92 h 5 g—h

where |e(v)| < 1.

Proof. The probability of the event (S hits z; iff v; = H) is a product of g terms. The
first term is the probability that S hits z; (if v; = H) or the probability that S does not
hit z; (if v; = N). Note that since x; > clog g this probability is %esl in the first case
and 2% in the second case, where both |e1| and |e| are at most 1/g.

The second term in the product is the conditional probability that S hits xo (if
vo = H), or that it does not hit xo (if v, = N), given the first value it hit in the interval
r1,x1+1,...,x1+5. If vy = H, this first value is x; itself, and then the probability to hit
xg is exactly p(zy — x1). If 1 = N, then this first value is one of the 5 possibilities z1 + j
for some 1 < 57 < 5. Subject to hitting x; + j, the conditional probability to hit z, is
exactly p(za — 21 — j), which by the assumption on the difference xo — 1, is very close to
%. By the law of total probability it follows that in any case the conditional probability

to hit x5 is 2e° 3¢ where the absolute

ze® and the conditional probability not to hit it is 2
value of ¢ and of £” is at most 1/g. Continuing in this manner we get a product of g
terms, h of which are very close to 2/7 and g — h are very close to 5/7, where the product
of all error terms e is of the form e° for some |¢| < g - (1/g) = 1. This completes the

proof of the lemma. O
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Proposition 5. For any sequence x1 < xy < --- < x, of positive integers and any
a = y/nlog(n)

/ a2

2 2
P (’#xz hit — ?n’ > a) < e “ntes(n)
for some absolute positive constant ¢, where #x; denotes the number of times S hits the
values x1 < Tog < + -+ < Ty,

Proof. Split z1,...,x, into clog(n) subsequences, where subsequence number j consists
of all x; with index ¢ = j mod (clogn) where ¢ is the constant from (1). Note that the
difference between any two distinct elements in the same subsequences is at least clogn
and that each of these subsequences can contain at most one element smaller than clogn.
Each one of the subsequences contains r := ﬁ(n) elements x;. In each subsequence,
the probability to deviate in absolute value from %r hits by more than ﬁ(n) can be
bounded by the Chernoffs bound for binomial distributions, up to a factor of e. Indeed,
Lemma 4 shows that the contribution of each term does not exceed the contribution of
the corresponding term for the binomial random variable with parameters r and 2/7 by
more than a factor of e. Note that although each subsequence may contain one element
smaller than clogn, the contribution of this single element to the deviation is negligible
and can be ignored. Plugging in the standard bound, see, e.g. [2], Theorem A.1.16, we

get that the probability of the event considered is at most

/1 a2

2
9 . o~ (crosmy )/ (csy) < ¢ hoxtm

for appropriate absolute constants ¢, ¢’. Here we used the fact that since a is large the
constant 2e can be swallowed by the choice of ¢”. Therefore, the probability to deviate
in at least one of the subsequences by more than a/(clogn) is at most

/. 2 /11 ll2

—clt_—_a_ — _a
Clog(n)e ¢ nlog(n) < e ¢ nlog(n)’

where in the last inequality we used again the fact that a > /nlog(n). O

Recall that L; is the minimum ¢ so that S hits k primes in the first ¢ steps.

Corollary 6. (1) If 2w(my) < k —a and a > \/7(mq) log(m(my)), then

a2

Y
P(Ym 2 k) < & ¢ ﬂ("ll)log(ﬂ-(ml)).

1

(2) If 2mc(ms) = k + a and a > /7 (my)log(m(ms)) then

a2

o
P(Ym < k;) L e © wmz)los(r(ma))

2
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Proof. (1) The event {Y,,, > k} means that the number of primes that are at most m,
and are hit by the infinite sequence of the initial sums of dice rolls is a least k. Therefore,
if %W(ml) < k — a, we have

2 2
P(Ym1 2 k) =P (le — ?W(ml) 2 k — ?W(m1>>

>a)

2
< P <‘le — ?W(ml)

2
— a
<e m(my)log(m(my)) ,

where the last inequality follows from Proposition 5.

(2) Similarly, if 27(ms) > k + a, we have

2 2 2
P (sz < k) =P (Ym2 — ?W(mg) < k— ?’/T(mg)) < P (Ym2 — ?’/T<m2) < —a)
2 /17 H.2
<P (’sz, — ?ﬂ'(mQ) > a) < e ¢ mima)los(rima))
where the last inequality follows from Proposition 5. O

Corollary 7. (1) For a given (large) k, let my be the smallest integer so that
7
m(my) = b(k‘ — 2Vklog kJ

Then for any i satisfying Ti < my — a, where a > 2k log(k),

1 a? " klog2 k

P(Lk <Z) <P(d1++dz >m1)+P(le 21{?) ée_c i —I—e_c w(mq) log(m(m1)) <k—a
for some absolute constant o > 0.

(2) For a given (large) k and for a > v'klog® k let my be the smallest integer so that

m(mgy) = g(k: + a)-‘.

Then for any i satisfying %z > mg + b, where b > a

1111 ﬁ a?

P(Ly2 i) P+ +d; Sma) + P (Y, < B) < e 4 e Fommataiman.

Proof. (1) If both events {dy +---+d; > my} and {Y,,, > k} do not occur, then the
event {Lj < i} does not occur. Therefore, for %2 < my — a we have

P(Lpy<i)<P(di+--+di Zm)+ P (Y, =2k)

<P(d1+“'+di—;i>a)+P(Ym1>k)

_ ////ﬁ —c klog? k
e T 4 e ¢ wm) log(m(my)

N

Y
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where the last inequality follows from Chernoff’s bound and the first part of Corollary
6. Note that here 2v/klogk > \/m(my)log(m(my)) and therefore the corollary can be
applied.

(2) Similarly, if both events {d; + - -- 4+ d; < ma} and {Y,,, < k} do not occur, then
the event {Lj, > i} does not occur. Therefore, for Zi > ms + b, we have

2 " a2
_cM Ll

P(LkEi)<P<d1+---+di—;i<—b>+P(Ym2<k)<e T4 e ¢ T st

where the last inequality follows again from Chernoff’s bound and the second part of
Corollary 6. Indeed the corollary can be applied since it is not difficult to check that for
large k and any a > vk log® k,

a > /m(my) log(m(my)) = g(k + a)w log (g(/ﬂ - a)}) : O

Proof of Theorem 1. Note that by the Prime Number Theorem in the first part of Corol-
lary 7,

my = (; + 0(1)) klog k.

Taking a = 2vklog k and letting i; be the largest integer so that %z < my — a it follows
from this first part that i; = (1 + o(1))klogk and that the probability that Ly is smaller
than ¢, is smaller than some negative power of k, that is, tends to 0 as k tends to infinity.

Similarly, substituting in the second part of the corollary a = b = Vklog?k and
letting 75 be the smallest integer so that %7, > mo + a it is easy to see that 75 is also
(14 o0(1))klogk (since

7
my = (5 + 0(1)) klog k,

by the Prime Number Theorem). By the second part of the corollary the probability that
Ly is larger than iy is smaller than any fixed negative power of k£, and hence tends to 0
as k tends to infinity. Therefore Ly is (14 o(1))klog k with probability tending to 1 as k
tends to infinity, completing the proof of the theorem. O

Proof of Theorem 2. The expectation of Ly is the sum over all positive integers ¢, of the
probabilities P(Ly, > i). Taking a = Vklog?k and defining m, and my as before we
break this sum into three parts,

i:%igmlfa

and
Sy = > P(Ly>1).

mi—a< %i<m2 +a
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By the first part of Corollary 7 each summand in the first sum S; is 1 —o(1) and therefore
S1 = (1 + o(1))klogk, as the number of summands is (1 + o(1))klogk, since m; =
(% + 0(1)) klog k. By the second part of the corollary (applied to an appropriately chosen
sequence of a,my and b) it is not difficult to check that the infinite sum S is only o(1).
Indeed, it is possible, for example, to choose ag = Vklog?k and a; = jk for all j > 1.
The corresponding value my ; of my for each a; is defined as the smallest integer satisfying

m(ma,) = B(lﬂ + aj)w. Taking b; = a; we can apply the estimate in the second part of

the corollary to all values of i satisfying ms ; + a; < %z < Mg i1 + ajr1. The sum of the
probabilities P(Ly > i) for these values of ¢ is thus at most ke8> k) for § =0, and at
most ke~ 2#/1080Gk) for each j > 1. The sum of all these quantities is smaller than any
fixed negative power of k, and is therefore o(1), as needed.

The sum S3 is a sum of at most my — m; + 2a terms, and each of them is at most

1, implying that 0 < S3 < my — my + 2a = o(klogk), since both m; and my are
(% + 0(1)) klogk, and 2a = O (\/Elog2 /{;) This completes the proof of the theorem. [

3 Concluding remarks and extensions

e Extensions for biased r-sided dice and arbitrary subsets of the integers.
The proofs in the previous section use very little of the specific properties of the
primes and the specific distribution of each d;. It is easy to extend the result to
any r-sided dice with an arbitrary discrete distribution on [r] in which the values
obtained with positive probabilities do not have any nontrivial common divisor.
The constants 3.5 and 2/7 will then have to be replaced by the expectation of
the random variable d; and by its reciprocal, respectively. It is interesting to note
that while for different dice the expectation of L, for small values of k can be very
different from the corresponding expectation for a standard fair die, once the die is
fixed, for large k the expectation is always (1 + o(1)) klog k, where the o(1)-term
tends to 0 as k tends to infinity.

It is also possible to replace the primes by an arbitrary subset 7' of the positive
integers, and repeat the arguments to analyze the corresponding random variable
for this case, replacing the Prime Number Theorem by the counting function of T
We omit the details.

e Heuristic suggestion for a more precise expression for E(Lg). If we sub-
stitute for m(n) its approximation n/logn and repeat the analysis described here
with this approximation, the more precise value for the expectation E(Lj) that
follows is k (log k + loglog k + O(1)). Since at the beginning there are some fluc-
tuations, we tried to add another constant and consider an expression of the form
k (log k + loglog k + ¢1) + c2. Choosing ¢; and ¢y that provide the best fit for our
(limited and therefore maybe overfitted) computational evidence we obtained the
heuristic expression f(k) = k(log k + log log k 4 0.543) + 8.953. For the record, here
are the ratios of E[Lg]/f(k) for k = 20, 40,60, 80, 100, respectively:

0.9861651120, 0.9976101939, 0.9966486957, 0.998338113, 0.9997448512.
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One can also replace n/logn by the more precise approximation Li(n) for m(n), but
the difference between these two estimates does not change the expression obtained
for E(Lg) in a significant way.
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