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Abstract

We give a decomposition of the first group of so-called “Roe” homology of locally
finite, connected graphs. We show that this group can be decomposed as a direct
sum of two terms: the first counts the number of ends of the graph, while the second
measures the existence of cycles that are not decomposable into smaller cycles (in
some suitably coarse sense).

Mathematics Subject Classifications: 18G85, 51F30, 05C63

1 Introduction

We study the coarse structure of the cycle space of locally finite, connected graphs. In
similar settings the coarse structure of the cycle space has an influence on the value of sev-
eral coarse invariants, such as combinatorial cost of graph sequences and their S-invariants
[Ele07] or cost of orbit equivalence relations [Gab00]. In [Win24] for example, an analysis
of the cycles leads to insights about geometric property (T). Roe homology! is a certain
homology theory for coarse spaces, defined by Roe [Roe03] and which specialises to (lo-
cally finite, connected) graphs via metric spaces [Roe06, Mit01]. In the present paper,
we describe the first Roe homology group of locally finite, connected graphs. As we will
see, this group can be understood by analysing the cycle space of the graph at hand. It
is a quotient of a cycle space introduced by Bonnington and Richter [BR03]. However,
excluding effects of the space of ends of the graph, we will be able to reduce our analysis
to that of the quotient of a smaller cycle space, introduced and studied by Diestel et al.
[Die05, DK04a, DK04b, DK04c|. The main difference between their and our analysis lies
in the fact that for Diestel all cycles are created equal, while for us their length matters
and must be taken into account. Essential in these papers and also ours is the study
of so-called thin sums of cycles (i.e. well-defined infinite sums) [BG11]. The results of
this paper arose as a first step towards an understanding of the (first) uniformly finite
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homology group, introduced by Block and Weinberger [BW92]. The first Roe homology
group can be more thoroughly described than that of uniformly finite homology, with
fewer restrictions on the graph. Some of the preliminary results presented here will be
useful in a follow-up paper. For this reason some of our constructions will be more explicit
than strictly necessary.

The remainder of this section is dedicated to a cursory presentation and commentary
of the main results of the paper. Fix a locally finite, connected graph X (all vertices
have finite degree), and consider the increasing Rips complexes R, X (r € N) defined over
X. On any one of these complexes, one can define a chain complex whose chains are
functions from simplices to the coefficient ring A, or “infinite formal sums” of simplices.
The inclusion of chains corresponding to a given Rips complex to a larger Rips complex are
chain maps, and one can take the inductive limit of those chain complexes. The homology
HP(X,A) of this inductive limit is what we call Roe homology—it is a special case of
Roe’s coarse homology, defined in greater generality (see e.g. [Roe03]). In particular,
H (X, A) is invariant under quasi-isometries [Mos09, Step 3 in the proof of Theorem 12].

We focus only on the first group of Roe homology, H{°(X, A), which enjoys a relatively
intuitive combinatorial description. Recall that a (A-valued) flow on a locally finite graph
X is an assignment, to each (preliminarily oriented) edge of X, of a value in A, in such a
way that, for all vertices v of X, the sum of values of edges pointing to v is equal to the
sum of values of edges pointing away from v (i.e., “in=out”).

Theorem 6. If X is a locally finite, connected graph and A a ring, then

Z1(X,A)
HX(X,A) = ——F——+
1 ( ’ ) Coo(X7 A)’
where Z; (X, A) is the space of all (A-valued) flows on X, and C (X, A) is the space of all
flows which can be decomposed as (potentially infinite) sums of cycles of bounded length.

In a sense, this description tells us that H{°(X, A) measures the existence of flows
which do not arise as “local” phenomena.

In [Dial5], Diana shows that for a (locally finite) tree 7" with a finite number n of
ends, H(T, A) has dimension n—1 2. If T has infinitely many ends, a similar description
can be obtained:

Theorem 8. If T is a locally finite tree, and B a carefully chosen?® set of birays on T" which
will be seen to satisty |B| + 1 = | EndsT|, then

HX®(T, A) = AP,

Thus, as can be guessed from theorem 6, the group H{°(T, A) is entirely characterised
by the ends of T

?Diana’s result uses uniformly finite homology. However for locally finite finite-ended trees, Roe and
uniformly finite homology agree.
3Such a set always exists.
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We then obtain a decomposition of H°(X, A) in the general case. Recall that if T"is a
subtree of the graph X, it is called end-faithful if the inclusion T" C X induces a bijection
EndsT — Ends X.

Theorem 12. Let X be a locally finite, connected graph and 7" an end-faithful subtree of
X. Then C(X. A)
HX(X,A) =2 H*(T,A) ® ——-1—~
1( ? ) 1( ? )@COO(X7A>7
where C(X, A) is the space of flows on X that can be written as (potentially infinite) sums
of cycles.

Note that Co (X, A) differs from C(X, A) in that the latter includes sums of cycles of
arbitrarily large length, while in the former, each sum only consists of cycles of at most
a given length. So the theorem states that the first homology of X is the direct sum of
two terms: the first comes from the ends of X, while the second measures the extent to
which “sums of cycles” differ from “sums of cycles of bounded length”.

From this decomposition, the following consequences are clear:

e If X has at least two ends, its first homology is non-trivial.

e If X has cycles of arbitrarily large length that cannot be decomposed into smaller
cycles (think: chaining together increasingly long cycle graphs), its first homology
is also non-trivial. This depends on the coefficient ring. It might vanish for one ring
but not for another.

Finally, in the case where A = Z/2Z, we can further improve our understanding of
H*(X,A). The proof of this theorem uses both compactness/finiteness of A = Z/27Z,
and the fact that A is a field:

Theorem 18. If X is a locally finite, connected graph and A = Z/2Z, then
non-vanishing if and only if it is infinite-dimensional.

C(X,A)

Coo(X,A) 18

2 Flows, cycles, and H{*

2.1 Conventions on graphs

For the purposes of this paper, a graph X is the data of a set VX of vertices and a set
EX C Py(VX) of edges, where Py(VX) denotes the subsets of cardinality two. Two
vertices, u,v are neighbours, written u ~ v, if {u,v} € EX and the valency or degree of
a vertex v is the number of its neighbours. The graph X is said to be locally finite if all
vertices of X have finite valency. An orientation of the edge {u, v} is a choice of ordering
of its vertices, that is either one of the (ordered) pairs (u,v) or (v,u). An orientation of the
graph is then a choice of orientation for all of its edges; an oriented graph is equivalently
the data of a set V' of vertices and a set E of ordered pairs representing edges, with the
restriction that (u,u) ¢ E and (u,v) € E = (v,u) ¢ E. A walk in X is a sequence
of vertices, each neighbouring its successor in the sequence. A walk in which no vertex
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appears more than once is a path. The index set of the sequence can be {0,...,n} for
some positive integer n, N, or Z. In the latter two cases, and assuming the walk is a path,
it is called a ray and a biray, respectively. The length of the walk is n in the first case,
and infinite in the latter two. A walk is closed if it is finite and such that the first and last
vertex are identical. A circuit is a closed walk where no edge is traversed more than once.
A circuit in which no vertex appears more than once, except the first-and-last, appearing
exactly twice, is also called a cycle?. The graph X is connected if any pair of its vertices
appear in some common path. From now on, all graphs are assumed to be locally finite,
oriented and connected. The (induced) distance on the (connected) graph X is the metric
on VX obtained by setting

d(u,v) = length of a shortest path containing both u and wv.

From local finiteness, it follows that all metric balls B,.(v) = {u € VX : d(u,v) < r}
are finite. Furthermore, using connectivity, X is the union of its metric balls centered at
any of its vertices: VX = J,enBr(v) Yo € VX. Endowing the (vertex set of the) graph
X with the discrete topology, the compact sets are just the finite ones, and the above
property allows (a simple form of) “exhaustion by compacts”.

Say that two rays in X are close, if for any given compact K C V X they can be joined
by a path that avoids K; being close is an equivalence relation on the set of rays. An end
of X is an equivalence class of rays under “being close”. Let us write Ends X for the set
of ends of X; it is common knowledge that, under the assumptions of connectivity and
local finiteness, Ends X can also be described as the inverse limit of the inverse system
indexed over compact sets K C VX, whose objects are the sets of connected components
of X — K %, and whose morphisms map, for K C K’ a connected component C’ of X — K’
to the unique connected component C' of X — K with ¢" C C' [DK03].

Finally, given two (connected) graphs X and Y, amap f: VX — VY is said to be a
quasi-isometry if there exists a constant K > 0 such that:

o [ is K-Lipschitz, i.e. d(f(z), f(z")) < Kd(z,z') °.

e There exists a quasi-inverse for f, that is a K-Lipschitz map g : VY — VX such
that

d((go f)(z),z) <K and d((fog)(y),y) <K.

X and Y are said to be quasi-isometric if there exists a quasi-isometry from one to the
other; this is an equivalence relation.

4This paper also deals with homological cycles. To avoid confusion we will never use this terminology
but talk about flows instead.

°X — K is the graph obtained by removing from X all vertices in K and all edges adjacent to at least
one vertex in K.

SFor general metric spaces one needs (K, K)-Lipschitz and writes < Kd+ K, but for (connected) graphs
Kd suffices.
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2.2 Simplicial complexes

Recall that a simplicial complex is the data of a set V' of vertices, plus a subset X of the
set of finite subsets P(V') of V, such that X

e contains all singletons {v} for v € V; and
e is closed under subsets: if 7 C o € X, then 7 € X.

The elements of X are called simplices. Let us write X, for the simplices of cardinality
n + 1, called n-simplices. The n-skeleton of X is the simplicial complex consisting of
all simplices of X of cardinality at most n + 1; the 1-skeleton of a simplicial complex is
(equivalent to) a graph. X is said to be locally finite if its 1-skeleton is locally finite. The
faces of an n-simplex o are the (n — 1)-simplices contained in o; we write 7 < o to say
that 7 is a face of o. Finally, an orientation of X consists (for our purposes) in a choice
of sign |1 : 0] = &£ for each simplex o and face 7 of o, such that:

e if 0 is a common face of 7 # 7/, both (distinct) faces of o, then [0 : 7] - [T/ : 0] =

—[0:7]-[T:0];
e for all v € V, we have [0 : {v}] = +.

From now on, assume that all simplicial complexes are endowed with a choice of ori-
entation (it does not matter which one). Any graph defines a simplicial complex; an
orientation of the graph is equivalent to an orientation of the induced simplicial complex.
Fix r € N*? and a graph X; the r-th Rips complez R.(X) is the simplicial complex on
vertex set VX, and with simplices:

{o € Ps(V): d(u,v) <7 VYu,v €}

In other words, the simplices are the finite subsets of vertices of diameter at most r. The
r-th Rips complex R,.(X) can alternatively be described as the simplical complex whose
n-simplices are cardinality-(n + 1) cliques of the r-th graph power X" of X 7. Tt is clear
that the 1-skeleton of Ry(X) is just X, and that if r < s, then R.(X) C Ry(X). If X is
a locally finite graph, then R,(X) is also locally finite.

2.3 Thin sums

We will often view functions f : S — A from a set S to a coefficient ring A as infinite
formal sums ) o f(s) - s. We might want to apply a function to each s € S and extend
“linearly” to infinite sums, or sum an infinite number of such sums. For all of this to
be well-defined, some care is needed; the point of this subsection is to give a general
explanation of why all the constructions appearing later are well-defined and behave as
expected; it is elementary and may safely be skipped. We follow terminology from [BG11].

"The r-th power of a graph has the same vertex set and an edge for pair of vertices at distances at most
r.

ot
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Let f € A%, the support supp f is the set of elements of S on which f is non-zero. A
family I C A% is said to be thin (or summable) if any s € S lies in the support of only
finitely many functions f in F. If F'is thin, one can define the thin sum

Y F=> f:S=4

fer

of all elements of F'. This sum can either be defined as the limit of its finite sub-sums
under the product topology on A% (A discrete), or, more elementarily, by setting:

>CF) = > 1)

fer
s€supp f

We also say that a family of subsets of S is thin if the corresponding family of indicator
functions is itself thin. Although overly convoluted, one can rephrase the local finiteness
of a graph X using the above terminology, by remarking that X is locally finite if and
only if the family {{u,v} | u ~ v} is thin.

Let ¢ : S — AT be a map such that ¢[S] C AT is thin. Given a function f: S — A,
one can define

Of T — A:ts Y f(s)-o(s)(t),
seS

which is well-defined by thinness of ¢[S]. Moreover, given any thin family F C A, the
family {¢f| f € F} will still be thin.

2.4 Roe Homology

Given a locally finite simplicial complex X and a choice of coefficient ring A, one can
extend the usual definition of simplicial homology on X to a form of homology with infinite

support (in a more general context also known as Borel-Moore, or closed, homology). This
is the homology induced by the chain complex (Co(X, A), ds(X, A)) with:

e C,(X,A) the A-module of functions from X, to A (generally interpreted as infinite
formal sums of n-simplices);

o d,(X,A): Cp(X,A) — C,,—1(X, A) obtained by sending an n-simplex to the alter-
nating sum of its faces, and extending “linearly” by thin sums:

f:Zf(U)'U > Z(f(0)2[7:0]~7').

T<0
.

—:dp (}r(o)-cr)

A routine calculation (making essential use of the local finiteness condition) ensures that
this is well-defined and yields a chain complex. With notation

Zo(X, A) = kerdo(X,A),  Bu(X,A) :— imd,1(X,A),
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we get H, (X, A) = Z,(X,A)/B,(X,A).

For r < s, we have Co(R,.(X), A) C Co(Rs(X), A) and this inclusion agrees with the
boundary operators d,. We can therefore define the Roe chain compler C?(X,A) by
letting:

Cr(X, A)— [
r>0
and defining the boundary operator d3°(X, A) accordingly. Finally, the Roe homology (of
X with coefficients in A) is simply the homology of this chain complex. With notation

ZX(X,A) i— kerd° (X, A), ByX(X,A) —imd,5 (X, A),

we get HX(X, A) = Z2°(X, A)/BX (X, A). Note that we also have

. U, Z2(R, (X, 4))
B A) = 0 B (R, (X, A))

If no confusion is possible, we will not index our chain complexes with the choice of
base ring and/or simplicial complex. Furthermore, from now on, A will always denote the
chosen coefficient ring; if the choice does not matter, we will usually drop it.

We state the following essential property of Roe homology without proof:

Theorem 1. Roe homology is quasi-isometry invariant.

Proof. Follows from [Mit01, Theorem 3.10]. O

2.5 Cycles, birays and flows

Fix a locally finite, connected graph X. Let us call any element of Z;(X) a flow. This
terminology is motivated by the fact that, given an orientation of X, an element of Z;(X)
can be described as an assignment to each edge e from u to v of some value f(e) € A,
interpreted as a quantity of “flow” running through e, from u to v; the prescription
di f = 0 states the usual condition that the sum of incoming flow on a vertex is equal to
the sum of outgoing flow. Let p be a path in X. The “flow” running through p is given
by the element Dp, defined as the sum of edges appearing in p with sign, depending on
whether the edge has the same or opposite orientation to that of p. In other words:

0 ifeé¢ suppp,
(Dp)(e) :— <1 if e € suppp and e, p have equal orientation,

—1 if e € suppp and e, p have opposite orientation.

Of course this only gives us a flow (i.e. element of Z;(X)) when the path is a biray.
One can extend the definition of D to finite walks. Decompose the finite walk w into a
concatenation of paths {p;}!;, then define Dw =Y |, Dp;, which is independent of the
chosen decomposition. This only defines a flow when the walk is closed.
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We can single out two indecomposable (in an informal sense) units of flow on X; those
given by birays and cycles. Let & denote the set of and birays and cycles®. Any flow on
X can be decomposed into a sum of birays and cycles:

Lemma 2. Given any (A-valued) flow f on the locally finite, connected graph X, there
exists a function A : & — A, such that {\(s) - Ds |s € &} is thin, and satisfying

f=> As)-Ds.
se6

If X is such that {\(s)-Ds |s € &} is thin, we call A locally finitely supported. Given a
locally finitely supported function A : & — A, let us write DA for the sum ) segA(s) - Ds.

Proof. Fix an enumeration {e;}2, of the edges of X. We will construct A iteratively,
starting with the zero function, iterating over edges and adding first cycles, then birays
to A in a locally finite manner.

Start with A = 0, and iterate over each edge e; in order:

e If ¢; lies in some cycle of supp(f — D), add this cycle with correct weighting to A,
in such a way that now e; ¢ supp(f — D).

e Otherwise, do nothing.

Note that after each step, A stays locally finite, and that after step i, (DA)(e;) stabilises.
In the end (or rather, in the limit) supp(f — DA) is a forest. Indeed, assume it contains a
cycle and let e; be the first edge in this cycle; the very construction of A\ at step ¢ yields
a contradiction.

Since f — D\ is a flow, this forest has no vertex of degree 1, and any path can be
extended into a biray. Now, iterate again over each edge e; in order:

e If ¢; lies in supp(f — D), add any biray containing e; with correct weighing to A,
in such a way that now e; ¢ supp(f — DA).

e Otherwise, do nothing.

Note that after each step, A remains locally finite and that supp(f — D) stays a forest.
At the limit all edges have been removed, and thus DA = f, as needed. O

Remark 3. By inspecting the proof of the lemma, we can make the following observations.
Given s € G a biray or cycle in the decomposition of a flow f (i.e. A(s) # 0), it necessarily
holds that supp(Ds) C supp(f). This implies that if f is supported on a finite set of edges,
the decomposition A of f consists of a finite number of cycles, all supported on a subset
of the support of f. In particular, if w is a closed walk, then the associated flow Dw is
simply a finite weighted sum of flows on cycles, all supported on a subset of the support
of w.

8Since cycles are sequences of vertices, one cycle appears multiple times in this set by allowing each
vertex to serve as starting point. It has a built-in orientation that can be reversed by reversing the
indexing. Note that one could alternatively decide to have & only contain one representative for all
these elements.
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Cycle space. Fix a locally finite, connected graph X. Let € = €(X) denote the set of
cycles of X and €, = €,.(X) the subset of €(X) consisting of cycles of length at most 7.
As seen above, to any cycle ¢ € €, one can associate a function Dc : EX — A sending an
edge to 0 if it does not lie in the cycle, and to +1 if it does, according to orientation; note
that Dc lies in Z;(X). Let A® denote the set of functions from € to A that are locally
finitely supported. Formally,

A© {f:€—>A :{Dc:ce€supp f}is thin}.

It is easy to see that A® is an A-module. This association can be extended to a linear
map:

D: A 5 7,(X),

with essential use of the local finiteness condition. For any r > 0, we similarly get a
module of functions A () and a restricted map

D, : ACX) 4 7,(X).

Actually, local finiteness of an element of A (X)) comes for free since the local finiteness

of the graph implies that only a finite number of cycles of a given length can contain a
given edge. Thus, A (X)) is simply the set of functions ¢,(X) — A.
Finally, let us write

C(X,A) = imD, C.(X,A)— imD,, Cwu(X,A):— | ) imD,.

Under the interpretation of Z;(X) as the space of all flows on X, the space C(X) [resp.
Cr(X), Co(X)] corresponds to flows that can be written as any locally finite sum of cycles
[resp. cycles of length at most r, cycles of uniformly bounded length]. Some remarks:

e Each C,(X,A) and C(X, A) is an A-module.
e C1(X)CCy(X)C ... CCx(X) CC(X).
e If X is a tree, then all Co(X) and C(X) are trivial.

Remark 4. Note that we have chosen to generate C(X) through D as well-defined sums of
cycles. However we could as well have defined €(X) as the set of closed walks or the set of
circuits, and the resulting space would have been the same. This follows from remark 3.
Indeed, a collection of closed walks [resp. circuits] is thin if and only if the associated
collection of cycles is thin, which guarantees that replacing cycles by closed walks [resp.
circuits] in our definition of the cycle space does not change the result. Furthermore, since
the cycles in the decomposition of a closed walk are necessarily at most as long as the
original closed walk, the spaces C,(X) are also unchanged.

In the sequel, when no confusion is possible, we will usually not distinguish between
a cycle ¢ € € and the element Dc € C it defines (similarly for birays and sums of such).

Let us say that X has A-large cycles if the sequence C;(X, A) C Co(X, A) C ... does
not stabilise (i.e., if Coo (X, A) is different from C,.(X, A) for all r).
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Proposition 5. Both having A-large cycles and the vanishing of C(X, A)/Coo(X, A) are
wmvariant under quasi-isometries.

Proof. Let XY be two locally finite, connected graphs, and ¢ : VX — VY a quasi-
isometry with quasi-inverse ¢ : VY — VX of constant K. If u,v are two vertices both
in X or both in Y, fix a geodesic path p,, joining u to v. Extend ¢ to a function

¢:C(X,A) = C(Y,A) (and similarly ¢) by
o(f)= > [v:ef(e)Dpsus-

{u,v}=:e€ EX

It is a quick check that ¢ behaves linearly with respect to thin sums. For a finite walk p in
X of length [, denote by ¢p the finite walk in Y obtained by concatenating the segments
Dous,dussq» f0r each pair of subsequent vertices (u;,u;11) in p; define similarly ¢p if p is a
finite walk in Y. The length of this walk is at most [K. For an edge {u,v} = e € EX,
oriented as [v : €] = +, define the closed walk ¢, as the concatenation of e, then p, e,
then the reverse of ¥ ¢e and then pyg4, . The distance of a vertex v and its image ¥ ¢uv is
at most K. So the length of ¢, is at most L = K? +2K + 1. It is then easily verified that

f—vof = fle)De.

ecEX

By using remark 3 one can further decompose Dec, into a sum of cycles and conclude that
f—vof € Cp(X,A). Assume now that C.(Y,A) = C(Y,A), and let f € Cs(X, A) for
some s. So there is a A € A such that f = D), and we obtain

of = Y Ao)-¢De.

cECs(X)

So ¢f is a flow in Cks(Y, A), and thus by assumption in C.(Y;A). By an analogous
argument we find that o f € Ck,.(Y, A). Since f = vof + (f — o f), we conclude that
[ € Coax(ir,)(X, A). Thus, Coo(X, A) = Crnax(kr,)(X, A), as was to be shown.

To show that the vanishing of C(X, A)/Co(X, A) is invariant under quasi-isometries,
one simply follows the same approach. O

2.6 H* in terms of flows.

In this subsection, we provide an equivalent definition of H°, which can be summarised
as “all lows” modulo “all sums of cycles of uniformly bounded lengths”.

Fix a locally finite, connected graph X, and choose, for each pair of vertices u,v € VX,
a geodesic path p, , connecting u to v.

If ¢ = (co,...,cn) € € is a cycle in X of length < r, set 0; = {co,¢;} and 7, =
{co, ¢, cit1}, resp. edges and triangles of R,.(X). Defining \; = [¢; : oy][o; : 7] to take
into account the chosen orientation, we associate to c its triangulation:

n—1

Ac = Z NiT; € A(RT(X))2.
=1
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This assignment is thin, and therefore extends to a linear map:
A AY — A2 — Oy (R.(X)),
which, by construction, satisfies dy o A = D. In particular, we see that:
C,(X, A) = D(A®) = dy 0 A[AS] C d[Co(R,(X), A)] = By(R,(X), A)
so that, since C,(X, A) C Z;(X, A):
C-(X,A) C Bi(R.(X),A)NZ (X, A). (1)

Conversely, given a triangle 7 = {u,v,w} € (R.(x))2 and supposing [{u,v} : 7] =
[v : {u,v}], consider the closed walk w :— pyyPywPwu € €3 obtained by concatenating
the geodesics. Then, decompose w into cycles according to remark 3 in such a way that
Dw = DA. Finally, set ¢ :— A\. Again, this assignment is thin, and extends to a linear
map:

c: Co(R (X)) = ARz _y g
Assume now that f € By1(R.(X),A)NZ1(X, A), so that f = doF with F' € Cy(R,(X), A).
From the fact that f € Z;(X, A) follows that dyF' = DcF'. This shows that:
Bi(R.(X),A)N Z1(X,A) CCs.(X, A). (2)

By combining eq. (1), eq. (2) and the fact that By°(X, A) = U, B (R (X),A), we
conclude:

Now fix some r € N and consider the composite morphism:
D, : Z1(X, A) = Zi(R:(X), A) —» Hi(R(X), A).
We claim that @, is surjective, and that its kernel satisfies:
C, C ker @, C Cs,.

Indeed, let f = 3" cip (x)), f(€) - e be a representative of an element of H;(R,(X),A),

and define .
f= Z [U : 6]f(6) ’ Dpu,v'
{u,v}=:e€(Rr (X))

f is obtained by replacing edges in R,.(X) by geodesics in X. By construction, f and f
differ by an appropriate thin sum of triangles of R,.(X), hence are equal in homology. This
verifies surjectivity. The two inclusions involving the kernel follow from egs. (1) and (2),
since ker @, = Z,(X, A) N By (R, (X), A).

We now easily obtain the desired desciption of H{*:
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Theorem 6. If X is a locally finite, connected graph, then

Z1(X, A)

H®(X, A) = A

Proof. We consider the composite morphism

ZfO(X’ A) _ UT‘ZI(RT(X)7A)

Boo DA S A 2 B a) T U B (Re(X), A)

Surjectivity of all ®, implies surjectivity of ®. Furthermore, ker ®,, = Co (X, A), since
ker @, = |J, ker ®,.. O

Lemma 7. If X is a locally finite, connected graph with C,.(X, A) = Cx(X, A), then, for
any large enough s, the map ®s and the map P, descend to isomorphisms:

- ZI(X7A) T Zl(XvA)
b, ——— > H X), A Sy ——F— — HF(XA).
s CT(X,A) — 1(R8( )7 ) and o0 CT(X,A) — Hy ( ) )
Furthermore, the following triangle of isomorphisms commutes:
Z1(X,A)
Cr(X,4)
éoo
&, . \
HI(RS(X)7A> ’ Hfo(vaD

Proof. That we have isomorphisms follows from the fact that C.(X,A) = C4(X,A) =
Coo(X, A) for large enough s, commutativity from the fact that all maps involved are
appropriate quotients of inclusions. ]

3 The case of trees

The goal of this section is to understand the relation between H{® and (locally finite)
trees. In the first part, we will compute H{°(T'), where T is a locally finite tree. The
second part is devoted to understanding the relation between the homology of a (locally
finite, connected) graph X and that of a tree that “represents” the ends of X.

3.1 H(tree)

We will show (expanding on a result of [Dial5]) that given a locally finite tree 7', there
exists a set B of birays on T' such that H>®(T, A) can be identified with the set AP of
functions B — A. We will first briefly explain the properties we need B to satisfy and
illustrate how to construct it. A formal description of its construction and verification of
the properties it ought to satisfy is tedious, but straightforward. We choose to provide
an illustration instead; see fig. 1.
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Simplifying assumptions. Let us start with three easy steps. First, from the decom-
position H*(T) = Z1(T)/Cs(T) and the fact that C,, is trivial for trees, it follows that
H?(T) = Zy(T). Second, all elements of Z;(T") are entirely supported on edges incident
to vertices of degree at least 2, so that all vertices of degree 1 can be discarded from
the tree without interfering with Z;(7). We can therefore safely assume that 7" has no
vertices of degree 1. Finally, by local finiteness and a simple “unrolling” of high valency
vertices, one can transform 7" into a tree 7" with only vertices of valency 2 or 3, and such
that at least one is of valency 2; it is then a simple matter to verify that Z;(7") and Z;(7")
are isomorphic. From now on, let us therefore assume that 7" is a locally finite tree with
all vertices of degree 2 or 3, and at least one of degree 2.

Comb decomposition. Let T be a tree (with only vertices of degrees 2 and 3 by
assumption) and vy € VT be a vertex of degree 2. We will make use of a decomposition
of T into a set of rays covering it, dubbed comb decomposition, and defined as an N-indexed
sequence (P,,), of sets of rays on T', with the following properties:

1. Each edge of T is covered by exactly one ray in exactly one P,.
2. Py contains exactly two rays, both starting at vg.

3. For any n > k, the only vertex that a ray in P, shares with a ray in Py, is its starting
point, and in that case k is n — 1.

Let T;, be the subtree of T covered by all rays in | g<nPk-

Let us explain how to construct such a decomposition. First, Py consists of any two
edge-disjoint rays leaving vy. Then, assuming Py, ..., P, have been defined, let V1
consist of all vertices contained in some ray of P,, such that one edge incident to the
vertex is not contained in any previously defined ray. Let P, consist of one ray per
vertex in V1, starting at this vertex and leaving through the free edge in any direction,
as long as it does not intersect T,,. This process can end after some n if the set V,,; is
empty, or continue indefinitely.

It is easy to see that this construction yields a family satisfying the required properties
(see fig. 1).

Good set of birays.  Given a comb decomposition (P,), of T', we construct a set B
of birays on T" endowed with a well-ordering < satisfying the following conditions:

1. Each edge is covered by at least one and at most three birays of B.

For any edge e € ET, let B(e) be the set of elements of B covering e. Let us say that
be Bis last on e if b € B(e) and for all i/ € B(e), we have b’ < b. For any b € B, define
the set

M, :— {e: bislast on e}.

2. Each set M, is non-empty and connected, and | Jpeg M, = ET.

3. Whenever b is last on e, there exists some other edge ¢’ such that B(e) = B(e’)U{b}.
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Figure 1: Comb decomposition of a tree and the corresponding set of birays B. The
black dot is vy.

The construction of the set B naturally follows from that of a comb decomposition.
A preliminary (well-founded but not total) order structure comes naturally with it, and
it suffices to extend it carefully to find our well-ordering on B. Instead of explaining this
construction precisely, let us refer to fig. 1: the construction can easily be deduced from
this example.

We then have:

Theorem 8. If B is a good set of birays for the tree T, then
H>(T,A) = AB.
Proof. Consider the morphism
D: AP = Z\(T, A) = H®(T, A)
¢ Y o(b) - Db.

beB

Since only a finite number of elements of B passes through any given edge, this map is
well-defined, and A-linearity is clear.

It remains to verify that D is injective and surjective.

For injectivity, assume that ¢ € AP is non-zero, and let b the first (w.r.t our order)
biray with ¢(b) # 0. Take some e € M, (item 2); by definition of M, the value of D(¢)
on e is equal to [e : b]¢(b) (where [e : b] corrects the sign if the orientations of e and b
disagree), which is non-zero by hypothesis.

For surjectivity, given an element f € Z;(T, A), we construct a preimage ¢ of f by
inductively defining its values on the rays b € B, using the well-ordering on B. Fix some
b € B and assume that for all ¥ < b, ¢(¥') is defined and is such that whenever an edge
e € ET is covered only by birays &' < b, the sum ) cep[e : b]o(V) is equal to f(e) (this
is an obviously necessary condition, since the value of D¢ on e is entirely defined by the
coefficients associated to each ¥’ € B(e), and all elements therein have already been given
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Figure 2: Local configuration in the inductive construction of ¢.

a coefficient). Take any edge e € M,, and define

3(b) = fle) = > [e: Vp(t).
ecb/'<b

Let us verify that this definition does not depend on the choice of e € M,. By item 2, it
suffices to compare the values obtained for two adjacent edges e, e5. Let v be the vertex
shared by ey, eg; it is either of degree 2 or of degree 3, in which case it is incident to a
third edge e3. We treat only the case of degree 3, the other one being similar but simpler.
For definiteness, assume that the local configuration around v is as presented in fig. 2
In particular, the orientation of edges (thick arrows) and all birays involved (dotted thin
arrows) are assumed to be as given by the figure. First, note that since ej,es € M, all
birays in B traversing e, e; come before b, which implies that this is also the case for es:
indeed, any biray traversing es must then either traverse e; or es. A few remarks (with
index arithmetic mod 3):

L] B<€1> N B(eiﬂ) N B(€i+2) = @ and B<€z) Q B(€i+1) U B(Glurg).
o Any V' € B(es) comes before b, so that f(es) =D yen(esle : V']o(V') by the induction
hypothesis.

e For i = 1,2 and any V' € B(e;), [e; : V'] = +. If b/ € B(es), then [e3, V] is + if
b’ € B(ey) and — otherwise. This is a consequence of our choice of orientations.

We then get (with B, :— B(e;) and B;; :— B(e;) N Ble;))

fler) — fle2) = fles) (f is a flow)
= Z vess e o(b') (second observation)
= Z B s P(b Z beBys P(B) (decomposing & third observation)

= veso) + Z veBi— by P (0)
- Z b'eBia— {b}¢ Z 6/6823¢ b/ (addlng ZGI"O)
= Z e —{py oV Z v eBs—{py O (V' (grouping)

and a rebalancing of the sum yields the desired equality. By construction, the definition
of ¢ on b satisfies the inductive hypothesis, and letting ¢ be the resulting map B — A, it
is clear that D¢ = f; surjectivity is verified. n
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3.2 Subtrees

Fix a locally finite, connected graph X, some vertex vy € VX and a tree T contained
in X and containing vg. The set of ends of T" is in natural bijection with the set of rays
starting at vg; recall that each such ray also defines an end of X. Consider the map

EndsT — Ends X,

obtained by sending a ray starting at vg in 7" to the end of X it represents. T is called end-
respecting if this map is injective, and end-faithful if it is bijective. As proved by Halin,
end-faithful spanning trees always exist (for locally finite, connected graphs) [Die90).

Theorem 9. Let X be a locally finite, connected graph and T an end-respecting subtree
of X. Then
Z(T)NnC = {0}.

In particular, the natural map H(T) — H°(X) is injective.

To prove theorem 9, we will use a generalised version of Menger’s theorem due to

Aharoni [Aha87]:

Theorem 10 (Menger’s theorem for countable graphs). Given a connected countable
graph X and any two disjoint sets A, B C VX, there exists a family P of vertex disjoint
paths starting in A and ending in B, and a set S C VX that is A — B-separating (that
is, there is no path in X — S from A to B), such that S consists of the choice of precisely
one vertex from each path of P.

We can now proceed with proving the theorem.

Proof of theorem 9. The second part of the theorem follows from the first, using H°(7T') =
Zy(T) (T being a tree) and the characterisation of H{*(X) as %f)

To prove the first part, assume towards a contradiction that it does not hold. Then,
there exists some non-zero element f of Z;(T") that also lies in C: f can be written as some
sum Y A.Dc of cycles of X. For notational convenience, let us discard the coefficients
A. and let C' be the set of cycles appearing in the sum, so that f = Y .ccDc. Fix some
edge ey of T such that f(eg) # 0; ey separates T' into two connected components T
and T'y. Let v =T _Negand vy = T, Neg. Let now P be the family of paths and
S the set of vertices obtained by taking A = VT_ and B = VT, in theorem 10. We
claim that P is necessarily finite. Indeed, assume that P is infinite; we will construct two
distinct rays in the tree T', hence defining different ends of 7', but defining the same end
of X, thus contradicting the assumption that 7" is end-respecting. For p € P, let v, and
w, be the start and end points of p, and pr be the unique path in 7" connecting v, to
w,. By assumption that P is infinite, there exists a biray b in 7" such that for any finite
subpath b’ of b, infinitely many of the paths py contain b’ (this biray can be constructed
by starting with by := eg and inductively extending both sides by an edge in such a way
that infinitely many p € P satisfy ;11 being a subpath of py). Write r_ := bNT_ and
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r. = bNT,, so that b is the concatenation of r_ taken in reverse, then ey, then r; since
r_,r, are contained in disjoint subtrees of 7', they are distinct, and thus define different
ends of T. For any u € VT_, define the subtree T_(u) of T_ with respect to u as the
graph induced by the vertices w of T_ such that the unique path in T joining v_ to w
passes through wu; define similarly T, (u) if v € T.. Now, let K be a compact in X. By
finiteness of K, there is some vertex u_ far enough along r_ such that T_(u_) does not
intersect K; there similarly exists a vertex u, far enough along r,. Consider now the
subpath O’ of b joining u_ and wu; by construction ¢’ is contained in infinitely many of the
paths py; which implies in particular that for infinitely many of the paths p € P, we have
v, € T_(u_) and w, € Ty (us). Again by finiteness of K, and the assumption that the
paths in P are pairwise disjoint, there necessarily exists some p € P (among those with pr
containing ') that avoids K. Consider now the concatenation of paths [u_, v,|p[w,, u4],
where [u_,v,] is the unique path in 7_ (a fortiori in 7" (u_)) connecting u_ to v,, and
similarly for [w,, u4]; by construction each of the components of this concatenation avoids
K. Therefore, for any compact K, r_ and r, can be connected by a path in X avoiding
K, thus implying that r_ and r, define the same end in X, and reaching the desired
contradiction. We conclude that P, and hence S, is finite. Consider then X — .S and let
L be the union of the connected components that contain some part of 7. Then let E
be all edges not in L, incident to a vertex in S. For e € E, let s. be this vertex. Let
vg = eg NT_. We make two remarks:

e The value of f on E, defined as 3", (s : €] f(e), is equal to [vg : eo] f(eo). Indeed,
this can be seen by decomposing f into a sum of birays in 7 each biray in this
decomposition contributes to f(eg) in the same amount as it contributes to the value

of f on E (by construction of E).

e For any cycle ¢, the value >~ ,_z[s. : e]Dc(e) of ¢ on E is zero. Indeed, any time an
edge of F is crossed by ¢, another one is crossed in the opposite direction.

Let Cgs be the set of all circuits in C' that contain some vertex of S. It is clear that
f —2_Cs is zero on all of E. Since the set Cs is finite, our second remark implies that
f —>_ Cs has non-zero value on F, a contradiction. O

Remark 11. In the proof above, verifying that the set P is finite is relatively tedious. All
we actually require from the first part of the proof leading up to that is some finite set
S C VX that separates Ends T from EndsT,. As pointed out to us by a referee, a more
direct proof is possible, given familiarity with the notion of Freudenthal compactification
of graphs; for an introduction see e.g. [Die25]. Let us sketch the argument here. Let | X|
denote the Freudenthal compactification of the graph X. We will use a generalisation of
Menger’s theorem due to Bruhn et al. [BDS05] that applies to sets A, B C |X]|, under
the additional condition that AN B = () = AN B. In the proof above, the sets of ends
Ends7T_ and Ends T, are disjoint compacts of |T'|. By the continuity of the inclusion map
L :|T| — | X], they are also compact in | X|, so that we may apply the generalised Menger’s
theorem, and get this time a set of birays P and a set of vertices S. To show that P (and
hence S) is finite, assume it is not and argue by contradiction. Each biray p in P can be
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split up as two rays, each defining an end, say e and e, . Let (e_,e;) € £ x & be a
couple of ends defined as an accumulation point of the set {(e,,e}) |p€ P} C & x &,.
These ends are distinct and can therefore be separated by some finite F' € VX, but there
are also infinitely many (disjoint) birays in P that must intersect it: a contradiction. The

remainder of the proof is the same.

4 Tree & cycle decomposition

By the result of the last section, we know that given a (locally finite, connected) graph
X and an end-faithful tree 7" in X, the (first Roe) homology of T" embeds in that of X.
The following shows that this embedding is in fact a summand in a direct decomposition
of H°(X)—the other summand being C/C.

Theorem 12. Let X be a locally finite, connected graph and T an end-faithful subtree of

X. Then
C(X)

Coo(X)
Proof. We first show that Z,(T)+C(X) = Z1(X), i.e., that any f € Z;(X) can be written
as a sum f = fr+ fe with fr € Z(T) and fe € C.

Intuitively, we will use elements of C to “push” the flow f onto the tree T. First,
decompose f into a sum of cycles and birays, using lemma 2. We can then write:

F= > > NP + > > ADb + > ADe,

e€ Ends X beB(e,e) e7#e/€ Ends X beB(e,e’) cel

HX(X) = HX(T)®

where B(e,e’) is the set of birays coming from end e and going to end ¢’. Fix a ball
B(vg,r) and consider all birays that appear in the decomposition of f and intersect the
ball.

o If b € B(e,e) is a biray coming from the same end it is going to, there must
exist a path outside of the ball connecting the two remaining strands of b. The
concatenation of this path with the piece of b intersecting the ball yields a cycle,
whose removal pushes b outside of the ball.

o If b € B(e,e) is a biray coming from a different end it is going to, there exists a
biray by in the tree T with the same ends, and there exist two paths outside of
the ball, connecting the matching strands of b and by. The concatenation of the
two connecting paths with the appropriate pieces of b and by yields a closed walk,
whose removal pushes b outside of B(vg,7) — 7. By remark 3 that closed walk can
be replaced by a collection of cycles.

Thus, in each case, one can remove a collection of cycles from a biray to push it outside of
B(vg,r) — T. To guarantee this removal is thin when we repeat this procedure for a thin
collection of birays some care is needed. To build the function f¢, proceed then as follows.
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Start with some ball B(vg,r), and connect the birays intersecting the ball as explained
above. Then, iteratively, choose a ball containing all connecting paths of the previous
step, and find new connecting paths. This process will result in one infinite ladder for
each biray b in some B(e, e) (sides: two rays defined by b, rungs: the connecting paths),
and one bi-infinite ladder for each biray b in some B(e, ¢’) (sides: b and the corresponding
biray of 7', rungs: the connecting paths). Each such ladder is decomposed into a sum of
closed walks (and subsequently into cycles by remark 3). Let then

fe = Z MyD(cycles in the ladder of b) + Z A.De.

b cel
To see that this function is well-defined as a thin sum, note that:

e The part Y .ceA:Dc is thin to begin with, so that it suffices to ensure that the other
one is thin.

e At each step of the process, only a finite number of cycles are used, since only a
finite number of birays intersect any given finite ball (the original decomposition of
f was thin to begin with). Furthermore, any edge can only be in the support of
cycles in two consecutive steps of the construction (each new step adds cycles in a
given “annulus”).

This shows that, indeed, f¢ is thin and such that f — f¢ is supported on T
Combining the above with theorem 9, we conclude that

Z1(T) & C(X) = Zu(X),

and taking a quotient by C..(X) yields, using theorem 6,

as was to be shown. O

5 More on cycles

As seen above, given a locally finite, connected graph X, and any end-faithful subtree T’
of X, we know that

H®(X, A) = H®(T, A) & C(X, A)/Co (X, A).

In section 3.1, we saw that the group H{°(T, A) can be naturally described as the function
space A, for some well chosen set of birays B on T—we have found a basis of sorts for
the left summand in the direct sum decomposition of H°(X, A). We will not reach such a
simple description of the quotient C /C.,. Nevertheless, by an infinite Gaussian elimination
process, we will find nested bases for the spaces C, and C (but not C.,), and see that as
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soon as Cy # C, the quotient space C/Cy is infinite dimensional (when A is a field, a
necessary condition for Gaussian elimination to work in general). Thus, in the rest of this
section, A will always denote a field.

From now on, given a fixed coefficient ring A, we call a subset B of C a basis if it is
thin and is such that the map

AP = C o - Yveno (D) - b

is bijective. Note that this map is well-defined by virtue of the thinness of B. Surjectivity
of this map amounts to saying that the set B spans C under infinite sums; injectivity to
the fact that no non-trivial infinite sum vanishes. We make the same definition for the
subspaces C, (r < 00).

Theorem 13. There exists a basis for C.

Proof. Simply apply Theorem 1 from [BG11] on A©®. O

5.1 Nested bases for the spaces C,

By theorem 13, there is a basis B of elements of C. The goal here is to refine this basis
into a nested sequence:

B CByC - CB,CB,,C...CB,

in such a way that each B} [resp. B'] is a basis of the space C; [resp. C|.

Choose first a well-ordering {g,|a < 8} of C and an increasing sequence of ordinals
f1<Po<...<pfi<Pit1<...<p(i€N)suchthat C; = {ga|a < 8;} for all i € N.

Let B be the basis of C provided by theorem 13. The set B is countable; let us choose
an enumeration {b;] i € N} of B. By theorem 13, there is an isomorphism A% « C.
Any element g of C thus (uniquely) defines a function N — A by means of our chosen
enumeration of B. From now on, we identify C and (N — A) = AN: if g € C, g(i) is the
coefficient associated to b; € B in the unique decomposition of ¢ as a (infinite) sum of
elements of B.

Lemma 14. Let X be a locally finite, connected graph. There exists a nested sequence of
thin subsets of C
B,CB,C---CB,CB,,C...CH,

such that each Bj is a basis of C; and B' is a basis of C.

Proof. Recall that we have chosen a well-ordering {g.| o < 8} of the set C, and ordinals
B1 < P2 < ... such that C; = {ga| @ < f8;} for all i, and that any element of C is identified
with a map N — A by means of theorem 13 and an enumeration {b; };cn of B.

We will define a “Gaussian elimination” map

v:BxBxN— A
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(whose application to the arguments 7, a,n we write v, ,(n)), inductively over its first
parameter 7.
Define first the function [ : AN — NU {occ} by

I(g) = min{i : g(z) # 0},

with by convention /(0) = co. Recall that by our identifications B ++ N and C <> AN,
both I(g) and g(n) are well-defined for g € C and n € N; define also g(co) = 0.
Our inductive definition of v is then the following.

Voo = Yo,
limyer Vg o if 7 is a limit ordinal,

Vria =% Vaa otherwise and 7 > «, (4)
V1o — ”Tfl’a(l(y“l’“l)))) “Vs_1,-1 otherwise,

V‘r—l,‘r—l(l(VT—l,T—l

where the limit is a pointwise limit (meaning that at any coordinate € N, the transfinite
sequence (Vy.o(r))s<r, is eventually constant), and whenever v,_; .1 is zero, the fraction
in eq. (4) is set to zero, by convention.

From now on, we will write v, for the diagonal element v, ., and A. , for the fraction

Vl:iigl((;g;::i)l))) when 7 < « and 7 is successor (again set to zero by convention when
Vr_1,-1 =0), or 0 for any other .

Let us briefly explain our interpretation of the map v as an infinite Gaussian elimi-
nation. An element of C is uniquely determined by a map N — A, as explained above,
which we view as an infinite row. The sequence (g, )a<p Of elements of C is viewed as a
list of rows: a matrix (g .(n))a<snen. Finally, the matrix is modified by iterating over
each row and subtracting (a suitable multiple of) it from the next rows; we thus get a
“stack” of matrices: (Vr(n))a,r<gnen-

We start with the matrix whose rows are the elements of C, ordered along the ordinal
[£. At time 7 = 0, the matrix has not been modified. At time 7 = ¢ + 1, we pivot around
the element v, ,. Note that if the row « lies before or is the pivot (i.e., @ < o), it is not
modified. If row « lies after the pivot (o > 7), we must subtract the pivot from row «.
In case 7 is a limit ordinal, we just accumulate all changes that happened up until time
T.

We start by showing by induction on 7 that:

(P1) For any n € N, the number of ordinals ¢ < 7 such that v,(n) # 0 is finite.
(P2) The limit in eq. (4) is actually well-defined.
(P3) For any o and o < min(7,a), we have v, ,(l(v,)) = 0.

(P4) The value of v, , is
Vria = Voo — Z )\a'+1,a Vg (5>

o<min{e,7}
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Indeed, assume the above holds for any 6 < 7.
If 7 =0: Then (P1), (P2), (P3) and (P4) hold trivially.
If 7 is successor: (P1) is easy: by the induction hypothesis, {oc <7 —1: v,(n) # 0}
is finite, and {o < 7: v,(n) # 0} can contain at most one more element.
(P2) does not apply to successor ordinals.
For (P3), we see that if 7 > «, then (by definition of v)

vrall(vs)) = va(l(vs))

which is zero by the induction hypothesis (i.e. (P3) holds at 7 = «). If 7 < «, then

Vra =Vr—l,a — )\T,a “Vr—1,

which, evaluated at [(v;_1), is zero by construction. If o < 7 — 1, both v, ,(I(v,)) and
v.—1(l(v,)) are zero, hence 50 is v, 4.
Finally, (P4). If 7 < «, then min{r, a} = 7, and:

Vra = Vr—1,a _)\T,a Vs

= Vo, — E >\U+1,a Vo _)\T,CM *Vr—1
o<t—1

= M,a — E )\J—i-l,a Vo

o<min(7,a)

by definition of v, ,. If 7 > «, we get min{7, a} = «a, and

Vria = Vo = 1),a + g )\a—i-l,oz Vo
o<

= V,a + E )\O'Jrl,a Vs

o<min{a,7}

If 7 is limit: We first check (P1). It suffices to show that for any n, the number of
ordinals ¢ < 7 with v,(n) # 0 is finite. If n = [(v,) for some o < 7, then the number
of § < o for which vy(n) # 0 is finite by the induction hypothesis (P1), and for any
T >0 > 0, vg(n) = 0, also by the induction hypothesis (P3). Assume then that there
exists some n which is not a leading coefficient (i.e., of the form [(v,) for some o < 7)
and in the support of infinitely many v, (where o < 7). We can take n to be the least
such integer, and for ¢ large enough, we will have:

ve(n) #0, v,(k)=0, Yk <n,

so that n is actually the leading coefficient of v,, a contradiction.
We now check (P2). Let a be arbitrary, then

Vra =lim | vgo — E Ao/ i1,a " Vo
’ o<t ’ ’
o’<min{o,0}
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which we need to verify to be well-defined. In other words, we need to check that for any
n, the sequence

o = Voa(n)+ Z Ao/ 41,0 Vor (1)

o/ <min{a,o}

stabilises starting at some ordinal. But by (P1), v,/(n) is zero for ¢’ large enough, so that
the sequence indeed stabilises. Furthermore, it stabilises to:

VO,a(”) + Z )\O'Jrl,a : Vo(”)a

o<min{a,T}

which also proves (P4).
It remains to check (P3). If o < min{7, a}, then

Vra(l(Vy)) = (}}rg Vor o(l(V5)) = lim vy o(l(v,)) =1lim 0 = 0.

o<o'<T

This closes the inductive verification of items (P1) to (P4).
Let now

B' = {vala < B,va # 0}, B ={vala < Bi,va # 0}.

Note that by (P1), each non-zero v, has a well-defined leading index [(v,), and v, # v3
implies I(v,) # l(vg). It follows that B’ is at most countable. We can now check the
following consequences of this process:

1. B CC; and B’ C C, which can be verified by induction using (P1), (P4) on v, and
since the spaces C, and C are closed under thin sums.

2. B, spans C; and B spans C (i.c., the maps A% — C; and A% — C are surjective).
Indeed, eq. (5) yields (by setting oo = 7)

Vr =Vor — § )\UJrl,T'Vcr;

o<T

so that we get
Vor =Vr + Z)\a+1,‘r Vo,

o<t

so that any element of C [resp. C;] is a thin sum of elements of B’ [resp. B}].
3. B is thin, as a subset of AP, by the same argument as the proof of (P1) for 7 limit.

4. B is thin, as a subset of A¥X. Indeed, every e € EX appears in the support of a
finite number of b € B, and every b € B appears in the support of a finite number
of elements of B’ (by the point above).

5. The set B’ is independent (i.e., the map AB — C is injective). If not, then there
would exist a subset 3 C 8 and non-zero coefficients (i), such that ) 5l Ve =

0. Let 79 :— min 3. Then > i Voll(Vry)) = 1o, a contradiction. O
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5.2 Infinite dimensionality of C/C

Using lemma 14, we get a sufficient condition for the infinite dimensionality of the quotient
C/C, as an A-vector space.

Lemma 15. Let X be a locally finite, connected graph. If Co, # C; for all i € N, then
C/Cx is infinite-dimensional as a vector space.

Proof. The condition Vi € N C,, # C; means that for all i, there exists i’ > i with
Ci € Cy; let {i;}; be a sequence of indices with C;; C C;,, for all j, and choose an element
b; € B, — B;,_, for each j. Let {J,}nen be a partition of N into N subsets of cardinality
N, and
foi= > b, neN.
j€Jn

We claim that the family {f,}, is linearly independent in the quotient, i.e., that no
non-trivial sum thereof lies in C.,. Let us verify the claim. Such a sum has the form

S = Z)\nfn = Z Z )\nbj7
n n jeJn

(which is well-defined since the b;s form a thin set). Assuming the sum lies in Cs, hence
in some C;, and we must thus get
S=Y b,

beB;
so that
0=S-=5= Y Xbj— > mb.
n jen beB;

Grouping the coefficients belonging to a given b € B’ yields a sum

and each k;, must then be zero, since B’ is itself a basis. But, by construction of the
fns, there are non-zero coefficients \,, belonging to elements b € B; for arbitrary high i,
while the 14, belong only to elements b € B;. This is a contradiction, and concludes the
proof. O]

5.3 More on Z /27

The results obtained so far can be strengthened in the case of A = 7Z/27 by using
compactness.

Lemma 16. Let X be a locally finite, connected graph, and A = 7./27. If there exists r
such that any cycle of X lies in C,, then C = C,.
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Proof. Endow both A®X and A% with the product topology, with A discrete; both spaces
are compact. The set A% is closed in A%, hence compact, and the restriction of D : A® —
AFX to A% is continuous. By assumption, for any cycle ¢ € €, there exists some ¢, € A%
with D¢, = De. Fix any element of C and any ) € A% with D1 equal to this element. Let
{¢;}ien be an enumeration of the elements of € appearing in ¢. Then, by construction,

Dy =) De = 1131%1)@.
7 =1

One can then replace D¢; by D¢; and use linearity of D:

= lim i Dg,, = lim D (i gb) .
=1 i=1

By compactness of A® and closure of A% therein, one may choose a subsequence (indexed
by (rm)m) of (321 ¢, )n converging to some element ¢ of A®. Then:

=limD (Z ¢> =D <limz ¢> = D¢,
i=1 i=1
now using continuity of D| 4o, . O

We easily deduce the following.

Corollary 17. Let X be a locally finite, connected graph, and A = Z/27Z. Then, the
following are equivalent:

1. There exists some r such that C = C,.

2. There exists some r such that Cso = C,.

3. There exists some r such that for all v’ > r, we have C.. = C,.
4. There exists some r such that any cycle of X lies in C,.

Proof. Indeed, each downward implication is obvious, and lemma 16 allows closing the
chain. =

Finally, putting together what we have so far:

Theorem 18. Let X be a locally finite, connected graph and A = Z/27. If the quotient
C/Cy does not vanish, then it is infinite dimensional.

Proof. C/Cy # 0 implies that C # Cw, and hence that none of the equivalent conditions
of corollary 17 hold. It then suffices to apply lemma 15. m
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So the case of A = Zy is well-understood since all notions of “having large cycles” are
equivalent. This is a priori also the case for any finite field Z,, but not otherwise. One
might ask the following question:

Question 19. Assuming any cycle of length < s lies in C,.(X,Z), does it hold that
C.(X,Z) C C(X,Z)?

Without compactness, mimicking the argument for A = Zy does not work. On the
other hand, we did not manage to find a counterexample.
Another interesting question arrises when we consider Cayley graphs of groups.

Question 20. It is relatively clear that a finitely presented group has Zs-small cycles,
since any cycle defines a relation, and all relations are made of a finite number of small
relations. Does the converse hold ?
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