Abstract Regular Polytopes of Finite Irreducible Coxeter Groups

Malcolm Hoong Wai Chen Peter Rowley

Submitted: Jan 13, 2025; Accepted: Aug 27, 2025; Published: Oct 17, 2025 © The authors. Released under the CC BY license (International 4.0).

Abstract

Here, for W the Coxeter group D_n where n > 4, it is proved that the maximal rank of an abstract regular polytope for W is n-1 if n is even and n if n is odd. Further it is shown that W has abstract regular polytopes of rank r for all r such that $3 \le r \le n-1$, if n is even, and $3 \le r \le n$, if n is odd. The possible ranks of abstract regular polytopes for the exceptional finite irreducible Coxeter groups are also determined.

Mathematics Subject Classifications: 52B11, 20B25, 20F55

1 Introduction

Finite Coxeter groups appear in many guises in the mathematics literature – as Weyl groups of semisimple Lie algebras, reflection groups, and automorphism groups of regular polytopes to mention a few. It is the last area that is of interest here. We recall that $\operatorname{Sym}(n+1)$, the symmetric group of degree n+1, also the Coxeter group of type A_n is the automorphism group of a regular n-simplex, while the Coxeter group of type B_n is the automorphism group of the n-cube and its dual, the n-cross polytope.

In this paper we examine abstract regular polytopes of the finite irreducible Coxeter groups W. As is documented in McMullen and Schulte [27], this is equivalent to investigating the C-strings of W, and we follow that approach. A *C-string* of a group G is a set of involutions $S = \{s_1, \ldots, s_r\}$ of G which generates the group. Additionally, setting $I = \{1, \ldots, r\}$ and, for $J \subseteq I, W_J = \langle s_j \mid j \in J \rangle$, they must satisfy

- (i) for all $J, K \subseteq I, W_J \cap W_K = W_{J \cap K}$ (intersection property); and
- (ii) $s_i s_j = s_j s_i$ for all $i, j \in I$ with $|i j| \ge 2$ (string property).

Department of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom (malcolmhoongwai.chen@postgrad.manchester.ac.uk, peter.j.rowley@manchester.ac.uk).

We refer to r as the rank of the C-string, equivalently, the rank of the associated abstract regular polytope, and also call (G,S) a $string\ C$ -group. The maximal rank for a C-string of W will be denoted by $r_{\max}(W)$. If W is either of type A_n or B_n , then their defining presentation in terms of fundamental (or simple) reflections yields a C-string of rank n (see Section 5.5 of [18] for the intersection property). Moreover $r_{\max}(W) = n$ when $W \cong A_n$, a consequence of a recent deep result by Whiston [30] which uses the classification of finite simple groups. For $W \cong B_n$, $r_{\max}(W) = n$ when n is even and $r_{\max}(W) = n+1$ when n is odd. In the latter case the corresponding C-string is degenerate, meaning the string is disconnected. See Theorem 8(ii) for more details. If we insist on only considering non-degenerate strings, then we have $r_{\max}(W) = n$. On the other hand, $I_2(m)$, identified as Dih(2m) are also well known to only exhibit rank two polytopes given by the m-gon. Now in the remaining infinite family of finite irreducible Coxeter groups we have D_n whose Dynkin diagrams are not strings. Our first result concerns the maximal rank of C-strings for this family. Noting that D_4 has no C-strings, we have the following theorem.

Theorem 1. Suppose that W is the Coxeter group D_n with $n \ge 5$. If n is even, then $r_{\max}(W) = n - 1$ and if n is odd, then $r_{\max}(W) = n$.

The question as to the existence of abstract regular polytopes for intermediate rank values is the subject of the next theorem.

Theorem 2. Suppose that W is the Coxeter group D_n with $n \ge 5$. Then W has a C-string of rank r for all r with $3 \le r \le r_{\max}(W)$.

To complete the picture we consider the exceptional finite irreducible Coxeter groups.

Theorem 3. Suppose that W is an exceptional finite irreducible Coxeter group.

- (i) If W is one of $I_2(m)$, H_3 , H_4 , F_4 , then $r_{max}(W)$ is the Coxeter rank of W.
- (ii) If W is one of E_6 , E_7 , E_8 , then $r_{max}(W)$ is 5, 6, and 7, respectively.

The quest to classify string C-groups in a given family of groups started from early experimental results by Hartley [16] and also the joint work of Leemans and Vauthier [26] which resulted in atlases of abstract regular polytopes for small groups. More efficient computer algorithms have also been developed which successfully enumerated the C-strings of some sporadic simple groups [17, 21, 22]. This experimental data has led to some interesting conjectures which were later proven theoretically. In particular, the possible ranks of C-strings has been investigated for some infinite families of almost simple groups, namely the Suzuki groups Sz(q) [19], Ree groups $^2G_2(q)$ [25], groups with socle PSL(2,q) [11, 23, 24], groups PSL(3,q) and PGL(3,q) [6], groups PSL(4,q) [4], symmetric groups [13], alternating groups [10, 14], orthogonal and symplectic groups [3, 2]. We refer the interested reader to a recent survey article by Leemans [20] for more details of these investigations.

Only a few family of groups are known to give rise to string C-groups of arbitrarily large rank. As already noted, the highest possible rank of a string C-group representation

for Sym(n) is n-1, and for $n \ge 12$, the highest rank for Alt(n) is $\lfloor \frac{n-1}{2} \rfloor$ [10]. Furthermore, Sym(n) has C-strings of rank r for every $3 \le r \le n-1$ [13], and for $n \ge 12$, Alt(n) also has C-strings of rank r for every $3 \le r \le \lfloor \frac{n-1}{2} \rfloor$ [14]. Likewise for all integers $k, m \ge 2$, the orthogonal groups $O^{\pm}(2m, 2^k)$ and the symplectic groups $Sp(2m, 2^k)$ have string C-group representations of rank 2m and 2m+1 [3], respectively. Interestingly in [5], Brooksbank proved a 'rank reduction theorem' which can be applied on known string C-groups to obtain C-strings of the same group with smaller ranks, and consequently it was shown that $O^{\pm}(2m, 2^k)$ and $Sp(2m, 2^k)$ have string C-group representations of rank r for every $3 \le r \le 2m$ and $3 \le r \le 2m+1$, respectively. For recent work on polytopes of rank n/2 for a transitive group of degree n see [15]. Finally, we mention a further study in which two interesting families of C-strings for B_n are constructed [28].

This paper is structured as follows. In Section 2, we state some preliminary results on Coxeter groups and string C-groups. Lemma 4 plays an important role as our investigations into $W \cong D_n$ are conducted in $\operatorname{Sym}(2n)$. Section 3 begins with Theorem 12 showing that $r_{\max}(W) < n$ when n is even. The remainder of this section focuses on constructing various C-strings for W and then Lemmas 9 and 10 together with Theorem 11 are called upon. Our final section gives a census of abstract regular polytopes for the exceptional finite irreducible Coxeter groups.

2 Preliminaries

We recall that a Coxeter group is a group W with presentation $\langle s_1, \ldots, s_n \mid (s_i s_j)^{m_{ij}} \rangle$ where $m_{ii} = 1$ and $m_{ij} = m_{ji} \geq 2$ is a positive integer or infinity for every $1 \leq i < j \leq n$ (infinity being read as no relation). The Coxeter rank of W is n. Associated with this presentation is the Coxeter diagram where the nodes correspond to the s_i with a bond between s_i and s_j if $i \neq j$ and $m_{ij} > 2$. If this diagram is connected, then W is said to be an irreducible Coxeter group. Coxeter [12] (see also [18]) classified the finite irreducible Coxeter groups. There are four infinite families denoted A_n , B_n , D_n , $I_2(m)$, and six exceptional groups H_3 , H_4 , F_4 , E_6 , E_7 , E_8 (we shall blur the distinction between the group and its root system).

As already mentioned in Section 1, we shall focus on the Coxeter groups D_n and the exceptional groups. Suppose W is isomorphic to D_n , where n > 4. Then W = SN where $S \cong \operatorname{Sym}(n)$ and N is a normal subgroup of W with N an elementary abelian subgroup of order 2^{n-1} . The subgroup N will sometimes be called the subgroup of (even) sign changes. In this paper we frequently view W as a subgroup of $\operatorname{Sym}(2n)$, as specified in our first lemma.

Lemma 4. [18, (2.10)] Let $\beta_0 = (1, n+1)(2, n+2)$ and $\beta_i = (i, i+1)(n+i, n+i+1)$ for every $1 \le i \le n-1$ be permutations in Sym(2n). Then $\langle \beta_0, \beta_1, \dots, \beta_{n-1} \rangle$ is isomorphic to D_n .

We mention that the permutation representation of D_n in Lemma 4 may also be viewed as its action on the 2n facets of the n-cube (or equivalently, the 2n vertices of the n-crosspolytope).

In a similar fashion, we also have the well-known characterization of Sym(n).

Lemma 5. [18, (6.4)] Let G be a group with presentation $\langle s_1, \ldots, s_{n-1} | (s_i s_j)^{m_{ij}} \rangle$ where $m_{ii} = 1$, $m_{ij} = 2$ if $|i - j| \ge 2$ and $m_{ij} = 3$ if |i - j| = 1 for every $1 \le i, j \le n - 1$. Then G is isomorphic to Sym(n).

Observe that in Lemma 4, $W \cong D_n$ is a transitive subgroup of $\operatorname{Sym}(2n)$. Also note, using the notation from Lemma 4 that $\langle \beta_1, \ldots, \beta_{n-1} \rangle \cong \operatorname{Sym}(n)$, while products of an even number of transpositions of the form (i, n+i), for some $1 \leq i \leq n$ yields the normal elementary abelian subgroup of sign changes. The next lemma will be used frequently in Section 3.

Lemma 6. Suppose that $W \cong D_n$ with N being the subgroup of sign changes. If $H \leq W$ is such that W = HN and $H \cap N \nleq Z(W)$, then W = H.

Proof. Since N is abelian and W = HN, $H \cap N \subseteq W$. The only non-trivial normal subgroup of W contained in N is Z(W) (if n is even) and N. Thus, as $H \cap N \not\leq Z(W)$, $H \cap N = N$ which implies H = HN = W.

Now let G be a group generated by involutions s_1, \ldots, s_r with the ordering such that $s_i s_j = s_j s_i$ (or equivalently, $(s_i s_j)^2 = 1$) if $|i - j| \ge 2$ for every $i, j \in I = \{1, \ldots, r\}$. Then $(G, \{s_1, \ldots, s_r\})$ is said to be a string group generated by involutions. Set $G_J = \langle s_j \mid j \in J \rangle$ for every $J \subseteq I$, and sometimes we may write G_{i_1,\ldots,i_k} in place of $G_{\{i_1,\ldots,i_k\}}$. Its Schläfti type is the sequence $\{p_1, \ldots, p_{r-1}\}$ where p_i is the order of $s_i s_{i+1}$ for every $1 \le i \le r-1$. If a symbol p_i appears k times in adjacent places in the sequence we may write p_i^k in place of writing p_i k times. So a string group generated by involutions will be a string C-group if the intersection condition also holds.

A set R of elements of a group G is *independent* if for every $g \in R$, $g \notin \langle R \setminus \{g\} \rangle$. Let $\mu(G)$ denote the maximum size of an independent subset of G.

Theorem 7. Suppose that $G \cong \text{Sym}(m)$. Then

- (i) $\mu(G) \leq m 1$.
- (ii) Assume that $m \ge 5$. If (G, S) is a string group generated by involutions and S is an independent set of size m-1, then S is the set of Coxeter generators for G.

Proof. (i) This is a theorem of Whiston [30]. (ii) This follows from Cameron and Cara [8] which classifies independent sets of size m-1 in $\operatorname{Sym}(m)$ when $m \geq 7$, while m=5,6 can be checked using MAGMA [1].

Theorem 7 is deployed in the proof of Theorem 12, as is our next theorem which gives an upper bound for the rank of a C-string of transitive permutation groups. This is due to Cameron, Fernandes, Leemans and Mixer and is as follows.

Theorem 8. [9, Theorem 1.2] Let G be a string C-group of rank r which is isomorphic to a transitive subgroup of $\operatorname{Sym}(n)$ other than $\operatorname{Sym}(n)$ or $\operatorname{Alt}(n)$. Then one of the following holds.

- (i) $r \leqslant n/2$.
- (ii) $n \equiv 2 \pmod{4}$ and $G \cong B_n \cong C_2 \wr \operatorname{Sym}(n/2)$ with Schläfli type $\{2, 3^{n/2-2}, 4\}$.
- (iii) G is imprimitive and is one of the following.
 - (a) G = 6T9 with Schläfli type $\{3, 2, 3\}$.
 - (b) G = 6T11 with Schläfli type $\{2, 3, 3\}$.
 - (c) G = 6T11 with Schläfli type $\{2, 3, 4\}$.
 - (d) G = 8T45 with Schläfli type $\{3, 4, 4, 3\}$.

Here, nTj is the j-th conjugacy class among transitive subgroups of Sym(n) according to Butler and McKay [7].

(iv) G is primitive. In this case, n = 6 and G is obtained from the degree six permutation representation of $\operatorname{Sym}(5) \cong \operatorname{PGL}_2(5)$ and is the group of the 4-simplex of Schläfli type $\{3,3,3\}$.

We will also make use of the following lemmas to verify that the generating set of involutions we construct indeed give us string C-groups.

Lemma 9. [27, 2E16(a) and 11A10] Let $(G, \{s_1, \ldots, s_r\})$ be a string group generated by involutions where $G_{1,\ldots,r-1}$ and $G_{2,\ldots,r}$ are string C-groups. Then G is a string C-group if either of the following conditions are satisfied.

- (i) $G_{1,\dots,r-1} \cap G_{2,\dots,r} = G_{2,\dots,r-1}$.
- (ii) $s_r \notin G_{1,\dots,r-1}$ and $G_{2,\dots,r-1}$ is maximal in $G_{2,\dots,r}$.

Lemma 10. [27, 2E16(b)] Let $(G, \{s_1, \ldots, s_r\})$ be a string group generated by involutions such that $G_{1,\ldots,r-1}$ is a string C-group and $G_{1,\ldots,r-1} \cap G_{k,\ldots,r} = G_{k,\ldots,r-1}$ for every $2 \le k \le r-1$. Then G is also a string C-group.

Once we have constructed a C-string of maximal rank, we will use the following rank reduction theorem by Brooksbank and Leemans to obtain C-strings of smaller ranks.

Theorem 11. [5, Theorem 1.1 and Corollary 1.3] Let $(G, \{s_1, \ldots, s_n\})$ be a non-degenerate string C-group of rank $n \ge 4$ with Schläfli type $\{p_1, \ldots, p_{n-1}\}$. If $s_1 \in \langle s_1s_3, s_4 \rangle$, then $(G, \{s_2, s_1s_3, s_4, \ldots, s_n\})$ is a string C-group of rank n-1. In particular, G has a C-string of rank n-i for every $0 \le i \le t$, where

$$t = \max\{j \in \{0, \dots, n-3\} \mid \text{for all } i \in \{0, \dots, j\}, \ p_{3+i} \text{ is odd}\}.$$

3 C-Strings for D_n

Theorem 12. Let n be even with $n \ge 6$. If $W \cong D_n$, then $r_{\max}(W) < n$.

Proof. By Lemma 4 we may regard W as a subgroup of $\operatorname{Sym}(2n)$ and hence, appealing to Theorem 8, $r_{\max}(W) \leq n$. So we must show that W has no C-strings of rank n. Assuming that W has a C-string S with |S| = n, we seek a contradiction. Let $S = \{s_1, \ldots, s_n\}$ with $s_i s_j = s_j s_i$ for all $i, j \in I = \{1, \ldots, n\}$ with $|i - j| \geq 2$. Recalling the bar convention, put $\overline{W} = W/N$ where N is the subgroup of W consisting of the even sign changes. So $\overline{W} \cong \operatorname{Sym}(n)$.

(12.1) For
$$i \in I, s_i \notin Z(W)$$
.

Suppose that $s_i \in Z(W)$ and set $H = \langle S \setminus \{s_i\} \rangle$. Then W/Z(W) = HZ(W)/Z(W) and therefore HZ(W) = W = HN with $H \cap N \not\leq Z(W)$. Thus W = H by Lemma 6, against S satisfying the intersection condition. This proves (12.1).

Let $T \subseteq S$ be such that \overline{T} is an independent generating set for \overline{W} . Hence $|\overline{T}| \leqslant n-1$ by Theorem 7(i). Further \overline{T} is a connected string in \overline{W} . For if not then $\overline{T} = \overline{T}_1 \cup \overline{T}_2$, $T_i \subseteq S$ with $[\overline{T}_1, \overline{T}_2] = 1$ and $\overline{T}_1 \neq \emptyset \neq \overline{T}_2$. But then $\langle \overline{T}_1 \rangle \langle \overline{T}_2 \rangle = \overline{W}$ with $[\langle \overline{T}_1 \rangle, \langle \overline{T}_2 \rangle] = 1$, contrary to $\overline{W} \cong \operatorname{Sym}(n)$.

(12.2)
$$|\overline{T}| = n - 1$$
 or $n - 2$. Moreover, if $|\overline{T}| = n - 2$, then $\overline{T} = {\overline{s}_2, \dots, \overline{s}_{n-1}}$.

Suppose that $|\overline{T}| \leq n-3$. Then there exists $s \in S$ such that [T, s] = 1. From $\langle \overline{T} \rangle = \overline{W}$, we get $\overline{s} \in Z(\overline{W})$ and then, as $\overline{W} \cong \operatorname{Sym}(n)$, we have $s \in N$. Hence, using (12.1) and Lemma 6, $W = \langle T \cup \{s\} \rangle$ which is impossible as S satisfies the intersection property. Thus $|\overline{T}| = n-1$ or n-2. A similar argument applies to show $\overline{T} = \{\overline{s}_2, \dots \overline{s}_{n-1}\}$ when $|\overline{T}| = n-2$.

$$(12.3) |\overline{T}| \neq n - 1.$$

Suppose that $|\overline{T}| = n-1$. We may assume, as \overline{T} is connected, that $\overline{T} = \{\overline{s}_1, \dots, \overline{s}_{n-1}\}$. Put $\overline{X} = \langle \overline{s}_1, \dots, \overline{s}_{n-2} \rangle$. By Theorem 7(ii) \overline{T} consists of the Coxeter generators for \overline{W} . Thus $\overline{X} \cong \operatorname{Sym}(n-1)$. Because $[s_n, s_i] = 1$ for $i = 1, \dots, n-2, \overline{s}_n \in C_{\overline{W}}(\overline{X})$. Since $C_{\overline{W}}(\overline{X}) = 1$, $s_n \in N$. Now n-1 being odd implies $C_N(\overline{X}) = Z(W)$ giving $s_n \in Z(W)$, against (12.1). This rules out $|\overline{T}| = n-1$.

$$(12.4) |\overline{T}| \neq n - 2.$$

Assume that $|\overline{T}| = n - 2$. By (12.2) we have $\overline{T} = \{\overline{s}_2, \dots, \overline{s}_{n-1}\}$. Put $X = \langle s_2, \dots, s_{n-1} \rangle$ and $X_1 = \langle s_1, s_2, \dots, s_{n-1} \rangle$. Then $W = XN = X_1N$ and, as $X \leq X_1, X_1 = X(X_1 \cap N)$. If $X_1 \cap N = 1$, then $X_1 \cong \operatorname{Sym}(n)$ and so $X = X_1$. But this contradicts the intersection condition. Thus $X_1 \cap N \neq 1$. If $X_1 \cap N \neq 2(W)$, then Lemma 6 forces

 $X_1 = W$, also a contradiction. Hence $X_1 \cap N = Z(W)$ and consequently $X_1 = XZ(W)$. A similar argument applies for $X_n = \langle s_2, \ldots, s_{n-1}, s_n \rangle$ to also yield $X_n = XZ(W)$. But then

$$W = \langle s_1, \dots, s_n \rangle \leqslant XZ(W) \neq W,$$

so proving (12.4).

Combining (12.2), (12.3) and (12.4) yields the desired contradiction, so establishing Theorem 12. \Box

In the remainder of this section we construct examples of C-strings for D_n . For every integer $n \ge 5$, we define t_1, \ldots, t_n in $\operatorname{Sym}(2n)$ as follows.

$$t_1 = \prod_{j=2}^{n} (j, n+j),$$

 $t_i = (i-1, i)(n+i-1, n+i) \text{ for every } 2 \le i \le n.$

Lemma 13. For every $1 \le i, j \le n$, we have

order of
$$t_i t_j = \begin{cases} 1, & \text{if } i = j, \\ 2, & \text{if } |i - j| \ge 2, \\ 3, & \text{if } |i - j| = 1 \text{ and } \{i, j\} \ne \{1, 2\}, \\ 4, & \text{if } \{i, j\} = \{1, 2\}. \end{cases}$$

Proof. Each of the elements t_1, \ldots, t_n are involutions as they are defined as products of pairwise disjoint transpositions. Note that

$$t_1 t_2 = (1, 2, n+1, n+2) \prod_{j=3}^{n} (j, n+j),$$

$$t_i t_{i+1} = (i-1, i+1, i)(n+i-1, n+i+1, n+i) \text{ for every } 2 \leq i \leq n.$$

For every $2 \le i, j \le n$ with $|i-j| \ge 2$, t_i and t_j are disjoint, whereas for every $3 \le k \le n$, note that

$$t_1 t_k = (k-1, n+k)(k, n+k-1) \prod_{\substack{2 \le j \le n \\ j \notin \{k-1, k\}}} (j, n+j).$$

As such, $t_i t_j$ is a product of pairwise disjoint transpositions for every $1 \le i, j \le n$ with $|i-j| \ge 2$. The lemma follows from examining each of the products $t_i t_j$ in disjoint cycle notation.

Lemma 14. $\langle t_1, \ldots, t_n \rangle$ is a string C-group.

Proof. We prove by induction on k that $\langle t_1, \ldots, t_k \rangle$ is a string C-group for every $3 \leq k \leq n$. For the base case k = 3, it is easy to verify that $\langle t_1, t_2 \rangle \cap \langle t_2, t_3 \rangle = \langle t_2 \rangle$. So now suppose

that k > 3 and that $\langle t_1, \ldots, t_{k-1} \rangle$ is a string C-group. Now by Lemmas 5 and 13, $\langle t_2, \ldots, t_k \rangle \cong \operatorname{Sym}(k)$ is a string C-group and $\langle t_2, \ldots, t_{k-1} \rangle \cong \operatorname{Sym}(k-1)$ which is maximal in $\langle t_2, \ldots, t_k \rangle$. We also have $t_k \notin \langle t_1, \ldots, t_{k-1} \rangle$ because t_k moves k-1 to k, which are in different $\langle t_1, \ldots, t_k \rangle$ -orbits. It follows from Lemma 9 that $\langle t_1, \ldots, t_k \rangle$ is a string C-group.

Lemma 15. Let n be odd and $n \ge 5$. Then $\langle t_1, \ldots, t_n \rangle$ is isomorphic to D_n .

Proof. Let $G = \langle t_1, \ldots, t_n \rangle$, $H = \langle \beta_0, \beta_1, \ldots, \beta_{n-1} \rangle$ where $\beta_0 = (1, n+1)(2, n+2)$ and $\beta_i = (i, i+1)(n+i, n+i+1)$ for every $1 \leq i \leq n-1$. Then $H \cong D_n$ by Lemma 4 and we want to show that G = H. Since $t_i = \beta_{i-1}$ for every $1 \leq i \leq n$, it suffices to show that $\beta_0 \in G$ and $\beta_0 \in G$ a

We note that

$$t_1t_2 = (1, 2, n+1, n+2) \prod_{j=3}^{n} (j, n+j),$$

whence $\beta_0 = (1, n+1)(2, n+2) = (t_1t_2)^2 \in G$. Now let $\alpha_{i,j} = (i, n+i)(j, n+j)$ and $\gamma_{i,j} = (i,j)(n+i,n+j)$ for every $2 \leq i,j \leq n$. Note that $\alpha_{2,3} = \beta_0^{\beta_2\beta_1} \in H$. Now for $4 \leq k \leq n$, we have

$$\gamma_{2,k} = \beta_2 \prod_{j=4}^k \beta_{j-1} \text{ and } \gamma_{3,k} = \beta_2^{\gamma_{2,k}}.$$

It follows that for every $4 \leqslant i, j \leqslant n$, we have $\alpha_{i,j} = \alpha_{2,3}^{\gamma_{2,i}\gamma_{3,j}} \in H$ and hence, $t_1 = \alpha_{2,3}\alpha_{4,5}\cdots\alpha_{n-1,n} \in H$.

Theorem 16. Let n be odd and $n \ge 5$. Then $\{t_1, \ldots, t_n\}$ is a rank n C-string of D_n with Schläfli type $\{4, 3^{n-2}\}$. Therefore, $r_{\max}(D_n) = n$ and there is a rank r C-string of D_n for every $3 \le r \le n$.

Proof. The first assertion follows from Lemmas 13, 14 and 15. The second and third assertion follows from Theorem 8 and Theorem 11, respectively. \Box

To describe our C-strings, we will use an interesting graph called the string C-group permutation representation (CPR) graph, first introduced in [29]. Let $(G, \{s_1, \ldots, s_r\})$ be a string C-group identified as a permutation group of degree m. Then the CPR graph of G is an r-edge-labelled multigraph with vertex set $\{1, \ldots, m\}$ such that $\{i, j\}$ is an edge of label k if s_k moves i to j. Recall the notation for $W \cong D_n$ when $W \leqslant \operatorname{Sym}(2n)$ as described in Section 2. That is, W = SN where $S \cong \operatorname{Sym}(n)$ and N is the subgroup of even sign changes.

Theorem 17. [13, Lemma 21] Let $n \ge 5$ and $3 \le d \le n-2$. Then $\operatorname{Sym}(n)$ has a C-string of rank d with Schläfli type $\{3^{d-3}, 6, n-d+2\}$ whose CPR graph can be obtained by appending n-d vertices and edges with labels d-1 and d alternatively to the CPR graph of the d-simplex, as follows.

Lemma 18. Let $G = \langle s_1, \ldots, s_r \rangle \leqslant W \leqslant \operatorname{Sym}(2n)$ with $W \cong D_n$ be a string group generated by involutions. If $G_{1,\ldots,r-1} = S \cong \operatorname{Sym}(n)$ is a string C-group and $s_r \in N \setminus Z(G)$, then G = W and is also a string C-group.

Proof. By Lemma 6 we have G = W. Let $2 \le k \le r - 1$. Since $s_r \in N$, $G_{k,\dots,r} \le G_{k,\dots,r-1}N$, and so $G_{k,\dots,r} = G_{k,\dots,r-1}(G_{k,\dots,r} \cap N)$ by the Dedekind law. Then by Dedekind law again,

$$G_{1,\dots,r-1} \cap G_{k,\dots,r} = G_{1,\dots,r-1} \cap (G_{k,\dots,r-1}(G_{k,\dots,r} \cap N))$$

= $G_{k,\dots,r-1}(G_{1,\dots,r-1} \cap G_{k,\dots,r} \cap N)$
= $G_{k,\dots,r-1}$,

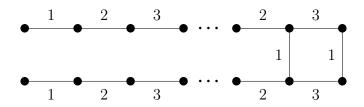
as $G_{1,\dots,r-1} \cap N = S \cap N = 1$. Thus the lemma follows from Lemma 10.

Let $n \ge 6$ be an even integer for the remainder of this section. We first construct rank three C-strings of D_n , defining t_1, t_2, t_3 in Sym(2n) as follows.

$$t_1 = (1,2)(n+1,n+2)(n-1,2n-1)(n,2n),$$

$$t_2 = (2,3)(4,5)\cdots(n-2,n-1)(n+2,n+3)(n+4,n+5)\cdots(2n-2,2n-1),$$

$$t_3 = (3,4)(5,6)\cdots(n-1,n)(n+3,n+4)(n+5,n+6)\cdots(2n-1,2n).$$



Lemma 19. $\{t_1, t_2, t_3\}$ is a rank 3 C-string of D_n with Schläfli type $\{12, n-1\}$.

Proof. Each of the elements t_1, t_2, t_3 are involutions as they are defined as products of pairwise disjoint transpositions. Note that

$$t_1t_2 = (1,3,2)(n-1,2n-2,2n-1,n-2)(n,2n)$$

$$(4,5)\cdots(n-4,n-3)(n+4,n+5)\cdots(2n-4,2n-3),$$

$$t_2t_3 = (2,4,\ldots,n,n-1,n-3,\ldots,3)(n+2,n+4,\ldots,2n,2n-1,2n-3,\ldots,n+3),$$

$$t_1t_3 = (1,2)\cdots(n-3,n-2)(n-1,2n)(n,2n-1).$$

Since $\langle t_1, t_2 \rangle \cong \text{Dih}(24)$, its elements are of the form $t_1^{\varepsilon}(t_1t_2)^k$ for some integers $\varepsilon \in \{0, 1\}$ and $0 \leqslant k \leqslant 11$. Also since $\langle t_2, t_3 \rangle \leqslant S \cap \text{Stab}_{\text{Sym}(2n)}(1)$, we have

$$\langle t_1, t_2 \rangle \cap \langle t_2, t_3 \rangle \leqslant \langle t_1, t_2 \rangle \cap \left(S \cap \operatorname{Stab}_{\operatorname{Sym}(2n)}(1) \right)$$

$$= (\langle t_1, t_2 \rangle \cap S) \cap \left(\langle t_1, t_2 \rangle \cap \operatorname{Stab}_{\operatorname{Sym}(2n)}(1) \right)$$

$$= \langle t_1, (t_1 t_2)^4 \rangle \cap \langle t_1, (t_1 t_2)^3 \rangle = \langle t_2 \rangle.$$

It follows that $\langle t_1, t_2 \rangle \cap \langle t_2, t_3 \rangle = \langle t_2 \rangle$ and so $\langle t_1, t_2, t_3 \rangle$ is a string C-group with Schläfli type $\{12, n-1\}$. We now show that $H = \langle t_1, t_2, t_3 \rangle$ is isomorphic to D_n . Note that $\overline{H} = S$ by Theorem 17 and so $HN = D_n$. Since

$$(n-2,2n-2)(n-1,2n-1) = (t_1t_2)^6 \in N$$

and $(n-2, 2n-2)(n-1, 2n-1) \notin Z(D_n)$. Then calling upon Lemma 6 yields $H = D_n$. \square

We now construct rank r C-strings of D_n for every $4 \le r \le n-1$ as follows. We use Theorem 17 to construct a rank r-1 C-string for the subgroup $S \cong \operatorname{Sym}(n)$ of D_n , and then append an element in N. We note that the construction depends on the parity of r.

If r is odd, we define t_1, \ldots, t_r in Sym(2n) as follows.

$$t_{i} = (i, i+1)(n+i, n+i+1) \text{ for every } 1 \leq i \leq r-3,$$

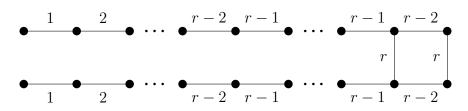
$$t_{r-2} = (r-2, r-1)(r, r+1) \cdots (n-1, n)$$

$$(n+r-2, n+r-1)(n+r, n+r+1) \cdots (2n-1, 2n),$$

$$t_{r-1} = (r-1, r)(r+1, r+2) \cdots (n-2, n-1)$$

$$(n+r-1, n+r)(n+r+1, n+r+2) \cdots (2n-2, 2n-1),$$

$$t_{r} = (n-1, 2n-1)(n, 2n).$$



If r is even, we define t_1, \ldots, t_r in Sym(2n) as follows.

$$t_{i} = (i, i+1)(n+i, n+i+1) \text{ for every } 1 \leq i \leq r-3,$$

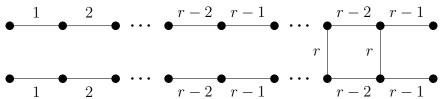
$$t_{r-2} = (r-2, r-1)(r, r+1) \cdots (n-2, n-1)(n+r-2, n+r-1)$$

$$(n+r, n+r+1) \cdots (2n-2, 2n-1),$$

$$t_{r-1} = (r-1, r)(r+1, r+2) \cdots (n-1, n)(n+r-1, n+r) \cdots (2n-1, 2n),$$

$$t_{r} = (n-2, 2n-2)(n-1, 2n-1).$$

$$1 \qquad 2 \qquad r-2 \quad r-1 \qquad r-2 \quad r-1$$



Lemma 20. Let n be even and $n \ge 6$. Then for every $4 \le r \le n-1$, $\{t_1, \ldots, t_r\}$ is a rank r C-string of D_n with Schläfli type $\{3^{r-4}, 6, n-r+3, 4\}$.

Proof. Each of the elements t_1, \ldots, t_r are involutions as they are defined as products of pairwise disjoint transpositions. Note that for every $1 \le k \le r - 3$, we have

$$t_k t_r = \begin{cases} (k, k+1)(n+k, n+k+1)(n-1, 2n-1)(n, 2n) &, \text{ if } r \text{ is odd} \\ (k, k+1)(n+k, n+k+1)(n-2, 2n-2)(n-1, 2n-1) &, \text{ if } r \text{ is even} \end{cases},$$

which are products of pairwise disjoint transpositions because

$$k+1 \le (r-3)+1 \le ((n-1)-3)+1 = n-3 < n-2.$$

Likewise, if r is odd we have

$$t_{r-2}t_r = (n-1,2n)(n,2n-1)(r-2,r-1)(r,r+1)\cdots(n-3,n-2)$$
$$(n+r-2,n+r-1)(n+r,n+r+1)\cdots(2n-3,2n-2),$$

whereas if r is even we have

$$t_{r-2}t_r = (n-2, 2n-1)(n-1, 2n-2)(r-2, r-1)(r, r+1)\cdots(n-4, n-3)$$
$$(n+r-2, n+r-1)(n+r, n+r+1)\cdots(2n-4, 2n-3),$$

which are also products of pairwise disjoint transpositions. Finally, we have

$$t_{r-1}t_r = (n-1, n-2, 2n-1, 2n-2)(n, 2n)$$

$$(r-1, r)(r+1, r+2) \cdots (n-4, n-3)$$

$$(n+r-1, n+r)(n+r+1, n+r+2) \cdots (2n-4, 2n-3)$$

for r odd and we also have

$$t_{r-1}t_r = (n-2, n-3, 2n-2, 2n-3)(n-1, n, 2n-1, 2n)$$

$$(r-1, r)(r+1, r+2) \cdots (n-5, n-4)$$

$$(n+r-1, n+r)(n+r+1, n+r+2) \cdots (2n-5, 2n-4),$$

for r even. It follows from Lemma 18 that $\langle t_1, \ldots, t_r \rangle = D_n$ is a string C-group with Schläfli type $\{3^{r-4}, 6, n-r+3, 4\}$.

Theorem 21. Let n be even and $n \ge 6$. Then $r_{\max}(D_n) = n - 1$ and there is a rank r C-string of D_n for every $3 \le r \le n - 1$.

Proof. The theorem follows from Lemmas 19, 20 and Theorem 12. \Box

Together Theorems 12, 16 and 21 prove Theorems 1 and 2.

4 Exceptional Finite Irreducible Coxeter Groups

The following table lists the number of abstract regular polytopes (up to isomorphism and duality with the number of self-dual polytopes in brackets) for each exceptional Coxeter groups computed using MAGMA [1].

Table 1: Number of polytopes for each exceptional Coxeter group.

Group	Total	Rank 3	Rank 4	Rank 5	Rank 6	Rank 7	$Rank \geqslant 8$
H_3	8(1)	8(1)	0	0	0	0	0
H_4	59(6)	45(2)	14(4)	0	0	0	0
F_4	5(1)	3(0)	2(1)	0	0	0	0
E_6	147(18)	87(12)	50(4)	10(2)	0	0	0
E_7	3662(10)	1577(10)	1525(0)	465(0)	95(0)	0	0
E_8	11689(142)	6746(117)	3584(22)	986(2)	310(0)	63(1)	0

References

- [1] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. *J. Symbolic Comput.*, 24(3–4):235–265, 1997.
- [2] P. A. Brooksbank. On the ranks of string C-group representations for symplectic and orthogonal groups. *Polytopes and Discrete Geometry*. *Contemp. Math.*, 764:31–41, 2021.
- [3] P. A. Brooksbank, J. T. Ferrara, and D. Leemans. Orthogonal groups in characteristic 2 acting on polytopes of high rank. *Discrete Comput. Geom.*, 63(3):656–669, 2020.
- [4] P. A. Brooksbank and D. Leemans. Polytopes of large rank for $PSL(4, \mathbb{F}_q)$. J. Algebra, $452:390-400,\ 2016$.
- [5] P. A. Brooksbank and D. Leemans. Rank reduction of string C-group representations. *Proc. Amer. Math. Soc.*, 147(12):5421–5426, 2019.
- [6] P. A. Brooksbank and D. A. Vicinsky. Three-dimensional classical groups acting on polytopes. *Discrete Comput. Geom.*, 44(3):654–659, 2010.
- [7] G. Butler and J. McKay. The transitive groups of degree up to eleven. *Comm. Algebra*, 11(8):863–911, 1983.
- [8] P. J. Cameron and P. Cara. Independent generating sets and geometries for symmetric groups. *J. Algebra*, 258(2):641–650, 2002.
- [9] P. J. Cameron, M. E. Fernandes, D. Leemans, and M. Mixer. String C-groups as transitive subgroups of S_n . J. Algebra, 447:468–478, 2016.
- [10] P. J. Cameron, M. E. Fernandes, D. Leemans, and M. Mixer. Highest rank of a polytope for A_n . Proc. Lond. Math. Soc. (3), 115(1):135–176, 2017.
- [11] T. Connor, J. De Saedeleer, and D. Leemans. Almost simple groups with socle PSL(2,q) acting on abstract regular polytopes. J. Algebra, 423:550–558, 2015.
- [12] H. S. M. Coxeter. The complete enumeration of finite groups of the form $R_i^2 = (R_i R_j)^{k_{ij}} = 1$. J. Lond. Math. Soc., 10(1):21–25, 1935.
- [13] M. E. Fernandes and D. Leemans. Polytopes of high rank for the symmetric groups. *Adv. Math.*, 228(6):3207–3222, 2011.

- [14] M. E. Fernandes and D. Leemans. String C-group representations of alternating groups. Ars Math. Contemp., 17(1):291–310, 2019.
- [15] M. E. Fernandes and C. A. Piedade. Regular polytopes of rank n/2 for transitive groups of degree n. 2024. Preprint, arXiv:2407.16003.
- [16] M. I. Hartley. An atlas of small regular abstract polytopes. *Period. Math. Hungar.*, 53(1–2):149–156, 2006.
- [17] M. I. Hartley and A. Hulpke. Polytopes derived from sporadic simple groups. *Contrib. Discrete Math.*, 5(2):106–118, 2010.
- [18] J. E. Humphreys. Reflection Groups and Coxeter Groups. Cambridge University Press, 1990.
- [19] D. Leemans. Almost simple groups of Suzuki type acting on polytopes. *Proc. Amer. Math. Soc.*, 134(12):3649–3651, 2006.
- [20] D. Leemans. String C-group representations of almost simple groups: a survey. *Polytopes and Discrete Geometry. Contemp. Math.*, 764:157–178, 2021.
- [21] D. Leemans and M. Mixer. Algorithms for classifying regular polytopes with a fixed automorphism group. *Contrib. Discrete Math.*, 7(2):105–118, 2012.
- [22] D. Leemans and J. Mulpas. The string C-group representations of the Suzuki, Rudvalis and O'Nan sporadic groups. *Art. Discrete Appl. Math.*, 5(3):Article #P3.09, 12 pp., 2022.
- [23] D. Leemans and E. Schulte. Groups of type $L_2(q)$ acting on polytopes. Adv. Geom., $7(4):529-539,\ 2007.$
- [24] D. Leemans and E. Schulte. Polytopes with groups of type $PGL_2(q)$. Ars Math. Contemp., 2(2):163–171, 2009.
- [25] D. Leemans, E. Schulte, and H. Van Maldeghem. Groups of Ree type in characteristic 3 acting on polytopes. *Ars Math. Contemp.*, 14(2):209–226, 2018.
- [26] D. Leemans and L. Vauthier. An atlas of abstract regular polytopes for small groups. *Aequationes Math.*, 72(3):313–320, 2006.
- [27] P. McMullen and E. Schulte. Abstract Regular Polytopes. Cambridge University Press, 2002.
- [28] R. Nicolaides and P. Rowley. Two families of unravelled abstract regular polytopes in B_n . J. Group Theory, 25(6):1133–1148, 2022.
- [29] D. Pellicer. CPR graphs and regular polytopes. European J. Combin., 29(1):59–71, 2008.
- [30] J. Whiston. Maximal independent generating sets of the symmetric group. *J. Algebra*, 232(1):255–268, 2000.