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Abstract

Given a collection G = {G1,Ga,...,Gpy} of graphs on the common vertex set V'
of size n, a graph H with vertices in V is rainbow in G if there exists an injection
¢ : E(H) — [m] such that e € E(G)) for all e € E(H). We say H is a transversal
in G if |[E(H)| = m. Denote §(G) := min{6(G;) : i € [m]}. For vertices z, y € V,
let dg(x,y) be the length of the shortest rainbow path (if exists) connecting = and
y in G. We say G is transversal panconnected if for any two vertices z,y € V,
there exists a rainbow path on k vertices inside G joining z and y for every integer
k € [dg(z,y) + 1,n]. In this paper, we provide a tight bound on §(G) to ensure
that G is transversal panconnected. It generalizes the result of [Williamson, Period.
Math. Hungar., 1977] to the transversal version and improves the result of [Li, Li
and Li, J. Graph Theory, 2023].

Mathematics Subject Classifications: 05C38

1 Introduction

1.1 Transversal in graph collections

The problem of determining whether an n-vertex graph contains a given subgraph is a
central topic in extremal graph theory. In this paper, we consider the generalization of
this problem to graph collections.

Let G = {G1,Ga,...,G,} be a collection of not necessarily distinct graphs with
common vertex set V. We often think of each G; having the color i. Let H be a graph on
the vertex set V. We say H is rainbow in G if there exists an injection ¢ : E(H) — [m)]
such that e € E(Gy) for all e € E(H). Furthermore, if |[E(H)| = m, then ¢ is a
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bijection, and we refer to H as a transversal in G. Transversal often appears in infinitary
combinatorics under several similar definitions (see, [1, 18]).

The following general question about transversals was first proposed by Joos and Kim
in [25].

Question 1 ([25]). Let H be a graph with m edges, and G = {G1,Gs,..., G} be a
collection of graphs with common vertex set V. What properties imposed on G guarantee
a transversal copy of H?

By taking G; = G5 = - - - = G,,,, we need to study properties for G such that each graph
in G contains H as a subgraph. However, this alone is not always sufficient. For example,
Aharoni, DeVos, de la Maza, Montejano and Samal [2] proved that if G = {G1, G3, G3} is

a collection of graphs on a common vertex set of size n and min;cfg |E(G;)| > (%ﬁ)rﬂ,
t %ﬁ > }l is optimal.
However, Mantel’s theorem states that every n-vertex graph with more than L"TQJ edges
must contain a triangle.

Hamiltonicity of graphs is one of the fundamental problems in extremal graph theory
and structural graph theory. In 1952, Dirac [17] proved that every n-vertex graph (n > 3)
with minimum degree at least  contains a Hamilton cycle. Aharoni [2] conjectured that
Dirac’s theorem can be extended to the transversal version. It was asymptotically solved
by Cheng, Wang and Zhao [15], and completely confirmed by Joos and Kim [25]. Let
d(@) be the minimum degree of a graph G and define 6(G) := min{d(G;) : i € [m]} to be
the minimum degree of G.

then G contains a transversal triangle. Moreover, the constan

Theorem 2 ([25]). Let n € N and n > 3. Suppose G = {G1,...,G,} is a collection of
graphs on a common verter set V of size n. If 6(G) = %, then G contains a transversal
Hamilton cycle.

Bradshaw [6] considered the bipartite analogue of Theorem 2, extending the result
of Moon and Moser [33] to the transversal version. Bowtell, Morris, Pehova and Staden
[5] established the minimum degree condition that guarantees a Hamilton cycle for any
given color pattern. Cheng and Staden [13] established a stability result for transversal
Hamilton cycles by using a transversal blow-up lemma [12]. Cheng, Sun, Wang and Wei
[14] characterized all graph collections consisting of n graphs on a common vertex set V'
of size n with minimum degree at least § — 1 and without transversal Hamilton cycles.
Recently, Chakraborti, Kim, Lee and Seo [8, 9] studied the Hamiltonicity in a collection
of tournaments.

In addition to research on Hamiltonicity, many other classical results in extremal graph
theory have been generalized. Cheng, Han, Wang and Wang [11] investigated the mini-
mum degree condition to guarantee the existence of transversal K;-factors in (hyper)graph
collections. This gives an asymptotic version of the rainbow Hajnal-Szemerédi theorem
[22]. Montgomery, Miiyesser and Pehova [32] proved the asymptotically tight transversal
versions of Hajnal-Szemerédi theorem [22] and Kiihn-Osthus theorem [27] on factors, and
a transversal generalization of the theorem of Komlds, Sarkézy and Szemerédi [26] on
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spanning trees. Chakraborti, Im, Kim and Liu [7] provided a transversal generalization of
the celebrated bandwidth theorem by Bottcher, Schacht and Taraz [4]. Gupta, Hamann,
Miiyesser, Parczyk and Sgueglia [21] provided a general approach to extend several classi-
cal Dirac-type results to the transversal version. For more results on transversal settings,
we refer readers to [3, 19, 20, 23, 30, 31, 36] and our survey [35].

1.2 Our results

Denote by P,, C,,, K,, and K,,_, the path, cycle, complete graph and complete bipartite
graph with partite sets of size t and n — t on n vertices, respectively. A cycle containing
all the vertices of a graph G is said to be a Hamilton cycle of the graph. A Hamilton
path of G is a path containing all the vertices of G. A graph G is Hamiltonian connected
if there exists a Hamilton path between any two distinct vertices of G. A graph G is
panconnected if for any two vertices x,y, there exists a path P, joining x and y inside
G for every integer k € [d(x,y) + 1,n], where d(z,y) is the length of the shortest path
connecting x and y in G.

Some derivative problems related to Hamiltonicity have also received a lot of attention,
including Hamiltonian connected, panconnected and so on (see, [10, 24, 37, 38, 39]). Chen,
Li and Zhao [10] and Williamson [39] established the Dirac-type conditions for a graph
to be Hamiltonian connected and panconnected, respectively.

Theorem 3 ([10, 39]). Let G be a graph with order n.
(i) Ifn >3 and 6(G) = £, then G is Hamiltonian connected.
(ii) Ifn >4 and 0(G) = 5 + 1, then G is panconnected.

In this paper, we are interested in generalizing the degree condition for Hamiltonian
connected and panconnected to the transversal version.

Let G = {Gy,...,G,_1} be a collection of graphs on a common vertex set V' of size n.
We say G is transversal Hamiltonian connected if for any two distinct vertices x,y € V,
there is a transversal Hamilton path inside G joining x and y; G is transversal panconnected
if for every two distinct vertices x and y, there exists a rainbow path Py joining x and y
inside G for every integer k € [dg(z,y) + 1,n].

Our first result gives the Dirac-type condition to guarantee a graph collection is
transversal Hamiltonian connected. This generalizes Theorem 3 (i) to the transversal
version.

Theorem 4. Letn € N andn > 3. Suppose G = {G1,...,G,_1} is a collection of graphs
on a common vertex set V of size n. If 6(G) > ”T“, then G 1is transversal Hamiltonian
connected.

Notice that the degree condition in Theorem 4 is best possible. Indeed, let G =
{G41,...,G_1} be a collection of n — 1 bipartite graphs on a common vertex partition

AUB with |[A| = | 3] and [B| = [§], and G; = Gi[A, B] = K|z 12). It is routine to check
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that 6(G) > [5] and G does not contain transversal Hamilton paths with two endpoints
in A.

The proof of Theorem 4 draws inspiration from the work of Joos and Kim [25], who
established the transversal version of Dirac’s theorem by constructing auxiliary digraphs.

For two vertex disjoint graphs G and H, the disjoint union of G and H is denoted by
GUH. Let GV H be the graph formed by adding an edge between every vertex in GG and
every vertex in H to GU H. Let n be an odd integer and H; be an empty graph with ”T_l
vertices, and let Hy be a graph on ”TH vertices with §(Hs) > 1 such that one component
of H, is a single edge. Define F,, as a collection of m copies of H; V Hs.

Li, Li and Li [28] studied the rainbow panconnectedness of a graph collection consisting

of n graphs.

Theorem 5 ([28]). Suppose G = {Gi,...,G,} is a collection of graphs on a common
vertex set V of size n. If §(G) > “TH, then G is rainbow panconnected unless G = F,,.

Observe that the edges of a rainbow path joining two distinct vertices only come from
at most n — 1 graphs in the collection G = {G1,...,G,}. That is to say, Theorem 5
uses one more color than we need. Motivated by this, our next result determines the
Dirac-type condition for a graph collection consisting of n — 1 graphs to be transversal
panconnected, extending Theorem 3 (ii) to the transversal version.

Theorem 6. Let n > 4 be an even integer or a sufficiently large odd integer. Assume
that G = {Gy, ..., Gn_1} is a collection of graphs on a common vertex set V' of size n. If
i(G) = "TH, then G s transversal panconnected unless G = F,_1.

By applying Theorem 4 and Theorem 6 with G; = Gy = --- = G,,_; = G, we can
deduce Theorem 3 (i) and Theorem 3 (ii) (n is sufficiently large if it is odd), respectively.

1.3 Notation and organization

First of all, we state that all graph theoretic terminology and notation not defined in this
paper is the same as that used in the textbook [16].

Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). For a
vertex v of G, denote by Ng(v) the neighborhood of v. We usually omit the subscripts
when the graph G is clear from the context.

For any vertex subsets X, Y C V, G[X] denotes the graph on X whose edges are
precisely the edges of G with both ends in X. We write G — X for G[V\X], i.e., G — X
is obtained from G by deleting all the vertices in X and their incident edges. If X = {v}
is a singleton, we write G — v rather than G — {v}. Let G[X,Y] be the subgraph of G
with vertex set X UY and edge set {zy:z € X,y € Y and zy € E(G)}. If E(G) = 0,
then we simply write G = (). For any vertex set V of size n, we say AU B is an equitable
partition of V if |A| + |B| = n and ||A] — |B|| < 1.

For a digraph D, we denote its vertex set by V(D) and its arc set by A(D). For
vertices u and v in D, the arc from u to v is denoted by wd. Given v € V (D), let Nj(v)
and Np(v) be the out-neighborhood and in-neighborhood of v in D, respectively. Denote
by df(v) and dp,(v) the out-degree and in-degree of v, respectively.
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Let G = {G; : i € [m]} be a graph collection on a common vertex set V and H be a
rainbow subgraph inside G. For a graph G; and a vertex v € V, let N;(v) := Ng,(v) for
each i € [m]. Denote by col(H) the set of colors appearing in H.

For a positive integer n, we write [n] := {1,2,...,n} and [a,b] :== {a,a +1,...,b} for
two positive integers a < b. Our calculations are based on the sense of modulo arithmetic.

The rest of the paper is organized as follows. In Section 2 and Section 3, we prove
Theorem 4 and Theorem 6, respectively. Some concluding remarks are presented in
Section 4.

2 Proof of Theorem 4

In this section, we prove Theorem 4. The following lemma is obtained by Li, Li and Li
[28], which can be used to find a long rainbow path inside a graph collection.

Lemma 7 ([28]). Let n > 3 be an integer. Suppose G = {G1,...,Gy} is a collection of
graphs with common vertex set V of size n, and 6(G) > "5t. Then one of the following

2
holds:

e G has a rainbow cycle of length at least n — 1;

e n is odd and G consists of n copies of K1V (QKnT—l).

Proof of Theorem 4. It is routine to check that the result holds for n < 5. In what follows,
we assume that n > 6. We prove it by contradiction. Suppose that G is not transversal
Hamiltonian connected. That is, there are two vertices x,y € V such that G contains no
transversal Hamilton path with endpoints x and y. Let H; = G; —{z,y} for all i € [n —1]
and H = {H,,...,H,_1}. Note that 6(H) > ”—“ —2 =13

2

Claim 8. If n is even, then H has a rainbow cycle of length n — 2; if n is odd, then H
has a rainbow cycle of length at least n — 3.

Proof of the Claim 8. If n is even, then §(H) > § — 1. Together with Theorem 2, H
contains a rainbow cycle of length n — 2. In what follows, it suffices to consider n is odd.

Assume that Cj is a longest rainbow cycle inside H. Suppose that | < n — 3. In
view of Lemma 7, we know that every n — 2 graphs of H consists of n — 2 copies of
Ky v (2Kn 5). It follows that #H consists of n — 1 copies of K; V (2Kn s). Hence, there
are two subsets U W of V\{z,y} and a vertex z € V' \ {z,y} such that UNW = {z}

and H;[U] = H;[W] = Koz for all i € [n — 1]. For each vertex u € V' \ {z,y, 2}, since
6(G) > £, we must have uz ,uy € E(G;) for all i € [n — 1]. Therefore, (H; — 2) V (2K;)
is a subgraph of G; for each i € [n — 1]. Now, it is easy to verify that G contains a

transversal Hamilton path with endpoints x and y, a contradiction. Thus, H contains a
rainbow cycle of length at least n — 3. O

We proceed by considering the following two cases.

Case 1. H has a rainbow cycle of length n — 2.

ot
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Let C,,_o = vy ...v, v be a rainbow cycle of length n—2 in ‘H, where v;v;,1 € E(G;)
for each i € [n — 2]. Recall that {z,y} = V\V(C,_2). Let

L={ien—-2]:2v,€ E(G;)}, L={i€[n—2]:yv41 € E(Gn-1)}.

Clearly, |I5| > [”7_11 and I, U I, C [n — 2]. Suppose that I; N I, # (), choose iy € I} N .
Hence, zv;, ... v10,—2 ... V;y+1y is a transversal Hamilton path inside G with endpoints x
and y, a contradiction. Thus, I; N I, = (). Consequently, |I;] < L"T_?’J

Now, we utilize the following auxiliary digraph D with vertex set V' and arc set

A(D) = U {m cvu € E(G;) and u # v}

1€[n—2]
Clearly, df,(z) = d5(y) = 0 and df(v;) > [%] [252] for each i € [n — 2]. Then,

B — e
|A(D)| = (n—2) - [%]. It follows from || < [252] that dj(z) < [252]. By symmetry,
dp(y) < [%52]. Therefore,

" -3 > (n-2) 20,

AD -z —y)| = (n—-2)-]

Without loss of generality, assume that dj(vi) = max{d,(v;) : ¢ € [n — 2]}. Thus,
dp(v1) = [251]. Let
13 = {Z € [TL — 2] T XV; € E(Gl)}

Obviously, |I3] > [%:1] and I, U3 C [n — 2. Therefore, [ N I3 # @ and choose
11 € IyN1I3. If iy = 1, then xviv,_o...v9y is a transversal Hamilton path from z to y
with colors “1,n —2,...,2,n — 1”7, a contradiction. Hence i; # 1. If vjv, € E(G,,), then
TV, « .. V1Up—2 ...V +1Y is a transversal Hamilton path from x to y with colors “1,7; —
1,...,2)i;,n—2,...,91+ 1,n— 17, a contradiction. Therefore, v,vy ¢ E(G;,).

Delete v1v9 and v;,v;, 41 from C),_o, then we get two disjoint rainbow paths zv;, ... vs
and yv;, 41 ... v, see Figure 1 (I). Let

Ky ={ke2,n=3]\{i1} : vaug11 € E(Gy,)}, Ko={ke€[2,n=3\{ir}: vivx € E(Gg)}.

Notice that |K;| > [254] =3 = [252], | Ks| = dp(v1)—1 = [%52] and |K;UK>| < n—5.
Therefore, K1NK, # () and choose ky € K1NK5. Notice that kg # 1. If kg > i1 (resp. ko <
i1), then vy, ... VoUk 11 -+ - Up_2U1Uky - - - Vi 1Y (T€SP. TV, . .. Ugg1V2 -+« VkgU1Un_2 - . - Vg, 11Y)
is a transversal Hamilton path inside G (see Figure 1 (II)), whose colors are “1,i; —
1,...,Q,il,ko—i—l,...,n—2,k0,...,i1+1,n—1” (resp. “l,il—l,...,k0+1,i1,2,...,k0—
1, kog,n—2,...,41 +1,n —1"), a contradiction.

Case 2. H has no rainbow cycle of length n — 2.

In view of Claim 8, we know that n is odd and H has a rainbow cycle of length
n —3, say Cp_3 = v1...0,_30; with vv;p; € E(G;) for i € [n — 3]. Denote {z} =
V\{v1,...,0n_3,2,y}. Let

L={ien—-3:z2v;€ E(Gna)}, L={ic€n—-3]:z2v4 € E(G,1)}.
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(IT) Transversal Hamilton path (kg > i1).
(I) Delete v1ve and v, v 41.

Figure 1

Hence |I;] > 252, |I,| > %52 and I, U I, C [n — 3]. Since  contains no rainbow cycle of
length n—2, one has I; N1, = 0 and therefore |I;| = |I5| = %52, Together with 6(G) > !,
we conclude that N,,_o(z) = N,_1(2) = {x,y,v1,v3, ..., 054} or {X,y,v2,04,...,0,_3}.
Similar to Case 1, we utilize the following auxiliary digraph D with vertex set V' and
arc set
A(D) = U {070 : viu € E(G;) and u # v }.

1€[n—3]

Clearly, d},(z) = d},(y) = d},(z) = 0 and d};(v;) > "5* for each i € [n — 3]. Let
Ay ={a€en—-3:2v, € E(G,)}, As={a€n—3]:20,41 € E(Gr_2)}.

If Ay N Ay # (0, then choose ag € A; N Ay. Hence 20y, ... 010, 3. .. Vgy417 18 a rainbow
cycle of length n — 2 in H, a contradiction. Thus, A; N Ay = (). Tt follows from |I;| = ”T’?’
that [As| = 252, Since A; U Ay C [n — 3], one has dj(2) = |A;] < %52
Let
As={a€n—3]:2v, € E(G,)}.

If A;NA3 # (), then choose a; € AyNA3z. Recall that yz € E(G,,_1). Hence, xv,, ... 010, 3
... Ugy+12Y 1s & transversal Hamilton path with endpoints x and y, a contradiction. There-
fore, AyN A3 = 0. Note that |As| = %52 and A;UA3 C [n—3]. Hence dj(z) = |As] < 252
Similarly, dj,(y) < "52. Therefore,

—1 n—3 n—4

A(D—a—y=2)| > |A(D)|~dp(@)—dp ()~ (2) > (1-3)- "= —3"% = (n-3)-"

Without loss of generality, assume that d,(v1) = max{d,(v;) : ¢ € [n — 3]}. Thus,
dp(v1) = 252 (since n is odd). Let

Ay={a€n—-3]:2v, € E(Gy)}.

It is easy to see that |A4| > ”7_3 and Ay U Ay C [n — 3]. Next, we proceed by considering
the following subcases.

Subcase 2.1. N,,_5(z) = Ny_1(2) = {x,y,v2,04, ..., Up_3}.
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In this subcase, Ay = {1,3,...,n —4}. If Ay,N Ay =0, then A, = {2,4,...,n — 3}.
Recall that dpj(vi) > %52 and vy ¢ Np(v1). Therefore, there exists an odd integer m €
[3,n — 3] such that viv,, € A(D), i.e., v1v, € E(Gy,). Since zvp,411 € E(Gp_2), we know
that zve ... v,10,_3... U112y is a transversal Hamilton path inside G with endpoints
x,y and colors “1,...,m,n—3,...,m+1,n—2,n—1" (see Figure 2 (I)), a contradiction.
Hence Ay N Ay # 0.

Choose as € Ay N Ay. Delete vivy and v,,v4,+1 from the rainbow cycle C,,_3, we get
two disjoint rainbow paths xv,, ... v and zv4,41 ... v;. By a similar argument as Case 1,

one has as # 1 and vyvy ¢ E(G,,). Let
Ki={ke€2,n—4]: v € E(Gy,)}, Ky={ke[2,n—4]:vv, € B(Gy)}.

It is routine to check that |K}| > 252, |K3| > %52 and K{ U K} C [2,n — 4]. Thus,

Kl N K} # 0 and there exists k; € K{ N KJ. Suppose that k; > ay (resp. k1 < az). Then
TUqay + - VoUky 41 - - - Un3U1Uk, -+ Vays12Y (TESP. TUgy - Uy 41U2 -« Uk U1Un_3 . . - Ugyy12Y) 18
a transversal Hamilton path inside G with endpoints x and y, whose colors are “1,ay —
L...,2,a0,ky +1,...,n — 3,k1,...,a0 + 1,n — 2;n — 17 (resp. “l,as — 1,...,k +

l,a9,2,...,ky—1,k;,n—3,...,as+1,n—2,n—1"), a contradiction. Therefore, k; = as.
Recall that N,,_1(2) = {z, y,ve,v4,...,v,_3}. Thus, vz € E(G,_1) and vg, ... V220a,11 - - -
Up—3U10,, 1S @ rainbow cycle of length n — 2 inside H with colors “as —1,...,2,n—1,n—

2,as +1,...,n— 37, which is also a contradiction (see Figure 2 (II)).

n—1

o =X ) o =) ~» — e n—1 -
(%1 (%] Um, Um+1 Un—3 ) (12
Yy z Vag+1 .
(1) Ao N Ay = 0. (IT) Ay N Ay # 0 and k1 = as.
FigUre 9

Subcase 2.2. N,,_5(z) = N,_1(2) = {x,y,v1,03,...,Up_4a}.

In this subcase, Ay = {2,4,...,n—3}. If A,N Ay =0, then Ay = {1,3,...,n —4}.
Notice that zv; € E(G,,_1) and zv,,_4 € E(G,_3). Therefore, zv; ...v,_42z is another rain-
bow cycle of length n — 3 inside H, denoted by C!_,. Clearly, VAV (C!_5) = {z,y,v,—3}
and [n] \ col(C!_3) = {n — 3,n — 4}. By the symmetry of z and v,_3, we obtain
Ny—3(n—3) = Np_a(vn—3) = {x,y, 02,04, ..., 0y_5,2} or {z,y,01,v3,...,0,_4}. This im-
plies that yzv; ...v,_sx is a transversal Hamilton path inside G with endpoints = and y,
which is a contradiction. Thus, Ay N A, # 0.

Let a3 € A2 N A4 and

K12 = {k < [2,?7, — 4] P U2VE+1 S E(Ga3>}, K22 = {]{ c [2,” — 4] U € E(Gk)}
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Clearly, K?NK2 # (), i.e., there exists ky € K?NK%. By a similar discussion as Subcase 2.1,
we obtain ks = az. Notice that viz € E(G,_2), then zvg, ... Ua0441 ... Vp_3v12Y IS a
transversal Hamilton path with endpoint x and y with colors “1,a3—1,...,2,a3,...,n—1",
which is also a contradiction.

This completes the proof of Theorem 4. n

3 Proof of Theorem 6

In this section, we prove Theorem 6. We first give three preliminaries. The first one
considers the rainbow pancyclicity in a collection of graphs under the Dirac-type condition,
which was obtained by [29].

Let G = {G4,...,G,} be a collection of graphs on a common vertex set of size n. We
say that G is transversal pancyclic if there is a rainbow cycle of length ¢ in G for each
integer ¢ € [3,n].

Theorem 9 ([29]). Letn > 3 be an integer and G = {G1, ..., G} be a collection of graphs
on a common vertex set of size n. If §(G) > %, then either G is transversal pancyclic or
G consists of n copies of Kn n.

The subsequent two lemmas were obtained by [14], which investigate the existence of
transversal Hamilton paths and cycles in graph collections.

Theorem 10 ([14]). Let G = {Gy,...,G,_1} be a collection of graphs on a common
vertex set of size n. If §(G) = "%, then G has a transversal Hamilton path.

Given integers s,t > 0, let R! be the graph collection on a common vertex set of
even size n obtained by taking s copies of K» U Kz and ¢ copies of Kz », where they are
defined on the same equitable partition.

Theorem 11 ([14]). For sufficiently large even integer n, let C be a set of n colors, and
let G = {G; : i € C} be a collection of graphs on a common vertex set V of size n and
6(G) = 5 — 1. Assume that G contains no transversal Hamilton cycles. Then one of the
following holds:

i) G is a spanning collection of RL_, for some odd integer t € [3,n — 1];
n—t

(ii) there exists a partition AUB of V with |A| = 541 such that either E(G;[A]) C {uv}
for fited u,v € A and all i € C, or G;[A] =0 for all but at most one i € C;

(iii) there exists an equitable partition AU B of V' such that G[A, B] contains no rainbow
2-matching, that is, one of the following holds:
(a) Gi = Gi[A]UG;[B] = 2Kx for all but at most one i € C;

(b) there are vertices u,u’ € A and w,w" € B such that E(G1[A, B]) = {uw,u'w'},
E(Gs[A, B]) = {uww',v'w} and G; = G;[A]U G;[B] = 2K= for all j € C\[2];

(c) there is a vertex u € A such that E(G;[A, B]) = E(G;[{u}, B]) for alli € C;
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(d) there are vertices u € A and v € B such that E(G1][A,B]) C {uw : w €
B} U{wv:w e A} and E(G;[A, B]) C {uv} for alli € C\{1}.

Now, we are ready to give the proof of Theorem 6.

Proof of Theorem 6. Suppose that G # F,_ 1. Let x,y € V be two arbitrary distinct
vertices and k € [dg(x,y) + 2,n — 1] be an arbitrary integer. In view of Theorem 4,
we know that G is transversal Hamiltonian connected. Together with the definition of
dg(x,y), it suffices to prove that G contains a rainbow path Py with endpoints = and y.
Let H; = G; — {z,y} for each ¢ € [n — 1] and H = {H; : i € [n — 1]}. We proceed by
considering the following two cases.

Case 1. n is even.

Since n is even, one has §(G) > § + 1 and §(H) > § — 1. In view of Theorem 9, we
know that either H has a rainbow cycle of length n — 3 or every n — 2 graphs of H consists
of n — 2 copies OfKn 2 no2.

We first assume that 7—[ has a rainbow cycle of length n — 3. Let C' = vy ...v,_3v1

be such a rainbow cycle with v;v;4; € E(G;) for each i € [n — 3]. Suppose that {z} =
VA(V(C)U{z,y}) and [n — 1] \ col(C) = {n —2,n — 1}. Let

Iy ={i€n—3]:2v4p3 € E(Gn1)}, Lio={i€n—3:yvy € E(G,-2)}.

Clearly, [I,—1| > 5 —1, [I[h—s| > 3 —1and I,,_yUI,_» C [n—3]. Therefore, I,,_;N I,y #
and choose 19 € I,_1 N I,_a. It is routine to check that G contains a rainbow path
Py = yviyvig+1 - . . Vigyr—3x with endpoints z and y, as desired.

Now, we consnder that every n — 2 graphs of H consists of n — 2 copies of K ne2 n2. It
follows that H consists of n — 1 copies of K n_2 n2. For each vertex v € V'\ {«, y} “since
6(G) = 541, we must have uz, uy € E(G;) forall i € [n—1]. Therefore, KnTQ’nTZ\/(ZKl) is
a subgraph of G; for each i € [n—1]. It is easy to verify that G is transversal panconnected,
as desired.

Case 2. n is odd.

When n is odd, we have 6(H) > ”T“ —2= "7_3 In view of Theorem 10, we know that

H contains a rainbow Hamilton path P. If all vertices in V(P) are adjacent to both
and y in G; for each ¢ € [n— 1], then it is obvious that G contains a rainbow path Py with
endpoints z and y, as desired. Hence, it suffices to consider that there exists a vertex
z € V\{z,y} and a color ¢ € [n — 1] such that at least one of {z,y} is not adjacent to z
in G.. Without loss of generality, assume that ¢ =n — 1 and zz ¢ E(G,_1).

Let H = G; — {z,y,z} for each i € [n — 2] and H' = {H] : i € [n — 2]}. Obviously,
S(H) > %t~ 3 = 2

25. We distinguish our proof into the following two subcases.
Subcase 2.1. H’ contains a rainbow Hamilton cycle.

In this subcase, assume that C' = v;...v,_3v; is the rainbow Hamilton cycle of H’,
where v;v;41 € E(G;) for each i € [n — 3]. Notice that {x,y,z} = V\V(C). Let

Ina={i€en-38:2v143€ EG,1)}, Ino={icn-3:yv € EG,-2)}.
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Since 2 ¢ E(G,_1), one has |I,_1| > "=, Furthermore, |I,, o] > =2 and I, U1, o C
[n — 3]. Hence In_l NI, o # 0. Thus, g contains a rainbow path Pk with endpoints x
and y, as desired.

Subcase 2.2. H' does not contain rainbow Hamilton cycles.

Based on Theorem 11, we know that every n — 3 graphs in H’ must be the same graph
collection described in Theorem 11. Therefore, one may obtain the characterization of all
graphs in ‘H’, leading to the following three cases.

(i) It is routine to check that H’ consists of either ¢ copies of K nosnos and n—2 — 1
copies of KnTS U Kan or t + 1 copies of KnTZi’n?d andn—3—1t coples of Kn 3 U Kn 3,
where ¢ € [3,n — 4] is odd. Applying Theorem 11 again yields that H’ contains a rainbow
Hamilton cycle in each case, a contradiction.

(ii) There exists a partition AU B of V\{z,y,z} with |[A| = % such that either
E(H![A]) C {uv} for fixed u,v € A and all i € [n — 2|, or H/[A] = 0 for all but at most
one i € [n — 2|. Here, we only discuss the former case, the latter one can be proved by a

similar discussion, so we omit the proof here.
Since 6(H') > 52 and 6(G) > 2+, for each i € [n — 2] we have

o GiLAV{u,0}, BU{z,y, 2} = Kus aps;
e u, v are adjacent to all but at most one vertex of BU {z,y, z} in Gj;

) NZ(Z) N (B U {l'vy}) 7é @

Assume that A = {uy,... ,uan} and B = {wy,... ,wans}. Without loss of generality,
assume that u = Un=s and v = Un_1.

We first consider that k is odd. Then 3 <k <n—2 Notethat Un—s is adjacent to all
but at most one vertex in BU{x,y} in each G; with i € [n—2]. Hence, by suitable relabel-
ing, we always guarantee that G contains a rainbow path, P := zujw; . .. uk—3Wr3uUr-1Yy,
along with col(Py) C [n — 2|, as desired. R

Next, we assume that k£ is even. Then 4 < k < n — 1. Recall that Un—s, Un_1
are adjacent to all but at most one vertex of B U {z,y,z} in G; with ¢ € [n —2]. If
Un—sUno1 € E(G;,[A]) for some iy € [n — 1], then by suitable relabeling, G contains a

ralnbow path P, = zujw; . Uk AW Un_sUn_1Y, along with UnsUn-1 € E(G;,) and
col(Py — Un_sUn_ 1) C[n—2] \ {zo} (see Flgure 3 (I)), as desired. S1m11arly, we can show
that such a rainbow path P, exists if F(G,_1[A]) # 0 or N;(2) N {x,y} # O for some

i € [n — 1]. Hence, in what follows, we assume that F(G;[A]) = 0 and N;(z) N {z,y} =0
for all i € [n — 1]. Therefore, G;[A, BU{z,y,2}] = Kut ns1 and Ni(2) N B # () for all
i€n—1].

If k # 4, then by relabeling, we obtain that Py := zu;zwiusws . Uk aWe_aUk_2Y is a
rainbow path on k vertices inside G, along with col(Py) C [n— 2], see Flgure 3 (II) Hence
it suffices to consider k = 4.

If Nj(z)N B # 0 or N;(y) N B # 0 for some i € [n — 1], then it is easy to see that G
contains a rainbow path P, with endpoints x and y, as desired. Hence, if G contains no
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(1) tasuncs € B(Giy[A)). (I1) Ny(2) N B # 0.

Figure 3: Subcase 2.2 (ii) and k is even.

rainbow P, with endpoints z and y, we must have G;[4] = 0 and N;(z) N (B U {z}) =
Ni(y) N (BU{z}) =0 for all i € [n — 1]. That is to say, G = F,_1, a contradiction.

(iii) There exists an equitable partition AUB of V\{x,y, z} such that H'[A, B] contains
no rainbow 2-matching. It follows that H/[A] and H][B] are almost complete graphs for
each i € [n—2]. Thus, for 3 < k < "TH, the rainbow path Py can be easily found by using
vertices in A and colors in [n — 2]. In the following, we consider "T*?’ < k< n-—1. In fact,
such a rainbow path Py can be found by utilizing the vertex z or edges in F(G;[A, B]) to
connect vertices in A and B. Here, we only illustrate the first two cases in Theorem 11
(iii), and the rest two cases can be discussed similarly.

(a) There exists an equitable partition AUB of V\{z,y, z} and a color i; € [n—2] such
that H = H/[A|UH||B] = 2K s foralli € [n—2]\{i1}. Assume that A = {uy,... ,UnT—S}
and B = {wy,... ,U)nT—S}. It follows from 6(G) > 2t that Gi[{xz,y, 2}, AU B] = K,
for all ¢ € [n — 2]\{i1}.

It B(Gy,[A, B]) = 0, then G;[A] U Gi[B] = 2Ku_s and Gi[{z,y,2}, AU B] = K33
for all i € [n — 2]. Thus, G contains a rainbow path Py := zujus.. Un_3 W Wy _nasY
with col(Py) C [n — 2] (see Figure 4 (1)), as desired. If E(G;,[A, B]) # 0, then without
loss of generality, assume that Un_sw; € E(G;,). Thus, G contains a rainbow path
P, = zuqus .. An_3 W Wy na Y along with Un_swy € E(G;,) and col( Py — u%wl) C
[n — 2]\{i1} (see Figure 4 (II)), as desired.

(b) There are vertices u,u’ € A and w,w’ € B such that E(H{[A, B]) = {uw,vw'},
E(H[A, B]) = {uw',v'w} and H; = Hi[A]JUH}[B] = 2Kus forall j € [3,n —2]. Assume
that A = {ul,...,uans} and B = {wl,...,wana}. Let u = un_s and w = wy. Since

6(G) = £, we have

o Gi[A]UGi[B] = 2K for cach i € [n — 2J;
e all vertices in AUB are adjacent to all vertices of {z,y, 2z} in G, for each i € [3,n—2].

It is easy to see that G contains a rainbow path Py := zujus .. SUn_sWy - Wy 1Y, along
with us_sw; € E(G4) and col(Py, — uanswl) C [2,n — 2], as desired.
This completes the proof of Theorem 6. n
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Figure 4: Subcase 2.2 (iii) (a).

4 Concluding remarks

In this paper, we determine the Dirac-type condition for transversal panconnectedness in
graph collections. However, in Theorem 6, we require the order n to be sufficiently large
when it is odd. This assumption stems from our reliance on Theorem 11, where the same
condition is imposed. We speculate that Theorem 6 holds for all n. In fact, it suffices to
prove the following: Let n > 4 be an even integer and G = {G1,...,G,+1} be a collection
of graphs on a common vertex set of size n. If 6(G) > § — 1, then either G contains
rainbow Hamilton cycles or G is some exceptional graph collection.

Define 09(G) := min{d(u) + d(v) : u,v € V(G), wv ¢ E(G)}. Ore [34] proved that
every n-vertex 2-connected graph G with o9(G) > n + 1 is Hamiltonian connected. It is
natural to study the Ore-type condition for transversal Hamiltonian connectivity in graph

collections.
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