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Abstract

The Turan inequalities and the Laguerre inequalities are closely related to the
Laguerre-Podlya class and the Riemann hypothesis. These inequalities have been ex-
tensively studied in the literature. In this paper, we propose a method to determine a
positive integer N  such that the sequences {{/a,/n!},>ny and
{ "Yany1/(/ann!) }n>n satisty the higher order Turdn inequality and the Laguerre
inequality of order two for a P-recursive sequence {an}n>1.

Mathematics Subject Classifications: 05A20, 41A60
1 Introduction

A sequence {a,},>1 of real numbers is said to satisfy the Turdn inequality or to be log-
concave if for all n > 2,

ai > Uy 10p41- (1)

The sequence {a,},>1 is said to satisfy the higher order Turdn inequality or the cubic
Newton inequality if for all n > 2,

4(a2 = an-10n11)(02 41 = Gnlny2) = (Anlni1 — Ano10n12)° = 0. (2)

The Turan inequalities and the higher order Turan inequalities are related to the Laguerre-
Poélya class of real entire functions. A real entire function

V) =Dt (3)
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is said to be in the Laguerre-Pdlya class, denoted ¢ (z) € LP, if

[e.9]

W(x) = cx™e 0T BT H(l + x/xk)e_"”/mk,
k=1

where ¢, [, x) are real numbers, o > 0, m is a nonnegative integer and Zx,f < 0.
Pélya and Schur [13] proved that if a real entire function ¥ (z) € LP, its Maclaurin coef-
ficients satisfy the Turdn inequality (1). And Dimitrov [4] established that the Maclaurin
coefficients of a real function ¢ (z) € LP satisfy the higher order Turdn inequality (2).

In recent years, many combinatorial sequences have been demonstrated to satisfy the
inequality (2). Chen, Jia and Wang [3] proved that the partition function p(n) satisfies
the higher order Turan inequality when n > 95, which was conjectured by Chen [2].
Griffin, Ono, Rolen and Zagier [6] showed that the partition function p(n) satisfies the
order d > 1 Turdn inequality for sufficiently large n. Liu and Zhang [12] proved that the
overpartition function p(n) satisfies the higher order Turén inequality for n > 16. Wang
[15] presented a unified approach to studying the higher order Turan inequality for the
sequence {a,/n!},>o when a, satisfies a second-order linear recurrence. Moreover, Hou
and Li [7] proposed a method to determine a specific N such that the higher order Turan
inequality holds for a P-recursive sequence {a,},>n-

A sequence {a, },>1 satisfies the Laguerre inequality of order m if for n > 1,

2m

1 2m

L(a,) :== 5 E (—1)k+m( f )an+ka2m_k+n > 0. (4)
k=0

A polynomial f(z) satisfies the Laguerre inequality if

fl(x)* = f(x)f"(z) > 0.

Laguerre [10] stated that the Laguerre inequality holds for f(z) if f(z) is a polynomial with
only real zeros. Jensen [9] introduced the n-th generalization of the Laguerre inequality
as

Lo(f@) = 5 -1 () 19 1) > 0 )

where f*)(z) denotes the kth derivative of f(z). By choosing the function f(x) to have
Taylor coefficients a,, through the specialization = 0, the above inequality (5) transforms
into the inequality (4).

Wang and Yang [16] established that the partition function p(n), the overpartition
function p(n) and several other combinatorial sequences satisfy the Laguerre inequality
of order two. Dou and Wang [5] found N(m) for 3 < m < 10, such that the Laguerre
inequality of order m holds for the partition function p(n) when n > N(m). Wagner [14]
showed that the partition function p(n) satisfies the Laguerre inequality of any order when
n is sufficiently large. Furthermore, Li [11] gave a method to find the explicit integer N
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such that the Laguerre inequality of order two holds for a P-recursive sequence {a,}n>n-

In this paper, we provide the sufficient conditions for the sequences related to the
root sequences to satisfy the higher order Turan inequality and the Laguerre inequality
of order two. We introduce the concept of a root sequence denoted by {3/an},>1, which
corresponds to a nonnegative real suquence {a, },>1. Also, we study the sequence {a, },>1
which is a P-recursive sequence. Recall that a sequence {a,},> is called a P-recursive
sequence of order d if it satisfies a recurrence relation of the form

po(n)an +p1(n)anir + -+ pa(n)aniqa =0,

where p;(n) are polynomials in n.

We can solve the given problem by establishing upper and lower bounds on w, =
"Y1 "yt {L/a_nz. To achieve this, we use the asymptotic expression of u,. Hou
and Li [8] provided the asymptotic expansion of log u,, then we can derive the asymptotic
expansion of wu,,

1iG/p—1)(G/p—2)  r(2logn —3)
+Z n3—ilp + n3

+st(1+s/p)(2+8/f’)+...+O(L>,

n3+s/p nl+M/p

where by = log by and b; is a polynomial in b1 /bo, ..., b;/bo.

Based on the asymptotic expression of a,, we can establish both upper and lower
bounds for a, as well as for the ratio a,1/a,. Similarly, according to the asymptotic
form of u,, we can derive upper and lower bounds for wu,. Consequently, we introduce
a method to demonstrate that the sequence {{/a,/n!}n>n and { "{/a,11/(/ann!)}nsn
satisfy the higher order Turan inequality and the Laguerre inequality of order two. Fi-
nally, we provide examples to illustrate the proof method.

This paper is organized as follows. In Section 2, we begin by utilizing the bounds of
a, and a,1/a, provided by [8] to establish the criteria for calculating the bounds of wu,,.
Subsequently, we give a method to compute N, such that the sequences { {/a,,/n!},>n and
{ @, 11/ (/ann!) } >N satisty the higher order Turan inequality. In Section 3, we use the
upper and lower bounds derived in Section 2 to establish sufficient conditions for prov-

ing that the sequences { /a,/n!},>n and { “+V/a,1/(/ann!)}=n satisfy the Laguerre
inequality of order two.

2 The higher order Turan inequality

In this section, we will first present a systematic approach to prove that the sequence
{/an/ n!}@1 satisfies the higher order Turdn inequality when {a,},>1 is a P-recursive
sequence.

Hou and Li [7] provided a method to prove that the higher order Turdn inequality
hold for the P-recursive sequence {ay}n>1.
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Lemma 1. ([7, Theorem 5.2]) Let

ta,y) =41 —z)(1 —y) — (1 —xy)*. (6)

If there exists an integer N and two rational functions f,, and g, about n, such that for
alln > N,

fn < an—la'n-‘rl/ai < gn
and
t(fnafn+1) > 07 t(fnagn—l-l) > O, t(gn:fn-i-l) > O, t(gnagn—H) > 0.

Then {a,},>n satisfies the higher order Turdn inequality.

We will use the lemma above to prove the sequence { {/a,/n!},>; satisfies the higher
order Turan inequality. To accomplish this, we need to determine the lower and upper
bounds of w, = /a1 "1/ {L/a_n2. Additionally, we will provide a criterion for
establishing these bounds.

Theorem 2. Let {a,},>1 be a positive sequence. Suppose we can find a lower bound s,
and an upper bound S,, of a,, a lower bound f, and an upper bound g, of r, = aZ—:l, and

two rational functions f; and g, such that forn > N,

(n? = n)log fn — (n® + 1 — 2)log gn_1 + 2108 $p_1 > (n — Dn(n + 1)log fn,
and

(n* —n)log g, — (n* +n —2)log fu_1 + 2log Sp—1 < (n — 1)n(n + 1) log gn.
Then we havef; < Up < gp forn = N.
Proof. In order to prove fn < Uy < gp, it suffices to prove

~ (n—1)n(n+1) az(_nfrl)azgzil)

3 ~ (n—l)n(n—i—l).
ai(nfl)(nJrl)

< 9n

Equivalently, we need to verify the following inequalities
(n — Dn(n +1)log f, < n(n+1)logan 1 +n(n — 1)loganss — 2(n — 1)(n + 1) log ay,
and
n(n+1)loga,—1 +n(n —1)logans1 —2(n — 1)(n+ 1) loga, < (n — 1)n(n + 1) log g,.
By substituting a,, = a,,_17,_1 and a, 1 = a,r, into the above two inequalities, we obtain
(n—1)n(n+1) log f, < (n* —n)logr, — (n*+n—2)logr,_1 +2loga, 1
and
(n* —n)logr, — (n*+n—2)logr,_1 +2loga, 1 < (n — )n(n + 1)log gn.
Consequently, the theorem is proven immediately. O
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Using the above lower and upper bounds and Lemma 1, we can establish the criteria
that enable the sequence { /a, /n!},>1 to satisfy the higher order Turan inequality.

Theorem 3. Let {a,},>1 be a positive sequence,

n

~ n .
fn7 qn = In-

pn:n—i—l n+1

If there exists an integer N such that for n > N,

t(pnapn-l—l) > 07 t(pn:Qn—i—l) > 07 t(Q’napn—i—l) > 07 t(Qn7Qn+1) > 0.
Then the sequence { {/a,/n!}n>n satisfies the higher order Turdn inequality.

Similarly, we can give the sufficient conditions for the sequence { »/a, 7 /({/a,n!) }n>1
to satisfy the higher order Turan inequality.

Theorem 4. Let {a,},>1 be a positive sequence,
~ n fn+1 ~ n g;;r/l

If there exists an integer N such that for n > N,

t(PnsPrr1) > 0, Upn, @ur1) > 0, UGns Prv1) > 0, H(Gns gnr1) > 0.
Then the sequence { a1/ (3 ann!)}n>N satisfies the higher order Turdn inequality.

Based on the Lemma 1, the proof of Theorems 3 and 4 is obvious. So we omit the
proof process. Next, we will provide an example to illustrate the application of the above
theorems.

Theorem 5. ([17, Conjecture 4.7]) Let
- 2 n+1\ (n+1\/n+1
B,=Y —
Sl ()G

be the Baxter number. Then the sequences {{/B,/n!},>> and { ”+\1/Bn+1/(\"/Bnn!)}n>2
satisfy the higher order Turan inequality.

Proof. By Zeilberger’s algorithm, we get that B, satisfies the following recurrence relation,
(n+3)(n+4)B,y1 = (Tn® +21n + 12) B, + 8n(n — 1) B,

with initial values
By=1, Bi=1, By, =2, B3 =06.

ot
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By utilizing algorithm Asy from the Mathematica package P-rec.m, we can obtain the
asymptotic expansion of B,,,

22 955 1
C-8"n~t(1-== —
" < 3n+27n2+0<n2)>’
where C' is a constant.

Then employing the algorithm RootLog, we derive a lower bound f, and an upper
bound g, for r, = B,41/B,, when n > 753,

32 413 32 419

fn:8———|—ﬁ, 9n =

n n  3n?

Next, we will demonstrate by mathematical induction that s, = 8"n~° is a lower bound
and S, = 8"n~3 is an upper bound for B,, when n > 3. Assuming that s, < B, < S,,
then we will prove s,,1 < Bpi1 < Spi1- On the one hand, we have

Bn+1 = 7ﬁan > fnsn

and

faSn = Sna1 413419690 + 3674n? + 3290n® 4 1345n* + 173n° + 24nS

Sn 3n2(1+n)° ’

which is positive for n > 1. On the other hand, we have
Bn+1 = Tan < gnsn

and
Snt1 = GnSp  —419 — 1161n — 993n? — 203n3 + 24n?

Sn 3n2(1+n)? ’
which is positive for n > 13. Therefore, we can conclude that s, < B, < S,, for n > 753.
Checking the first 752 items, we finally get that

Sn<Bn<Sn; \V/n>3

By utilizing the asymptotic expansion of B,, we obtain the asymptotic expression of

tn = "By "B/ By as follows,

12 8 1

Consequently, we will prove using Theorem 2 that ﬁb =1- n% serves as a lower bound
and g, =1 — % acts as an upper bound for u,, when n > 14. Let

Di(n) = (n* —n)log f, — (n* +n — 2)log g1 + 2log 5,1 — (n — )n(n + 1) log f,
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and
Dy(n) = (n — 1)n(n + 1) log g, — (n* —n)log g, + (n* +n — 2)log f, 1 — 2log Sy_1.

Hence, we need to prove that Di(n) > 0 and Dy(n) > 0 when n > 14. We know that
D§4) (n) is a rational function of n and based on the largest real root of the numerator of

D (n), we get that D{”(n) > 0 for n > 32. Then we obtain the following formulae by
Mathematica,

"

lim Dy(n)=o0, lim Dy(n)=1, lim Dj(n)= lim D (n)=0.

n—-+0o00 n——+o0o n—-+0o0o n——+oo

Thus, we deduce that

a /

D/ (n) <0, Dj(n)>0, Djn)>0 Yn>32

Since D;(32) > 0, we conclude that D;(n) > 0 for n > 32. By a similiar proof process,
we can show that Ds(n) > 0 for n > 44. Consequently, we have f, < u, < g, for n > 44.
By verifying the initial values, we derive that

ﬁb<un<§;” Vn > 14.

Then when n > 14, let

n o~ n 1

n — n — 1—— )

Pr = 1 4 n+1 ( n2)
on . n 1 8

Qn - gn - + 1 .

By direct calculation, we find that

P, D) = ——
Pny Pt n(l +n)27

which is positive for n > 1.

—49 4 240n + 122n% + 100n3 + 15n* + 4n°
n?(1 4+ n)4(2 + n)? ’

t(pm Qn+1) =

which is positive for n > 1.

—32 4 48n + 3n? + 4n3
n?(1+n)* ’

t(Gns Pny1) =

which is positive for n > 1.
4

t(Gns Gny1) = (=784 + 672n + 728n? + 840n° 4 529n* + 325n° + 98n°

n4(1+n)8(2+n)?
+ 340" + 5n® +n?),
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which is positive for n > 1.
Therefore, we can conclude that the sequence { /B, /n!},>14 satisfies the higher order
Turan inequality according to Theorem 3. By examining the initial terms, we can further

deduce that sequence {3/B,/n!},>2 satisfies the higher order Turdn inequality.
Next when n > 14, let

__n fan_ 0724 n)
P 1 g, T U+ n)3(—8+nd)
- N gon n*(T+4An+n?)
R L
So we can get that
t(Dns Prr1)
4

= 40320 + 1784
(_2+n)2(_1+n)2(1+n)3(2+n)4(4+2n+n2)2(7+4n+n2)2< 0320 - 178496n

+290816n2 + 145312n> — 177824n* — 322592n° — 192458n° — 18235n" + 39578n°
+20340n° + 35n'% — 3304n'" — 1083n'* + 71n'* + 150" +n'%) >0, Vn >4.

t(Pns ng1)
4
R ECF TR T e /G e (6144 + 36864n + 94720n* + 132864n°
+102144n* + 26944n° — 25056n° — 29952n7 — 14232n° — 3036n° + 168n'° + 283n'!

+81n'2 + 120" +n') >0, Vn >4

t(qn, Prt1)

4

= 360 + 2468n + 708612 + 7107n> — 1451n*
(ST 20 T ) (2 £ n)o(7 & dn £ ) 000 F 24681 + T086n™ + 7107n "

—8433n° — 6858n° — 2217n" + 38n® + 261n° 4 88n'" + 14n'' +n'?) >0, Vn > 3.

t(Gns Gnt)

4

= AT res e (384 + 3456n + 14080n> 4 31088n” + 41512n" + 36784n° + 23084n°

+10531n" + 3536n° + 868n° + 151" + 170! + n'?) >0, Vn > 1.

Consequently, we know that the sequence { "/B,+1/(/Bun!)}n>14 satisfies the higher
Turan inequality by Theorem 4. After verifying the first 13 items, we ultimately conclude

that the sequence { "/B,11/(/Bnn!) }nso satisfies the higher Turdn inequality. O

By using the Mathematica package P-rec.m (which is available at [1]), we can show
that the higher order Turan inequality holds for the two sequences associated with the
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root sequence of many combinatorial sequences, such as Fine numbers {f, },>4, Motzkin
numbers { M, },>2, Cohen numbers {C,, },>2, large Schroder numbers {5, },>2, the num-
bers of the set of all tree-like polyhexes with n + 1 hexagons {h,},>2, the numbers of
walks on cubic lattice with n steps, starting and finishing on the xy plane and never going
below it {w,, },>2, the numbers of n x n matrices with nonnegative entries and every row
and column sum 2 {t,},>2, Domb numbers {D, },>2 and so on. Then we list the lower

and upper bounds of u, = "/a,_1 "R/a,11/ wa,’ forn > N.

Table 1: The lower and upper bounds

the lower bound | the upper bound | N
1k 3 [s
M, 1- 1-3 11
C, 1- 1-% 9
S 1- 1-3
P 1- 1-3 6
wy, 1- - 1-5 26
tn -2+ % 1-

D, 1- % 1-%

3 The Laguerre inequality of order 2

In this section, we will give sufficient conditions for the sequences {:/a,/n!},>1 and
{ "an1/(/ann!) }n=1 to satisfy the Laguerre inequality of order two, where the se-
quence {a,},>1 is a P-recursive sequence. Li [11] presented a method to determine the
explicit value of N such that Laguerre inequality of order two holds for {a, }n>n.

Lemma 6. ([11, Theorem 5.1]) If there exists an integer N, two rational functions f,
and g,, such that for all n > N,

Ap—10n+1
fo <=5 <9n

n

and
fn—lfsfn—&-l - 4gn +3>0.

Then {a,},>n satisfies Laguerre inequality of order two.

We will utilize the lemma mentioned above to provide sufficient conditions for the
sequences { /a,/n!}n>1 and { "/an11/(/ann!) }n>1 to satisfy the Laguerre inequality of
order two. Similarly to the previous section, let f,, and g, represent the lower and upper

bounds of u,, = "/a,_1 "Va,i1/ \"/an2, respectively.
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Theorem 7. Let {a,},>1 be a positive sequence and

. n f . n
Pn—n+1 ns QH—n+1gn-

If there exists an integer N such that forn > N,
Pn1DaPns1 — 4gn +3 >0,

then the sequence { /a,/n'},>n satisfies the Laguerre inequality of order two.

Theorem 8. Let {a,},>1 be a positive sequence and

ﬁ/: n fn+1 ~ _ n g/;L\/-i-l
"on+l g, " n41 f

If there exists an integer N such that for n > N,

Pn=1PnGnPnr1 — 4qn + 3 >0,

then the sequence { "/an11/(/ann!) }nsn satisfies the Laguerre inequality of order two.

By applying Lemma 6, we can directly obtain the two theorems above, thus we omit
the proof process. Subsequently, we will illustrate the application of the theorems with

an example.

Theorem 9. Let H, denote the number of n x n (0,1)-matrices with row and column

sum 2. The sequences {/H,/n}ns1 and { "N/ Hp1/(V Hpn!) }nso satisfy the Laguerre

inequality of order two.

Proof. According to Zeilberger’s algorithm, we have the following recursion relation for

H’I’L?
2H, —2n(n — 1)H,_; —n(n —1)*H,,_5 =0,

with initial values
Hy=1, HH=0, Hy=1, H3 =6.

Using the Mathematica package P-rec.m, we obtain the asymptotic expression of H,,

5 A7 1
C . —2n %—&-271 1 s i
cn oan 115202 2\ n2) )

where C' is a constant.

Additionally, for n > 5, we can establish a lower bound f,, and an upper bound g, for

rn = Hyv1/H, as follows,

f—n2+3—n+§+i—£ L N
n= 2 "4 an  16n2 T 2 "1 an T 16n2
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. op 1 _
Then we aim to prove that s, = e 2"n1%2" serves as a lower bound and S, = e~ 2"n!*2?

serves as an upper bound of H, when n > 5 by induction. Suppose that s, < H, < .S,
we need to prove s, < H,y1 < Sp11. Since that

fusn < Hpp1 = rpnHy < gnSh-
Thus, it is sufficient to prove
Snt1 < fnSny GnSn < Snt1-
For n > 5, we define
Ai(n) =log f, +1og s, —log sp+1, Ag(n) =logSyi1 —log g, —log S,,.

Consequently, we know that A} (n) and Aj(n) are rational functions about n. By analyz-
ing the largest roots of their numerators, we conclude that Al (n) > 0 and A;(n) > 0 for
n > 3. By calculation, we also establish that

lim Aj(n)= lim Ay(n) =0.

n—-+o0o n—-+o00

Given that lim,, o, A1(n) = lim, o Ag(n) =0, Ay(3) > 0 and Ay(3) > 0, we derive that
Aq(n) > 0 and Ag(n) > 0 when n > 5. Then examining the initial values, we observe
that for n > 5,

sp < H, < S,.

From the asymptotic expansion of H,, we can derive the asymptotic expansion of u, =

ni\l/Hn—l n+\1/Hn+1/ \/n Hn27

1 2 . 3 +10gn n 1
n2 2n3 n3 o\ )

Following a similar proof process as above, we can establish that ﬁ =1- % + % is a

lower bound and ¢, =1 — n_12 is an upper bound for u, when n > 5.

Therefore, when n > 5, let

n -~ n 2 1
n — n — 1—-— R E
P n+1f n+1( * )

on . n 1 1
qn_n+1gn_n+1 n? )’

Through calculation, we can obtain that

Pn1D2Pns1 — 4G, + 3
24 3n— 14n* — 6n° + 62n" + T4n’ 4 26n° + 2n7
B n*(1+n)4(2+n)

>0, Vn=>1.
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Thus, based on the Theorem 7, it can be concluded that the sequence {{/H,/n!},>s

satisfies the Laguerre inequality of order two. After checking the first 4 items, we finally

deduce that the sequence {/H,,/n!},>1 satisfies the Laguerre inequality of order two.
Next, when n > 5, we define

_._n f/n:l_ n*(14 3n + n?)
P 1 g, Clen)d+n)
~ n o Gni n®(2+n)
T N C I T

Consequently, we can get that

Pn—1PnGnPnr1 — 4G + 3

1
= —96 — 336n — 144n? + 893n>
(_2+n)(_1+n)(1+n)4<2+n)4(—1+n+n2)( " e 8dn

+1458n* + 597n° — 227n°® — 192n" — 15n® 4 6n°),

which is positive for n > 8. According to Theorem 8, we know that the sequence
{ "V H,1/(/H,n!)},>s satisfies the Laguerre inequality of order two. By verifying the
initial values, we can further conclude that the sequence { "/ H, 1 /(/H,n!) },>2 satisfies
the Laguerre inequality of order two. O

The method described above allows us to prove that two sequences associated with the
root sequence of Fine numbers { f, },,>3 and two sequences related to the root sequence of
other sequences in Section 2 satisfy the Laguerre inequality of order two for n > 1.

Acknowledgements

The author would like to thank the anonymous referees for helpful comments. This

work was supported by National Key Research and Development Program of China
(2023YFA1009401).

References

[1] https://github.com/hou-tju/root-sequences.

[2] W.Y.C. Chen. The spt-function of Andrews. In Surveys in Combinatorics, volume
440 of London Math. Soc. Lecture Note Ser., pages 141-203. Cambridge Univ. Press,
Cambridge, 2017.

[3] W.Y.C. Chen, D.X.Q. Jia and L.X.W. Wang. Higher order Turan inequalities for the
partition function. Trans. Amer. Math. Soc., 372(3): 2143-2165, 2019.

[4] D.K. Dimitrov. Higher order Turdn inequalities. Proc. Amer. Math. Soc., 126(7):
2033-2037, 1998.

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.20 12


 https://github.com/hou-tju/root-sequences

[5] L.-M. Dou and L.X.W. Wang. Higher order Laguerre inequalities for the partition
function. Discrete Math., 346(6): 113366, 2023.

[6] M. Griffin, K. Ono, L. Rolen and D. Zagier. Jensen polynomials for the Riemann zeta
function and other sequences. Proc. Natl. Acad. Sci. USA, 116(23): 11103-11110,
2019.

[7] Q.-H. Hou and G. Li. Log-concavity of P-recursive sequences. J. Symb. Comput.,
107: 251-268, 2021.

[8] Q.-H. Hou and Z. Li. Log-behavior of the root sequences of P-recursive sequences.
arXiv:2310.19234vi, 2023.

9] J.L.W.V. Jensen. Recherches sur la théorie des équations. Acta Math., 36: 181-195,
1913.

[10] E. Laguerre. Oeuvres, volume 1. Gaauthier-Villars, Paris, 1989.

[11] G.-J. Li. f¢-Log-momotonic and Laguerre inequality of P-recursive sequences.
arXiv:2206.13922vi, 2022.

[12] E.Y.S. Liu and H.W.J. Zhang. Inequalities for the overpartition function. Ramanugjan
J., 54: 485-509, 2021.

[13] G. Pélya and J. Schur. Uber zwei Arten von Faktorenfolgen in der Theorie der alge-
braischen Gleichungen. J. Reine Angew. Math., 144: 89-113, 1914.

[14] T. Wagner. On a new class of Lagueree-Pdlya type functions with applications in
number theory. Pacific J. Math., 320(1): 177-192, 2022.

[15] L.X.W. Wang. Higher order Turdn inequalities for combinatorial sequences. Adv.
Appl. Math., 110: 180-196, 2019.

[16] L.X.W. Wang and E.Y.Y. Yang. Laguerre inequalities for discrete sequences. Adv.
Appl. Math., 139: 102357, 2022.

[17] J.J.Y. Zhao. Inequalities associated with the Baxter number. Glas. Mat., 58(1): 1-16,
2023.

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.20 13


https://arxiv.org/abs/2310.19234vi
https://arxiv.org/abs/2206.13922vi

	Introduction
	The higher order Turán inequality
	The Laguerre inequality of order 2

