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Abstract

Given a collection G = {G1, G2, . . . , Gm} of graphs on the common vertex set V
of size n, a graph H with vertices in V is rainbow in G if there exists an injection
ϕ : E(H)→ [m] such that e ∈ E(Gϕ(e)) for all e ∈ E(H). We say H is a transversal
in G if |E(H)| = m. Denote δ(G) := min {δ(Gi) : i ∈ [m]}. For vertices x, y ∈ V ,
let dG(x, y) be the length of the shortest rainbow path (if exists) connecting x and
y in G. We say G is transversal panconnected if for any two vertices x, y ∈ V ,
there exists a rainbow path on k vertices inside G joining x and y for every integer
k ∈ [dG(x, y) + 1, n]. In this paper, we provide a tight bound on δ(G) to ensure
that G is transversal panconnected. It generalizes the result of [Williamson, Period.
Math. Hungar., 1977] to the transversal version and improves the result of [Li, Li
and Li, J. Graph Theory, 2023].

Mathematics Subject Classifications: 05C38

1 Introduction

1.1 Transversal in graph collections

The problem of determining whether an n-vertex graph contains a given subgraph is a
central topic in extremal graph theory. In this paper, we consider the generalization of
this problem to graph collections.

Let G = {G1, G2, . . . , Gm} be a collection of not necessarily distinct graphs with
common vertex set V . We often think of each Gi having the color i. Let H be a graph on
the vertex set V . We say H is rainbow in G if there exists an injection ϕ : E(H) → [m]
such that e ∈ E(Gϕ(e)) for all e ∈ E(H). Furthermore, if |E(H)| = m, then ϕ is a
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bijection, and we refer to H as a transversal in G. Transversal often appears in infinitary
combinatorics under several similar definitions (see, [1, 18]).

The following general question about transversals was first proposed by Joos and Kim
in [25].

Question 1 ([25]). Let H be a graph with m edges, and G = {G1, G2, . . . , Gm} be a
collection of graphs with common vertex set V . What properties imposed on G guarantee
a transversal copy of H?

By taking G1 = G2 = · · · = Gm, we need to study properties for G such that each graph
in G contains H as a subgraph. However, this alone is not always sufficient. For example,
Aharoni, DeVos, de la Maza, Montejano and Šámal [2] proved that if G = {G1, G2, G3} is

a collection of graphs on a common vertex set of size n and mini∈[3] |E(Gi)| > (26−2
√
7

81
)n2,

then G contains a transversal triangle. Moreover, the constant 26−2
√
7

81
> 1

4
is optimal.

However, Mantel’s theorem states that every n-vertex graph with more than bn2

4
c edges

must contain a triangle.
Hamiltonicity of graphs is one of the fundamental problems in extremal graph theory

and structural graph theory. In 1952, Dirac [17] proved that every n-vertex graph (n > 3)
with minimum degree at least n

2
contains a Hamilton cycle. Aharoni [2] conjectured that

Dirac’s theorem can be extended to the transversal version. It was asymptotically solved
by Cheng, Wang and Zhao [15], and completely confirmed by Joos and Kim [25]. Let
δ(G) be the minimum degree of a graph G and define δ(G) := min{δ(Gi) : i ∈ [m]} to be
the minimum degree of G.

Theorem 2 ([25]). Let n ∈ N and n > 3. Suppose G = {G1, . . . , Gn} is a collection of
graphs on a common vertex set V of size n. If δ(G) > n

2
, then G contains a transversal

Hamilton cycle.

Bradshaw [6] considered the bipartite analogue of Theorem 2, extending the result
of Moon and Moser [33] to the transversal version. Bowtell, Morris, Pehova and Staden
[5] established the minimum degree condition that guarantees a Hamilton cycle for any
given color pattern. Cheng and Staden [13] established a stability result for transversal
Hamilton cycles by using a transversal blow-up lemma [12]. Cheng, Sun, Wang and Wei
[14] characterized all graph collections consisting of n graphs on a common vertex set V
of size n with minimum degree at least n

2
− 1 and without transversal Hamilton cycles.

Recently, Chakraborti, Kim, Lee and Seo [8, 9] studied the Hamiltonicity in a collection
of tournaments.

In addition to research on Hamiltonicity, many other classical results in extremal graph
theory have been generalized. Cheng, Han, Wang and Wang [11] investigated the mini-
mum degree condition to guarantee the existence of transversal Kt-factors in (hyper)graph
collections. This gives an asymptotic version of the rainbow Hajnal-Szemerédi theorem
[22]. Montgomery, Müyesser and Pehova [32] proved the asymptotically tight transversal
versions of Hajnal-Szemerédi theorem [22] and Kühn-Osthus theorem [27] on factors, and
a transversal generalization of the theorem of Komlós, Sárkózy and Szemerédi [26] on
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spanning trees. Chakraborti, Im, Kim and Liu [7] provided a transversal generalization of
the celebrated bandwidth theorem by Böttcher, Schacht and Taraz [4]. Gupta, Hamann,
Müyesser, Parczyk and Sgueglia [21] provided a general approach to extend several classi-
cal Dirac-type results to the transversal version. For more results on transversal settings,
we refer readers to [3, 19, 20, 23, 30, 31, 36] and our survey [35].

1.2 Our results

Denote by Pn, Cn, Kn and Kt,n−t the path, cycle, complete graph and complete bipartite
graph with partite sets of size t and n− t on n vertices, respectively. A cycle containing
all the vertices of a graph G is said to be a Hamilton cycle of the graph. A Hamilton
path of G is a path containing all the vertices of G. A graph G is Hamiltonian connected
if there exists a Hamilton path between any two distinct vertices of G. A graph G is
panconnected if for any two vertices x, y, there exists a path Pk joining x and y inside
G for every integer k ∈ [d(x, y) + 1, n], where d(x, y) is the length of the shortest path
connecting x and y in G.

Some derivative problems related to Hamiltonicity have also received a lot of attention,
including Hamiltonian connected, panconnected and so on (see, [10, 24, 37, 38, 39]). Chen,
Li and Zhao [10] and Williamson [39] established the Dirac-type conditions for a graph
to be Hamiltonian connected and panconnected, respectively.

Theorem 3 ([10, 39]). Let G be a graph with order n.

(i) If n > 3 and δ(G) > n+1
2

, then G is Hamiltonian connected.

(ii) If n > 4 and δ(G) > n
2

+ 1, then G is panconnected.

In this paper, we are interested in generalizing the degree condition for Hamiltonian
connected and panconnected to the transversal version.

Let G = {G1, . . . , Gn−1} be a collection of graphs on a common vertex set V of size n.
We say G is transversal Hamiltonian connected if for any two distinct vertices x, y ∈ V ,
there is a transversal Hamilton path inside G joining x and y; G is transversal panconnected
if for every two distinct vertices x and y, there exists a rainbow path Pk joining x and y
inside G for every integer k ∈ [dG(x, y) + 1, n].

Our first result gives the Dirac-type condition to guarantee a graph collection is
transversal Hamiltonian connected. This generalizes Theorem 3 (i) to the transversal
version.

Theorem 4. Let n ∈ N and n > 3. Suppose G = {G1, . . . , Gn−1} is a collection of graphs
on a common vertex set V of size n. If δ(G) > n+1

2
, then G is transversal Hamiltonian

connected.

Notice that the degree condition in Theorem 4 is best possible. Indeed, let G =
{G1, . . . , Gn−1} be a collection of n − 1 bipartite graphs on a common vertex partition
A∪B with |A| = bn

2
c and |B| = dn

2
e, and Gi = Gi[A,B] = Kbn

2
c,dn

2
e. It is routine to check
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that δ(G) > bn
2
c and G does not contain transversal Hamilton paths with two endpoints

in A.
The proof of Theorem 4 draws inspiration from the work of Joos and Kim [25], who

established the transversal version of Dirac’s theorem by constructing auxiliary digraphs.
For two vertex disjoint graphs G and H, the disjoint union of G and H is denoted by

G∪H. Let G∨H be the graph formed by adding an edge between every vertex in G and
every vertex in H to G∪H. Let n be an odd integer and H1 be an empty graph with n−1

2

vertices, and let H2 be a graph on n+1
2

vertices with δ(H2) > 1 such that one component
of H2 is a single edge. Define Fm as a collection of m copies of H1 ∨H2.

Li, Li and Li [28] studied the rainbow panconnectedness of a graph collection consisting
of n graphs.

Theorem 5 ([28]). Suppose G = {G1, . . . , Gn} is a collection of graphs on a common
vertex set V of size n. If δ(G) > n+1

2
, then G is rainbow panconnected unless G = Fn.

Observe that the edges of a rainbow path joining two distinct vertices only come from
at most n − 1 graphs in the collection G = {G1, . . . , Gn}. That is to say, Theorem 5
uses one more color than we need. Motivated by this, our next result determines the
Dirac-type condition for a graph collection consisting of n − 1 graphs to be transversal
panconnected, extending Theorem 3 (ii) to the transversal version.

Theorem 6. Let n > 4 be an even integer or a sufficiently large odd integer. Assume
that G = {G1, . . . , Gn−1} is a collection of graphs on a common vertex set V of size n. If
δ(G) > n+1

2
, then G is transversal panconnected unless G = Fn−1.

By applying Theorem 4 and Theorem 6 with G1 = G2 = · · · = Gn−1 = G, we can
deduce Theorem 3 (i) and Theorem 3 (ii) (n is sufficiently large if it is odd), respectively.

1.3 Notation and organization

First of all, we state that all graph theoretic terminology and notation not defined in this
paper is the same as that used in the textbook [16].

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). For a
vertex v of G, denote by NG(v) the neighborhood of v. We usually omit the subscripts
when the graph G is clear from the context.

For any vertex subsets X, Y ⊆ V , G[X] denotes the graph on X whose edges are
precisely the edges of G with both ends in X. We write G −X for G[V \X], i.e., G −X
is obtained from G by deleting all the vertices in X and their incident edges. If X = {v}
is a singleton, we write G − v rather than G − {v}. Let G[X, Y ] be the subgraph of G
with vertex set X ∪ Y and edge set {xy : x ∈ X, y ∈ Y and xy ∈ E(G)}. If E(G) = ∅,
then we simply write G = ∅. For any vertex set V of size n, we say A ∪B is an equitable
partition of V if |A|+ |B| = n and

∣∣|A| − |B|∣∣ 6 1.
For a digraph D, we denote its vertex set by V (D) and its arc set by A(D). For

vertices u and v in D, the arc from u to v is denoted by −→uv. Given v ∈ V (D), let N+
D (v)

and N−D (v) be the out-neighborhood and in-neighborhood of v in D, respectively. Denote
by d+D(v) and d−D(v) the out-degree and in-degree of v, respectively.
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Let G = {Gi : i ∈ [m]} be a graph collection on a common vertex set V and H be a
rainbow subgraph inside G. For a graph Gi and a vertex v ∈ V , let Ni(v) := NGi

(v) for
each i ∈ [m]. Denote by col(H) the set of colors appearing in H.

For a positive integer n, we write [n] := {1, 2, . . . , n} and [a, b] := {a, a+ 1, . . . , b} for
two positive integers a < b. Our calculations are based on the sense of modulo arithmetic.

The rest of the paper is organized as follows. In Section 2 and Section 3, we prove
Theorem 4 and Theorem 6, respectively. Some concluding remarks are presented in
Section 4.

2 Proof of Theorem 4

In this section, we prove Theorem 4. The following lemma is obtained by Li, Li and Li
[28], which can be used to find a long rainbow path inside a graph collection.

Lemma 7 ([28]). Let n > 3 be an integer. Suppose G = {G1, . . . , Gn} is a collection of
graphs with common vertex set V of size n, and δ(G) > n−1

2
. Then one of the following

holds:

• G has a rainbow cycle of length at least n− 1;

• n is odd and G consists of n copies of K1 ∨ (2Kn−1
2

).

Proof of Theorem 4. It is routine to check that the result holds for n 6 5. In what follows,
we assume that n > 6. We prove it by contradiction. Suppose that G is not transversal
Hamiltonian connected. That is, there are two vertices x, y ∈ V such that G contains no
transversal Hamilton path with endpoints x and y. Let Hi = Gi−{x, y} for all i ∈ [n−1]
and H = {H1, . . . , Hn−1}. Note that δ(H) > n+1

2
− 2 = n−3

2
.

Claim 8. If n is even, then H has a rainbow cycle of length n − 2; if n is odd, then H
has a rainbow cycle of length at least n− 3.

Proof of the Claim 8. If n is even, then δ(H) > n
2
− 1. Together with Theorem 2, H

contains a rainbow cycle of length n− 2. In what follows, it suffices to consider n is odd.
Assume that Cl is a longest rainbow cycle inside H. Suppose that l < n − 3. In

view of Lemma 7, we know that every n − 2 graphs of H consists of n − 2 copies of
K1 ∨ (2Kn−3

2
). It follows that H consists of n − 1 copies of K1 ∨ (2Kn−3

2
). Hence, there

are two subsets U,W of V \ {x, y} and a vertex z ∈ V \ {x, y} such that U ∩W = {z}
and Hi[U ] = Hi[W ] = Kn−1

2
for all i ∈ [n − 1]. For each vertex u ∈ V \ {x, y, z}, since

δ(G) > n+1
2

, we must have ux, uy ∈ E(Gi) for all i ∈ [n− 1]. Therefore, (Hi − z) ∨ (2K1)
is a subgraph of Gi for each i ∈ [n − 1]. Now, it is easy to verify that G contains a
transversal Hamilton path with endpoints x and y, a contradiction. Thus, H contains a
rainbow cycle of length at least n− 3.

We proceed by considering the following two cases.

Case 1. H has a rainbow cycle of length n− 2.
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Let Cn−2 = v1 . . . vn−2v1 be a rainbow cycle of length n−2 in H, where vivi+1 ∈ E(Gi)
for each i ∈ [n− 2]. Recall that {x, y} = V \V (Cn−2). Let

I1 = {i ∈ [n− 2] : xvi ∈ E(Gi)}, I2 = {i ∈ [n− 2] : yvi+1 ∈ E(Gn−1)}.

Clearly, |I2| > dn−12 e and I1 ∪ I2 ⊆ [n− 2]. Suppose that I1 ∩ I2 6= ∅, choose i0 ∈ I1 ∩ I2.
Hence, xvi0 . . . v1vn−2 . . . vi0+1y is a transversal Hamilton path inside G with endpoints x
and y, a contradiction. Thus, I1 ∩ I2 = ∅. Consequently, |I1| 6 bn−32 c.

Now, we utilize the following auxiliary digraph D with vertex set V and arc set

A(D) =
⋃

i∈[n−2]

{−→viu : viu ∈ E(Gi) and u 6= vi+1}.

Clearly, d+D(x) = d+D(y) = 0 and d+D(vi) > dn+1
2
e − 1 = dn−1

2
e for each i ∈ [n − 2]. Then,

|A(D)| > (n− 2) · dn−1
2
e. It follows from |I1| 6 bn−32 c that d−D(x) 6 bn−3

2
c. By symmetry,

d−D(y) 6 bn−3
2
c. Therefore,

|A(D − x− y)| > (n− 2) · dn− 1

2
e − (n− 3) > (n− 2) · dn− 3

2
e.

Without loss of generality, assume that d−D(v1) = max{d−D(vi) : i ∈ [n − 2]}. Thus,
d−D(v1) > dn−12 e. Let

I3 = {i ∈ [n− 2] : xvi ∈ E(G1)}.
Obviously, |I3| > dn−12 e and I2 ∪ I3 ⊆ [n − 2]. Therefore, I2 ∩ I3 6= ∅ and choose
i1 ∈ I2 ∩ I3. If i1 = 1, then xv1vn−2 . . . v2y is a transversal Hamilton path from x to y
with colors “1, n− 2, . . . , 2, n− 1”, a contradiction. Hence i1 6= 1. If v1v2 ∈ E(Gi1), then
xvi1 . . . v1vn−2 . . . vi1+1y is a transversal Hamilton path from x to y with colors “1, i1 −
1, . . . , 2, i1, n− 2, . . . , i1 + 1, n− 1”, a contradiction. Therefore, v1v2 /∈ E(Gi1).

Delete v1v2 and vi1vi1+1 from Cn−2, then we get two disjoint rainbow paths xvi1 . . . v2
and yvi1+1 . . . v1, see Figure 1 (I). Let

K1 = {k ∈ [2, n−3]\{i1} : v2vk+1 ∈ E(Gi1)}, K2 = {k ∈ [2, n−3]\{i1} : v1vk ∈ E(Gk)}.

Notice that |K1| > dn+1
2
e−3 = dn−5

2
e, |K2| > d−D(v1)−1 = dn−3

2
e and |K1∪K2| 6 n−5.

Therefore, K1∩K2 6= ∅ and choose k0 ∈ K1∩K2. Notice that k0 6= i1. If k0 > i1 (resp. k0 <
i1), then xvi1 . . . v2vk0+1 . . . vn−2v1vk0 . . . vi1+1y (resp. xvi1 . . . vk0+1v2 . . . vk0v1vn−2 . . . vi1+1y)
is a transversal Hamilton path inside G (see Figure 1 (II)), whose colors are “1, i1 −
1, . . . , 2, i1, k0 + 1, . . . , n−2, k0, . . . , i1 + 1, n−1” (resp. “1, i1−1, . . . , k0 + 1, i1, 2, . . . , k0−
1, k0, n− 2, . . . , i1 + 1, n− 1”), a contradiction.

Case 2. H has no rainbow cycle of length n− 2.

In view of Claim 8, we know that n is odd and H has a rainbow cycle of length
n − 3, say Cn−3 = v1 . . . vn−3v1 with vivi+1 ∈ E(Gi) for i ∈ [n − 3]. Denote {z} =
V \{v1, . . . , vn−3, x, y}. Let

I1 = {i ∈ [n− 3] : zvi ∈ E(Gn−2)}, I2 = {i ∈ [n− 3] : zvi+1 ∈ E(Gn−1)}.

the electronic journal of combinatorics 32(4) (2025), #P4.17 6



(I) Delete v1v2 and vi1vi1+1.
(II) Transversal Hamilton path (k0 > i1).

Figure 1

Hence |I1| > n−3
2

, |I2| > n−3
2

and I1 ∪ I2 ⊆ [n− 3]. Since H contains no rainbow cycle of
length n−2, one has I1∩I2 = ∅ and therefore |I1| = |I2| = n−3

2
. Together with δ(G) > n+1

2
,

we conclude that Nn−2(z) = Nn−1(z) = {x, y, v1, v3, . . . , vn−4} or {x, y, v2, v4, . . . , vn−3}.
Similar to Case 1, we utilize the following auxiliary digraph D with vertex set V and

arc set
A(D) =

⋃
i∈[n−3]

{−→viu : viu ∈ E(Gi) and u 6= vi+1}.

Clearly, d+D(x) = d+D(y) = d+D(z) = 0 and d+D(vi) > n−1
2

for each i ∈ [n− 3]. Let

A1 = {a ∈ [n− 3] : zva ∈ E(Ga)}, A2 = {a ∈ [n− 3] : zva+1 ∈ E(Gn−2)}.

If A1 ∩ A2 6= ∅, then choose a0 ∈ A1 ∩ A2. Hence zva0 . . . v1vn−3 . . . va0+1z is a rainbow
cycle of length n− 2 in H, a contradiction. Thus, A1 ∩A2 = ∅. It follows from |I1| = n−3

2

that |A2| = n−3
2

. Since A1 ∪ A2 ⊆ [n− 3], one has d−D(z) = |A1| 6 n−3
2

.
Let

A3 = {a ∈ [n− 3] : xva ∈ E(Ga)}.

If A2∩A3 6= ∅, then choose a1 ∈ A2∩A3. Recall that yz ∈ E(Gn−1). Hence, xva1 . . . v1vn−3
. . . va1+1zy is a transversal Hamilton path with endpoints x and y, a contradiction. There-
fore, A2∩A3 = ∅. Note that |A2| = n−3

2
and A2∪A3 ⊆ [n−3]. Hence d−D(x) = |A3| 6 n−3

2
.

Similarly, d−D(y) 6 n−3
2

. Therefore,

|A(D−x−y−z)| > |A(D)|−d−D(x)−d−D(y)−d−D(z) > (n−3)·n− 1

2
−3·n− 3

2
= (n−3)·n− 4

2
.

Without loss of generality, assume that d−D(v1) = max{d−D(vi) : i ∈ [n − 3]}. Thus,
d−D(v1) > n−3

2
(since n is odd). Let

A4 = {a ∈ [n− 3] : xva ∈ E(G1)}.

It is easy to see that |A4| > n−3
2

and A2 ∪A4 ⊆ [n− 3]. Next, we proceed by considering
the following subcases.

Subcase 2.1. Nn−2(z) = Nn−1(z) = {x, y, v2, v4, . . . , vn−3}.
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In this subcase, A2 = {1, 3, . . . , n − 4}. If A2 ∩ A4 = ∅, then A4 = {2, 4, . . . , n − 3}.
Recall that d−D(v1) > n−3

2
and v2 /∈ N−D (v1). Therefore, there exists an odd integer m ∈

[3, n− 3] such that v1vm ∈ A(D), i.e., v1vm ∈ E(Gm). Since zvm+1 ∈ E(Gn−2), we know
that xv2 . . . vmv1vn−3 . . . vm+1zy is a transversal Hamilton path inside G with endpoints
x, y and colors “1, . . . ,m, n−3, . . . ,m+ 1, n−2, n−1” (see Figure 2 (I)), a contradiction.
Hence A2 ∩ A4 6= ∅.

Choose a2 ∈ A2 ∩ A4. Delete v1v2 and va2va2+1 from the rainbow cycle Cn−3, we get
two disjoint rainbow paths xva2 . . . v2 and zva2+1 . . . v1. By a similar argument as Case 1,
one has a2 6= 1 and v1v2 /∈ E(Ga2). Let

K1
1 = {k ∈ [2, n− 4] : v2vk+1 ∈ E(Ga2)}, K1

2 = {k ∈ [2, n− 4] : v1vk ∈ E(Gk)}.

It is routine to check that |K1
1 | > n−5

2
, |K1

2 | > n−3
2

and K1
1 ∪ K1

2 ⊆ [2, n − 4]. Thus,
K1

1 ∩K1
2 6= ∅ and there exists k1 ∈ K1

1 ∩K1
2 . Suppose that k1 > a2 (resp. k1 < a2). Then

xva2 . . . v2vk1+1 . . . vn−3v1vk1 . . . va2+1zy (resp. xva2 . . . vk1+1v2 . . . vk1v1vn−3 . . . va2+1zy) is
a transversal Hamilton path inside G with endpoints x and y, whose colors are “1, a2 −
1, . . . , 2, a2, k1 + 1, . . . , n − 3, k1, . . . , a2 + 1, n − 2, n − 1” (resp. “1, a2 − 1, . . . , k1 +
1, a2, 2, . . . , k1− 1, k1, n− 3, . . . , a2 + 1, n− 2, n− 1”), a contradiction. Therefore, k1 = a2.
Recall thatNn−1(z) = {x, y, v2, v4, . . . , vn−3}. Thus, v2z ∈ E(Gn−1) and va2 . . . v2zva2+1 . . .
vn−3v1va2 is a rainbow cycle of length n− 2 inside H with colors “a2− 1, . . . , 2, n− 1, n−
2, a2 + 1, . . . , n− 3”, which is also a contradiction (see Figure 2 (II)).

(I) A2 ∩A4 = ∅. (II) A2 ∩A4 6= ∅ and k1 = a2.

Figure 2

Subcase 2.2. Nn−2(z) = Nn−1(z) = {x, y, v1, v3, . . . , vn−4}.
In this subcase, A2 = {2, 4, . . . , n − 3}. If A2 ∩ A4 = ∅, then A4 = {1, 3, . . . , n − 4}.

Notice that zv1 ∈ E(Gn−1) and zvn−4 ∈ E(Gn−2). Therefore, zv1 . . . vn−4z is another rain-
bow cycle of length n− 3 inside H, denoted by C ′n−3. Clearly, V \V (C ′n−3) = {x, y, vn−3}
and [n] \ col(C ′n−3) = {n − 3, n − 4}. By the symmetry of z and vn−3, we obtain
Nn−3(vn−3) = Nn−4(vn−3) = {x, y, v2, v4, . . . , vn−5, z} or {x, y, v1, v3, . . . , vn−4}. This im-
plies that yzv1 . . . vn−3x is a transversal Hamilton path inside G with endpoints x and y,
which is a contradiction. Thus, A2 ∩ A4 6= ∅.

Let a3 ∈ A2 ∩ A4 and

K2
1 = {k ∈ [2, n− 4] : v2vk+1 ∈ E(Ga3)}, K2

2 = {k ∈ [2, n− 4] : v1vk ∈ E(Gk)}.
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Clearly, K2
1∩K2

2 6= ∅, i.e., there exists k2 ∈ K2
1∩K2

2 . By a similar discussion as Subcase 2.1,
we obtain k2 = a3. Notice that v1z ∈ E(Gn−2), then xva3 . . . v2va3+1 . . . vn−3v1zy is a
transversal Hamilton path with endpoint x and y with colors “1, a3−1, . . . , 2, a3, . . . , n−1”,
which is also a contradiction.

This completes the proof of Theorem 4.

3 Proof of Theorem 6

In this section, we prove Theorem 6. We first give three preliminaries. The first one
considers the rainbow pancyclicity in a collection of graphs under the Dirac-type condition,
which was obtained by [29].

Let G = {G1, . . . , Gn} be a collection of graphs on a common vertex set of size n. We
say that G is transversal pancyclic if there is a rainbow cycle of length ` in G for each
integer ` ∈ [3, n].

Theorem 9 ([29]). Let n > 3 be an integer and G = {G1, . . . , Gn} be a collection of graphs
on a common vertex set of size n. If δ(G) > n

2
, then either G is transversal pancyclic or

G consists of n copies of Kn
2
,n
2
.

The subsequent two lemmas were obtained by [14], which investigate the existence of
transversal Hamilton paths and cycles in graph collections.

Theorem 10 ([14]). Let G = {G1, . . . , Gn−1} be a collection of graphs on a common
vertex set of size n. If δ(G) > n−1

2
, then G has a transversal Hamilton path.

Given integers s, t > 0, let Rt
s be the graph collection on a common vertex set of

even size n obtained by taking s copies of Kn
2
∪Kn

2
and t copies of Kn

2
,n
2
, where they are

defined on the same equitable partition.

Theorem 11 ([14]). For sufficiently large even integer n, let C be a set of n colors, and
let G = {Gi : i ∈ C} be a collection of graphs on a common vertex set V of size n and
δ(G) > n

2
− 1. Assume that G contains no transversal Hamilton cycles. Then one of the

following holds:

(i) G is a spanning collection of Rt
n−t for some odd integer t ∈ [3, n− 1];

(ii) there exists a partition A∪B of V with |A| = n
2

+1 such that either E(Gi[A]) ⊆ {uv}
for fixed u, v ∈ A and all i ∈ C, or Gi[A] = ∅ for all but at most one i ∈ C;

(iii) there exists an equitable partition A∪B of V such that G[A,B] contains no rainbow
2-matching, that is, one of the following holds:

(a) Gi = Gi[A] ∪Gi[B] = 2Kn
2

for all but at most one i ∈ C;

(b) there are vertices u, u′ ∈ A and w,w′ ∈ B such that E(G1[A,B]) = {uw, u′w′},
E(G2[A,B]) = {uw′, u′w} and Gj = Gj[A] ∪Gj[B] = 2Kn

2
for all j ∈ C\[2];

(c) there is a vertex u ∈ A such that E(Gi[A,B]) = E(Gi[{u}, B]) for all i ∈ C;
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(d) there are vertices u ∈ A and v ∈ B such that E(G1[A,B]) ⊆ {uw : w ∈
B} ∪ {wv : w ∈ A} and E(Gi[A,B]) ⊆ {uv} for all i ∈ C\{1}.

Now, we are ready to give the proof of Theorem 6.

Proof of Theorem 6. Suppose that G 6= Fn−1. Let x, y ∈ V be two arbitrary distinct
vertices and k ∈ [dG(x, y) + 2, n − 1] be an arbitrary integer. In view of Theorem 4,
we know that G is transversal Hamiltonian connected. Together with the definition of
dG(x, y), it suffices to prove that G contains a rainbow path Pk with endpoints x and y.
Let Hi = Gi − {x, y} for each i ∈ [n − 1] and H = {Hi : i ∈ [n − 1]}. We proceed by
considering the following two cases.

Case 1. n is even.

Since n is even, one has δ(G) > n
2

+ 1 and δ(H) > n
2
− 1. In view of Theorem 9, we

know that either H has a rainbow cycle of length n−3 or every n−2 graphs of H consists
of n− 2 copies of Kn−2

2
,n−2

2
.

We first assume that H has a rainbow cycle of length n − 3. Let C = v1 . . . vn−3v1
be such a rainbow cycle with vivi+1 ∈ E(Gi) for each i ∈ [n − 3]. Suppose that {z} =
V \(V (C) ∪ {x, y}) and [n− 1] \ col(C) = {n− 2, n− 1}. Let

In−1 = {i ∈ [n− 3] : xvi+k−3 ∈ E(Gn−1)}, In−2 = {i ∈ [n− 3] : yvi ∈ E(Gn−2)}.

Clearly, |In−1| > n
2
−1, |In−2| > n

2
−1 and In−1∪In−2 ⊆ [n−3]. Therefore, In−1∩In−2 6= ∅

and choose i0 ∈ In−1 ∩ In−2. It is routine to check that G contains a rainbow path
Pk = yvi0vi0+1 . . . vi0+k−3x with endpoints x and y, as desired.

Now, we consider that every n− 2 graphs of H consists of n− 2 copies of Kn−2
2

,n−2
2

. It

follows that H consists of n− 1 copies of Kn−2
2

,n−2
2

. For each vertex u ∈ V \ {x, y}, since

δ(G) > n
2
+1, we must have ux, uy ∈ E(Gi) for all i ∈ [n−1]. Therefore, Kn−2

2
,n−2

2
∨(2K1) is

a subgraph of Gi for each i ∈ [n−1]. It is easy to verify that G is transversal panconnected,
as desired.

Case 2. n is odd.

When n is odd, we have δ(H) > n+1
2
− 2 = n−3

2
. In view of Theorem 10, we know that

H contains a rainbow Hamilton path P̃ . If all vertices in V (P̃ ) are adjacent to both x
and y in Gi for each i ∈ [n−1], then it is obvious that G contains a rainbow path Pk with
endpoints x and y, as desired. Hence, it suffices to consider that there exists a vertex
z ∈ V \{x, y} and a color c ∈ [n− 1] such that at least one of {x, y} is not adjacent to z
in Gc. Without loss of generality, assume that c = n− 1 and xz /∈ E(Gn−1).

Let H ′i = Gi − {x, y, z} for each i ∈ [n − 2] and H′ = {H ′i : i ∈ [n − 2]}. Obviously,
δ(H′) > n+1

2
− 3 = n−5

2
. We distinguish our proof into the following two subcases.

Subcase 2.1. H′ contains a rainbow Hamilton cycle.

In this subcase, assume that C = v1 . . . vn−3v1 is the rainbow Hamilton cycle of H′,
where vivi+1 ∈ E(Gi) for each i ∈ [n− 3]. Notice that {x, y, z} = V \V (C). Let

In−1 = {i ∈ [n− 3] : xvi+k−3 ∈ E(Gn−1)}, In−2 = {i ∈ [n− 3] : yvi ∈ E(Gn−2)}.
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Since xz /∈ E(Gn−1), one has |In−1| > n−1
2

. Furthermore, |In−2| > n−3
2

and In−1 ∪ In−2 ⊆
[n − 3]. Hence In−1 ∩ In−2 6= ∅. Thus, G contains a rainbow path Pk with endpoints x
and y, as desired.

Subcase 2.2. H′ does not contain rainbow Hamilton cycles.

Based on Theorem 11, we know that every n−3 graphs in H′ must be the same graph
collection described in Theorem 11. Therefore, one may obtain the characterization of all
graphs in H′, leading to the following three cases.

(i) It is routine to check that H′ consists of either t copies of Kn−3
2

,n−3
2

and n− 2− t
copies of Kn−3

2
∪Kn−3

2
, or t+ 1 copies of Kn−3

2
,n−3

2
and n− 3− t copies of Kn−3

2
∪Kn−3

2
,

where t ∈ [3, n− 4] is odd. Applying Theorem 11 again yields that H′ contains a rainbow
Hamilton cycle in each case, a contradiction.

(ii) There exists a partition A ∪ B of V \{x, y, z} with |A| = n−1
2

such that either
E(H ′i[A]) ⊆ {uv} for fixed u, v ∈ A and all i ∈ [n − 2], or H ′i[A] = ∅ for all but at most
one i ∈ [n− 2]. Here, we only discuss the former case, the latter one can be proved by a
similar discussion, so we omit the proof here.

Since δ(H′) > n−5
2

and δ(G) > n+1
2

, for each i ∈ [n− 2] we have

• Gi[A\{u, v}, B ∪ {x, y, z}] = Kn−5
2

,n+1
2

;

• u, v are adjacent to all but at most one vertex of B ∪ {x, y, z} in Gi;

• Ni(z) ∩ (B ∪ {x, y}) 6= ∅.

Assume that A = {u1, . . . , un−1
2
} and B = {w1, . . . , wn−5

2
}. Without loss of generality,

assume that u = un−3
2

and v = un−1
2

.

We first consider that k is odd. Then 3 6 k 6 n− 2. Note that un−3
2

is adjacent to all

but at most one vertex in B∪{x, y} in each Gi with i ∈ [n−2]. Hence, by suitable relabel-
ing, we always guarantee that G contains a rainbow path, Pk := xu1w1 . . . u k−3

2
w k−3

2
u k−1

2
y,

along with col(Pk) ⊆ [n− 2], as desired.
Next, we assume that k is even. Then 4 6 k 6 n − 1. Recall that un−3

2
, un−1

2

are adjacent to all but at most one vertex of B ∪ {x, y, z} in Gi with i ∈ [n − 2]. If
un−3

2
un−1

2
∈ E(Gi0 [A]) for some i0 ∈ [n − 1], then by suitable relabeling, G contains a

rainbow path Pk := xu1w1 . . . u k−4
2
w k−4

2
un−3

2
un−1

2
y, along with un−3

2
un−1

2
∈ E(Gi0) and

col(Pk − un−3
2
un−1

2
) ⊆ [n− 2] \ {i0} (see Figure 3 (I)), as desired. Similarly, we can show

that such a rainbow path Pk exists if E(Gn−1[A]) 6= ∅ or Ni(z) ∩ {x, y} 6= ∅ for some
i ∈ [n− 1]. Hence, in what follows, we assume that E(Gi[A]) = ∅ and Ni(z) ∩ {x, y} = ∅
for all i ∈ [n − 1]. Therefore, Gi[A,B ∪ {x, y, z}] = Kn−1

2
,n+1

2
and Ni(z) ∩ B 6= ∅ for all

i ∈ [n− 1].
If k 6= 4, then by relabeling, we obtain that Pk := xu1zw1u2w2 . . . u k−4

2
w k−4

2
u k−2

2
y is a

rainbow path on k vertices inside G, along with col(Pk) ⊆ [n−2], see Figure 3 (II). Hence
it suffices to consider k = 4.

If Ni(x) ∩ B 6= ∅ or Ni(y) ∩ B 6= ∅ for some i ∈ [n − 1], then it is easy to see that G
contains a rainbow path P4 with endpoints x and y, as desired. Hence, if G contains no
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(I) un−3
2
un−1

2
∈ E(Gi0 [A]). (II) Ni(z) ∩B 6= ∅.

Figure 3: Subcase 2.2 (ii) and k is even.

rainbow P4 with endpoints x and y, we must have Gi[A] = ∅ and Ni(x) ∩ (B ∪ {z}) =
Ni(y) ∩ (B ∪ {z}) = ∅ for all i ∈ [n− 1]. That is to say, G = Fn−1, a contradiction.

(iii) There exists an equitable partition A∪B of V \{x, y, z} such thatH′[A,B] contains
no rainbow 2-matching. It follows that H ′i[A] and H ′i[B] are almost complete graphs for
each i ∈ [n−2]. Thus, for 3 6 k 6 n+1

2
, the rainbow path Pk can be easily found by using

vertices in A and colors in [n− 2]. In the following, we consider n+3
2

6 k 6 n− 1. In fact,
such a rainbow path Pk can be found by utilizing the vertex z or edges in E(Gi[A,B]) to
connect vertices in A and B. Here, we only illustrate the first two cases in Theorem 11
(iii), and the rest two cases can be discussed similarly.

(a) There exists an equitable partition A∪B of V \{x, y, z} and a color i1 ∈ [n−2] such
that H ′i = H ′i[A]∪H ′i[B] = 2Kn−3

2
for all i ∈ [n−2]\{i1}. Assume that A = {u1, . . . , un−3

2
}

and B = {w1, . . . , wn−3
2
}. It follows from δ(G) > n+1

2
that Gi[{x, y, z}, A ∪ B] = K3,n−3

for all i ∈ [n− 2]\{i1}.
If E(Gi1 [A,B]) = ∅, then Gi[A] ∪ Gi[B] = 2Kn−3

2
and Gi[{x, y, z}, A ∪ B] = K3,n−3

for all i ∈ [n − 2]. Thus, G contains a rainbow path Pk := xu1u2 . . . un−3
2
zw1 . . . wk−n+3

2
y

with col(Pk) ⊆ [n − 2] (see Figure 4 (I)), as desired. If E(Gi1 [A,B]) 6= ∅, then without
loss of generality, assume that un−3

2
w1 ∈ E(Gi1). Thus, G contains a rainbow path

Pk := xu1u2 . . . un−3
2
w1 . . . wk−n+1

2
y, along with un−3

2
w1 ∈ E(Gi1) and col(Pk − un−3

2
w1) ⊆

[n− 2]\{i1} (see Figure 4 (II)), as desired.
(b) There are vertices u, u′ ∈ A and w,w′ ∈ B such that E(H ′1[A,B]) = {uw, u′w′},

E(H ′2[A,B]) = {uw′, u′w} and H ′j = H ′j[A]∪H ′j[B] = 2Kn−3
2

for all j ∈ [3, n−2]. Assume

that A = {u1, . . . , un−3
2
} and B = {w1, . . . , wn−3

2
}. Let u = un−3

2
and w = w1. Since

δ(G) > n+1
2

, we have

• Gi[A] ∪Gi[B] = 2Kn−3
2

for each i ∈ [n− 2];

• all vertices in A∪B are adjacent to all vertices of {x, y, z} in Gi for each i ∈ [3, n−2].

It is easy to see that G contains a rainbow path Pk := xu1u2 . . . un−3
2
w1 . . . wk−n+1

2
y, along

with un−3
2
w1 ∈ E(G1) and col(Pk − un−3

2
w1) ⊆ [2, n− 2], as desired.

This completes the proof of Theorem 6.
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(I) E(Gi0 [A,B]) = ∅. (II) E(Gi0 [A,B]) 6= ∅.

Figure 4: Subcase 2.2 (iii) (a).

4 Concluding remarks

In this paper, we determine the Dirac-type condition for transversal panconnectedness in
graph collections. However, in Theorem 6, we require the order n to be sufficiently large
when it is odd. This assumption stems from our reliance on Theorem 11, where the same
condition is imposed. We speculate that Theorem 6 holds for all n. In fact, it suffices to
prove the following: Let n > 4 be an even integer and G = {G1, . . . , Gn+1} be a collection
of graphs on a common vertex set of size n. If δ(G) > n

2
− 1, then either G contains

rainbow Hamilton cycles or G is some exceptional graph collection.
Define σ2(G) := min{d(u) + d(v) : u, v ∈ V (G), uv /∈ E(G)}. Ore [34] proved that

every n-vertex 2-connected graph G with σ2(G) > n + 1 is Hamiltonian connected. It is
natural to study the Ore-type condition for transversal Hamiltonian connectivity in graph
collections.
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