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Abstract

Here, for W the Coxeter group Dn where n > 4, it is proved that the maximal
rank of an abstract regular polytope for W is n − 1 if n is even and n if n is odd.
Further it is shown that W has abstract regular polytopes of rank r for all r such
that 3 6 r 6 n − 1, if n is even, and 3 6 r 6 n, if n is odd. The possible ranks of
abstract regular polytopes for the exceptional finite irreducible Coxeter groups are
also determined.

Mathematics Subject Classifications: 52B11, 20B25, 20F55

1 Introduction

Finite Coxeter groups appear in many guises in the mathematics literature – as Weyl
groups of semisimple Lie algebras, reflection groups, and automorphism groups of regular
polytopes to mention a few. It is the last area that is of interest here. We recall that
Sym(n + 1), the symmetric group of degree n + 1, also the Coxeter group of type An is
the automorphism group of a regular n-simplex, while the Coxeter group of type Bn is
the automorphism group of the n-cube and its dual, the n-cross polytope.

In this paper we examine abstract regular polytopes of the finite irreducible Coxeter
groups W . As is documented in McMullen and Schulte [27], this is equivalent to inves-
tigating the C-strings of W , and we follow that approach. A C-string of a group G is a
set of involutions S = {s1, . . . , sr} of G which generates the group. Additionally, setting
I = {1, . . . , r} and, for J ⊆ I,WJ = 〈sj | j ∈ J〉, they must satisfy

(i) for all J,K ⊆ I, WJ ∩WK = WJ∩K (intersection property); and

(ii) sisj = sjsi for all i, j ∈ I with |i− j| > 2 (string property).
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We refer to r as the rank of the C-string, equivalently, the rank of the associated
abstract regular polytope, and also call (G,S) a string C-group. The maximal rank for a
C-string of W will be denoted by rmax(W ). If W is either of type An or Bn, then their
defining presentation in terms of fundamental (or simple) reflections yields a C-string of
rank n (see Section 5.5 of [18] for the intersection property). Moreover rmax(W ) = n
when W ∼= An, a consequence of a recent deep result by Whiston [30] which uses the
classification of finite simple groups. For W ∼= Bn, rmax(W ) = n when n is even and
rmax(W ) = n+1 when n is odd. In the latter case the corresponding C-string is degenerate,
meaning the string is disconnected. See Theorem 8(ii) for more details. If we insist on
only considering non-degenerate strings, then we have rmax(W ) = n. On the other hand,
I2(m), identified as Dih(2m) are also well known to only exhibit rank two polytopes given
by the m-gon. Now in the remaining infinite family of finite irreducible Coxeter groups we
have Dn whose Dynkin diagrams are not strings. Our first result concerns the maximal
rank of C-strings for this family. Noting that D4 has no C-strings, we have the following
theorem.

Theorem 1. Suppose that W is the Coxeter group Dn with n > 5. If n is even, then
rmax(W ) = n− 1 and if n is odd, then rmax(W ) = n.

The question as to the existence of abstract regular polytopes for intermediate rank
values is the subject of the next theorem.

Theorem 2. Suppose that W is the Coxeter group Dn with n > 5. Then W has a C-string
of rank r for all r with 3 6 r 6 rmax(W ).

To complete the picture we consider the exceptional finite irreducible Coxeter groups.

Theorem 3. Suppose that W is an exceptional finite irreducible Coxeter group.

(i) If W is one of I2(m),H3,H4,F4, then rmax(W ) is the Coxeter rank of W .

(ii) If W is one of E6,E7,E8, then rmax(W ) is 5, 6, and 7, respectively.

The quest to classify string C-groups in a given family of groups started from early
experimental results by Hartley [16] and also the joint work of Leemans and Vauthier [26]
which resulted in atlases of abstract regular polytopes for small groups. More efficient
computer algorithms have also been developed which successfully enumerated the C-
strings of some sporadic simple groups [17, 21, 22]. This experimental data has led
to some interesting conjectures which were later proven theoretically. In particular, the
possible ranks of C-strings has been investigated for some infinite families of almost simple
groups, namely the Suzuki groups Sz(q) [19], Ree groups 2G2(q) [25], groups with socle
PSL(2, q) [11, 23, 24], groups PSL(3, q) and PGL(3, q) [6], groups PSL(4, q) [4], symmetric
groups [13], alternating groups [10, 14], orthogonal and symplectic groups [3, 2]. We refer
the interested reader to a recent survey article by Leemans [20] for more details of these
investigations.

Only a few family of groups are known to give rise to string C-groups of arbitrarily
large rank. As already noted, the highest possible rank of a string C-group representation
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for Sym(n) is n−1, and for n > 12, the highest rank for Alt(n) is bn−1
2
c [10]. Furthermore,

Sym(n) has C-strings of rank r for every 3 6 r 6 n− 1 [13], and for n > 12, Alt(n) also
has C-strings of rank r for every 3 6 r 6 bn−1

2
c [14]. Likewise for all integers k,m > 2, the

orthogonal groups O±(2m, 2k) and the symplectic groups Sp(2m, 2k) have string C-group
representations of rank 2m and 2m+ 1 [3], respectively. Interestingly in [5], Brooksbank
proved a ‘rank reduction theorem’ which can be applied on known string C-groups to
obtain C-strings of the same group with smaller ranks, and consequently it was shown
that O±(2m, 2k) and Sp(2m, 2k) have string C-group representations of rank r for every
3 6 r 6 2m and 3 6 r 6 2m+ 1, respectively. For recent work on polytopes of rank n/2
for a transitive group of degree n see [15]. Finally, we mention a further study in which
two interesting families of C-strings for Bn are constructed [28].

This paper is structured as follows. In Section 2, we state some preliminary results on
Coxeter groups and string C-groups. Lemma 4 plays an important role as our investiga-
tions into W ∼= Dn are conducted in Sym(2n). Section 3 begins with Theorem 12 showing
that rmax(W ) < n when n is even. The remainder of this section focuses on constructing
various C-strings for W and then Lemmas 9 and 10 together with Theorem 11 are called
upon. Our final section gives a census of abstract regular polytopes for the exceptional
finite irreducible Coxeter groups.

2 Preliminaries

We recall that a Coxeter group is a group W with presentation 〈s1, . . . , sn | (sisj)
mij〉

where mii = 1 and mij = mji > 2 is a positive integer or infinity for every 1 6 i < j 6 n
(infinity being read as no relation). The Coxeter rank of W is n. Associated with this
presentation is the Coxeter diagram where the nodes correspond to the si with a bond
between si and sj if i 6= j and mij > 2. If this diagram is connected, then W is said to be
an irreducible Coxeter group. Coxeter [12] (see also [18]) classified the finite irreducible
Coxeter groups. There are four infinite families denoted An, Bn, Dn, I2(m), and six
exceptional groups H3, H4, F4, E6, E7, E8 (we shall blur the distinction between the
group and its root system).

As already mentioned in Section 1, we shall focus on the Coxeter groups Dn and the
exceptional groups. Suppose W is isomorphic to Dn, where n > 4. Then W = SN where
S ∼= Sym(n) and N is a normal subgroup of W with N an elementary abelian subgroup
of order 2n−1. The subgroup N will sometimes be called the subgroup of (even) sign
changes. In this paper we frequently view W as a subgroup of Sym(2n), as specified in
our first lemma.

Lemma 4. [18, (2.10)] Let β0 = (1, n+ 1)(2, n+ 2) and βi = (i, i+ 1)(n+ i, n+ i+ 1) for
every 1 6 i 6 n − 1 be permutations in Sym(2n). Then 〈β0, β1, . . . , βn−1〉 is isomorphic
to Dn.

We mention that the permutation representation of Dn in Lemma 4 may also be
viewed as its action on the 2n facets of the n-cube (or equivalently, the 2n vertices of the
n-crosspolytope).
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In a similar fashion, we also have the well-known characterization of Sym(n).

Lemma 5. [18, (6.4)] Let G be a group with presentation 〈s1, . . . , sn−1 | (sisj)mij〉 where
mii = 1, mij = 2 if |i− j| > 2 and mij = 3 if |i− j| = 1 for every 1 6 i, j 6 n− 1. Then
G is isomorphic to Sym(n).

Observe that in Lemma 4, W ∼= Dn is a transitive subgroup of Sym(2n). Also note,
using the notation from Lemma 4 that 〈β1, . . . , βn−1〉 ∼= Sym(n), while products of an
even number of transpositions of the form (i, n+ i), for some 1 6 i 6 n yields the normal
elementary abelian subgroup of sign changes. The next lemma will be used frequently in
Section 3.

Lemma 6. Suppose that W ∼= Dn with N being the subgroup of sign changes. If H 6 W
is such that W = HN and H ∩N 66 Z(W ), then W = H.

Proof. Since N is abelian and W = HN , H ∩ N E W . The only non-trivial normal
subgroup of W contained in N is Z(W ) (if n is even) and N . Thus, as H ∩N 66 Z(W ),
H ∩N = N which implies H = HN = W .

Now let G be a group generated by involutions s1, . . . , sr with the ordering such that
sisj = sjsi (or equivalently, (sisj)

2 = 1) if |i− j| > 2 for every i, j ∈ I = {1, . . . , r}. Then
(G, {s1, . . . , sr}) is said to be a string group generated by involutions. Set GJ = 〈sj | j ∈ J〉
for every J ⊆ I, and sometimes we may write Gi1,...,ik in place of G{i1,...,ik}. Its Schläfli
type is the sequence {p1, . . . , pr−1} where pi is the order of sisi+1 for every 1 6 i 6 r − 1.
If a symbol pi appears k times in adjacent places in the sequence we may write pki in place
of writing pi k times. So a string group generated by involutions will be a string C-group
if the intersection condition also holds.

A set R of elements of a group G is independent if for every g ∈ R, g 6∈ 〈R \ {g}〉. Let
µ(G) denote the maximum size of an independent subset of G.

Theorem 7. Suppose that G ∼= Sym(m). Then

(i) µ(G) 6 m− 1.

(ii) Assume that m > 5. If (G,S) is a string group generated by involutions and S is
an independent set of size m− 1, then S is the set of Coxeter generators for G.

Proof. (i) This is a theorem of Whiston [30]. (ii) This follows from Cameron and Cara
[8] which classifies independent sets of size m− 1 in Sym(m) when m > 7, while m = 5, 6
can be checked using Magma [1].

Theorem 7 is deployed in the proof of Theorem 12, as is our next theorem which gives
an upper bound for the rank of a C-string of transitive permutation groups. This is due
to Cameron, Fernandes, Leemans and Mixer and is as follows.

Theorem 8. [9, Theorem 1.2] Let G be a string C-group of rank r which is isomorphic to
a transitive subgroup of Sym(n) other than Sym(n) or Alt(n). Then one of the following
holds.

the electronic journal of combinatorics 32(4) (2025), #P4.18 4



(i) r 6 n/2.

(ii) n ≡ 2 (mod 4) and G ∼= Bn
∼= C2 o Sym(n/2) with Schläfli type {2, 3n/2−2, 4}.

(iii) G is imprimitive and is one of the following.

(a) G = 6T9 with Schläfli type {3, 2, 3}.
(b) G = 6T11 with Schläfli type {2, 3, 3}.
(c) G = 6T11 with Schläfli type {2, 3, 4}.
(d) G = 8T45 with Schläfli type {3, 4, 4, 3}.

Here, nTj is the j-th conjugacy class among transitive subgroups of Sym(n) according
to Butler and McKay [7].

(iv) G is primitive. In this case, n = 6 and G is obtained from the degree six permutation
representation of Sym(5) ∼= PGL2(5) and is the group of the 4-simplex of Schläfli
type {3, 3, 3}.

We will also make use of the following lemmas to verify that the generating set of
involutions we construct indeed give us string C-groups.

Lemma 9. [27, 2E16(a) and 11A10] Let (G, {s1, . . . , sr}) be a string group generated by
involutions where G1,...,r−1 and G2,...,r are string C-groups. Then G is a string C-group if
either of the following conditions are satisfied.

(i) G1,...,r−1 ∩G2,...,r = G2,...,r−1.

(ii) sr /∈ G1,...,r−1 and G2,...,r−1 is maximal in G2,...,r.

Lemma 10. [27, 2E16(b)] Let (G, {s1, . . . , sr}) be a string group generated by involutions
such that G1,...,r−1 is a string C-group and G1,...,r−1 ∩Gk,...,r = Gk,...,r−1 for every 2 6 k 6
r − 1. Then G is also a string C-group.

Once we have constructed a C-string of maximal rank, we will use the following rank
reduction theorem by Brooksbank and Leemans to obtain C-strings of smaller ranks.

Theorem 11. [5, Theorem 1.1 and Corollary 1.3] Let (G, {s1, . . . , sn}) be a
non-degenerate string C-group of rank n > 4 with Schläfli type {p1, . . . , pn−1}. If s1 ∈
〈s1s3, s4〉, then (G, {s2, s1s3, s4, . . . , sn}) is a string C-group of rank n− 1. In particular,
G has a C-string of rank n− i for every 0 6 i 6 t, where

t = max{j ∈ {0, . . . , n− 3} | for all i ∈ {0, . . . , j}, p3+i is odd}.
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3 C-Strings for Dn

Theorem 12. Let n be even with n > 6. If W ∼= Dn, then rmax(W ) < n.

Proof. By Lemma 4 we may regard W as a subgroup of Sym(2n) and hence, appealing to
Theorem 8, rmax(W ) 6 n. So we must show that W has no C-strings of rank n. Assuming
that W has a C-string S with |S| = n, we seek a contradiction. Let S = {s1, . . . , sn} with
sisj = sjsi for all i, j ∈ I = {1, . . . , n} with |i − j| > 2. Recalling the bar convention,
put W = W/N where N is the subgroup of W consisting of the even sign changes. So
W ∼= Sym(n).

(12.1) For i ∈ I, si /∈ Z(W ).

Suppose that si ∈ Z(W ) and set H = 〈S \ {si}〉. Then W/Z(W ) = HZ(W )/Z(W )
and therefore HZ(W ) = W = HN with H ∩ N 66 Z(W ). Thus W = H by Lemma 6,
against S satisfying the intersection condition. This proves (12.1).

Let T ⊆ S be such that T is an independent generating set for W . Hence |T | 6 n− 1
by Theorem 7(i). Further T is a connected string in W . For if not then T = T 1 ∪ T 2,
Ti ⊆ S with [T 1, T 2] = 1 and T 1 6= ∅ 6= T 2. But then 〈T 1〉〈T 2〉 = W with [〈T 1〉, 〈T 2〉] = 1,
contrary to W ∼= Sym(n).

(12.2) |T | = n− 1 or n− 2. Moreover, if |T | = n− 2, then T = {s2, . . . , sn−1}.

Suppose that |T | 6 n−3. Then there exists s ∈ S such that [T, s] = 1. From 〈T 〉 = W ,
we get s ∈ Z(W ) and then, as W ∼= Sym(n), we have s ∈ N . Hence, using (12.1) and
Lemma 6, W = 〈T ∪ {s}〉 which is impossible as S satisfies the intersection property.
Thus |T | = n − 1 or n − 2. A similar argument applies to show T = {s2, . . . sn−1} when
|T | = n− 2.

(12.3) |T | 6= n− 1.

Suppose that |T | = n−1. We may assume, as T is connected, that T = {s1, . . . , sn−1}.
Put X = 〈s1, . . . , sn−2〉. By Theorem 7(ii) T consists of the Coxeter generators for W .
Thus X ∼= Sym(n − 1). Because [sn, si] = 1 for i = 1, . . . , n − 2, sn ∈ CW (X). Since
CW (X) = 1, sn ∈ N . Now n − 1 being odd implies CN(X) = Z(W ) giving sn ∈ Z(W ),
against (12.1). This rules out |T | = n− 1.

(12.4) |T | 6= n− 2.

Assume that |T | = n − 2. By (12.2) we have T = {s2, . . . , sn−1}. Put X =
〈s2, . . . , sn−1〉 and X1 = 〈s1, s2, . . . , sn−1〉. Then W = XN = X1N and, as X 6 X1, X1 =
X(X1 ∩ N). If X1 ∩ N = 1, then X1

∼= Sym(n) and so X = X1. But this contradicts
the intersection condition. Thus X1 ∩ N 6= 1. If X1 ∩ N 6= Z(W ), then Lemma 6 forces

the electronic journal of combinatorics 32(4) (2025), #P4.18 6



X1 = W , also a contradiction. Hence X1 ∩N = Z(W ) and consequently X1 = XZ(W ).
A similar argument applies for Xn = 〈s2, . . . , sn−1, sn〉 to also yield Xn = XZ(W ). But
then

W = 〈s1, . . . , sn〉 6 XZ(W ) 6= W,

so proving (12.4).

Combining (12.2), (12.3) and (12.4) yields the desired contradiction, so establishing
Theorem 12.

In the remainder of this section we construct examples of C-strings for Dn.
For every integer n > 5, we define t1, . . . , tn in Sym(2n) as follows.

t1 =
n∏
j=2

(j, n+ j),

ti = (i− 1, i)(n+ i− 1, n+ i) for every 2 6 i 6 n.

Lemma 13. For every 1 6 i, j 6 n, we have

order of titj =


1, if i = j,

2, if |i− j| > 2,

3, if |i− j| = 1 and {i, j} 6= {1, 2},
4, if {i, j} = {1, 2}.

.

Proof. Each of the elements t1, . . . , tn are involutions as they are defined as products of
pairwise disjoint transpositions. Note that

t1t2 = (1, 2, n+ 1, n+ 2)
n∏
j=3

(j, n+ j),

titi+1 = (i− 1, i+ 1, i)(n+ i− 1, n+ i+ 1, n+ i) for every 2 6 i 6 n.

For every 2 6 i, j 6 n with |i− j| > 2, ti and tj are disjoint, whereas for every 3 6 k 6 n,
note that

t1tk = (k − 1, n+ k)(k, n+ k − 1)
∏

26j6n
j /∈{k−1,k}

(j, n+ j).

As such, titj is a product of pairwise disjoint transpositions for every 1 6 i, j 6 n with
|i− j| > 2. The lemma follows from examining each of the products titj in disjoint cycle
notation.

Lemma 14. 〈t1, . . . , tn〉 is a string C-group.

Proof. We prove by induction on k that 〈t1, . . . , tk〉 is a string C-group for every 3 6 k 6 n.
For the base case k = 3, it is easy to verify that 〈t1, t2〉 ∩ 〈t2, t3〉 = 〈t2〉. So now suppose
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that k > 3 and that 〈t1, . . . , tk−1〉 is a string C-group. Now by Lemmas 5 and 13,
〈t2, . . . , tk〉 ∼= Sym(k) is a string C-group and 〈t2, . . . , tk−1〉 ∼= Sym(k−1) which is maximal
in 〈t2, . . . , tk〉. We also have tk /∈ 〈t1, . . . , tk−1〉 because tk moves k − 1 to k, which are
in different 〈t1, . . . , tk〉-orbits. It follows from Lemma 9 that 〈t1, . . . , tk〉 is a string C-
group.

Lemma 15. Let n be odd and n > 5. Then 〈t1, . . . , tn〉 is isomorphic to Dn.

Proof. Let G = 〈t1, . . . , tn〉, H = 〈β0, β1, . . . , βn−1〉 where β0 = (1, n + 1)(2, n + 2) and
βi = (i, i + 1)(n + i, n + i + 1) for every 1 6 i 6 n − 1. Then H ∼= Dn by Lemma 4 and
we want to show that G = H. Since ti = βi−1 for every 2 6 i 6 n, it suffices to show that
β0 ∈ G and t1 ∈ H.

We note that

t1t2 = (1, 2, n+ 1, n+ 2)
n∏
j=3

(j, n+ j),

whence β0 = (1, n + 1)(2, n + 2) = (t1t2)
2 ∈ G. Now let αi,j = (i, n + i)(j, n + j) and

γi,j = (i, j)(n + i, n + j) for every 2 6 i, j 6 n. Note that α2,3 = ββ2β10 ∈ H. Now for
4 6 k 6 n, we have

γ2,k = β2
∏k

j=4 βj−1 and γ3,k = β2
γ2,k .

It follows that for every 4 6 i, j 6 n, we have αi,j = α2,3
γ2,iγ3,j ∈ H and hence, t1 =

α2,3α4,5 · · ·αn−1,n ∈ H.

Theorem 16. Let n be odd and n > 5. Then {t1, . . . , tn} is a rank n C-string of Dn with
Schläfli type {4, 3n−2}. Therefore, rmax(Dn) = n and there is a rank r C-string of Dn for
every 3 6 r 6 n.

Proof. The first assertion follows from Lemmas 13, 14 and 15. The second and third
assertion follows from Theorem 8 and Theorem 11, respectively.

To describe our C-strings, we will use an interesting graph called the string C-group
permutation representation (CPR) graph, first introduced in [29]. Let (G, {s1, . . . , sr})
be a string C-group identified as a permutation group of degree m. Then the CPR graph
of G is an r-edge-labelled multigraph with vertex set {1, . . . ,m} such that {i, j} is an
edge of label k if sk moves i to j. Recall the notation for W ∼= Dn when W 6 Sym(2n)
as described in Section 2. That is, W = SN where S ∼= Sym(n) and N is the subgroup
of even sign changes.

Theorem 17. [13, Lemma 21] Let n > 5 and 3 6 d 6 n − 2. Then Sym(n) has a
C-string of rank d with Schläfli type {3d−3, 6, n−d+ 2} whose CPR graph can be obtained
by appending n − d vertices and edges with labels d − 1 and d alternatively to the CPR
graph of the d-simplex, as follows.

1 2 · · · d− 1 d d− 1 d · · ·
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Lemma 18. Let G = 〈s1, . . . , sr〉 6 W 6 Sym(2n) with W ∼= Dn be a string group
generated by involutions. If G1,...,r−1 = S ∼= Sym(n) is a string C-group and sr ∈ N\Z(G),
then G = W and is also a string C-group.

Proof. By Lemma 6 we have G = W . Let 2 6 k 6 r − 1. Since sr ∈ N , Gk,...,r 6
Gk,...,r−1N , and so Gk,...,r = Gk,...,r−1(Gk,...,r ∩N) by the Dedekind law. Then by Dedekind
law again,

G1,...,r−1 ∩Gk,...,r = G1,...,r−1 ∩ (Gk,...,r−1(Gk,...,r ∩N))

= Gk,...,r−1(G1,...,r−1 ∩Gk,...,r ∩N)

= Gk,...,r−1,

as G1,...,r−1 ∩N = S ∩N = 1. Thus the lemma follows from Lemma 10.

Let n > 6 be an even integer for the remainder of this section. We first construct rank
three C-strings of Dn, defining t1, t2, t3 in Sym(2n) as follows.

t1 = (1, 2)(n+ 1, n+ 2)(n− 1, 2n− 1)(n, 2n),

t2 = (2, 3)(4, 5) · · · (n− 2, n− 1)(n+ 2, n+ 3)(n+ 4, n+ 5) · · · (2n− 2, 2n− 1),

t3 = (3, 4)(5, 6) · · · (n− 1, n)(n+ 3, n+ 4)(n+ 5, n+ 6) · · · (2n− 1, 2n).

1 2 3
· · ·

2 3

1 2 3
· · ·

2 3

1 1

Lemma 19. {t1, t2, t3} is a rank 3 C-string of Dn with Schläfli type {12, n− 1}.

Proof. Each of the elements t1, t2, t3 are involutions as they are defined as products of
pairwise disjoint transpositions. Note that

t1t2 = (1, 3, 2)(n− 1, 2n− 2, 2n− 1, n− 2)(n, 2n)

(4, 5) · · · (n− 4, n− 3)(n+ 4, n+ 5) · · · (2n− 4, 2n− 3),

t2t3 = (2, 4, . . . , n, n− 1, n− 3, . . . , 3)(n+ 2, n+ 4, . . . , 2n, 2n− 1, 2n− 3, . . . , n+ 3),

t1t3 = (1, 2) · · · (n− 3, n− 2)(n− 1, 2n)(n, 2n− 1).

Since 〈t1, t2〉 ∼= Dih(24), its elements are of the form t1
ε(t1t2)

k for some integers ε ∈ {0, 1}
and 0 6 k 6 11. Also since 〈t2, t3〉 6 S ∩ StabSym(2n)(1), we have

〈t1, t2〉 ∩ 〈t2, t3〉 6 〈t1, t2〉 ∩
(
S ∩ StabSym(2n)(1)

)
= (〈t1, t2〉 ∩ S) ∩

(
〈t1, t2〉 ∩ StabSym(2n)(1)

)
= 〈t1, (t1t2)4〉 ∩ 〈t1, (t1t2)3〉 = 〈t2〉.
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It follows that 〈t1, t2〉 ∩ 〈t2, t3〉 = 〈t2〉 and so 〈t1, t2, t3〉 is a string C-group with Schläfli
type {12, n−1}. We now show that H = 〈t1, t2, t3〉 is isomorphic to Dn. Note that H = S
by Theorem 17 and so HN = Dn. Since

(n− 2, 2n− 2)(n− 1, 2n− 1) = (t1t2)
6 ∈ N

and (n−2, 2n−2)(n−1, 2n−1) /∈ Z(Dn). Then calling upon Lemma 6 yields H = Dn.

We now construct rank r C-strings of Dn for every 4 6 r 6 n− 1 as follows. We use
Theorem 17 to construct a rank r − 1 C-string for the subgroup S ∼= Sym(n) of Dn, and
then append an element in N . We note that the construction depends on the parity of r.

If r is odd, we define t1, . . . , tr in Sym(2n) as follows.

ti = (i, i+ 1)(n+ i, n+ i+ 1) for every 1 6 i 6 r − 3,

tr−2 = (r − 2, r − 1)(r, r + 1) · · · (n− 1, n)

(n+ r − 2, n+ r − 1)(n+ r, n+ r + 1) · · · (2n− 1, 2n),

tr−1 = (r − 1, r)(r + 1, r + 2) · · · (n− 2, n− 1)

(n+ r − 1, n+ r)(n+ r + 1, n+ r + 2) · · · (2n− 2, 2n− 1),

tr = (n− 1, 2n− 1)(n, 2n).

1 2
· · ·

r − 2 r − 1
· · ·

r − 1 r − 2

1 2
· · ·

r − 2 r − 1
· · ·

r − 1 r − 2

r r

If r is even, we define t1, . . . , tr in Sym(2n) as follows.

ti = (i, i+ 1)(n+ i, n+ i+ 1) for every 1 6 i 6 r − 3,

tr−2 = (r − 2, r − 1)(r, r + 1) · · · (n− 2, n− 1)(n+ r − 2, n+ r − 1)

(n+ r, n+ r + 1) · · · (2n− 2, 2n− 1),

tr−1 = (r − 1, r)(r + 1, r + 2) · · · (n− 1, n)(n+ r − 1, n+ r) · · · (2n− 1, 2n),

tr = (n− 2, 2n− 2)(n− 1, 2n− 1).

1 2
· · ·

r − 2 r − 1
· · ·

r − 2 r − 1

1 2
· · ·

r − 2 r − 1
· · ·

r − 2 r − 1

r r

Lemma 20. Let n be even and n > 6. Then for every 4 6 r 6 n − 1, {t1, . . . , tr} is a
rank r C-string of Dn with Schläfli type {3r−4, 6, n− r + 3, 4}.
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Proof. Each of the elements t1, . . . , tr are involutions as they are defined as products of
pairwise disjoint transpositions. Note that for every 1 6 k 6 r − 3, we have

tktr =

{
(k, k + 1)(n+ k, n+ k + 1)(n− 1, 2n− 1)(n, 2n) , if r is odd

(k, k + 1)(n+ k, n+ k + 1)(n− 2, 2n− 2)(n− 1, 2n− 1) , if r is even
,

which are products of pairwise disjoint transpositions because

k + 1 6 (r − 3) + 1 6 ((n− 1)− 3) + 1 = n− 3 < n− 2.

Likewise, if r is odd we have

tr−2tr = (n− 1, 2n)(n, 2n− 1)(r − 2, r − 1)(r, r + 1) · · · (n− 3, n− 2)

(n+ r − 2, n+ r − 1)(n+ r, n+ r + 1) · · · (2n− 3, 2n− 2),

whereas if r is even we have

tr−2tr = (n− 2, 2n− 1)(n− 1, 2n− 2)(r − 2, r − 1)(r, r + 1) · · · (n− 4, n− 3)

(n+ r − 2, n+ r − 1)(n+ r, n+ r + 1) · · · (2n− 4, 2n− 3),

which are also products of pairwise disjoint transpositions. Finally, we have

tr−1tr = (n− 1, n− 2, 2n− 1, 2n− 2)(n, 2n)

(r − 1, r)(r + 1, r + 2) · · · (n− 4, n− 3)

(n+ r − 1, n+ r)(n+ r + 1, n+ r + 2) · · · (2n− 4, 2n− 3)

for r odd and we also have

tr−1tr = (n− 2, n− 3, 2n− 2, 2n− 3)(n− 1, n, 2n− 1, 2n)

(r − 1, r)(r + 1, r + 2) · · · (n− 5, n− 4)

(n+ r − 1, n+ r)(n+ r + 1, n+ r + 2) · · · (2n− 5, 2n− 4),

for r even. It follows from Lemma 18 that 〈t1, . . . , tr〉 = Dn is a string C-group with
Schläfli type {3r−4, 6, n− r + 3, 4}.

Theorem 21. Let n be even and n > 6. Then rmax(Dn) = n − 1 and there is a rank r
C-string of Dn for every 3 6 r 6 n− 1.

Proof. The theorem follows from Lemmas 19, 20 and Theorem 12.

Together Theorems 12, 16 and 21 prove Theorems 1 and 2.

4 Exceptional Finite Irreducible Coxeter Groups

The following table lists the number of abstract regular polytopes (up to isomorphism and
duality with the number of self-dual polytopes in brackets) for each exceptional Coxeter
groups computed using Magma [1].
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Table 1: Number of polytopes for each exceptional Coxeter group.
Group Total Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank > 8

H3 8(1) 8(1) 0 0 0 0 0
H4 59(6) 45(2) 14(4) 0 0 0 0
F4 5(1) 3(0) 2(1) 0 0 0 0
E6 147(18) 87(12) 50(4) 10(2) 0 0 0
E7 3662(10) 1577(10) 1525(0) 465(0) 95(0) 0 0
E8 11689(142) 6746(117) 3584(22) 986(2) 310(0) 63(1) 0
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