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Abstract

Here, for W the Coxeter group D,, where n > 4, it is proved that the maximal
rank of an abstract regular polytope for W is n — 1 if n is even and n if n is odd.
Further it is shown that W has abstract regular polytopes of rank r for all r such
that 3 <r <n—1,if niseven, and 3 < r < n, if n is odd. The possible ranks of
abstract regular polytopes for the exceptional finite irreducible Coxeter groups are
also determined.

Mathematics Subject Classifications: 52B11, 20B25, 20F55

1 Introduction

Finite Coxeter groups appear in many guises in the mathematics literature — as Weyl
groups of semisimple Lie algebras, reflection groups, and automorphism groups of regular
polytopes to mention a few. It is the last area that is of interest here. We recall that
Sym(n + 1), the symmetric group of degree n + 1, also the Coxeter group of type A, is
the automorphism group of a regular n-simplex, while the Coxeter group of type B, is
the automorphism group of the n-cube and its dual, the n-cross polytope.

In this paper we examine abstract regular polytopes of the finite irreducible Coxeter
groups W. As is documented in McMullen and Schulte [27], this is equivalent to inves-
tigating the C-strings of W, and we follow that approach. A C-string of a group G is a
set of involutions S = {sy,...,s,} of G which generates the group. Additionally, setting
I'={1,....r} and, for J C I,W; = (s; | j € J), they must satisfy

(i) for all J, K C I, W;NWxg = Wyng (intersection property); and

(i) s;s; = s;s; for all 4, j € I with |i — j| > 2 (string property).
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We refer to r as the rank of the C-string, equivalently, the rank of the associated
abstract regular polytope, and also call (G, S) a string C-group. The maximal rank for a
C-string of W will be denoted by rma.(W). If W is either of type A, or B, then their
defining presentation in terms of fundamental (or simple) reflections yields a C-string of
rank n (see Section 5.5 of [18] for the intersection property). Moreover . (W) = n
when W = A, a consequence of a recent deep result by Whiston [30] which uses the
classification of finite simple groups. For W = B,,; rp. (W) = n when n is even and
Tmax(WW) = n+1 when n is odd. In the latter case the corresponding C-string is degenerate,
meaning the string is disconnected. See Theorem 8(ii) for more details. If we insist on
only considering non-degenerate strings, then we have 1. (W) = n. On the other hand,
I(m), identified as Dih(2m) are also well known to only exhibit rank two polytopes given
by the m-gon. Now in the remaining infinite family of finite irreducible Coxeter groups we
have D,, whose Dynkin diagrams are not strings. Our first result concerns the maximal
rank of C-strings for this family. Noting that D4 has no C-strings, we have the following
theorem.

Theorem 1. Suppose that W is the Coxeter group D, with n > 5. If n is even, then
Tmax(W) =n — 1 and if n is odd, then rp.(W) = n.

The question as to the existence of abstract regular polytopes for intermediate rank
values is the subject of the next theorem.

Theorem 2. Suppose that W is the Coxeter group D,, withn > 5. Then W has a C-string
of rank r for all r with 3 < r < rpax(W).

To complete the picture we consider the exceptional finite irreducible Coxeter groups.
Theorem 3. Suppose that W is an exceptional finite irreducible Cozeter group.
(i) If W is one of Ia(m), Hs, Hy, Fy, then rya (W) is the Coxeter rank of W.
(ii) If W is one of Eg, Er, Eg, then . (W) is 5, 6, and 7, respectively.

The quest to classify string C-groups in a given family of groups started from early
experimental results by Hartley [16] and also the joint work of Leemans and Vauthier [26]
which resulted in atlases of abstract regular polytopes for small groups. More efficient
computer algorithms have also been developed which successfully enumerated the C-
strings of some sporadic simple groups [17, 21, 22|. This experimental data has led
to some interesting conjectures which were later proven theoretically. In particular, the
possible ranks of C-strings has been investigated for some infinite families of almost simple
groups, namely the Suzuki groups Sz(q) [19], Ree groups ?Gs(q) [25], groups with socle
PSL(2,q) [11, 23, 24], groups PSL(3, ¢) and PGL(3, q) [6], groups PSL(4, q) [4], symmetric
groups [13], alternating groups [10, 14], orthogonal and symplectic groups [3, 2]. We refer
the interested reader to a recent survey article by Leemans [20] for more details of these
investigations.

Only a few family of groups are known to give rise to string C-groups of arbitrarily
large rank. As already noted, the highest possible rank of a string C-group representation
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for Sym(n) is n—1, and for n > 12, the highest rank for Alt(n) is |25+ | [10]. Furthermore,
Sym(n) has C-strings of rank r for every 3 < r <n —1 [13], and for n > 12, Alt(n) also
has C-strings of rank r for every 3 < r < [ 251 [14]. Likewise for all integers k, m > 2, the
orthogonal groups OF(2m, 2¥) and the symplectic groups Sp(2m, 2¥) have string C-group
representations of rank 2m and 2m + 1 [3], respectively. Interestingly in [5], Brooksbank
proved a ‘rank reduction theorem’ which can be applied on known string C-groups to
obtain C-strings of the same group with smaller ranks, and consequently it was shown
that O%(2m, 2%) and Sp(2m, 2¥) have string C-group representations of rank r for every
3<r<2mand 3 <r < 2m+ 1, respectively. For recent work on polytopes of rank n /2
for a transitive group of degree n see [15]. Finally, we mention a further study in which
two interesting families of C-strings for B,, are constructed [28].

This paper is structured as follows. In Section 2, we state some preliminary results on
Coxeter groups and string C-groups. Lemma 4 plays an important role as our investiga-
tions into W = D,, are conducted in Sym(2n). Section 3 begins with Theorem 12 showing
that 7nax(W) < n when n is even. The remainder of this section focuses on constructing
various C-strings for W and then Lemmas 9 and 10 together with Theorem 11 are called
upon. Our final section gives a census of abstract regular polytopes for the exceptional
finite irreducible Coxeter groups.

2 Preliminaries

We recall that a Cozeter group is a group W with presentation (si,...,s, | (s:s;)")
where m;; = 1 and m;; = mj; > 2 is a positive integer or infinity for every 1 <i < j < n
(infinity being read as no relation). The Cozeter rank of W is n. Associated with this
presentation is the Coxeter diagram where the nodes correspond to the s; with a bond
between s; and s; if ¢ # j and m,; > 2. If this diagram is connected, then W is said to be
an irreducible Coxeter group. Coxeter [12] (see also [18]) classified the finite irreducible
Coxeter groups. There are four infinite families denoted A,, B,, D,, Is(m), and six
exceptional groups Hs, Hy, F4, Eg, E;, Eg (we shall blur the distinction between the
group and its root system).

As already mentioned in Section 1, we shall focus on the Coxeter groups D,, and the
exceptional groups. Suppose W is isomorphic to D,,, where n > 4. Then W = SN where
S = Sym(n) and N is a normal subgroup of W with N an elementary abelian subgroup
of order 2"7!. The subgroup N will sometimes be called the subgroup of (even) sign
changes. In this paper we frequently view W as a subgroup of Sym(2n), as specified in
our first lemma.

Lemma 4. [18, (2.10)] Let 5y = (1,n+1)(2,n+2) and B; = (i,i+1)(n+i,n+i+1) for
every 1 < i < n—1 be permutations in Sym(2n). Then {(By, 51, .., Bn_1) 1S iSomorphic
to D,,.

We mention that the permutation representation of D, in Lemma 4 may also be
viewed as its action on the 2n facets of the n-cube (or equivalently, the 2n vertices of the
n-crosspolytope).
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In a similar fashion, we also have the well-known characterization of Sym(n).

Lemma 5. [18, (6.4)] Let G be a group with presentation (s1,. .., Sn—1 | (5:i5;)™) where
mi =1, my; =24f[i—j| =22 and my; =3 if |i — j| =1 for every 1 <i,5 <n—1. Then
G is isomorphic to Sym(n).

Observe that in Lemma 4, W = D,, is a transitive subgroup of Sym(2n). Also note,
using the notation from Lemma 4 that (f1,...,,-1) = Sym(n), while products of an
even number of transpositions of the form (i,n + ), for some 1 < i < n yields the normal
elementary abelian subgroup of sign changes. The next lemma will be used frequently in
Section 3.

Lemma 6. Suppose that W = D,, with N being the subgroup of sign changes. If H < W
is such that W = HN and HNN £ Z(W), then W = H.

Proof. Since N is abelian and W = HN, H NN < W. The only non-trivial normal
subgroup of W contained in N is Z(W) (if n is even) and N. Thus, as H NN £ Z(W),
H NN = N which implies H=HN =W. O

Now let G be a group generated by involutions s, ..., s, with the ordering such that
si8; = s;5; (or equivalently, (s;s;)> =1)if [i—j| > 2 for every 4,5 € I = {1,...,r}. Then
(G, {s1,...,s,})issaid to be a string group generated by involutions. Set Gy = (s; | j € J)
for every J C I, and sometimes we may write G, . ; in place of Gy, . ;3. Its Schiafli
type is the sequence {pi,...,p,—1} where p; is the order of s;s;,; for every 1 <i < r — 1.
If a symbol p; appears k times in adjacent places in the sequence we may write p¥ in place
of writing p; k times. So a string group generated by involutions will be a string C-group
if the intersection condition also holds.

A set R of elements of a group G is independent if for every g € R, g € (R\ {g}). Let
(@) denote the maximum size of an independent subset of G.

Theorem 7. Suppose that G = Sym(m). Then
(1) n(G) <m—1.

(ii) Assume that m > 5. If (G,S) is a string group generated by involutions and S is
an independent set of size m — 1, then S is the set of Coxeter generators for G.

Proof. (i) This is a theorem of Whiston [30]. (ii) This follows from Cameron and Cara
[8] which classifies independent sets of size m — 1 in Sym(m) when m > 7, while m = 5,6
can be checked using MAGMA [1]. O

Theorem 7 is deployed in the proof of Theorem 12, as is our next theorem which gives
an upper bound for the rank of a C-string of transitive permutation groups. This is due
to Cameron, Fernandes, Leemans and Mixer and is as follows.

Theorem 8. [9, Theorem 1.2] Let G be a string C-group of rank r which is isomorphic to
a transitive subgroup of Sym(n) other than Sym(n) or Alt(n). Then one of the following
holds.
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(i) r <n/2.
(ii) n =2 (mod 4) and G = B,, = Cy 2 Sym(n/2) with Schlifli type {2,3"272 4}.
(i1i) G is imprimitive and is one of the following.

(a) G = 6T9 with Schldfli type {3,2,3}.
(b) G = 6T11 with Schlifli type {2,3,3}.
(¢c) G =6T11 with Schlifli type {2,3,4}.
(d) G = 8T45 with Schlifli type {3,4,4,3}.

Here, n'Tj is the j-th conjugacy class among transitive subgroups of Sym(n) according
to Butler and McKay [7].

(iv) G is primitive. In this case, n = 6 and G is obtained from the degree six permutation
representation of Sym(5) = PGLy(5) and is the group of the 4-simplex of Schlifli
type {3,3,3}.

We will also make use of the following lemmas to verify that the generating set of
involutions we construct indeed give us string C-groups.

Lemma 9. [27, 2E16(a) and 11A10] Let (G,{s1,...,s.}) be a string group generated by
involutions where Gy » are string C-groups. Then G is a string C-group if

..........

.....

..........

-----

r— 1. Then G is also a string C-group.

----------

Once we have constructed a C-string of maximal rank, we will use the following rank
reduction theorem by Brooksbank and Leemans to obtain C-strings of smaller ranks.

Theorem 11. /5, Theorem 1.1 and Corollary 1.3] Let (G,{s1,...,s.}) be a
non-degenerate string C-group of rank n > 4 with Schldfli type {p1,...,pn-1}. If s1 €
(5153, S4), then (G, {sq, $1S3,S4,...,5n}) s a string C-group of rank n — 1. In particular,
G has a C-string of rank n — i for every 0 < i < t, where

t=max{j €{0,...,n—3}| for alli € {0,...,5}, psyi is odd}.

ot
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3 C-Strings for D,

Theorem 12. Let n be even with n > 6. If W = D,,, then rp.(W) < n.

Proof. By Lemma 4 we may regard W as a subgroup of Sym(2n) and hence, appealing to
Theorem 8, rpax (W) < n. So we must show that W has no C-strings of rank n. Assuming
that W has a C-string S with |S| = n, we seek a contradiction. Let S = {s1,...,s,} with
s;s; = s;s; for all 4,5 € I = {1,...,n} with |s — j| > 2. Recalling the bar convention,
put W = W/N where N is the subgroup of W consisting of the even sign changes. So
W = Sym(n).

(12.1) Fori € I,s; ¢ Z(W).

Suppose that s; € Z(W) and set H = (S'\ {s;}). Then W/Z(W) = HZ(W)/Z(W)
and therefore HZ(W) = W = HN with HN N £ Z(W). Thus W = H by Lemma 6,
against S satisfying the intersection condition. This proves (12.1).

Let T C S be such that T is an independent generating set for W. Hence |T |<n-—1
by Theorem 7(i). Further T is a connected string in W. For if not then T = T, U Ty,
T; € Swith [T}, Ty] = 1and T # @ # T. But then (T,)(T5) = W with [(T1), (T,)] = 1,
contrary to W = Sym(n).

(12.2) |T| = n — 1 or n — 2. Moreover, if [T| =n — 2, then T = {35, ...,5,_1}.

Suppose that |T| < n—3. Then there exists s € S such that [T, s] = 1. From (T) = W,
we get 5 € Z(W) and then, as W = Sym(n), we have s € N. Hence, using (12.1) and
Lemma 6, W = (T'U {s}) which is impossible as S satisfies the intersection property.
Thus [T| =n — 1 or n — 2. A similar argument applies to show T = {3,,...5,_1} when
|T| =n—2.

(12.3) |T| #n — 1.

Suppose that |T| = n—1. We may assume, as T is connected, that T = {5,...,5,_ 1}
Put X = (31,...,5, 2). By Theorem 7(ii) T consists of the Coxeter generators for w.
Thus X = Sym(n —1). Because [s,,s;] =1 fori = 1,. — 2,5, € Cjp(X). Since
Cy(X) =1, s, € N. Now n — 1 being odd implies CN( ) = Z(W) giving s, € Z(W),
against (12.1). This rules out |T| =n — 1.

(12.4) |T| #n —2

Assume that |T| = n — 2. By (12.2) we have T = {5,,...,5,.1}. Put X =
(S2y...,8n-1) and X7 = (S1,82,...,8,-1). Then W = XN = X;N and, as X < X;,X; =
X(XiNN). If XyNN =1, then X; = Sym(n) and so X = X;. But this contradicts
the intersection condition. Thus X; NN # 1. If X; N N # Z(W), then Lemma 6 forces
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X, = W, also a contradiction. Hence X1 N N = Z(W) and consequently X; = XZ(W).
A similar argument applies for X,, = (s, ..., 8,_1,8,) to also yield X,, = XZ(W). But
then

W= (s1,....80) < XZ(W) £ W,

so proving (12.4).

Combining (12.2), (12.3) and (12.4) yields the desired contradiction, so establishing
Theorem 12. [

In the remainder of this section we construct examples of C-strings for D,,.
For every integer n > 5, we define ty,...,t, in Sym(2n) as follows.

n

th = H(]an+])a

=2
ti=(—1,9)(n+i—1,n+1) for every 2 <i < n.

Lemma 13. For every 1 < 1,7 < n, we have

if 1=,

if li—jl =2

if li—jl=1and {i,j} # {12},
if {i.j} = {1,2}.

Proof. Each of the elements t,...,t, are involutions as they are defined as products of
pairwise disjoint transpositions. Note that

order of tit; =

=~ W N =

tits = (1,2,n+1,n+2) H (j,m + ),

titiy1 = (i—1,@'—1—1,i)(n+z—1,n+z+1,n+i) for every 2 <i < n.

For every 2 < 4,5 < n with |i — j| > 2, t; and t; are disjoint, whereas for every 3 < k < n,
note that
tity=(k—Ln+k)(kn+k-1) J[ Gn+i).
2€j<n
J¢{k—1,k}

As such, t;t; is a product of pairwise disjoint transpositions for every 1 < 4,j < n with
li — j| > 2. The lemma follows from examining each of the products ¢;¢; in disjoint cycle
notation. O

Lemma 14. (ty,...,t,) is a string C-group.

Proof. We prove by induction on k that (¢, ..., ) is a string C-group for every 3 < k < n.
For the base case k = 3, it is easy to verify that (¢;,t2) N (t2,t3) = (t2). So now suppose
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that & > 3 and that (¢1,...,¢_1) is a string C-group. Now by Lemmas 5 and 13,
(ta,...,tg) = Sym(k) is a string C-group and (ts, ..., tx—1) = Sym(k—1) which is maximal

in (to,...,tx). We also have ¢ ¢ (t1,...,t,_1) because t; moves k — 1 to k, which are
in different (¢, ...,tx)-orbits. It follows from Lemma 9 that (¢,...,t;) is a string C-
group. O

Lemma 15. Let n be odd and n > 5. Then (ti,...,t,) is isomorphic to D,,.

Proof. Let G = (t1,...,t,), H = (Bo, b1, .., Bn-1) where By = (1,n + 1)(2,n + 2) and
Bi=(,i+1)(n+i,n+i+1)forevery 1 <i<n—1. Then H = D, by Lemma 4 and
we want to show that G = H. Since t; = ;1 for every 2 < i < n, it suffices to show that
Bo € Gand t; € H.

We note that

t1t2:(1727n+17n+2 H]7n+]
=3

whence By = (1,n+ 1)(2,n + 2) = (t112)*> € G. Now let oy ; = (i,n +4)(j,n + j) and
Yij = (4,7)(n +1i,n + j) for every 2 < i,j < n. Note that ay3 = 552/31 € H. Now for
4 < k < n, we have
k .
Yor, = Bolli=1P-1 and 3, = By 72%,

It follows that for every 4 < 7,5 < n, we have o;; = 937" € H and hence, t; =
Q305 1y, € H. O

Theorem 16. Let n be odd and n > 5. Then {t,...,t,} is a rank n C-string of D,, with
Schlafli type {4,3"2}. Therefore, rmax(Dy) = n and there is a rank r C-string of D,, for
every 3 < r < n.

Proof. The first assertion follows from Lemmas 13, 14 and 15. The second and third
assertion follows from Theorem 8 and Theorem 11, respectively. O

To describe our C-strings, we will use an interesting graph called the string C-group
permutation representation (CPR) graph, first introduced in [29]. Let (G, {s1,...,s.})
be a string C-group identified as a permutation group of degree m. Then the CPR graph
of G is an r-edge-labelled multigraph with vertex set {1,...,m} such that {i,j} is an
edge of label k if s; moves i to j. Recall the notation for W = D,, when W < Sym(2n)
as described in Section 2. That is, W = SN where S = Sym(n) and N is the subgroup
of even sign changes.

Theorem 17. [13, Lemma 21] Let n > 5 and 3 < d < n — 2. Then Sym(n) has a
C-string of rank d with Schlifli type {3973,6,n —d+ 2} whose CPR graph can be obtained
by appending n — d vertices and edges with labels d — 1 and d alternatively to the CPR
graph of the d-simplex, as follows.

° 1 ® 2 ® --- od_lo d od_lo d ® --- @
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Lemma 18. Let G = (s1,...,8,) < W < Sym(2n) with W = D,, be a string group
generated by involutions. If G1. .1 = S = Sym(n) is a string C-group and s, € N\Z(G),

-----

-----

Gy..r—1N,and so Gy, = Gy, —1(Gk,.. N N) by the Dedekind law. Then by Dedekind
law again,
Gl ..... r—1 N Gk ..... roo— Gl ..... r—1 N (Gk ..... rfl(Gk ..... r N N))
= Gk; ..... r—l(Gl ..... r—1 mGk ..... T ﬂN)
- Gk ..... r—1,
as Gi._,_1NN=SNN = 1. Thus the lemma follows from Lemma 10. O

.....

Let n > 6 be an even integer for the remainder of this section. We first construct rank
three C-strings of D,,, defining t1, t5, t3 in Sym(2n) as follows.

t1=(1,2)(n+1L,n+2)(n—1,2n—1)(n,2n),
ta=1(2,3)(4,5)---(n—2,n—1)(n+2,n+3)(n+4,n+5)---(2n —2,2n — 1),
ts =(3,4)(5,6)---(n—1,n)(n+3,n+4)(n+5n+6)---(2n — 1,2n).

Lemma 19. {t,,ts,t3} is a rank 3 C-string of D,, with Schlifii type {12,n — 1}.

Proof. Each of the elements tq,1s,t3 are involutions as they are defined as products of
pairwise disjoint transpositions. Note that

tito = (1,3,2)(n —1,2n — 2,2n — 1,n — 2)(n, 2n)
(4,5)---(n—4,n—=3)(n+4,n+5)---(2n —4,2n — 3),

tots = (2,4,...,n,n—1,n—3,...,3)(n+2,n+4,...,2n,2n — 1,2n - 3,... ,n+ 3),

tits =(1,2)---(n—3,n —2)(n — 1,2n)(n,2n — 1).

Since (t1,t,) = Dih(24), its elements are of the form #,(t,t)* for some integers e € {0, 1}
and 0 < &k < 11. Also since (fa,t3) < S N Stabgym(an)(1), we have

(t1,t2) N (ta,t3) < (t1,12) N (S N Stabgymn (1))
= ({t1,t2) N'S) N ((t1,2) N Stabgym(an)(1))
= (t1, (at2)") N (1, (t1t2)*) = (ta).
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It follows that (t1,%2) N (t2,t3) = (t2) and so (t1,ts,13) is a string C-group with Schlafli
type {12,n—1}. We now show that H = (t1,t5, t3) is isomorphic to D,,. Note that H = S
by Theorem 17 and so HN = D,,. Since

(n—2,2n—2)(n—1,2n—1) = (t1t,)° € N
and (n—2,2n—2)(n—1,2n—1) ¢ Z(D,,). Then calling upon Lemma 6 yields H = D,,. O

We now construct rank r C-strings of D,, for every 4 < r < n — 1 as follows. We use
Theorem 17 to construct a rank r — 1 C-string for the subgroup S = Sym(n) of D,,, and
then append an element in N. We note that the construction depends on the parity of r.

If r is odd, we define t;,...,t, in Sym(2n) as follows.

ti=(,i+1)(n+i,n+i+ 1) forevery 1 <i <r— 3,
tr o= (r—=2,r=1)(r,r+1)---(n—1,n)
m+r—2n+r—1)n+rn+r+1)---(2n—1,2n),
= —=1r)(r+1r+2)---(n—2n-1)
m+r—1n+r)(n+r+1ln+r+2)---(2n—2,2n—1),
tr=(n—1,2n—1)(n,2n).

1 2 r—2 r—1 r—1 r—2
@ @ ® - @ @ ® - @
r r
[ @ ® - @ @ ® - @
1 2 r—2 r—1 r—1 r—2
If r is even, we define ¢q,...,t,. in Sym(2n) as follows.

ti=0G,i+1)(n+in+i+1) forevery 1 <i<r—3,
tro=r—-2,r=1)(r,r+1)---(n—=2,n—1)n+r—2,n+r—1)
(m+rn+r+1)---(2n—2,2n—1),
trr = -1+ 1r+2)---(n—1Ln)(n+r—1Ln+r) --(2n—1,2n),
tr=m—=2,2n—-2)(n—1,2n—1).

1 2 r—2 r—1 r—2 r—1
o @ Q® - @ L Q - @
r r
® @ ® - @ @ Q - @
1 2 r—2 r—1 r—2 r—1

Lemma 20. Let n be even and n > 6. Then for every 4 < r <n—1, {t;,...,t,} is a
rank r C-string of D,, with Schlifli type {3"=4,6,n —r + 3,4}.
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Proof. Each of the elements tq,...,t, are involutions as they are defined as products of
pairwise disjoint transpositions. Note that for every 1 < k < r — 3, we have

A (k,k+1)(n+kn+k+1)(n—1,2n—1)(n,2n) , if 7 is odd
e (k,k+D(n+kn+k+1)(n—2,2n—-2)(n—1,2n—-1) ,ifriseven ’

which are products of pairwise disjoint transpositions because
k+1<(r=3)+1<((n—-1)=-3)+1=n—-3<n-—2.
Likewise, if r is odd we have
trot, = (n—1,2n)(n,2n—1)(r — 2,7 = )(r,r+1)---(n—3,n— 2)
n+r—2n+r—1)n+rn+r+1)---(2n—3,2n—2),
whereas if r is even we have
trot, = (n—22n—1)(n—1,2n—-2)(r—2,7r —1)(r,r+1)---(n —4,n—3)
m+r—2,n+r—1Mn+rn+r+1)---(2n—4,2n —3),
which are also products of pairwise disjoint transpositions. Finally, we have

tr—1t, = (n—1,n—22n—1,2n—2)(n,2n)
(r—Lr)(r+1,r+2)---(n—4,n—3)
m+r—1Ln+r)(n+r+1ln+r+2)---(2n—4,2n—3)

for r odd and we also have

tr_1t, = (n—2n—-32n—22n—-3)(n—1,n,2n—1,2n)
(r—=1,r)(r+1Lr+2)---(n—5n-—4)
m+r—1n+r)n+r+1ln+r+2)---(2n—52n—4),

for r even. It follows from Lemma 18 that (ty,...,t.) = D, is a string C-group with
Schlifli type {3"7*,6,n —r + 3,4}. O

Theorem 21. Let n be even and n > 6. Then ry.(D,) = n — 1 and there is a rank r
C-string of D,, for every 3 <r <n — 1.

Proof. The theorem follows from Lemmas 19, 20 and Theorem 12. m

Together Theorems 12, 16 and 21 prove Theorems 1 and 2.

4 Exceptional Finite Irreducible Coxeter Groups

The following table lists the number of abstract regular polytopes (up to isomorphism and
duality with the number of self-dual polytopes in brackets) for each exceptional Coxeter
groups computed using MAGMA [1].
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Table 1: Number of polytopes for each exceptional Coxeter group.

Group Total Rank 3 Rank 4 | Rank 5 | Rank 6 | Rank 7 | Rank > 8
Hj 8(1) 8(1) 0 0 0 0 0
Hy 59(6) 45(2) 14(4) 0 0 0 0
Fy 5(1) 3(0) 2(1) 0 0 0 0
Eg 147(18) 87(12) 50(4) 10(2) 0 0 0
E, 3662(10) 1577(10) | 1525(0) | 465(0) | 95(0) 0 0
Eg 11689(142) | 6746(117) | 3584(22) | 986(2) | 310(0) | 63(1) 0
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