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Abstract

The Turán inequalities and the Laguerre inequalities are closely related to the
Laguerre-Pólya class and the Riemann hypothesis. These inequalities have been ex-
tensively studied in the literature. In this paper, we propose a method to determine a
positive integer N such that the sequences { n

√
an/n!}n>N and

{ n+1
√
an+1/( n

√
ann!)}n>N satisfy the higher order Turán inequality and the Laguerre

inequality of order two for a P-recursive sequence {an}n>1.

Mathematics Subject Classifications: 05A20, 41A60

1 Introduction

A sequence {an}n>1 of real numbers is said to satisfy the Turán inequality or to be log-
concave if for all n > 2,

a2n > an−1an+1. (1)

The sequence {an}n>1 is said to satisfy the higher order Turán inequality or the cubic
Newton inequality if for all n > 2,

4(a2n − an−1an+1)(a
2
n+1 − anan+2)− (anan+1 − an−1an+2)

2 > 0. (2)

The Turán inequalities and the higher order Turán inequalities are related to the Laguerre-
Pólya class of real entire functions. A real entire function

ψ(x) =
∞∑
n=0

an
xn

n!
(3)
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is said to be in the Laguerre-Pólya class, denoted ψ(x) ∈ LP , if

ψ(x) = cxme−αx
2+βx

∞∏
k=1

(1 + x/xk)e
−x/xk ,

where c, β, xk are real numbers, α > 0, m is a nonnegative integer and
∑
x−2k < ∞.

Pólya and Schur [13] proved that if a real entire function ψ(x) ∈ LP , its Maclaurin coef-
ficients satisfy the Turán inequality (1). And Dimitrov [4] established that the Maclaurin
coefficients of a real function ψ(x) ∈ LP satisfy the higher order Turán inequality (2).

In recent years, many combinatorial sequences have been demonstrated to satisfy the
inequality (2). Chen, Jia and Wang [3] proved that the partition function p(n) satisfies
the higher order Turán inequality when n > 95, which was conjectured by Chen [2].
Griffin, Ono, Rolen and Zagier [6] showed that the partition function p(n) satisfies the
order d > 1 Turán inequality for sufficiently large n. Liu and Zhang [12] proved that the
overpartition function p̄(n) satisfies the higher order Turán inequality for n > 16. Wang
[15] presented a unified approach to studying the higher order Turán inequality for the
sequence {an/n!}n>0 when an satisfies a second-order linear recurrence. Moreover, Hou
and Li [7] proposed a method to determine a specific N such that the higher order Turán
inequality holds for a P-recursive sequence {an}n>N .

A sequence {an}n>1 satisfies the Laguerre inequality of order m if for n > 1,

Lm(an) :=
1

2

2m∑
k=0

(−1)k+m
(

2m

k

)
an+ka2m−k+n > 0. (4)

A polynomial f(x) satisfies the Laguerre inequality if

f ′(x)2 − f(x)f ′′(x) > 0.

Laguerre [10] stated that the Laguerre inequality holds for f(x) if f(x) is a polynomial with
only real zeros. Jensen [9] introduced the n-th generalization of the Laguerre inequality
as

Ln(f(x)) :=
1

2

2n∑
k=0

(−1)n+k
(

2n

k

)
f (k)(x)f (2n−k)(x) > 0, (5)

where f (k)(x) denotes the kth derivative of f(x). By choosing the function f(x) to have
Taylor coefficients an through the specialization x = 0, the above inequality (5) transforms
into the inequality (4).

Wang and Yang [16] established that the partition function p(n), the overpartition
function p̄(n) and several other combinatorial sequences satisfy the Laguerre inequality
of order two. Dou and Wang [5] found N(m) for 3 6 m 6 10, such that the Laguerre
inequality of order m holds for the partition function p(n) when n > N(m). Wagner [14]
showed that the partition function p(n) satisfies the Laguerre inequality of any order when
n is sufficiently large. Furthermore, Li [11] gave a method to find the explicit integer N
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such that the Laguerre inequality of order two holds for a P-recursive sequence {an}n>N .
In this paper, we provide the sufficient conditions for the sequences related to the

root sequences to satisfy the higher order Turán inequality and the Laguerre inequality
of order two. We introduce the concept of a root sequence denoted by { n

√
an}n>1, which

corresponds to a nonnegative real suquence {an}n>1. Also, we study the sequence {an}n>1

which is a P-recursive sequence. Recall that a sequence {an}n>1 is called a P-recursive
sequence of order d if it satisfies a recurrence relation of the form

p0(n)an + p1(n)an+1 + · · ·+ pd(n)an+d = 0,

where pi(n) are polynomials in n.
We can solve the given problem by establishing upper and lower bounds on un =

n−1
√
an−1 n+1

√
an+1/ n

√
an

2. To achieve this, we use the asymptotic expression of un. Hou
and Li [8] provided the asymptotic expansion of log un, then we can derive the asymptotic
expansion of un,

1− µ0

n2
+

ρ−1∑
j=1

µj(j/ρ− 1)(j/ρ− 2)

n3−j/ρ +
r(2 log n− 3)

n3

+
M∑
s=0

b̃s(1 + s/ρ)(2 + s/ρ)

n3+s/ρ
+ · · ·+ o

(
1

n1+M/ρ

)
,

where b̃0 = log b0 and b̃i is a polynomial in b1/b0, . . . , bi/b0.
Based on the asymptotic expression of an, we can establish both upper and lower

bounds for an as well as for the ratio an+1/an. Similarly, according to the asymptotic
form of un, we can derive upper and lower bounds for un. Consequently, we introduce
a method to demonstrate that the sequence { n

√
an/n!}n>N and { n+1

√
an+1/( n

√
ann!)}n>N

satisfy the higher order Turán inequality and the Laguerre inequality of order two. Fi-
nally, we provide examples to illustrate the proof method.

This paper is organized as follows. In Section 2, we begin by utilizing the bounds of
an and an+1/an provided by [8] to establish the criteria for calculating the bounds of un.
Subsequently, we give a method to compute N , such that the sequences { n

√
an/n!}n>N and

{ n+1
√
an+1/( n

√
ann!)}n>N satisfy the higher order Turán inequality. In Section 3, we use the

upper and lower bounds derived in Section 2 to establish sufficient conditions for prov-
ing that the sequences { n

√
an/n!}n>N and { n+1

√
an+1/( n

√
ann!)}n>N satisfy the Laguerre

inequality of order two.

2 The higher order Turán inequality

In this section, we will first present a systematic approach to prove that the sequence{
n
√
an/n!

}
n>1

satisfies the higher order Turán inequality when {an}n>1 is a P-recursive
sequence.

Hou and Li [7] provided a method to prove that the higher order Turán inequality
hold for the P-recursive sequence {an}n>1.
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Lemma 1. ([7, Theorem 5.2]) Let

t(x, y) = 4(1− x)(1− y)− (1− xy)2. (6)

If there exists an integer N and two rational functions fn and gn about n, such that for
all n > N ,

fn < an−1an+1/a
2
n < gn

and
t(fn, fn+1) > 0, t(fn, gn+1) > 0, t(gn, fn+1) > 0, t(gn, gn+1) > 0.

Then {an}n>N satisfies the higher order Turán inequality.

We will use the lemma above to prove the sequence { n
√
an/n!}n>1 satisfies the higher

order Turán inequality. To accomplish this, we need to determine the lower and upper
bounds of un = n−1

√
an−1 n+1

√
an+1/ n

√
an

2. Additionally, we will provide a criterion for
establishing these bounds.

Theorem 2. Let {an}n>1 be a positive sequence. Suppose we can find a lower bound sn
and an upper bound Sn of an, a lower bound fn and an upper bound gn of rn = an+1

an
, and

two rational functions f̃n and g̃n, such that for n > N ,

(n2 − n) log fn − (n2 + n− 2) log gn−1 + 2 log sn−1 > (n− 1)n(n+ 1) log f̃n,

and

(n2 − n) log gn − (n2 + n− 2) log fn−1 + 2 logSn−1 < (n− 1)n(n+ 1) log g̃n.

Then we have f̃n < un < g̃n for n > N .

Proof. In order to prove f̃n < un < g̃n, it suffices to prove

f̃n
(n−1)n(n+1)

<
a
n(n+1)
n−1 a

n(n−1)
n+1

a
2(n−1)(n+1)
n

< g̃n
(n−1)n(n+1).

Equivalently, we need to verify the following inequalities

(n− 1)n(n+ 1) log f̃n < n(n+ 1) log an−1 + n(n− 1) log an+1 − 2(n− 1)(n+ 1) log an

and

n(n+ 1) log an−1 + n(n− 1) log an+1 − 2(n− 1)(n+ 1) log an < (n− 1)n(n+ 1) log g̃n.

By substituting an = an−1rn−1 and an+1 = anrn into the above two inequalities, we obtain

(n− 1)n(n+ 1) log f̃n < (n2 − n) log rn − (n2 + n− 2) log rn−1 + 2 log an−1

and

(n2 − n) log rn − (n2 + n− 2) log rn−1 + 2 log an−1 < (n− 1)n(n+ 1) log g̃n.

Consequently, the theorem is proven immediately.

the electronic journal of combinatorics 32(4) (2025), #P4.20 4



Using the above lower and upper bounds and Lemma 1, we can establish the criteria
that enable the sequence { n

√
an/n!}n>1 to satisfy the higher order Turán inequality.

Theorem 3. Let {an}n>1 be a positive sequence,

pn =
n

n+ 1
f̃n, qn =

n

n+ 1
g̃n.

If there exists an integer N such that for n > N ,

t(pn, pn+1) > 0, t(pn, qn+1) > 0, t(qn, pn+1) > 0, t(qn, qn+1) > 0.

Then the sequence { n
√
an/n!}n>N satisfies the higher order Turán inequality.

Similarly, we can give the sufficient conditions for the sequence
{

n+1
√
an+1/( n

√
ann!)

}
n>1

to satisfy the higher order Turán inequality.

Theorem 4. Let {an}n>1 be a positive sequence,

p̃n =
n

n+ 1

f̃n+1

g̃n
, q̃n =

n

n+ 1

g̃n+1

f̃n
.

If there exists an integer N such that for n > N ,

t(p̃n, p̃n+1) > 0, t(p̃n, q̃n+1) > 0, t(q̃n, p̃n+1) > 0, t(q̃n, q̃n+1) > 0.

Then the sequence
{

n+1
√
an+1/( n

√
ann!)

}
n>N

satisfies the higher order Turán inequality.

Based on the Lemma 1, the proof of Theorems 3 and 4 is obvious. So we omit the
proof process. Next, we will provide an example to illustrate the application of the above
theorems.

Theorem 5. ([17, Conjecture 4.7]) Let

Bn =
n∑
k=1

2

n(n+ 1)2

(
n+ 1

k − 1

)(
n+ 1

k

)(
n+ 1

k + 1

)
be the Baxter number. Then the sequences { n

√
Bn/n!}n>2 and

{
n+1
√
Bn+1/(

n
√
Bnn!)

}
n>2

satisfy the higher order Turán inequality.

Proof. By Zeilberger’s algorithm, we get that Bn satisfies the following recurrence relation,

(n+ 3)(n+ 4)Bn+1 = (7n2 + 21n+ 12)Bn + 8n(n− 1)Bn−1

with initial values
B0 = 1, B1 = 1, B2 = 2, B3 = 6.
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By utilizing algorithm Asy from the Mathematica package P-rec.m, we can obtain the
asymptotic expansion of Bn,

C · 8nn−4
(

1− 22

3n
+

955

27n2
+ o

(
1

n2

))
,

where C is a constant.
Then employing the algorithm RootLog, we derive a lower bound fn and an upper

bound gn for rn = Bn+1/Bn when n > 753,

fn = 8− 32

n
+

413

3n2
, gn = 8− 32

n
+

419

3n2
.

Next, we will demonstrate by mathematical induction that sn = 8nn−5 is a lower bound
and Sn = 8nn−3 is an upper bound for Bn when n > 3. Assuming that sn < Bn < Sn,
then we will prove sn+1 < Bn+1 < Sn+1. On the one hand, we have

Bn+1 = rnBn > fnsn

and

fnsn − sn+1

sn
=

413 + 1969n+ 3674n2 + 3290n3 + 1345n4 + 173n5 + 24n6

3n2(1 + n)5
,

which is positive for n > 1. On the other hand, we have

Bn+1 = rnBn < gnSn

and
Sn+1 − gnSn

Sn
=
−419− 1161n− 993n2 − 203n3 + 24n4

3n2(1 + n)3
,

which is positive for n > 13. Therefore, we can conclude that sn < Bn < Sn for n > 753.
Checking the first 752 items, we finally get that

sn < Bn < Sn, ∀n > 3.

By utilizing the asymptotic expansion of Bn, we obtain the asymptotic expression of

un = n−1
√
Bn−1

n+1
√
Bn+1/

n
√
Bn

2
as follows,

1 +

(
12

n3
− 8

n3
log n

)
+ o

(
1

n3

)
.

Consequently, we will prove using Theorem 2 that f̃n = 1 − 1
n2 serves as a lower bound

and g̃n = 1− 8
n3 acts as an upper bound for un when n > 14. Let

D1(n) = (n2 − n) log fn − (n2 + n− 2) log gn−1 + 2 log sn−1 − (n− 1)n(n+ 1) log f̃n
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and

D2(n) = (n− 1)n(n+ 1) log g̃n − (n2 − n) log gn + (n2 + n− 2) log fn−1 − 2 logSn−1.

Hence, we need to prove that D1(n) > 0 and D2(n) > 0 when n > 14. We know that

D
(4)
1 (n) is a rational function of n and based on the largest real root of the numerator of

D
(4)
1 (n), we get that D

(4)
1 (n) > 0 for n > 32. Then we obtain the following formulae by

Mathematica,

lim
n→+∞

D1(n) =∞, lim
n→+∞

D
′

1(n) = 1, lim
n→+∞

D
′′

1 (n) = lim
n→+∞

D
′′′

1 (n) = 0.

Thus, we deduce that

D
′′′

1 (n) < 0, D
′′

1 (n) > 0, D
′

1(n) > 0, ∀n > 32.

Since D1(32) > 0, we conclude that D1(n) > 0 for n > 32. By a similiar proof process,

we can show that D2(n) > 0 for n > 44. Consequently, we have f̃n < un < g̃n for n > 44.
By verifying the initial values, we derive that

f̃n < un < g̃n, ∀n > 14.

Then when n > 14, let

pn =
n

n+ 1
f̃n =

n

n+ 1

(
1− 1

n2

)
,

qn =
n

n+ 1
g̃n =

n

n+ 1

(
1− 8

n3

)
.

By direct calculation, we find that

t(pn, pn+1) =
4

n(1 + n)2
,

which is positive for n > 1.

t(pn, qn+1) =
−49 + 240n+ 122n2 + 100n3 + 15n4 + 4n5

n2(1 + n)4(2 + n)2
,

which is positive for n > 1.

t(qn, pn+1) =
−32 + 48n+ 3n2 + 4n3

n2(1 + n)4
,

which is positive for n > 1.

t(qn, qn+1) =
4

n4(1 + n)6(2 + n)2
(−784 + 672n+ 728n2 + 840n3 + 529n4 + 325n5 + 98n6

+ 34n7 + 5n8 + n9),
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which is positive for n > 1.
Therefore, we can conclude that the sequence { n

√
Bn/n!}n>14 satisfies the higher order

Turán inequality according to Theorem 3. By examining the initial terms, we can further
deduce that sequence { n

√
Bn/n!}n>2 satisfies the higher order Turán inequality.

Next when n > 14, let

p̃n =
n

n+ 1

f̃n+1

g̃n
=

n5(2 + n)

(1 + n)3 (−8 + n3)
,

q̃n =
n

n+ 1

g̃n+1

f̃n
=
n3(7 + 4n+ n2)

(1 + n)5
.

So we can get that

t(p̃n, p̃n+1)

=
4

(−2 + n)2(−1 + n)2(1 + n)3(2 + n)4(4 + 2n+ n2)2(7 + 4n+ n2)2
(40320 + 178496n

+290816n2 + 145312n3 − 177824n4 − 322592n5 − 192458n6 − 18235n7 + 39578n8

+20340n9 + 35n10 − 3304n11 − 1083n12 + 71n14 + 15n15 + n16) > 0, ∀n > 4.

t(p̃n, q̃n+1)

=
4

(−2 + n)2(1 + n)3(2 + n)8(4 + 2n+ n2)2
(6144 + 36864n+ 94720n2 + 132864n3

+102144n4 + 26944n5 − 25056n6 − 29952n7 − 14232n8 − 3036n9 + 168n10 + 283n11

+81n12 + 12n13 + n14) > 0, ∀n > 4.

t(q̃n, p̃n+1)

=
4

(−1 + n)2(1 + n)5(2 + n)6(7 + 4n+ n2)
(360 + 2468n+ 7086n2 + 7107n3 − 1451n4

−8433n5 − 6858n6 − 2217n7 + 38n8 + 261n9 + 88n10 + 14n11 + n12) > 0, ∀n > 3.

t(q̃n, q̃n+1)

=
4

(1 + n)5(2 + n)10
(384 + 3456n+ 14080n2 + 31088n3 + 41512n4 + 36784n5 + 23084n6

+10531n7 + 3536n8 + 868n9 + 151n10 + 17n11 + n12) > 0, ∀n > 1.

Consequently, we know that the sequence { n+1
√
Bn+1/(

n
√
Bnn!)}n>14 satisfies the higher

Turán inequality by Theorem 4. After verifying the first 13 items, we ultimately conclude
that the sequence { n+1

√
Bn+1/(

n
√
Bnn!)}n>2 satisfies the higher Turán inequality.

By using the Mathematica package P-rec.m (which is available at [1]), we can show
that the higher order Turán inequality holds for the two sequences associated with the
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root sequence of many combinatorial sequences, such as Fine numbers {fn}n>4, Motzkin
numbers {Mn}n>2, Cohen numbers {Cn}n>2, large Schröder numbers {Sn}n>2, the num-
bers of the set of all tree-like polyhexes with n + 1 hexagons {hn}n>2, the numbers of
walks on cubic lattice with n steps, starting and finishing on the xy plane and never going
below it {wn}n>2, the numbers of n× n matrices with nonnegative entries and every row
and column sum 2 {tn}n>2, Domb numbers {Dn}n>2 and so on. Then we list the lower
and upper bounds of un = n−1

√
an−1 n+1

√
an+1/ n

√
an

2 for n > N .

Table 1: The lower and upper bounds

the lower bound the upper bound N

fn 1− 1
n2 1− 3

n3 6

Mn 1− 1
n2 1− 3

n3 11

Cn 1− 1
n2 1− 5

n3 9

Sn 1− 1
n2 1− 3

n3 9

hn 1− 1
n2 1− 3

n3 6

wn 1− 1
n2 1− 3

n3 26

tn 1− 2
n2 + 1

n3 1− 1
n2 5

Dn 1− 1
n2 1− 3

n3 6

3 The Laguerre inequality of order 2

In this section, we will give sufficient conditions for the sequences { n
√
an/n!}n>1 and

{ n+1
√
an+1/( n

√
ann!)}n>1 to satisfy the Laguerre inequality of order two, where the se-

quence {an}n>1 is a P-recursive sequence. Li [11] presented a method to determine the
explicit value of N such that Laguerre inequality of order two holds for {an}n>N .

Lemma 6. ([11, Theorem 5.1]) If there exists an integer N , two rational functions fn
and gn, such that for all n > N ,

fn <
an−1an+1

a2n
< gn,

and
fn−1f

2
nfn+1 − 4gn + 3 > 0.

Then {an}n>N satisfies Laguerre inequality of order two.

We will utilize the lemma mentioned above to provide sufficient conditions for the
sequences { n

√
an/n!}n>1 and { n+1

√
an+1/( n

√
ann!)}n>1 to satisfy the Laguerre inequality of

order two. Similarly to the previous section, let f̃n and g̃n represent the lower and upper
bounds of un = n−1

√
an−1 n+1

√
an+1/ n

√
an

2, respectively.
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Theorem 7. Let {an}n>1 be a positive sequence and

pn =
n

n+ 1
f̃n, qn =

n

n+ 1
g̃n.

If there exists an integer N such that for n > N ,

pn−1p
2
npn+1 − 4qn + 3 > 0,

then the sequence { n
√
an/n!}n>N satisfies the Laguerre inequality of order two.

Theorem 8. Let {an}n>1 be a positive sequence and

p̃n =
n

n+ 1

f̃n+1

g̃n
, q̃n =

n

n+ 1

g̃n+1

f̃n
.

If there exists an integer N such that for n > N ,

p̃n−1p̃nq̃np̃n+1 − 4q̃n + 3 > 0,

then the sequence { n+1
√
an+1/( n

√
ann!)}n>N satisfies the Laguerre inequality of order two.

By applying Lemma 6, we can directly obtain the two theorems above, thus we omit
the proof process. Subsequently, we will illustrate the application of the theorems with
an example.

Theorem 9. Let Hn denote the number of n × n (0, 1)-matrices with row and column
sum 2. The sequences { n

√
Hn/n!}n>1 and { n+1

√
Hn+1/(

n
√
Hnn!)}n>2 satisfy the Laguerre

inequality of order two.

Proof. According to Zeilberger’s algorithm, we have the following recursion relation for
Hn,

2Hn − 2n(n− 1)Hn−1 − n(n− 1)2Hn−2 = 0,

with initial values
H0 = 1, H1 = 0, H2 = 1, H3 = 6.

Using the Mathematica package P-rec.m, we obtain the asymptotic expression of Hn,

C · e−2nn
1
2
+2n

(
1− 5

24n
− 47

1152n2
+ o

(
1

n2

))
,

where C is a constant.
Additionally, for n > 5, we can establish a lower bound fn and an upper bound gn for

rn = Hn+1/Hn as follows,

fn = n2 +
3n

2
+

3

4
+

1

4n
− 19

16n2
, gn = n2 +

3n

2
+

3

4
+

1

4n
+

13

16n2
.
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Then we aim to prove that sn = e−2nn
1
4
+2n serves as a lower bound and Sn = e−2nn1+2n

serves as an upper bound of Hn when n > 5 by induction. Suppose that sn < Hn < Sn,
we need to prove sn+1 < Hn+1 < Sn+1. Since that

fnsn < Hn+1 = rnHn < gnSn.

Thus, it is sufficient to prove

sn+1 < fnsn, gnSn < Sn+1.

For n > 5, we define

∆1(n) = log fn + log sn − log sn+1, ∆2(n) = log Sn+1 − log gn − logSn.

Consequently, we know that ∆
′′
1(n) and ∆

′′
2(n) are rational functions about n. By analyz-

ing the largest roots of their numerators, we conclude that ∆
′′
1(n) > 0 and ∆

′′
2(n) > 0 for

n > 3. By calculation, we also establish that

lim
n→+∞

∆
′

1(n) = lim
n→+∞

∆
′

2(n) = 0.

Given that limn→∞∆1(n) = limn→∞∆2(n) = 0, ∆1(3) > 0 and ∆2(3) > 0, we derive that
∆1(n) > 0 and ∆2(n) > 0 when n > 5. Then examining the initial values, we observe
that for n > 5,

sn < Hn < Sn.

From the asymptotic expansion of Hn, we can derive the asymptotic expansion of un =
n−1
√
Hn−1

n+1
√
Hn+1/

n
√
Hn

2
,

1− 2

n2
+

(
− 3

2n3
+

log n

n3

)
+ o

(
1

n3

)
.

Following a similar proof process as above, we can establish that f̃n = 1 − 2
n2 + 1

n3 is a
lower bound and g̃n = 1− 1

n2 is an upper bound for un when n > 5.
Therefore, when n > 5, let

pn =
n

n+ 1
f̃n =

n

n+ 1

(
1− 2

n2
+

1

n3

)
,

qn =
n

n+ 1
g̃n =

n

n+ 1

(
1− 1

n2

)
.

Through calculation, we can obtain that

pn−1p
2
npn+1 − 4qn + 3

=
2 + 3n− 14n2 − 6n3 + 62n4 + 74n5 + 26n6 + 2n7

n4(1 + n)4(2 + n)
> 0, ∀n > 1.
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Thus, based on the Theorem 7, it can be concluded that the sequence { n
√
Hn/n!}n>5

satisfies the Laguerre inequality of order two. After checking the first 4 items, we finally
deduce that the sequence { n

√
Hn/n!}n>1 satisfies the Laguerre inequality of order two.

Next, when n > 5, we define

p̃n =
n

n+ 1

f̃n+1

g̃n
=

n4(1 + 3n+ n2)

(−1 + n)(1 + n)5
,

q̃n =
n

n+ 1

g̃n+1

f̃n
=

n5(2 + n)

(1 + n)3(1− 2n+ n3)
.

Consequently, we can get that

p̃n−1p̃nq̃np̃n+1 − 4q̃n + 3

=
1

(−2 + n)(−1 + n)(1 + n)4(2 + n)4(−1 + n+ n2)
(−96− 336n− 144n2 + 893n3

+1458n4 + 597n5 − 227n6 − 192n7 − 15n8 + 6n9),

which is positive for n > 8. According to Theorem 8, we know that the sequence
{ n+1
√
Hn+1/(

n
√
Hnn!)}n>8 satisfies the Laguerre inequality of order two. By verifying the

initial values, we can further conclude that the sequence { n+1
√
Hn+1/(

n
√
Hnn!)}n>2 satisfies

the Laguerre inequality of order two.

The method described above allows us to prove that two sequences associated with the
root sequence of Fine numbers {fn}n>3 and two sequences related to the root sequence of
other sequences in Section 2 satisfy the Laguerre inequality of order two for n > 1.
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[13] G. Pólya and J. Schur. Über zwei Arten von Faktorenfolgen in der Theorie der alge-
braischen Gleichungen. J. Reine Angew. Math., 144: 89–113, 1914.

[14] I. Wagner. On a new class of Lagueree-Pólya type functions with applications in
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