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Abstract

Generalizing work of Athanasiadis for the Birkhoff polytope and Reiner and
Welker for order polytopes, in 2007 Bruns and Römer proved that any Gorenstein
lattice polytope with a regular unimodular triangulation admits a regular unimod-
ular triangulation that is the join of a special simplex with a triangulated sphere.
These are sometimes referred to as equatorial triangulations. We apply these tech-
niques to give purely combinatorial descriptions of previously-unstudied triangula-
tions of Gorensten flow polytopes. Further, we prove that the resulting equatorial
flow polytope triangulations are usually distinct from the family of triangulations
obtained by Danilov, Karzanov, and Koshevoy via framings. We find the facet
description of the reflexive polytope obtained by projecting a Gorenstein flow poly-
tope along a special simplex. Finally, we show that when a partially ordered set is
strongly planar, equatorial triangulations of a related flow polytope can be used to
produce new unimodular triangulations of the corresponding order polytope.

Mathematics Subject Classifications: 52B20, 52B12

1 Introduction

Given a finite directed acyclic graph (DAG) G, the flow polytope F1(G) is the lattice
polytope of non-negative flows on G of strength one. Flow polytopes have been the
subject of intense recent study in geometric and algebraic combinatorics [2, 4, 5, 7, 10,
11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24]. Flow polytopes are connected to many
areas of mathematics; one example relevant to this work is that when the DAG G is
strongly planar, it is known that the flow polytope of G is integrally equivalent to the
order polytope of the poset with Hasse diagram given by the strongly planar dual of
G [19].

A major tool used in the study of flow polytopes is the DKK triangulation induced by
a framing on the edges of G, a regular unimodular triangulation introduced by Danilov,
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Karzanov, and Koshevoy [10]. Mészáros, Morales, and Striker proved that when a strongly
planar DAG G is equipped with the planar framing, the induced DKK triangulation is
integrally equivalent to the canonical triangulation of the order polytope for the poset
dual to G. DKK triangulations have been used extensively in the literature to study the
structure of flow polytopes, dual graphs of their triangulations, and their volumes.

In this paper, we describe equatorial flow triangulations, a new family of regular uni-
modular triangulations for Gorenstein flow polytopes that arise as the join of a unimodular
simplex and a simplicial sphere. The study of triangulations with this structure originated
in work of Athanasiadis [1] for the Birkhoff polytope and Reiner and Welker [21] for order
polytopes. In 2007, Bruns and Römer [9] proved that any Gorenstein lattice polytope
with a regular unimodular triangulation admits a regular unimodular triangulation that
is the join of a special simplex with a triangulated sphere. We apply this Bruns-Römer
machinery to DKK triangulations arising from route decompositions of DAGs, producing
equatorial flow triangulations of Gorenstein flow polytopes.

Our main contributions in this paper are the following.

1. In Theorem 26, we use route decompositions to give a new combinatorial character-
ization of DAGs yielding Gorenstein flow polytopes.

2. In Theorem 49, we give a purely combinatorial description of equatorial flow trian-
gulations of a Gorenstein flow polytope.

3. In Theorem 50, we prove that if G has an inner vertex with indegree at least 3, then
the equatorial flow triangulation is not a DKK triangulation.

4. As a corollary of the work of Bruns and Römer [9], a Gorenstein F1(G) projects onto
a reflexive polytope. In Section 5, we provide a combinatorial halfspace description
of this reflexive polytope for an equatorial flow triangulation.

5. Finally, in Section 6, we prove that when G is strongly planar, a particular choice
of route decomposition yields an equatorial flow triangulation that is integrally
equivalent to the Reiner-Welker equatorial triangulation of the associated order
polytope. We also use equatorial flow triangulations to produce new triangulations
of Gorenstein order polytopes for strongly planar posets.

We begin with Section 2, which contains background on polytopes, triangulations, and
Ehrhart theory.

2 Background

2.1 Lattice and Flow polytopes

Let G be a finite directed acyclic graph (DAG) with linearly ordered vertex set {s < 1 <
2 < · · · < n < t} such that if (i, j) is a directed edge in G, then i < j. We assume
throughout this work that s is the unique source of G and t is the unique sink of G, and
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all other vertices of G we call inner vertices. We denote by inG(v) the set of incoming
edges at v, and by outG(v) the set of outgoing edges at v. A route is a directed path in
G from s to t.

Definition 1. The flow polytope of G is

F1(G) :=

x ∈ RE(G)
>0 :

∑
e∈inG(v)

xe =
∑

e∈outG(v)

xe for every inner vertex v,
∑

e∈outG(s)

xe = 1

 .

Equivalently, F1(G) is given by the convex hull of indicator vectors of routes in G. The
cone of non-negative flows of G is

F(G) :=

x ∈ RE(G)
>0 :

∑
e∈inG(v)

xe =
∑

e∈outG(v)

xe for every inner vertex v

 .

The dimension of F1(G) is |E| − n− 1, where G has n inner vertices and E is the set
of edges of G. Note that the facets of F1(G) and F(G) are given by xe = 0 for an edge
e ∈ E(G), but not all of these equations are facet defining. Towards identifying the facet
defining hyperplanes, we define an edge to be idle if it is the only incoming or outgoing
edge edge of an inner vertex. It is known [10, 23] that contracting an idle edge e ∈ E(G)
does not change the lattice-polyhedral structure of F1(G) and F(G). Further, in a DAG
with no idle edges, every edge yields a facet hyperplane xe = 0. Hence, we will assume
throughout this paper that we have no idle edges, and this can be done without losing
information about F1(G) and F(G).

A framing of G is a choice for each inner vertex v of linear orderings on inG(v) and
outG(v). Danilov, Karzanov, and Koshevoy [10] proved that every framing F induces a
regular unimodular triangulation of F1(G), called the DKK triangulation induced by F ,
which we explain next. Assume that we have chosen a framing F of G, and note that
all of the following definitions are dependent on F . If P is a route in G containing the
vertex v, then we write Pv for the path from the source s to v following P , and similarly
vP for the path from v to the sink t along P . We write vPw for the segment of P from
v to w. We write Out(v) for the set of partial routes in G starting at v and ending at t,
and similarly In(v) is partial routes from s to v. If e is less than f in the linear order for
F on in(v), we write e ≺in(v) f , and similarly for out(v).

Let P and Q be paths in Out(v) that agree on the paths P ′ ⊂ P and Q′ ⊂ Q that
begin at v and end at w. Suppose further that the vertices following w on P and Q
are distinct, and call them wP and wQ. We define an inequality between these paths by
setting P ≺Out(v) Q if (w,wP ) ≺F,out(w) (w,wQ), and similarly for P ≺In(v) Q. Assume P
and Q are routes that intersect at a common inner vertex v of G. We say P and Q are
in conflict, also called conflicting, if Pv ≺In(v) Qv and vQ ≺Out(v) vP . If P and Q are
not conflicting at v, then they are coherent at v. P and Q are called coherent if they are
coherent at every inner vertex v that is contained in both P and Q. Finally, a clique is a
set of pairwise-coherent routes in G. When a route R in G is coherent with every other
route in G, R is called exceptional.
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Figure 1: An example of a framed DAG where the edges are linearly ordered by 1 < 2
and an example of coherent routes forming a maximal clique. The bottom two routes are
the exceptional routes for this framed DAG.

Definition 2. Given a DAG G with framing F , the DKK triangulation of F1(G) induced
by F has one facet for each maximal clique, where the facet for a clique is the simplex
given by the convex hull of the indicator vectors for the routes in the clique.

Recall that a lattice simplex conv{v0, v1, . . . , vd} ⊂ Rd is unimodular if {v1−v0, . . . , vd−
v0} is a lattice basis for Zd. Further, a triangulation of a lattice polytope is unimodular
if every simplex in the triangulation is unimodular.

Theorem 3 (Danilov, Karzanov, and Koshevoy [10]). For any finite DAG G and any
framing F , the DKK triangulation of F1(G) induced by F is a regular unimodular trian-
gulation.

Example 4. Figure 1 is an example of a framed DAG and coherent routes.

2.2 Face Enumeration and Ehrhart Theory

We next recall h-polynomials, Ehrhart series, and connections among these objects. Two
invariants of interest for flow polytopes and their triangulations are h-vectors and Ehrhart
h∗-vectors, defined as follows.

Definition 5. Given a finite simplicial complex T , let fk denote the number of k-
dimensional faces of T , where we define f−1 := 1. The h-polynomial of T is defined
to be

h(T ; z) :=
d−1∑
k=−1

fkz
k+1(1− z)d−1−k .

The coefficient vector of h(T ; z) is the h-vector of T .

In the following definition, we rely on a result due to Ehrhart [12] that states the
Ehrhart series of a lattice polytope is a rational function of the form given in the definition.
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Definition 6. Given polytope P of dimension d with vertices in Zn, the Ehrhart series
of P is

Ehr(P ; z) := 1 +
∑
t>1

|tP ∩ Zd|zt =
h∗0 + h∗1z + · · ·+ h∗dz

d

(1− z)d+1
.

We call the numerator of this rational function the h∗-polynomial of P and its coefficient
vector the h∗-vector of P .

Example 7. The Ehrhart series for the flow polytope of the DAG G given in Figure 1 is

Ehr(F1(G); z) =
1 + 3z + z2

(1− z)5

For a unimodular triangulation, the h-vector and h∗-vector are closely related; see
Beck and Robins [3] for a textbook proof of the following result.

Theorem 8. Given a unimodular triangulation T of a lattice polytope P , the h-vector of
T is equal to the h∗-vector of P .

We complete this subsection by recalling the definition of the codegree of a lattice
polytope.

Definition 9. The degree of a d-polytope P is

deg(P ) := max{m ∈ Z>0 : h∗m 6= 0} .

The codegree of P is
codeg(P ) := d+ 1− deg(P ) .

The following theorem is a consequence of Ehrhart-Macdonald reciprocity [3, Theo-
rem 4.5].

Theorem 10. The codegree of a d-polytope P is the smallest integer k such that kP
contains an interior lattice point.

Example 11. The degree and codegree for the flow polytope of the DAG given in Figure 1
is deg(F1(G)) = 2 and codeg(F1(G)) = 4 + 1− 2 = 3. Hence, the dilate 3F1(G) contains
an interior lattice point by Theorem 10.

2.3 Gorenstein Polytopes and Equatorial Triangulations

We next recall Gorenstein polytopes and their properties.

Definition 12. A rational pointed cone C ⊆ Rd+1 is said to be Gorenstein if there exists
an integer point c ∈ Zd+1 such that

c+ (C ∩ Zd+1) = C◦ ∩ Zd+1

where C◦ is the (relative) interior of C. We call c the Gorenstein point of C.
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We can extend the definition of Gorenstein to lattice polytopes as follows.

Definition 13. A lattice polytope P ⊆ Rd is Gorenstein if

cone(P ) := {(x, t) ∈ Rd+1 : t > 0, x ∈ tP}

is a Gorenstein cone. The polytope P is reflexive if the Gorenstein point in cone(P ) has
final coordinate 1, i.e., is at height 1 in the cone over P .

Note that if P is d-dimensional, then P is reflexive if and only if P contains a unique
interior lattice point v and there exists an integer matrix A such that

P − v = {x ∈ Rd : Ax 6 1} .

The following two propositions connect arbitrary Gorenstein polytopes to reflexive poly-
topes; for more details see the textbook treatment by Bruns and Herzog [8].

Proposition 14. A lattice polytope P is Gorenstein if and only if there exists some r ∈ N
such that rP is reflexive. In this case, we say P is Gorenstein of index r and, in addition,
r is the codegree of P .

Proposition 15. If P ⊆ Rd is a Gorenstein polytope with Gorenstein point c ∈ Rd+1 for
cone(P ), then c = (v, r) where r ∈ Z>1 is the index of P and v is the unique interior
lattice point of rP .

A key idea in the theory of equatorial triangulations is that of a special simplex,
defined as follows.

Definition 16. Given a d-dimensional lattice polytope P , a simplex ∆ = conv{v1, . . . , vk}
with vi ∈ P ∩ Zd is special if ∆ ∩ F is a facet of ∆ for all facets F of P .

For Gorenstein lattice polytopes, the following proposition provides a mechanism for
finding special simplices.

Proposition 17 (Bruns and Römer [9]). If P is a Gorenstein polytope and there exist
lattice points {v1, . . . , vk} ⊆ P ∩Zd where {(v1, 1), . . . , (vk, 1)} sum to the Gorenstein point
of cone(P ), then conv{v1, . . . , vk} forms a special simplex and is unimodular.

The notion of special simplices were first introduced by Athanasiadis [1] and later ex-
plored by Bruns and Römer [9] to show that Gorenstein polytopes with certain properties
have unimodal h∗ coefficients. In particular Bruns and Römer proved that Gorenstein
polytopes with a regular, unimodular triangulation have such unimodality. In this set-
ting, they abstractly define a triangulation given as a join of a special simplex and the
boundary of a simplicial polytope, as stated in the results below.

Definition 18. Given a polytope P with a special simplex ∆ = conv{v1, . . . , vk}, define
Γ(P,∆) to be the polyhedral subcomplex of ∂P generated by faces of the form

⋂k
i=1 Fi

where Fi is a facet of P such that vi /∈ Fi. We call the faces
⋂k
i=1 Fi described previously

generating faces of Γ(P,∆) since this complex is given by faces of the generating faces
and their intersections. We call Γ(P,∆) the equatorial complex of P with respect to ∆,
or just equatorial complex if P and ∆ are clear from context.
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Theorem 19 (Bruns and Römer [9]). If ∆ ⊆ P is a special simplex of a Gorenstein
polytope and S is a triangulation of Γ(P,∆), then P is triangulated by the join S ∗∆, i.e.,
by the triangulation generated by conv{F ∪∆} where F is a face of the triangulation S.
Moreover, S ∗∆ is unimodular if S is unimodular and S is regular if it is the restriction
to Γ(P,∆) of a regular triangulation.

Theorem 20 (Bruns and Römer [9]). If ∆ ⊆ P is a special simplex of a Gorenstein
polytope P and S a regular unimodular triangulation of P , then the restriction S|Γ(P,∆) is
the boundary complex of a simplicial polytope.

Bruns and Römer also observed the following corollary.

Corollary 21. If ∆ ⊆ P is a special simplex of a Gorenstein polytope P and S a unimod-
ular triangulation of Γ(P,∆), then the h∗-polynomial of P and h-polynomial of S agree.
In other words,

h∗0 + h∗1z + · · ·+ h∗dz
d = h(S; z).

3 Gorenstein Flow Polytopes and Route Decompositions

In this section, we provide a new characterization of DAGs with Gorenstein flow polytopes.
Recall, that we assume G has no idle edges.

Definition 22. A DAG G is said to satisfy degree equality if indegG(v) = outdegG(v) for
all inner vertices v.

Figure 2: Example of a DAG with degree equality.

The following result gives a characterization of DAGs having a Gorenstein flow poly-
tope.

Theorem 23 (von Bell et al. [23]). The flow polytope F1(G) is Gorenstein if and only
if G satisfies degree equality.

The following corollary shows that every flow polytope can be found as a face of a
Gorenstein flow polytope.

Corollary 24. Every flow polytope is a face of a Gorenstein flow polytope.
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−→

Figure 3: Example of adding new edges (in orange) to a DAG to satisfy degree equality.

Figure 4: Example of a route decomposition for the DAG found in Figure 2.

Proof. Let G be a DAG with flow polytope F1(G). For every inner vertex v of G, add
edges either from the source s to v or from v to the sink t in order to create a DAG G′

containing G that satisfies degree equality. See Figure 3 for an example. Then, F1(G) is
obtained as a face of F1(G′) by setting all the flow values on the newly added edges equal
to zero.

Our goal in this section is to provide an alternative characterization of these DAGs
using route decompositions, defined as follows.

Definition 25. A route decomposition R of a DAG G is a set of routes in G such that
the edge set of G is the disjoint union of the edges of routes in R.

See Figure 4 for an example of a route decomposition.

Theorem 26. A DAG G satisfies degree equality if and only if G admits a route decom-
position.

Proof. The forward implication is proved in Proposition 33 below. For the reverse impli-
cation, let v ∈ V (G) be an inner vertex. As v is an inner vertex, it has incoming and
outgoing edges and thus must be incident to at least one route in our decomposition; let
S ⊆ R be the subset of our route decomposition containing routes incident to v. For each
e ∈ inG(v), there exists a unique route Re ∈ S since each edge is in some route of our
decomposition and we have uniqueness as routes in R are edge disjoint. Similarly, given
R ∈ S, there exists a unique e ∈ inG(v) contained in R since G is acyclic. Thus, we have
a bijection between edges in inG(v) and routes in S incident to v. We can make the same
argument for e′ ∈ outG(v) and therefore

outdegG(v) = |S| = indegG(v) ,
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G

R1

−→

G−R1

R2 −→

G− {R1, R2}

Figure 5: An example of deleting routes. The first route contains an inner vertex so it is
deleted.

which proves that degree equality.

The remainder of this section develops the content required to prove Proposition 33,
which establishes the forward direction of Theorem 26. For a DAG G and a route R from
the source to the sink, we denote by G − R the DAG with edge set E(G) − E(R) and
vertex set obtained by deleting from V (G) any internal vertices that are incident only to
edges in R. See Figure 5 for an example.

Proposition 27. For a DAG G and a route R, the DAG G−R is acyclic.

Proof. If G − R contains a cycle, then these edges are also in G and thus G contains a
cycle, yielding a contradiction.

Proposition 28. If G is a DAG satisfying degree equality, then G−R also satisfies degree
equality.

Proof. Consider v ∈ V (G − R) an inner vertex of G − R. Since v is not a source nor a
sink in G − R, we have that v must also be an inner vertex of G. Thus, we have degree
equality for v in G. Now consider the following two cases. If v /∈ V (R), then

indegG−R(v) = indegG(v) = outdegG(v) = outdegG−R(v) ,

hence we have degree equality of G− R at v. Alternatively, if v ∈ V (R), then the route
R must use exactly one incoming edge and exactly one outgoing edge of v in G, since G
is acyclic. Thus,

indegG−R(v) = indegG(v)− 1 = outdegG(v)− 1 = outdegG−R(v) ,

showing we have degree equality of G − R at v. This proves that G − R satisfies degree
equality.

Lemma 29. Suppose G is a DAG that satisfies degree equality. Then for any route R in
G, and for any inner vertex v of G − R, there is a route in G − R from s to t that is
incident to v.

Proof. Let v be an inner vertex of G−R. Thus, either indegG−R(v) > 1 or outdegG−R(v) >
1. Degree equality of G−R follows from Proposition 28, and thus we have indegG−R(v) =
outdegG−R(v) > 1. So there exists vertices v1, w1 ∈ V (G−R) such that there are directed
edges (v1, v) and (v, w1) in G − R. Consider v1. If v1 = s, then we have a directed path
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from s to v. Otherwise, v1 is an internal vertex of G and degree equality of G−R implies
there exists a v2 ∈ V (G − R) such that we have a directed edge from (v2, v1) in G − R.
We continue this process, constructing a sequence of vi ∈ V (G−R). We claim each vi is
distinct. If not, then we would have a directed cycle in G− R, which is a contradiction.
Since G is finite, this process must end at s. The same argument holds to establish a
directed path from wj to t. Concatenating these two directed paths yields a route from s
to t that is incident to v.

Corollary 30. Suppose G is a DAG that satisfies degree equality. For any route R in G,
if G−R has internal vertices, then the underlying undirected graph is connected.

Lemma 31. For G a DAG that satisfies degree equality and has one source and one sink,
G−R is disconnected if and only if G = R.

Proof. If E(G − R) = ∅, then by definition G − R is disconnected as it consists of only
the source and sink with no edges, establishing the reverse implication. For the forward
implication, suppose G−R is disconnected. By Corollary 30, we see G−R has no internal
vertices. Thus, any edges in G were in R, along with any internal vertices in G.

Lemma 32. For G a DAG that satisfies degree equality, if G−R is connected then it has
the same unique source and sink as G.

Proof. Suppose we have a second source v ∈ V (G − R), i.e., we have v 6= s and
indegG−R(v) = 0. We claim v 6= t. Suppose for contradiction that v = t, so we have
indegG−R(t) = 0 and we have

outdegG−R(t) = outdegG(t) = 0 .

It follows that G−R is disconnected which is a contradiction. Hence v is an inner vertex of
G and satisfies outdegG−R(v) = indegG−R(v) = 0. This implies that G−R is disconnected,
but again by our assumption that G− R is connected, this is a contradiction. Hence no
such v can exist. A similar argument shows that there is a unique sink.

Proposition 33. Every DAG G with one source and one sink that satisfies degree equality
admits a route decomposition.

Proof. Let R1 be a route from the source to the sink in G. We have G − R1 is acyclic
by Proposition 27 and satisfies degree equality by Proposition 28. If G−R1 = ∅ then we
have a route decomposition. Otherwise, we have the same source s and sink t as G by
Lemma 32. We also have at least one route from s to t, which come from the following
two cases. Either we have an internal vertex and so by Lemma 29 we have a route. If we
do not have an internal vertex, then we only have s and t and, as the graph is connected
by Lemma 31, there must be at least one edge from s to t. So, let R2 be a route from s
to t using edges of G − R1. Continue constructing Ri ∈ G − {R1, . . . , Ri−1} in this way.
Since removing a route strictly decreases the number of edges of the previous step, and
the number of edges of G is finite, this process must end. The result is a decomposition
G = ∪ki=1Ri for some k ∈ N and moreover these routes are edge disjoint since they are
edge disjoint at every step of the construction.
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Corollary 34. The number of routes in a route decomposition R is outdegG(s), where s
is the source of G.

Proof. Let k = outdegG(s) and {ei : i ∈ [k]} be the edges out of s. Then since each edge
of the graph is in some route from our decomposition, there exists a unique Ri ∈ R such
that ei ∈ Ri. Similarly, given R ∈ R, it must use exactly one edge e out of s and no
other route can use e as the routes have disjoint edge sets. This correspondence shows
|R| = k.

Remark 35. We can also partition the edge set of G when G has multiple sources and
sinks by identifying all the sources and similarly identifying all the sinks.

4 Equatorial Flow Triangulations

Throughout this section, we assume that G is a DAG which has no idle edges and satisfies
degree equality, hence has a Gorenstein flow polytope. First, note that the vector∑

e∈E(G)

χe = 1 = (1, 1, . . . , 1) ∈ RE(G)

is the Gorenstein point for the flow polytope of G, where χe denotes the indicator vector
with a 1 in the e-th position and 0’s elsewhere. This follows from the observation by
von Bell et al. [23] that if F1(G) is Gorenstein, then it has Gorenstein point

1 ∈ F(G) ∼= cone(F1(G))

under this integral equivalence.
The following theorem provides a combinatorial method for producing special simplices

in Gorenstein flow polytopes.

Theorem 36. If G satisfies degree equality, then any route decomposition R corresponds
to a special simplex in F1(G) and the codegree of F1(G) is |R|.

Proof. Given a route decomposition R, the sum of indicator vectors of routes χR for
R ∈ R gives ∑

R∈R

χR =
∑

e∈E(G)

χe ,

since our route decomposition partitions the edge set. This is the Gorenstein point of
F1(G) and so by Proposition 17, we have that conv{χR : R ∈ R} is a special simplex. By
Theorem 10, we obtain the claimed value of the codegree.

We denote the special simplices corresponding to a route decomposition in the follow-
ing manner.
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e4
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e5

G
R

R1

R2

∆R Γ

xe1
= 0 & xe4

= 0

Figure 6: An example of the route simplex and the equatorial complex for the flow
polytope of G with route decomposition R.

Definition 37. Given a route decomposition R, the corresponding special simplex

∆R = conv{χR : R ∈ R}

is called the route simplex for R.

We now proceed to apply the Bruns-Römer theory from Section 2 in the context of
Gorenstein flow polytopes. Our goal is to obtain a completely graph-theoretic description
of the resulting equatorial flow triangulations.

Definition 38. Suppose we have a route decomposition R for a DAG G satisfying degree
equality. Let Γ be the polyhedral subcomplex of ∂F1(G) generated by the faces of the
form

⋂
R∈R FR where each FR is a facet of F1(G) such that χR /∈ FR. We call the faces⋂

R∈R FR described previously generating faces of Γ since this complex is given by faces
of the generating faces and their intersections. We call Γ the equatorial complex of the
flow polytope.

Example 39. Consider the DAG and route decomposition R = {R1, R2} given in Fig-
ure 6. The route simplex and equatorial complex are shown in the same figure. Moreover,
an example of a generating face is the intersection of the faces defined by xe1 = 0 and
xe4 = 0 since χR1 satisfies xe1 = 1 6= 0 and χR2 satisfies xe4 = 1 6= 0. This gives an edge of
the equatorial complex also shown in Figure 6. In addition, the empty face is a generating
face since it can be seen as the intersection of the faces defined by xe1 = 0 and xe2 = 0.

Our next goal is to give a combinatorial criteria to determine when a set of routes are
contained in a common face of the equatorial complex for F1(G).
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Figure 7: Given the route decomposition from Figure 4 with some indexing, the collection
of dashed edges give a transversal M = {eR1 , eR2 , eR3 , eR4 , eR5}, and all routes of the DAG
using only solid edges avoids M .

Definition 40. Given a route decomposition R of G, a set of edges M is a transversal of
R if M consists of exactly one edge from each route of R. Equivalently, a transversal is
a system of distinct representatives for the routes in R. We say a route in G avoids the
transversal M if the route does not use the edges in M , i.e., the route carries zero flow
on the edges in M .

Example 41. Figure 7 shows an example of a transversal of a route decomposition.

The next few results give combinatorial criteria for describing both general faces and
facets of Gorenstein flow polytopes. Theorem 42 gives our first combinatorial criterion
for when a collection of routes forms a common face of the equatorial complex for F1(G).
In particular, we will see that transversals characterize the faces of Γ. Note that for a
transversal M = {eR : R ∈ R} we denote by

⋂
R∈R{xeR = 0} the intersection of facets

corresponding to M .

Theorem 42. Given a directed acyclic graph G with degree equality and a route decom-
position R, a collection of routes S form a face of Γ if and only if S is the set of all routes
avoiding a union of transversals in R.

Proof. We first will expand on Definition 38. Facets of F1(G) are given by xe = 0 for
e ∈ E(G). Given a route R ∈ R, since χR gives a flow of 1 on the edges it uses in G, then
χR is not on the facets given by {xe = 0 : e ∈ E(R)}. So, given {eR ∈ E(R) : R ∈ R} to
be any transversal, then by Definition 38, we have that⋂

R∈R

{xeR = 0}

gives a generating face of the equatorial complex.
We will first show the backward direction. Let S be the set of all routes avoiding a

union of transversals. Let one such transversal be M = {eR ∈ E(R) : R ∈ R}, then the
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indicator vectors for routes avoiding M are the vertices of the generating face of Γ given
by ⋂

R∈R

{xeR = 0}

since vertices of F1(G) and hence Γ are routes. Similarly another transversal gives a
generating face, and taking the intersection of all these generating faces is another face
whose vertices are all routes avoiding the union of transversals. Thus S forms a face of
Γ. For the forward direction, since our collection of routes form a face of the equatorial
complex, the face with vertices S is the intersection of generating faces. Moreover each
generating face is given by ⋂

R∈R

FR

where FR is a facet of F1(G) such that χR /∈ FR. We saw that facets of this form must use
hyperplanes {xe = 0 : e ∈ E(R)}. As this holds for each route in our route decomposition,
this gives a collection {eR ∈ E(R) : R ∈ R} which is a transversal for this generating
face. Since routes in this generating face must give 0 for these edges, these routes avoid
this transversal. As routes in S are all the vertices of the face formed by intersecting the
generating faces, S is the set of all the routes which avoids the union of the transversals
given by each generating face.

Corollary 43 gives an alternative combinatorial characterization of when routes share
a face of the equatorial complex.

Corollary 43. Given a directed acyclic graph G with degree equality, a collection of routes
S lie on a common face of the equatorial complex if and only if there is no route in R
contained in the union of edges of the routes in S.

Proof. We will prove the forward direction by contrapositive. Suppose that some R ∈ R
is the union of edges in S, i.e. E(R) ⊆

⋃
S∈S E(S). Then S must use all the edges of

R and so we cannot avoid a transversal of R since we cannot avoid any edge from R.
Thus, S does not lie on a common face by Theorem 42. For the backward direction, now
suppose no route from our route decomposition R in the union of edges of the routes in
S. Then for every route R ∈ R, there must exists some edge eR ∈ E(G) not used by S,
otherwise we would find a route as a union of edges. This gives a transversal which routes
in S avoid and so, by Theorem 42, these routes lie on a common face.

While Theorem 42 describes exactly when a collection of routes form a face of the
equatorial complex, not all these faces are facets. Theorem 44 describes exactly when a
transversal gives a facet of the equatorial complex.

Theorem 44. Given a route decomposition of a directed acyclic graph G and a generating
face F of Γ avoiding a transversal M = {eR : R ∈ R}, F is a facet of the equatorial
complex Γ if and only for all inner vertices v of G there exists a route incident to v that
does not use the edges in M .
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Proof. We will prove the forward implication by contrapositive. Suppose there exists an
inner vertex v ∈ V (G) such that all routes incident to v use an edge in the transversal
M . Without loss of generality, suppose R1, . . . , RindegG(v) are the routes in R using v. We
will first show that the face of Γ given by {xeR : R ∈ R} is contained in a face where
all incoming edges of v in G are in the transversal, specifically, the face of Γ given by
M ′ = {eR : R ∈ R\{R1, . . . , RindegG(v)}}∪ in(v). Suppose we have a route S which avoids
the edges in M . Then our route S would not be incident to v, as otherwise S would use
an edge of M . This means that E(S) ∩ in(v) = ∅, thus S also avoids the incoming edges
of v, hence S also avoids the edges in M ′. This shows our original face F is contained in
the modified face defined by the transversal M ′.

We will now show that the face of Γ given by M ′ is properly contained in another
face and hence F is not a facet. Since G has no idle edges, we have indegG(v) > 2 and
also outdegG(v) > 2. Moreover, for an incoming edge e ∈ in(v) there must be some
outgoing edge f ∈ out(v) that lies on the same route, say Ri for some i. Define a new
transversal M ′′ = (M ′ \ {e}) ∪ {f}. This contains all the routes avoiding the original
transversal M , since every route avoiding M is not incident to v. Moreover we claim this
transversal contains a new route. We have a path given by the route Ri from s to v;
since outdegG(v) > 2, there must be another route in R, say Rj, using an edge out of
v different from f . We can concatenate at v the path from s to v following Ri with the
path from v to t following Rj to create a new route that avoids M ′′. Thus, F is properly
contained in another face of Γ and hence is not a facet.

We will now prove the backward implication by contradiction. For a contradiction,
suppose F avoiding the transversal M is not a facet, and thus there exists a face F ′ of Γ
such that F 6= F ′ and F ⊂ F ′. Without loss of generality, F ′ is a generating face of Γ and
so avoids a different transversal, say {e′R : R ∈ R}. Since we have a proper containment,
there must exist a route R′ ∈ F ′ such that R′ /∈ F . Since routes in F avoid edges in M ,
there must exist an S ∈ R such that eS ∈ E(R′) and e′S /∈ E(R′), since R′ ∈ F ′ for the
same S ∈ R. This means in particular that eS 6= e′S. We now claim there exists an inner
vertex of indegree at least two in V (S) appearing between eS and e′S. Since eS 6= e′S,
there are at least three vertices and so the one between these edges in S must be an inner
vertex. Since G has no idle edges this inner vertex must have indegree greater than or
equal to two.

Having established our claim, suppose that eS appears before e′S in the route S (when
the order is switched, the following argument is symmetric). Let v be an inner vertex
with indegG(v) = outdegG(v) > 2 between these two edges. By our assumption, we have
a route using v in G that avoids the edges in M . In particular we have a path from the
source to v avoiding the edge eS. We also have a path from v to the sink obtained by using
the edges of S, which also avoids eS since this edge appears before v in S. Concatenating
these paths we get a route from our source to sink which avoids M and uses e′S, hence
the resulting route is contained in F but not in F ′. This contradicts that F ⊂ F ′, and
hence F is a facet.

We next introduce a triangulation of Γ that uses as input only a route decomposition
R of G with a linear ordering of the routes in R.
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Figure 8: A route decomposition and framing.

Definition 45. Consider a route decomposition of G with a linear ordering 6 given by

R = {R1 < R2 < R3 < · · · < Rk} .

For an inner vertex v with indegree j that is incident to the routes Ri1 < Ri2 < · · · < Rij ,
with incoming edges at v given by ei1 , . . . , eij , order the incoming edges according to the
ordering of the routes, i.e., ei1 < · · · < eij . We similarly order the outgoing edges at each
vertex. This framing is called the route decomposition framing and yields by Theorem 3
a DKK triangulation T of F1(G). The restriction T |Γ is denoted by Teq.

Note that it is often useful to consider the incoming edges at v to be labeled i1, i2, . . . , ij,
and similarly for outgoing edges. A route decomposition and associated framing is given
in Figure 8. Theorem 19 and Theorem 36 imply that the following triangulation exists
and is well-defined.

Definition 46. Given a route decomposition with a linear ordering (R,6), we define the
equatorial flow triangulation to be the triangulation of F1(G) given by the join

Teq ∗∆R ,

i.e., the triangulation obtained as the union of simplices by conv{F ∪∆R} where F is a
face of the triangulation Teq.

The results of Bruns and Römer in Section 2 yield the following in the special case of
flow polytopes.

Theorem 47. For a Gorenstein flow polytope F1(G), the equatorial flow triangulation
is regular and unimodular, and the equatorial sphere Teq is the boundary complex of a
simplicial polytope. Further, the h-vector of Teq is the h∗-vector of F1(G).

Proof. This follows immediately from Theorem 19, Theorem 20, and Corollary 21.

Remark 48. We can replace Teq by any regular unimodular triangulation of Γ, say S, to
obtain a regular unimodular triangulation of F1(G) given by S ∗∆R. The usefulness and
beauty of the equatorial flow triangulation is that it is defined entirely combinatorially
by a route decomposition with a linear ordering.
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A purely combinatorial description of the equatorial flow triangulation is the following.

Theorem 49. For a directed acyclic graph G satisfying degree equality and (R,6) a
route decomposition with a linear ordering, a collection of routes C is a simplex in Teq if
it satisfies precisely the following two conditions:

1. The routes in C form a clique in the DKK triangulation induced by 6 on R.

2. The routes in C avoid a transversal e1, . . . , ek of R1, . . . , Rk ∈ R.

Proof. From the equatorial flow triangulation, Teq triangulates the equatorial complex
Γ. In particular, routes which form a simplex lie on a common face of Γ and are a
restriction of our DKK triangulation T to Γ. The first condition give routes which form
a simplex from the DKK triangulation, while the second condition gives routes which lie
on a common face by Theorem 42.

What is particularly remarkable is that if G satisfies degree equality and has a vertex
of indegree 3 or greater, then the equatorial flow triangulation is not a DKK triangulation,
i.e., is not induced by a framing.

Theorem 50. If G has an inner vertex with indegree at least 3, then the equatorial flow
triangulation Teq ∗∆R is not a DKK triangulation.

Proof. Suppose v satisfies indegG(v) > 3, hence by degree equality outdegG(v) > 3. This
implies that there exist at least three routes in R that are incident to v, without loss
of generality suppose we have at least the routes R1, R2, R3. For the equatorial flow
triangulation, R1, R2, R3 are each adjacent to every other route, as they are in our route
simplex. However, we will show that one of these three routes is in conflict with some
other route, hence the equatorial flow triangulation is not a DKK triangulation. For
i ∈ [3], denote ei to be the incoming edge at v and fi to be the outgoing edge at v in Ri

as we have a route decomposition. Since we have a framing, there exists permutations
σ, π ∈ S3 such that

eσ(1) < eσ(2) < eσ(3), fπ(1) < fπ(2) < fπ(3).

in our framing. There must exist a route Rj for some j ∈ [3] such that ej = eσ(2). We
will now consider the following two cases. For the first case, suppose fj = fπ(2), then Rj

conflicts with the route given by the concatenation of the paths Rσ(1)v and vRπ(3). For
the second case, suppose fj 6= fπ(2) then either fj = fπ(1) or fj = fπ(3). If fj = fπ(1), then
Rj conflicts with the route given by the concatenation of the paths Rσ(1)v and vRπ(2). If
fj = fπ(3), then Rj conflicts with the route given by the concatenation of the paths Rσ(3)v
and vRπ(2). In any case, Rj conflicts with a route, proving the claim.

Theorem 50 does not cover DAGs satisfying degree equality where all inner vertices
have indegree 2. For such DAGs, the equatorial flow triangulation is not always the same
triangulation as the DKK triangulation induced by the route decomposition framing, as
shown by the following example that is equivalent to an example given by Reiner and
Welker [21] via the flow and order polytope correspondence given in Section 6.
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Figure 9: A DAG with a route decomposition for which the equatorial flow triangulation
and route decomposition DKK triangulation are not the same. The DKK triangulation
of the right DAG gives the same triangulation as the equatorial flow triangulation.

Example 51. For the left DAG given in Figure 9, in the equatorial flow triangulation,
the route consisting of edges labeled by 2 is connected to every other route by an edge.
However, in the DKK triangulation for the route decomposition framing, the all-2’s route
conflicts with the route along the spine labeled 321, and hence do not form an edge.

Even so, it is possible for the equatorial flow triangulation to be a DKK triangulation
under a different framing. Consider the right DAG in Figure 9, then the DKK triangula-
tion of this framing is the equatorial flow triangulation of the left DAG. The routes in our
route decomposition are exceptional routes so for both triangulations these three routes
appear in every maximal simplex. To form a maximal simplex for the equatorial flow
triangulation, one can use Figure 10. Routes forming an edge of the quotient polytope in
Figure 10 together with routes in our route decomposition gives our maximal simplices.
These maximal simplices coincide with the DKK triangulation. It is not known whether
equatorial flow triangulations are always DKK triangulations for some framing in the case
of DAGs where all inner vertices have indegree 2.

5 A Projection of the Flow Polytope

In this section, our goal is to describe an explicit geometric realization of the equatorial
complex for a Gorenstein flow polytope F1(G) as the boundary of a reflexive polytope
with the same h∗-polynomial as F1(G). Specifically, we give both convex hull and (non-
redundant) facet descriptions of the reflexive polytope. For an arbitrary polytope P ⊆ Rn

and V a linear subspace of Rn, the quotient polytope is

P/V := {p+ V : p ∈ P} ⊆ Rn/V.

In other words, the quotient polytope is the image of P under the canonical quotient map
Rn → Rn/V . In addition, the quotient polytope in Rn/V is linearly isomorphic to the
image of P under any linear surjection Rn → Rn−dimV with kernel V [1]. The following
proposition is a mild restatement of results found in the work of Athanasiadis [1] and
Reiner and Welker [21].

Proposition 52. Given a Gorenstein polytope P ⊆ Rn and a special simplex ∆, let
V be the linear space spanned by ∆. The boundary complex of the quotient polytope
P/V is abstractly isomorphic to the equatorial complex Γ(P,∆). Moreover, if we have a
triangulation of P of the form S ∗∆, where S is a triangulation of Γ, then the boundary
complex of P/V inherits a triangulation abstractly isomorphic to S.
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In particular, note that the facets of P/V are in bijection with the facets of the
equatorial complex. Further, P/V is known to be a reflexive polytope [9].

We need to introduce some additional notation that will be used to describe the
resulting reflexive polytope. Assume we have a DAG G (with no idle edges) satisfying
degree equality with a route decomposition framing given by R1 < R2 < . . . < Rk. Given
an edge e ∈ E(G), let label(e) be the index of the route R ∈ R which contains this edge.
This is well defined as we have a route decomposition. As usual, the inner vertices are
labeled by [n].

Definition 53. Given an internal vertex i ∈ [n], let inlevel(i) denote the set of labels of
the incoming edges e ∈ in(i) at inner vertex i, i.e.

inlevel(i) := {label(e) : e ∈ in(i)}.

Additionally, for a subset of edges D ⊆ E(G), define

inlevel(D, i) := {label(e) : e ∈ in(i) ∩D}

In particular, if we have a route R define inlevel(R, i) := inlevel(E(R), i). Note that
inlevel(R, i) consists of at most a single element.

Similarly, define outlevel(i) as the set of labels from the outgoing edges e ∈ outG(i),
i.e.,

outlevel(i) := {label(e) : e ∈ out(i)}.
We also similarly define outlevel(R, i) for a route R such that i ∈ [n].

Definition 54. For each inner vertex i ∈ [n] define V i := Rindeg(i) to be the vector space
with standard basis vectors eij1 , . . . , e

i
jindeg(i) where {j1, . . . , jindeg(i)} = inlevel(i) and where

j1 < j2 < . . . < jindeg(i) under the natural ordering of N. Note that we use the superscript
to denote that this basis is with respect to inner vertex i.

Given this notation, we are now able to define a linear map ϕ with kernel given by the
linear span of the special simplex formed by the indicator vectors of {R1, . . . , Rk}. The
map given in Definition 55 is a generalization of a map defined by Berggren [6] for flow
polytopes of amply framed DAGs.

Definition 55. Define a linear map

ϕ : R|E(G)| → V 1 × V 2 × · · · × V n

by extending linearly the map defined on a basis element e(i,j) for (i, j) ∈ E(G) by

ϕ(e(i,j)) := ejlabel((i,j)) − e
i
label((i,j))

where if i or j is a source or a sink, we omit the corresponding summand.

Observe that for a route R in G, this definition of ϕ yields

ϕ(R) =
∑

i∈[n]∩V (R)

eiinlevel(R,i) − eioutlevel(R,i) . (1)
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Figure 10: A DAG with a route decomposition given by the edge labels, vertices of the
DAG in orange, and the quotient polytope QR.

Definition 56. Given a DAG G satisfying degree equality and an ordered route decom-
position R, we define

QR := ϕ(F1(G)) .

Example 57. Figure 10 contains a DAG with a route decomposition and the correspond-
ing polytope QR with vertices labeled by both routes S and vectors ϕ(S). Figure 11 pro-
vides two examples of DAGs with three-dimensional projection polytopes QR. Note that
the left example in Figure 11 generalizes to give the type A root polytope as a quotient
of a product of two simplices, i.e., suppose we have the standard basis vectors ek ∈ Rn

then the quotient polytope is given by conv{ei − ej : i 6= j ∈ [n]}.

The following lemma connects the geometric structure of QR with the equatorial
complex.

Lemma 58. The map ϕ vanishes on the linear subspace spanned by the route simplex.
Thus, QR is a reflexive polytope whose face structure is given by the equatorial complex Γ
and whose vertices are {ϕ(R) : R /∈ R}.

Proof. That ϕ vanishes on a route Rj ∈ R follows from the fact that all the edge labels in
Rj are j, and thus Equation (1) yields a telescoping sum that cancels to zero. The claims
regarding the face structure and vertices of QR follow immediately from Proposition 52.

Having given a convex hull description of the reflexive projection QR of F1(G) for a
special simplex defined by a route decomposition R, our next task is to give a hyperplane
description of QR. The following definition and theorem are the key tools we will use for
this task.
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Figure 11: Examples of three dimensional quotient polytopes QR where the labels corre-
spond to the route decompositions R.

Definition 59. Given a transversal {eR : R ∈ R}, for every R ∈ R we have a partition
of the edges E(R) given by the following three sets

Rleft t {eR} tRright = E(R)

where Rleft are all the edges in G which the route R uses before the edge eR and Rright

are all the edges appearing in R after the edge eR. Note that sometimes these sets can
be empty.

Given a route S in our DAG G, we denote by (ϕ(S))il the l-th coordinate of ϕ(S) in
V i.

Theorem 60. For a DAG G satisfying degree equality, a route decomposition R of G,
and a transversal M := {eR : R ∈ R}, every route S satisfies∑

i∈[n]

∑
R∈R,

l∈inlevel(Rleft,i)

(ϕ(S))il = 1− |E(S) ∩M | . (2)

In particular, for any choice of transversal M , every route S satisfies the linear inequality∑
i∈[n]

∑
R∈R,

l∈inlevel(Rleft,i)

xil 6 1 .

Note that the edges in each Rleft depend on the choice of M .

Proof. Suppose S ∈ R, then it must use exactly one edge in the transversal. Moreover,
the image ϕ(S) = 0 and thus∑

i∈[n]

∑
R∈R,

l∈inlevel(Rleft,i)

(ϕ(S))il = 0 = 1− |E(S) ∩M | .

Next, suppose S /∈ R. Since we have a route decomposition, S must exit the source
following some R ∈ R. Since S /∈ R, S must eventually switch to follow edges in a
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different route in R, and then possibly switch to follow another route in R, and so forth.
Hence, there is the following partition of S as

S = Ri1v1Ri2v2 · · ·Rim−1vm−1Rim

for some integer m where m > 2, where each vj ∈ [n] is an inner vertex where the edge
into vj agrees with Rij ∈ R and the edge out of vj agrees with Rij+1

∈ R for Rij 6= Rij+1
.

Since S is not in our route simplex, at least one such vj exists.
This partition of the edges in S implies that the image of S under ϕ is

ϕ(S) =
m−1∑
j=1

e
vj
ij
− evjij+1

= (ev1
i1
− ev1

i2
) + (ev2

i2
− ev2

i3
) + · · ·+ (e

vm−1

im−1
− evm−1

im
) ,

since all other vertices in [n] are either not on S and hence do not contribute to the sum
or lie on S but S does not change levels at this vertex and hence there is no contribution
for this vertex under the ϕ map. Because of this expression for ϕ(S), we can simplify
the left hand side of Equation (2) to only include the vertices vj for j ∈ [m − 1]. This
simplification is given by∑

i∈[n]

∑
R∈R,

l∈inlevel(Rleft,i)

(ϕ(S))il =
∑

j∈[m−1]

∑
R∈R,

l∈inlevel(Rleft,vj)

(ϕ(S))
vj
l . (3)

Equation (3) also shows that we can compute all terms of this equation by considering
each segment of S, i.e., on Ri1v1, on vjRij+1

vj+1 for all j ∈ [m−1], and on vm−1Rim , since
the j-th term in the right-hand-side of Equation (3) is

∑
R∈R,

l∈inlevel(Rleft,vj)

(ϕ(S))
vj
l =



(ϕ(S))
vj
ij

if ij ∈ inlevel(Rleft
ij
, vj)

and ij+1 /∈ inlevel(Rleft
ij+1

, vj),

(ϕ(S))
vj
ij

+ (ϕ(S))
vj
ij+1

if ij ∈ inlevel(Rleft
ij
, vj)

and ij+1 ∈ inlevel(Rleft
ij+1

, vj),

(ϕ(S))
vj
ij+1

if ij /∈ inlevel(Rleft
ij
, vj)

and ij+1 ∈ inlevel(Rleft
ij+1

, vj),

0 otherwise.

For instance, when considering v1, we can consider the first two segments Ri1v1 and
v1Ri2v2 (or Rim if there are only two segments in the partition). Each of these make up
the two possible values for the j = 1 term in the sum above, and hence determining the
values on each segment will compute Equation (3).

We now use this setup to prove that Equation (2) holds. First consider Ri1v1. We have
two cases. In the first case, suppose eRi1

/∈ E(Ri1v1). Then E(Ri1v1) ⊆ Rleft
i1

since we start
this path from the source. Hence we have (ϕ(S))v1

i1
= 1 appearing in the right-hand sum

for Equation (3). In the second case we have eRi1
∈ E(Ri1v). Then i1 /∈ inlevel(Rleft

i1
, v1)

the electronic journal of combinatorics 32(4) (2025), #P4.22 22



since the edge into v1 will either be eRi1
or be in Rright

i1
. So we have a 0 value, which we

consider to be 1− 1.
We will now show that in the remaining segments, a 0 is contributed to the right-hand

side of Equation (3) if the segment contains no edge from the transversal and a −1 is
contributed if an edge for the transversal is contained in the segment. When combined
with our analysis of the first segment, this will prove the equality in Equation (2). Consider
vjRij+1

vj+1 for j ∈ [m − 1]. We again consider two cases. For the first case, suppose
eRj+1

/∈ E(vjRij+1
vj+1). Then we consider two subcases.

• In the first subcase, if E(vjRij+1
vj+1) ⊆ Rleft

ij+1
, then (ϕ(S))

vj
ij+1

+ (ϕ(S))
vj+1

ij+1
must

appear in our j-th and j + 1-st term of Equation (3). However, this simplifies to

(ϕ(S))
vj
ij+1

+ (ϕ(S))
vj+1

ij+1
= (−evjij+1

)
vj
ij+1

+ (e
vj+1

ij+1
)
vj+1

ij+1
= −1 + 1 = 0

by using our segment expression of ϕ(S).

• In the second subcase, suppose E(vjRij+1
vj+1) 6⊆ Rleft

ij+1
. Since we know this segment

does not contain eRij+1
, then we must have E(vjRij+1

vj+1) ⊆ Rright
ij+1

. This means we

have no terms associated to (ϕ(S))
vj
ij+1

or (ϕ(S))
vj+1

ij+1
and so there are no associated

terms included in Equation (3), contributing 0.

Next consider the second case where eRj+1
∈ E(vjRij+1

vj+1). Then ij+1 ∈ inlevel(Rleft
ij+1

, vj)

and ij+1 /∈ inlevel(Rleft
ij+1

, vj+1), since eRij+1
cannot appear in Rij+1

before vj since it is used

in vjRij+1
vj+1 and the edge of S into vj+1 must be either eRij+1

or in Rright
ij+1

. This means
we have

(ϕ(S))
vj
ij+1

= (−evjij+1
) = −1

appearing for the j-th term of the right-hand side of Equation (3).
Our final step is to consider the last segment vm−1Rim . Again we have two cases. In

the first case, consider eRim
/∈ E(vm−1Rim). We must have E(vm−1Rim) ⊆ Rright

im
since

S avoids our transversal edge and this segment goes to the sink. So, we do not get any
additional contribution to the right-hand side of Equation (3). In the second case, suppose
eRim

∈ E(vm−1Rim). This implies that the edge of Rim into vm−1 must be in Rleft
im and

hence im ∈ inlevel(Rleft
im , vm−1). So, we have the value

(ϕ(S))
vm−1

im
= (−evm−1

im
)
vm−1

im
= −1

contributed to Equation (3) in the vm−1-th summand.
Combining these observations shows that for the right-hand side of Equation (3),

we start with a value of 1 coming from Ri1v1, and any time we have an edge from the
transversal contained in a segment we add a value of −1 to this sum, while in the cases
where we do not use a transversal edge, we do not change the value. Hence, we have
established that ∑

i∈[n]

∑
R∈R,

l∈inlevel(Rleft,i)

(ϕ(S))il = 1− |E(S) ∩M |.
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Figure 12: An example of a route and a DAG illustrating Equation (2).

Example 61. Consider the DAG with transversal and route decomposition given in
Figure 12. For the route S following the edges labeled in the order 321, we have

ϕ(S) = e1
3 − e1

2 + e2
2 − e2

1 ,

and thus∑
i∈[n]

∑
R∈R,

l∈inlevel(Rleft,i)

(ϕ(S))il = (ϕ(S))1
3 +(ϕ(S))1

2 +(ϕ(S))2
1 = 1−1−1 = −1 = 1−|E(S)∩M | .

Combining our previous results, we are able to obtain the following halfspace descrip-
tion of QR.

Theorem 62. For a DAG G satisfying degree equality, with a route decomposition R of G,
the polytope QR = ϕ(F1(G)) is full-dimensional in the subspace given by the intersection

of
∑indeg(i)

j=1 xij = 0 for all i ∈ [n], with facets given by the following halfspaces, one for
each transversal M := {eR : R ∈ R} satisfying the conditions of Theorem (44):

HM =

x ∈ V 1 × . . .× V n

∣∣∣∣∣∣∣∣
∑
i∈[n]

∑
R∈R,

l∈inlevel(Rleft,i)

xil = 1


Proof. Using Equation (1), it follows that ϕ(F1(G)) satisfies

∑indeg(i)
j=1 xij = 0 for all i ∈ [n].

We will now show ϕ(F1(G)) is full-dimensional in this space. By Proposition 52 and
Theorem 19, the equatorial triangulation is given by a simplex joined with a triangulated
sphere. Suppose m is the dimension of the equatorial complex (as a sphere) and k is the
out-degree of the source k := outdeg(s). As our equatorial flow triangulation is given as
a join, we have

dim(F1(G)) = dim(∆R) +m+ 1

= (k − 1) +m+ 1

= k +m.

the electronic journal of combinatorics 32(4) (2025), #P4.22 24



Since dim(F1(G)) = |E(G)| − |{inner vertices of G}| − 1 then we can compute m as

m = |E(G)| − |{inner vertices of G}| − 1− k

=

 ∑
v∈V (G)

outdeg(v)

− |{inner vertices of G}| − 1− k

=

 ∑
v∈innerV (G)

outdeg(v)

+ (outdeg(s)− k)− |{inner vertices of G}| − 1

=

 ∑
v∈innerV (G)

(indeg(v)− 1)

− 1.

The second equality holds since the each edge (i, j) ∈ E(G) appears exactly once as the
outgoing edge of the left endpoint i. The third equality holds by removing the source term
of the sum. This term also gives 0 when subtracting k. The last equality holds by degree
equality and since we subtract the number of inner vertices and so can subtract 1 to each
term of the sum. Since m is the dimension of the boundary of QR by proposition 52, then

dimQR = m+ 1 =
∑

v∈innerV (G)

(indeg(v)− 1)

which is the dimension of the space in V 1 × · · · × V n given by the intersection of the
hyperplanes

∑indeg(i)
j=1 xij = 0 for all i ∈ [n]. Hence QR is full dimensional in this space.

By Proposition 52, the facets of QR correspond to the facets of the equatorial complex
Γ. We know that each transversal satisfying the conditions of Theorem 44 yields a facet
of the equatorial complex. Suppose we have HM for some M := {eR : R ∈ R} satisfying
the conditions of Theorem 44. We claim any route S avoids the transversal M if and
only if ϕ(S) ∈ HM . If S avoids the transversal M , by Theorem 60, we have ϕ(S) ∈ HM .
Similarly, if ϕ(S) ∈ HM , then S avoids M since otherwise by Theorem 60 the vector
ϕ(S) would not satisfy the defining equation of HM . Thus, a route S is on the facet of Γ
corresponding to M if and only if ϕ(S) is on the hyperplane HM , which by Theorem 60
is a supporting hyperplane of QR. This completes the proof.

6 Triangulations of Order Polytopes for Strongly Planar Posets

In this section, we prove that for strongly planar DAGs with no idle edges, a particular
equatorial flow triangulation is integrally equivalent to the equatorial triangulation of
the associated order polytope defined by Reiner-Welker. Towards this goal, we first give
the integral equivalence of flow polytopes and order polytopes when we have strongly
planar posets and DAGs shown by Mészáros, Morales, and Striker. Second, we give the
definitions and results of Reiner-Welker to see the structure of the equatorial triangulation
of order polytopes, before proving our result.
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G P

1̂

0̂

G 7−→ PG

P 7−→ GP

Figure 13: A strongly planar poset P and a strongly planar DAG G which are related by
duality.

Definition 63. A DAGG is strongly planar ifG is a planar graph with a planar realization
such that the following two conditions hold. First, for every directed edge (i, j) of G, the
x-coordinate of i is strictly less than the x-coordinate of j. Second, each edge (i, j) is
embedded in the plane as the graph of a piecewise differentiable function of x.

Definition 64. A poset P is strongly planar if the Hasse diagram of P is a planar graph
with a planar realization such that the following two conditions hold. First, for every
directed edge (i, j) in the Hasse diagram, the y-coordinate of i is strictly less than the
y-coordinate of j. Second, each edge (i, j) is embedded in the plane as the graph of a
piecewise differentiable function of y.

The following definition was originally given by Mészáros, Morales, and Striker [19,
Section 3.3].

Definition 65. Given a strongly planar DAG G, we define the truncated dual graph G∗

to be a strongly planar realization of the dual graph of G with the vertex corresponding to
the infinite region deleted. The graph G∗ is thus the Hasse diagram of a strongly planar
poset that we denote by PG. Similarly, given a strongly planar poset P , let H be the
Hasse diagram of P ∪ {0̂, 1̂}. We define GP to be the strongly planar DAG obtained as
the strongly planar dual of H.

Note that the definitions of planar DAG and strongly planar poset given in [19] are
not sufficient for Theorem 71 to hold in general. Definitions 63 and 64 require additional
structure for planar realizations of edges that are sufficient to establish Theorem 71 using
the proofs given in [19].

Example 66. Figure 13 gives an example of a strongly planar DAG G and poset P .
Moreover, these are related by duality and the corresponding constructions of G∗ and H
are given.
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We next recall basic facts about order polytopes of posets.

Definition 67. Given a finite poset P = {t1, . . . , tn}, define the order polytope of P to
be

O(P ) := {(x1, . . . , xn) ∈ [0, 1]|P | : xi 6 xj if ti 6P tj}.

Remark 68. Given a poset P , a map f : P → R>0 is order preserving if f(ti) 6 f(tj)
whenever ti 6P tj. The set of order preserving maps for P forms a polyhedral cone called
the order cone, denoted KP . This means the order polytope can be seen as bounding the
codomain of maps in Kp to be in [0, 1] since we can set f(ti) := xi and similarly for xj.

Definition 69. An upper order ideal (or filter) F is a subset of a poset P with the
property that if x ∈ F and x 6P y for some y ∈ P , then y ∈ F . Let J(P ) denote the
poset of upper order ideals ordered by inclusion.

The following proposition gives the vertex description of an order polytope.

Proposition 70. Given a finite poset P , the vertices of the order polytope O(P ) are
characteristic functions of upper order ideals, i.e., for F ⊆ P an upper order ideal the
order preserving map χF : P → R>0 defined by

χF (p) =

{
1 if p ∈ F,
0 otherwise

gives a vertex of O(P ).

The following theorem is the key correspondence between flow and order polytopes in
the strongly planar case.

Theorem 71 (Mészáros, Morales, and Striker [19]). Given a strongly planar DAG G, the
flow polytope F1(G) is integrally equivalent to the order polytope of the strongly planar
poset dual to G. Conversely, given a strongly planar poset P , the order polytope O(P ) is
integrally equivalent to the flow polytope of the strongly planar DAG GP .

As a consequence of Theorems 47 and 71, we have the following.

Lemma 72. A strongly planar DAG G has a route decomposition if and only if PG is
graded.

Proof. A strongly planar DAG G has a route decomposition if and only if F1(G) is Goren-
stein. By Theorem 71 this holds if and only if O(PG) is Gorenstein which holds if and
only if PG is a graded poset.

The following theorem shows how our equatorial flow triangulations can be used to
produce new equatorial triangulations of Gorenstein order polytopes for strongly planar
posets, describable in purely graph theoretic language.
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Theorem 73. If G is a strongly planar DAG satisfying degree equality, then every route
decomposition of G induces a unimodular triangulation of the corresponding order polytope
O(PG).

In addition to the integral equivalence given in Proposition 77, Mészáros, Morales,
and Striker give an equivalence of the canonical triangulation of order polytopes and a
DKK triangulation given by a framing called the planar framing. The structure of the
canonical triangulation is nicely given by the following definition and theorem.

Definition 74. The order complex of J(P ) is defined as the simplicial complex ∆(J(P ))
where each upper order ideal F of P defines a vertex and each chain F1 ⊆ · · · ⊆ Ft of
nested ideals defines a simplex.

Theorem 75. The canonical triangulation of the order polytope is isomorphic as an
abstract simplicial complex to the order complex of J(P ), i.e., chains of nested upper
order ideals correspond to the simplicies of the canonical triangulation.

We will now define the framing which gives an equivalence of the DKK triangulation
and the canonical triangulation for a strongly planar DAG.

Definition 76 (Mészáros, Morales, and Striker [19]). Consider a strongly planar DAG G,
then for every inner vertex there is an order of the edges given by the planar embedding.
At inner vertex j we can order the incoming and outgoing edges from top to bottom. More
specifically, draw a small circle around the inner vertex such that each edge hits the circle
once at a point and order the incoming and outgoing edges by decreasing y-coordinates of
these points. This framing is called the planar framing of G (as it depends on the planar
embedding of the DAG G).

Proposition 77 (Mészáros, Morales, and Striker [19]). Consider a strongly planar DAG
G. Under the integral equivalence map φ given by Mészáros, Morales, and Striker, the
canonical triangulation of O(PG) maps to a DKK triangulation of F1(G) given by the
planar framing

A key observation for the proof of Mészáros, Morales, and Striker is given by the
following proposition. It will also be useful later in this section in proving Theorem 89.

Proposition 78 (Mészáros, Morales, and Striker [19]). Suppose we have a strongly planar
DAG G and let φ be the integral equivalence of the order polytope and flow polytope given
by Mészáros, Morales, and Striker. Given a vertex χF of O(PG) for an upper order ideal
F of PG, we have φ(χF ) is the unit flow along a route in G separating F and PG − F .
Moreover, any route R in G separates some upper order ideal F and PG − F .

We now discuss the equatorial triangulation defined by Reiner-Welker [21] on order
polytopes. The definitions used in this paper are order preserving, while Reiner and
Welker used order reversing. However, this does not change their construction of the
equatorial triangulation for the order polytope. We give the corresponding definitions
here.

Let P be a graded poset with r rank sets, starting with rank 1. Let Pi denote the set
of elements of P of rank i for 0 6 i 6 r where we say P0 = ∅.
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Definition 79. An order preserving map f : P → R>0 is rank-constant if it is constant
along ranks, in other words f(p) = f(q) whenever p, q ∈ Pi for some i ∈ [r]

Definition 80. An order preserving map f : P → R>0 is equatorial if minp∈P f(p) = 0
and for every j ∈ [2, r] there exists a cover relation pj−1 ≺P pj such that pj−1 ∈ Pj−1,
pj ∈ Pj, and f(pj−1) = f(pj).

Definition 81. Suppose we have a chain of upper order ideals F1 ⊂ · · · ⊂ Ft. We say this
is a rank-constant chain (resp. equatorial chain) if the sum χF1 +· · ·+χFt is rank-constant
(resp. equatorial).

Example 82. The only rank constant upper order ideals are of the form

F rc
j =

⊔
i>j

Pi

for 0 6 j 6 r where F rc
r = ∅.

Definition 83. Given a chain of ideals F1 ⊂ · · · ⊂ Ft, we say its jumps are

Ji = Fi − Fi−1

for i ∈ [t+ 1] and where F0 = ∅, Ft+1 = P .

Theorem 84 (Reiner and Welker [21]). A chain of nonempty upper order ideals F1 ⊂
· · · ⊂ Ft is equatorial if and only if its jumps have the following property; for every
j ∈ [2, r] there exists pj−1 ≺P pj with pj−1 ∈ Pj−1 pj ∈ Pj and a value i ∈ [t+ 1] such that
pj−1, pj ∈ Ji. In other words, between every pair of consecutive ranks there exists a cover
relation which appears in the same jump.

Definition 85. We define ∆eq(P ) as the subcomplex of the order complex ∆(J(P )) whose
faces are given by equatorial chains of non-empty ideals.

Remark 86. Reiner and Welker [21] define ∆eq(P ) as the equatorial complex which is
different from our convention in defining Γ to be the equatorial complex. We will see later
that ∆eq(P ) is in fact related to Teq.

Reiner and Welker define the equatorial triangulation and show it has a nice structure
given by a join.

Corollary 87 (Reiner and Welker [21]). The equatorial triangulation of the order polytope
O(P ) is abstractly isomorphic to the simplicial join of σ ∗∆eq(P ) where σ is the interior
simplex spanned by the rank constant ideas {F rc

j }rj=0.

This join structure of the equatorial triangulation of the order polytope is very similar
to the equatorial flow triangulations. In fact, Theorem 89 shows that the equatorial
triangulation of the order polytope is equivalent to an equatorial flow triangulation, under
the integral equivalence of flow polytopes and order polytopes for a strongly planar DAG.
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Remark 88. Define the poset P̂G := PG ∪ {0̂, 1̂}. The integral equivalences of F1(G) and
O(PG) given by Mészáros, Morales, and Striker [19] are defined as follows:

• Define ϕ : F1(G)→ O(PG) by fl 7→ (f(x))x∈PG
where f : PG → R>0 is given by

f(x) =
∑
e

fl(e)

where we sum over the edges e ∈ G which correspond to edges from a chain from 0̂
to x in P̂G by duality. This works for any chain.

• Define φ : O(PG)→ F1(G) by (f(x))x∈PG
→ fl where fl : E(G)→ R>0 is given by

fl(e) = f(y)− f(x)

where the edge e ∈ G corresponds to the cover relation x ≺ y in P̂G by duality and
f(1̂) = 1, f(0̂) = 0.

Note that the map the map ϕ given by Mészáros, Morales, and Striker give in their paper
is slightly stronger. In fact, the codomain of ϕ is all order preserving functions f of
PG ∪ {0̂, 1̂} such that f(0̂) = 0 and f(1̂) = 1.

Theorem 89. Suppose G is strongly planar and F1(G) is Gorenstein, then the equatorial
triangulation of O(PG) corresponds to an equatorial flow triangulation under the integral
equivalence of F1(G) and O(PG).

Proof. Define the poset P̂G := PG ∪ {0̂, 1̂}. We will first show the rank constant simplex
for the equatorial triangulation of O(PG) is equivalent to the route simplex for a particular
choice of route decomposition of F1(G). We have PG is graded by Lemma 72, say of rank
r. Recall that (PG)k denotes the set of elements of PG of rank k for 1 6 k 6 r. Since
G is strongly planar, each edge of our DAG is a piecewise differentiable function. So for
each x-value between the x-values of s and t, there exists a largest y-value attained by
some edge in G. By planarity, the collection of edges achieving these maximum values
forms a route R0 where all other edges in G have smaller y-values. By duality, the edges
of R0 correspond to the cover relations of P̂G between 1̂ and elements of (PG)r. Moreover,
by Proposition 78, this gives the upper order ideal ∅ = F rc

r of PG. We can now consider
G−R0 and repeat the argument. This gives a route R1 where all the edges correspond to
the cover relations of elements between (PG)r and (PG)r−1. Hence by Proposition 78, this
gives the ideal (PG)r = F rc

r−1 of PG. We continue in this way, and the last route to remove

will be the route Rr whose edges correspond to the cover relations between (PG)1 and 0̂

in P̂G which gives the ideal PG = F rc
0 of PG. So our route decomposition and linear order

(R,6) is given by R0 6 R1 6 · · · 6 Rr which corresponds to the simplex given by rank
constant ideals F rc

r ⊂ F rc
r−1 ⊂ · · · ⊂ F rc

0 . In addition, the route decomposition framing
given by R is equivalent to the planar framing as we will be ordering edges from the top
down given by the planar embedding.
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Let T be the route decomposition framing given by (R,6), i.e., the planar framing.
We will now show that a simplex is in Teq of the flow polytope F1(G) if and only if the
corresponding simplex under the integral equivalence to O(PG) is in ∆eq(P ). A simplex in
Teq is a clique of routes under the planar framing which must also avoid a transversal by
Theorem 49 and equivalence to the route decomposition framing. By Proposition 77, we
have a clique of routes if and only if the corresponding vertices in order polytope O(PG)
give a chain of nested upper order ideals. Thus, we can assume coherency and it suffices
to check that routes avoid a transversal if and only if for the corresponding ideals in PG
satisfy the equatorial condition and are non-empty to prove our main claim.

For the forward direction, suppose we have coherent routes {Si}ti=1 which avoid a
transversal M = {eR ∈ E(G) : R ∈ R}. Consider the ideals {ϕ(Si)}ti=1 of PG and let fRi

denote the cover relation bi ≺ ai of P̂G corresponding to the edge eRi
∈ M . We will first

show these ideals are nonempty. Consider eR0 , we have a cover relation b0 ≺ a0 = 1̂ in

P̂G, which gives

ϕ(Si)(1̂)− ϕ(Si)(b0) = χSi
(eR0) + ϕ(Si)(b0)− ϕ(Si)(b0) = 0

by definition of ϕ for all i. Note in this case we are using the extended codomain of order
preserving functions discussed in Remark 88. We have shown 1 = ϕ(Si)(1̂) = ϕ(Si)(b0).
So b0 ∈ PG is an element of all ideals {ϕ(Si)}ti=1 and hence they are nonempty. We will
now verify the equatorial condition. So for all j ∈ [r − 1], each bi ≺ aj is also a relation
in PG. Hence for all i we find the following property of ϕ. When considering the edge of
the cover relation bj ≺ aj, we have

ϕ(Si)(aj)− ϕ(Si)(bj) = χSi
(eRi

) + ϕ(Si)(bj)− ϕ(Si)(bj) = 0.

Hence, ϕ(Si)(aj) = ϕ(Si)(bj). Since the edges of Rj ∈ R corresponds with the cover
relations between consecutive ranks in PG by prior observations, then we have cover
relations fRj

for all j ∈ [r − 1] between every pair of consecutive ranks of PG. Moreover,

when we consider the edge eRr ∈ M this corresponds to a cover relation br = 0̂ ≺ ar for
some ar ∈ PG. Hence

ϕ(Si)(ar) = χSi
(eRr) = 0

meaning the minimum value of all ϕ(Si) is 0 and achieved at ar ∈ PG. Hence,
∑t

i=1 χϕ(Si)

has minimum value 0 at ar and is constant on fRi
for i ∈ [r − 1] which shows {ϕ(Si)}ti=1

is an equatorial chain of nonempty ideals.
For the backward direction, suppose we have an equatorial chain of nonempty upper

order ideals F1 ⊂ · · · ⊂ Ft of PG. Since F1 is nonempty and an upper order ideal, there
exists qr ∈ F1 of the top rank. Define eR0 to be the edge in G corresponding to the cover

relation qr ≺ 1̂ of P̂G. Moreover since we have a chain of ideals, qr ∈
⋂t
i=1 Fi and

φ(Fi)(eR0) = 1− χFi
(qr) = 0

for all i ∈ [t]. So the routes {φ(Fi)}ti=1 avoid the edge eR0 which is an edge in R0. Next,
the equatorial condition gives pj−1 ≺ pj in PG for j ∈ [2, r] where pk ∈ (PG)k such that
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χF1 + · · · + χFt is constant. By reindexing, we have for k ∈ [r − 1] the cover relations
pr−k ≺ pr−k+1 in PG such that χF1 + · · ·+χFt is constant. Define the edge eRk

in G to be
the one dual to pr−k ≺ pr−k+1 of PG. By our construction of the route decomposition, we
saw that the edges in G corresponding to cover relations between (PG)r−k and (PG)r−k+1

are the edges of Rk ∈ R. Theorem 84 implies that pr−k and pr−k+1 must either both be
elements of Fi or both not be elements of Fi for all i ∈ [t]. By definition of φ, the flow on
the edge eRk

for any k ∈ [r − 1] is

φ(Fi)(eRk
) = χFi

(pr−k+1)− χFi
(pr−k) = 0

by our previous observation of pr−k and pr−k+1. To define the edge eRr , since we have an
equatorial chain we know the minimum value of χF1 + · · ·+ χFt is 0. So there must exist
an element in PG of rank 1 that attains this value, otherwise this would imply the poset
only has nonzero values as we have upper order ideals. Let this element be q1 ∈ PG hence
q1 is not in any of our ideals. Define the edge eRr ∈ G be the one dual to the relation
0̂ ≺ q1, so then

φ(Fi)(eR0) = χFi
(q1)− 0 = 0.

Thus, the routes {φ(Fi)}ti=1 avoid the transversal given by {eRj
}rj=0.

Therefore, we have shown Teq is integrally equivalent to ∆eq. This establishes an
isomorphism of triangulations σ ∗∆eq(P ) and ∆R ∗ Teq, since both are joins of equivalent
simplicial complexes.

For strongly planar graded posets, the equatorial flow triangulation is given by one
route decomposition, but any route decomposition gives an equatorial flow triangulation.
Hence, it is important to keep in mind that using equatorial flow triangulations we can
find many different equatorial triangulations of order polytopes in the strongly planar
case, and describe them combinatorially using DAGs.
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